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Abstract

In computational biology, accurate prediction of phosphopeptide-protein complex structures is essential for
understanding cellular functions and advancing drug discovery and personalized medicine. While AlphaFold
has significantly improved protein structure prediction, it faces accuracy challenges in predicting structures
of complexes involving phosphopeptides possibly due to structural variations introduced by phosphorylation
in the peptide component. Our study addresses this limitation by refining AlphaFold to improve its accuracy
in modeling these complex structures. We employed weighted metrics for a comprehensive evaluation
across various protein families. The enhanced model notably outperforms the original AlphaFold, showing a
substantial increase in the weighted average local distance difference test (IDDT) scores for peptides: from
52.74 to 76.51 in the Top 1 model and from 56.32 to 77.91 in the Top 5 model. These advancements not
only deepen our understanding of the role of phosphorylation in cellular signaling but also have extensive
implications for biological research and the development of innovative therapies.
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Introduction

Phosphorylation, a critical post-translational modification, plays a
pivotal role in regulating protein function and signaling pathways
within cells [18]. This biochemical process involves the addition
of a phosphate group to a protein or a peptide, typically
mediated by enzymes such as kinases [14, 21]. Phosphorylation can
cause significant changes in the protein’s structure impacting its
interaction with other molecules, including peptides [6, 10]. These
interactions are crucial for various cellular processes, including
cell cycle regulation, growth, apoptosis, and immune responses
[1, 13, 12, 16, 8].
The significance of phosphorylation in protein-peptide
interactions lies in its ability to modulate the function of proteins
[17]. Tt can activate or deactivate enzymes, alter subcellular
localization, or promote or prevent interactions with other
proteins and peptides. These modulatory effects are central
to cellular signaling and are intricately linked to numerous

physiological processes and disease states. For example, aberrant

phosphorylation patterns are often associated with diseases like
cancer, diabetes, and neurodegenerative disorders, making it a
key area of interest in therapeutic research[11, 19, 4].

AlphaFold has revolutionized protein structure prediction
through its utilization of deep learning [9]. It’s notably effective
in determining protein structures, often outperforming traditional
methods. However, its capability in accurately predicting
phosphopeptide-protein complexes is not as profound due to its
training on a diverse protein dataset, which, while beneficial
for general applications, might not capture the intricate details
required for phosphopeptide-protein interactions. To address
this, our research fine-tunes AlphaFold using a curated dataset
enriched with high-quality phosphopeptide-protein complex data.
By tailoring the model to this specific domain, we aim to
substantially enhance its precision in this critical area.

In this study, we introduce the Phospho-Tune model, an
AlphaFold-based approach, specifically fine-tuned to enhance the
accuracy in modeling phosphopeptide-protein complexes. Our
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refined model not only provides better structural predictions but
also significantly improves the confidence assessment of these
predictions, a crucial aspect for practical applications.

The overall pipeline of predicting the three-dimensional
structures using the

of phosphopeptide-protein complexes

proposed Phospho-Tune model is plotted in the Figure 5.

Methodology

Data collection and preprocessing

To specifically tailor our model for the structural prediction of
phosphopeptide-protein complexes, we constructed a specialized
dataset sourced from the Protein Data Bank (PDB) [2]. Our
selection criteria involved identifying samples that contained
phosphorylated residues of types SEP (phosphoserine), TPO
(phosphothreonine), and PTR (phosphotyrosine). In addition to
these criteria, we also filtered out samples with non-standard
amino acids and a resolution greater than 3 angstroms to ensure
high-quality, reliable data. Furthermore, we excluded any cases
where the phosphorylated residue was situated more than 5
angstroms away from the nearest contacted protein chain to ensure
relevance in our dataset.

The AlphaFold model uses Multiple Sequence Alignments
(MSAs) as a key input feature to predict protein structures. In
our study, we also adapted this approach for peptide analysis.
For certain peptides, when a corresponding UniProt ID was
identifiable, we generated MSAs for the UniProt sequences
using MMseqs2. From these alignments, we aligned the UniProt
sequence with the peptide sequence and extracted segments
specifically relevant to the peptides. To ensure a targeted focus on
local structural environments pertinent to phosphorylation events,
we cropped all peptides to include only the region encompassing 4
residues upstream and downstream of the phosphorylated residue.
By concentrating on these specific areas, we aim to capture
spatial relationships and interactions critical to understanding the
molecular mechanisms underlying phosphorylation events.

