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Abstract

In computational biology, accurate prediction of phosphopeptide-protein complex structures is essential for

understanding cellular functions and advancing drug discovery and personalized medicine. While AlphaFold

has significantly improved protein structure prediction, it faces accuracy challenges in predicting structures

of complexes involving phosphopeptides possibly due to structural variations introduced by phosphorylation

in the peptide component. Our study addresses this limitation by refining AlphaFold to improve its accuracy

in modeling these complex structures. We employed weighted metrics for a comprehensive evaluation

across various protein families. The enhanced model notably outperforms the original AlphaFold, showing a

substantial increase in the weighted average local distance difference test (lDDT) scores for peptides: from

52.74 to 76.51 in the Top 1 model and from 56.32 to 77.91 in the Top 5 model. These advancements not

only deepen our understanding of the role of phosphorylation in cellular signaling but also have extensive

implications for biological research and the development of innovative therapies.
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Introduction

Phosphorylation, a critical post-translational modification, plays a

pivotal role in regulating protein function and signaling pathways

within cells [18]. This biochemical process involves the addition

of a phosphate group to a protein or a peptide, typically

mediated by enzymes such as kinases [14, 21]. Phosphorylation can

cause significant changes in the protein’s structure impacting its

interaction with other molecules, including peptides [6, 10]. These

interactions are crucial for various cellular processes, including

cell cycle regulation, growth, apoptosis, and immune responses

[1, 13, 12, 16, 8].

The significance of phosphorylation in protein-peptide

interactions lies in its ability to modulate the function of proteins

[17]. It can activate or deactivate enzymes, alter subcellular

localization, or promote or prevent interactions with other

proteins and peptides. These modulatory effects are central

to cellular signaling and are intricately linked to numerous

physiological processes and disease states. For example, aberrant

phosphorylation patterns are often associated with diseases like

cancer, diabetes, and neurodegenerative disorders, making it a

key area of interest in therapeutic research[11, 19, 4].

AlphaFold has revolutionized protein structure prediction

through its utilization of deep learning [9]. It’s notably effective

in determining protein structures, often outperforming traditional

methods. However, its capability in accurately predicting

phosphopeptide-protein complexes is not as profound due to its

training on a diverse protein dataset, which, while beneficial

for general applications, might not capture the intricate details

required for phosphopeptide-protein interactions. To address

this, our research fine-tunes AlphaFold using a curated dataset

enriched with high-quality phosphopeptide-protein complex data.

By tailoring the model to this specific domain, we aim to

substantially enhance its precision in this critical area.

In this study, we introduce the Phospho-Tune model, an

AlphaFold-based approach, specifically fine-tuned to enhance the

accuracy in modeling phosphopeptide-protein complexes. Our
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refined model not only provides better structural predictions but

also significantly improves the confidence assessment of these

predictions, a crucial aspect for practical applications.

The overall pipeline of predicting the three-dimensional

structures of phosphopeptide-protein complexes using the

proposed Phospho-Tune model is plotted in the Figure 5.

Methodology

Data collection and preprocessing

To specifically tailor our model for the structural prediction of

phosphopeptide-protein complexes, we constructed a specialized

dataset sourced from the Protein Data Bank (PDB) [2]. Our

selection criteria involved identifying samples that contained

phosphorylated residues of types SEP (phosphoserine), TPO

(phosphothreonine), and PTR (phosphotyrosine). In addition to

these criteria, we also filtered out samples with non-standard

amino acids and a resolution greater than 3 angstroms to ensure

high-quality, reliable data. Furthermore, we excluded any cases

where the phosphorylated residue was situated more than 5

angstroms away from the nearest contacted protein chain to ensure

relevance in our dataset.

The AlphaFold model uses Multiple Sequence Alignments

(MSAs) as a key input feature to predict protein structures. In

our study, we also adapted this approach for peptide analysis.