The final dataset comprises 967 structures, and to ensure our
model’s adaptability across diverse protein families and structural
configurations, we conducted a redundancy analysis using a
clustering approach. We used HHsearch [20] against the PDB100
database, generating hhr files that identify distant homologies. We
then clustered these samples based on high scores in the 'Prob’
(probability) column of the hhr files, grouping together similar
proteins. This method allowed us to distill our dataset, ensuring a
non-redundant and clean test set.

Our dataset was further divided into three subsets for training,
validation, and testing. The training set, consisting of 512 samples,
was organized chronologically based on release dates, spanning
from 1993-10-31 to 2017-05-24. The remaining samples were then
divided into the validation and test sets, considering clusters. The
test set includes 228 samples, and the validation set comprises
227 samples. The training set and the validation set were used for
fine-tuning and hyperparameter optimization, while the test set
was reserved for the final model evaluation.

Model performance evaluation

In our study, we used Root Mean Square Deviation (RMSD),
Local Distance Difference Test (IDDT) [15], and predicted Local
Distance Difference Test (pIDDT) as key metrics to evaluate
the structural accuracy. RMSD quantifies the average distance

between the atoms of superimposed proteins, offering a measure
Lower RMSD
values indicate greater structural similarity. However, RMSD

of the similarity between protein structures.

can be sensitive to outliers and does not account for local
structural variations. IDDT addresses this by assessing the local
conformational differences between structures, considering the
distances between all atom pairs within defined cutoffs, thereby
providing a more nuanced view of local structural accuracy and
stability. pIDDT, an extension used in models like AlphaFold,
predicts the IDDT score for each residue in a protein structure,
offering a residue-level confidence measure of the predicted
model’s accuracy. The combination of these metrics allows
for a comprehensive and detailed evaluation of the structural
predictions, ensuring both global and local structural features are
accurately captured and assessed in our study.

In addition,
important parts of the complex structure, such as peptides

to assess how well our model predicts
and phosphorylated residues, we used region-specific masks. By
applying them, we calculated our key metrics such as alpha-carbon
peptide RMSD (Ca-pRMSD) and alpha-carbon RMSD for the
phosphorylated residue (Ca-phosRMSD), as well as masked IDDT
and plDDT metrics to measure accuracy only in these specific

areas within the predicted structure.

Model implementation

In our current research, we advance the custom implementation
of AlphaFold model introduced in our previous paper [7],
focusing on enhanced flexibility and efficiency. We have optimized
memory usage through checkpointing and efficient resource
management across multi-GPU and multi-node setups using
PyTorch-Lightning [5]. Additionally, the incorporation of Weights
& Biases [3] has allowed us to establish a robust pipeline for
the model’s development, experimentation, and reporting. These
improvements collectively contribute to a more systematic and
scalable framework for protein structure prediction.

Phosphorylation integration in model’s architecture:

To highlight the significance of phosphorylation in our specific
task, we implemented targeted architectural modifications in
AlphaFold aimed at enhancing the model’s understanding of
their positions within the peptide sequence. These adjustments
are crafted to strengthen the model’s capacity to recognize

and interpret the spatial characteristics associated with
phosphorylation.
Specifically, three new layers were introduced to the

These
preprocessing and incorporating phosphorylation information,

InputEmbedding module. layers are designed for
which are indicated by a masked feature revealing the positions
of phosphorylated residues in the peptide sequence. These new
layers integrate phosphorylation information into both amino
acid and pair representations. The first layer, employing a
linear transformation, interprets phosphorylation features to
capture relationships with amino acid sequences, while the
other two contribute phosphorylation-specific features to pair
representations, providing the model with insights into how

phosphorylation influences interactions between amino acids.

Enhancements in PredictedLDDT Module:

In an effort to enhance the reliability of pIDDT scores, which are
crucial for assessing the quality of protein structure predictions,
we have refined the PredictedLDDT module. The original module,
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consisting of two linear layers, was expanded to include additional
linear layers, each paired with a Rectified Linear Unit (ReLU)
activation function. This adjustment allows for variable layer
configurations and introduces the number of layers as a tunable
parameter during the fine-tuning process.

In addition, our implementation introduces a new approach
for the separate fine-tuning of the PredictedLDDT module within
the AlphaFold architecture. This process involves isolating the
module, separate fine-tuning, and then integrating the refined
weights back into the full AlphaFold model. This independent
PredictedLDDT module is
advantageous, as it enhances plDDT scores efficiently without

fine-tuning of the particularly

extensive computational resources. This targeted approach
optimizes plDDT predictions for specific applications, eliminating
the need for complete AlphaFold model retraining.

Experiments

In this section, we present a series of experiments that
systematically evaluate important aspects of our study. These

experiments explore key components such as data preprocessing

techniques, the model’s architecture, and our training methodology.

Our goal is to provide a detailed analysis of each element,
showcasing their individual and combined impact on the overall
performance of our system.

Incorporating peptide MSAs:

In our study, we examined how incorporating Peptide Multiple
Sequence Alignments, which highlight patterns of similarity and
difference in peptide sequences, could enhance model accuracy
in predicting the structures of phosphorylated peptide-protein
interactions. We conducted training experiments both with and
without using these alignments as the model’s input features to
assess their impact on predictive performance.

AlphaFold multimer v.2.2 vs. v.2.3:

In our experiments, we fine-tuned two different versions of
AlphaFold multimer, versions 2.2 and 2.3. This approach was
designed to understand and analyze the differences between
these iterations and to evaluate their respective strengths and
Notably,
architectural enhancements compared to version 2.2. Moreover, it

capabilities. version 2.3 has minor yet significant
can process a greater number of sequences from Multiple Sequence
Alignments.

Additional Evoformer Blocks:

In our experiments, we explored modifications of the AlphaFold
architecture by incorporating additional layers known as
Evoformer blocks. We added from one to ten extra blocks to assess
their impact on the model’s performance. The objective was to
determine whether increasing the model’s complexity improved

its ability to accurately predict complex structures.

PredictedLDDT Module Architecture:

In the '"Model Implementation’ section, under the 'PredictedLDDT
Module’ subsection, we describe enhancements made to the
PredictedLDDT module aimed at improving the accuracy of
predicted IDDT scores. We experimented with adding between
1 to 8 additional linear layers, each paired with a Rectified Linear
Unit (ReLU), to the module’s original two-layer architecture.

Focused Training Methods:

In our experimental setup, we explored the optimization of
model performance through the adjustment of weights assigned to
predictions concerning peptide structures. This was accomplished
by modifying the weights in a loss function specifically designed for
peptide-focused part of the predicted structure. We tested a range
of weight values, extending from 0.0, which implies no additional
loss, to 5.0, signifying an increase of the initial loss by a factor
of five for the peptide part. Furthermore, we implemented and
evaluated a preprocessing technique that involved masking out
residues in peptide sequences where atom distances exceeded 5A
from the protein chain. By focusing on regions in close proximity to
the protein chain, which are generally more biologically significant,
the model could better prioritize and learn from the most pertinent
structural features of the peptides.

Hyperparameter Optimization:

In our efforts to improve the predictive accuracy of our model,
a key focus was placed on hyperparameter tuning. We tested
various hyperparameters, each playing a specific role in the model’s
learning and performance.

e Learning Rate (LR): A fundamental parameter that determines
the step size at each iteration during the model’s training,
directly impacting the convergence speed and quality. We used
values in range from le-3 to le-7.

e Learning Rate Schedulers: These tools adjust the learning
rate during training, following specific patterns to improve
convergence. We tested several schedulers including CyclicLR,
OneCycleLR, StepLR, LinearLR, CosineAnnealingLR, and
CosineAnnealingWarmRestarts.

¢ LR Gamma, LR Multiplier, LR Step Size Up, and LR
Warm-up: These parameters are associated with learning rate
adjustment, helping to fine-tune the model’s training process.

e Accumulate_grad_batches: This parameter allows for the

accumulation of gradients over multiple batches, simulating

a larger effective batch size, which can be crucial for model

stability and performance.

Results

Phosphorylation integration in model’s architecture

Analyzing the predictive performance of the model before and
after the integration of information about the positions of
phosphorylated residues within the peptide sequence into the
model’s architecture revealed a significant improvement in the
model’s ability to predict the structure of phosphopeptides. As
illustrated in Figure 1, using the representative sample (PDB
ID: Toqj), we can observe the practical implications of this
modification. In cases where the peptide contains multiple serine
residues, the initial model, lacking this modification, shifted the
peptide structure within the binding site, causing it to twist.
However, the updated model accurately identifies and positions
the correct phosphorylated serine at its true location.
Additionally, for this sample, we conducted an experiment
by relocating the position of the phosphorylated serine residue
in a masked feature to a non-phosphorylated serine. Specifically,
this serine was placed two positions to the left from the
actual phosphorylated residue in the peptide sequence. The
resulted in the model’s

manipulation in a misalignment

prediction, where it incorrectly identified a non-phosphorylated
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Fig. 1: Model Comparison in Predicting Phosphorylated Residue
Structure. The overall protein structure is shown with a zoomed
view of peptide alignments: red indicates the true structure, cyan
represents the original model’s prediction which places a wrong
serine residue at the expected phosphorylated residue position,
and blue depicts the updated model’s prediction. The updated
model correctly identifies and aligns the phosphorylated serine,
highlighting its enhanced predictive accuracy.

serine as the phosphorylated residue. This underscores the
significance of incorporating phosphorylation information into
the model to enhance its accuracy in modeling the structure of
phosphopeptides.

Furthermore, the integration of phosphorylation information
in the model led to faster convergence during training. This is
demonstrated by consistently lower mean structure loss values
for the peptide segment in Figure 2, where the average is
calculated across five models. These results suggest that the model
with phosphorylation integration achieves optimal predictive
capabilities more efficiently, emphasizing the valuable impact of
this architectural enhancement on both accuracy and efficiency in
our task.

PredictedLDDT module

The scatter plots in Figure 3 compare the mean predicted and
actual IDDT scores for peptide residues using two models: the
original AlphaFold and the same model but with the fine-tuned
PredictedLDDT module. The dotted diagonal line represents the
ideal prediction where predicted scores perfectly match the actual
scores. The data points of the enhanced model are notably closer
to this line than those of the baseline, indicating a more accurate
prediction of IDDT scores and thus, more reliable protein structure
predictions. This is supported by a significant reduction in the
Mean Absolute Error (MAE) between true and predicted 1DDT
scores for peptides—from an average MAE of 15.06 for the original
AlphaFold to an average of 7.8 in the model with the fine-tuned
PredictedLDDT module. The ability to train the PredictedLDDT
module separately for specific tasks and subsequently integrate it
into the AlphaFold model underscores a significant advancement
in our modeling approach, offering flexibility and task-specific
optimization without the need to retrain the entire network.

Model Comparison of Mean Peptide Structure Loss Evolution
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—— Phospho-Integrated Model
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Fig. 2: Comparison of mean peptide structure loss during multiple
training epochs between Phosphorylation-Integrated and Non-
Integrated models. The plot illustrates averaged loss values across
five models, emphasizing accelerated training convergence in the
Phosphorylation-Integrated model.
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Fig. 3: Scatter plots visually demonstrate the impact of separate
fine-tuning by comparing the alignment between predicted IDDT
scores and actual scores in the baseline model versus the baseline
model featuring a fine-tuned PredictedLDDT module.

Optimal Parameter Settings

Following an extensive experimentation process aimed at finding
the optimal model’s architecture and training methodology, we
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have identified the best set of parameters for our specialized
AlphaFold-based model:

Additional Evoformer Blocks:

Experimenting with the number of additional Evoformer blocks,
we discovered that increasing the original 48 blocks positively
impacted the model’s performance. Specifically, for our task,
incorporating 1 additional blocks proved to be the most effective.
This configuration enhanced the model’s ability to capture
intricate details of protein structures, showcasing an optimal
balance achieved between model complexity and performance
enhancement.

Focused Loss Function:

Our experiments, which aimed to prioritize the importance
assigned to the prediction of peptide structures within protein
complexes through weighted adjustments to the loss function,
did not result in substantial improvements in the overall model
performance.

Hyperparameters:
Among the hyperparameters explored, the learning rate proved to
be the most critical factor influencing the model’s behavior and
performance. We set the learning rate at 0.00001, noting that
lower rates enhance training stability by allowing the model to
take smaller optimization steps. Furthermore, we implemented
the CyclicLR scheduler with a LR Gamma value of 0.9, a LR
Multiplier value of 25, and a LR Step Size Up value of 2000.
While the impact of these parameters on convergence speed and
model stability was less pronounced than the learning rate itself,
careful consideration of these parameters remains essential. We
configured the accumulate_grad_batches parameter to 3. Since we
used 3 GPUs for training, this configuration effectively translated
to a real batch size of 9, allowing for more precise gradient updates
and proving advantageous at this stage of the model’s training.
After fine-tuning the full AlphaFold multimer model, we
focused on improving its IDDT score predictions by fine-tuning
the PredictedLDDT module separately. In this process, we made
adjustments to the module’s architecture and hyperparameters.
Specifically, we used a OneCycleLR scheduler, added 8 additional
linear layers, and set the learning rate to 0.05, with a LR multiplier
of 2 and LR Warm-Up of 0.1. This allowed us to make our
IDDT score predictions more accurate, thereby enhance the overall
performance of our Top 1 model.

To assess the performance of both the original AlphaFold model
and our fine-tuned version on our test set, we utilized all five
multimer models available in AlphaFold. We assessed each sample
in our test set by analyzing key metrics for the predicted structures
produced by each model. The optimal result for each sample
was selected based on plDDT scores for the Top 1 model, with
preference given to the one with the highest pIDDT score for the
peptide part. For the Top 5 model, the selection was determined
by the highest IDDT score for the peptide component obtained
during the evaluation process.

During our initial fine-tuning with AlphaFold v.2.2, we
achieved a 14.2% improvement for the Top 1 model and a 12.98%
improvement for the Top 5 model in the weighted average IDDT
score for peptides compared to their respective baselines. However,
fine-tuning with version 2.3 significantly enhanced our predictive
capabilities. In version 2.3, the fine-tuned Top 1 model surpassed

Comparison of Model Prediction Quality

©
3

Top 1 model Top 5 model

©
3

76.51 77.91

<
3

Weighted Average IDDT for Peptides
S 8 8 g

1

°

Original AF

Phospho-Tune

Original AF

Phospho-Tune

Fig. 4: Comparison of Peptide Pose Prediction Accuracy between
the Original and Fine-Tuned AlphaFold Models (v.2.3) for both
Top 1 and Top 5 models. For the Top 1 model, we select predictions
with the highest predicted IDDT scores among the five fine-tuned
AlphaFold models, while for the Top 5 model, predictions are
chosen based on the highest real IDDT scores within the same
trained set of five models. The evaluation is based on the weighted
average IDDT scores for peptides.

the baseline by 31.07% in the weighted average IDDT score for
peptides, while the Top 5 model exhibited a 27.71% improvement
in the weighted average IDDT score for peptides. This version
upgrade also led to more stable training, characterized by reduced
fluctuations and smoother convergence patterns.

In Figure 4, we compare the performances of the fine-tuned
AlphaFold multimer models v.2.3 (Top 1 and Top 5 models) with
their original AlphaFold v.2.3 counterparts. This comparison is
based on examining the weighted average IDDT scores specific to
peptides. We apply a weighting scheme considering the diversity
of protein families in our test set. This scheme assigns weights
to samples based on their respective protein families’ sizes,
with higher weights assigned to samples from less prevalent
families. This ensures a balanced evaluation that emphasizes the
contribution of smaller families in assessing the overall model
performance. The comparison reveals that the fine-tuned models
showcase enhanced predictive accuracy compared to their original
AlphaFold counterparts.

Comparative Analysis

The comparison between our refined Phospho-Tune model and
the baseline AlphaFold model is illustrated across 14 case
studies representing various protein families (Examples A to N)
in Figure 6. Phospho-Tune varies in prediction accuracy but
consistently outperforms AlphaFold by more accurately modeling
overall peptide structures and specifically phosphorylated residues.
in Example B (PDB ID: 7nrk), Phospho-
Tune achieves a significantly lower Ca-pRMSD compared to
AlphaFold (0.54 A wvs. 297 A). In some cases, such as
Example J (PDB ID: 6103), Phospho-Tune demonstrates moderate
accuracy in predicting peptide component of the complex
structure. In other cases, like Example M (PDB ID: 6rh6),
both models show prediction discrepancies, suggesting room

For instance,

for further improvement. Overall, Phospho-Tune demonstrates
higher predictive accuracy for phosphopeptide-protein complex
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structures compared to AlphaFold, even in challenging scenarios
encountered by both models.

Conclusion

In this study, we have introduced the Phospho-Tune model, a
fine-tuned version of the AlphaFold model tailored for structural
modeling of phosphopeptide-protein interactions across distinct
protein families. Through a detailed fine-tuning process involving
a specialized dataset and refined architecture, our study confirms
the advantage of the Phospho-Tune model over the original
AlphaFold. This is evidenced by enhanced accuracy and robust
confidence scores, specifically tailored for precise evaluation of
structural modeling, with a particular focus on phosphopeptides.
This positions Phospho-Tune as a valuable tool for advancing our
understanding of complex cellular processes and opening pathways
for transformative progress in drug discovery and therapeutic
research.
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Structure prediction evaluation

Fig. 5: The overall pipeline of the Phospho-Tune model prediction process described in the paper. (1) We collect data by searching for and
downloading known phosphopeptide-protein structure complexes from the Protein Data Bank (PDB); (2) We use HHsearch to generate
hhr files, which are then used for grouping together proteins; (3) We create input features for the model by extracting information from
the input file; (4) For input protein and peptide sequences, we generate Multiple Sequence Alignments (MSAs) derived from the Genetic
Sequence Database. We crop peptide sequences to include only 4 residues before and after phosphorylated residue. We create binary
masks, with the phosphorylation mask indicating the position of the phosphorylated residue within the sequence, and the peptide loss
mask indicating peptide residues with a minimal distance to the protein chain below a threshold of 5 A; (5.1) Input protein and peptide
sequences, as well as MSA features, are transformed into latent representations, where each amino acid in the sequence is encoded into
a 128-dimensional embedding vector. The encoding process is also applied to the phosphorylation mask; (5.2) The original AlphaFold
model architecture consists of 48 Evoformer blocks, we introduce the option to increase this number by adding extra blocks, denoted
as 48 + N blocks; (5.3) The Structure Module takes the final representations as input and generates a three-dimensional structure of
phosphopeptide-protein complex. We evaluate the final predicted structure with RMSD, pIDDT, and IDDT metrics; (5.4) We can train
the PredictedLDDT module separately. This involves using the true per-residue IDDT score and the internal structure representation
from the Structure Module as input. During training, we have the flexibility to adjust the number of linear layers.
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Avg.metric Original AF | Phospho-Tune
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Domain type: AP2
Number of samples: 1
Representative PDB iD: 6rh6

(M) Avg.metric Original AF | Phospho-Tune
Ca-pRMSD, A 10.54 6.12
Ca-phosRMSD, A 5.38 5.45
pept. pIDDT 30.94 36.85
pept. IDDT 43.52 44.47
Domain type: C2 domain (kinases)
Number of samples: 1
Representative PDB iD: 5w4s

(N) Avg.metric Original AF | Phospho-Tune
Ca-pRMSD, A 30.27 9.28
Ca-phosRMSD, A 32.04 8.86

Y pept. pIDDT 33.96 42.29

pept. IDDT 18.05 42.79

Fig. 6: Comparative Visualization of Phosphopeptide Pose Prediction Accuracy. Each example is presented with two images: the left
displays the overall protein structure with colored predictions for peptide structures, while the right provides a zoomed-in view of peptide
alignments. In these visualizations, the true peptide structure is highlighted in red, the original AlphaFold model in yellow, and Phospho-
Tune (fine-tuned AlphaFold) in blue. Additionally, each dot on the peptide structures signifies the CA atom position of a phosphorylated
residue.
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