For certain peptides, when a corresponding UniProt ID was

identifiable, we generated MSAs for the UniProt sequences

using MMseqs2. From these alignments, we aligned the UniProt

sequence with the peptide sequence and extracted segments

specifically relevant to the peptides. To ensure a targeted focus on

local structural environments pertinent to phosphorylation events,

we cropped all peptides to include only the region encompassing 4

residues upstream and downstream of the phosphorylated residue.

By concentrating on these specific areas, we aim to capture

spatial relationships and interactions critical to understanding the

molecular mechanisms underlying phosphorylation events.

The final dataset comprises 967 structures, and to ensure our

model’s adaptability across diverse protein families and structural

configurations, we conducted a redundancy analysis using a

clustering approach. We used HHsearch [20] against the PDB100

database, generating hhr files that identify distant homologies. We

then clustered these samples based on high scores in the ’Prob’

(probability) column of the hhr files, grouping together similar

proteins. This method allowed us to distill our dataset, ensuring a

non-redundant and clean test set.

Our dataset was further divided into three subsets for training,

validation, and testing. The training set, consisting of 512 samples,

was organized chronologically based on release dates, spanning

from 1993-10-31 to 2017-05-24. The remaining samples were then

divided into the validation and test sets, considering clusters. The

test set includes 228 samples, and the validation set comprises

227 samples. The training set and the validation set were used for

fine-tuning and hyperparameter optimization, while the test set

was reserved for the final model evaluation.

Model performance evaluation

In our study, we used Root Mean Square Deviation (RMSD),

Local Distance Difference Test (lDDT) [15], and predicted Local

Distance Difference Test (plDDT) as key metrics to evaluate

the structural accuracy. RMSD quantifies the average distance

between the atoms of superimposed proteins, offering a measure

of the similarity between protein structures. Lower RMSD

values indicate greater structural similarity. However, RMSD

can be sensitive to outliers and does not account for local

structural variations. lDDT addresses this by assessing the local

conformational differences between structures, considering the

distances between all atom pairs within defined cutoffs, thereby

providing a more nuanced view of local structural accuracy and

stability. plDDT, an extension used in models like AlphaFold,

predicts the lDDT score for each residue in a protein structure,

offering a residue-level confidence measure of the predicted

model’s accuracy. The combination of these metrics allows

for a comprehensive and detailed evaluation of the structural

predictions, ensuring both global and local structural features are

accurately captured and assessed in our study.

In addition, to assess how well our model predicts

important parts of the complex structure, such as peptides

and phosphorylated residues, we used region-specific masks. By

applying them, we calculated our key metrics such as alpha-carbon

peptide RMSD (Cα-pRMSD) and alpha-carbon RMSD for the

phosphorylated residue (Cα-phosRMSD), as well as masked lDDT

and plDDT metrics to measure accuracy only in these specific

areas within the predicted structure.

Model implementation

In our current research, we advance the custom implementation

of AlphaFold model introduced in our previous paper [7],

focusing on enhanced flexibility and efficiency. We have optimized

memory usage through checkpointing and efficient resource

management across multi-GPU and multi-node setups using

PyTorch-Lightning [5]. Additionally, the incorporation of Weights

& Biases [3] has allowed us to establish a robust pipeline for

the model’s development, experimentation, and reporting. These

improvements collectively contribute to a more systematic and

scalable framework for protein structure prediction.

Phosphorylation integration in model’s architecture:

To highlight the significance of phosphorylation in our specific

task, we implemented targeted architectural modifications in

AlphaFold aimed at enhancing the model’s understanding of

their positions within the peptide sequence. These adjustments

are crafted to strengthen the model’s capacity to recognize

and interpret the spatial characteristics associated with

phosphorylation.

Specifically, three new layers were introduced to the

InputEmbedding module. These layers are designed for

preprocessing and incorporating phosphorylation information,

which are indicated by a masked feature revealing the positions

of phosphorylated residues in the peptide sequence. These new

layers integrate phosphorylation information into both amino

acid and pair representations. The first layer, employing a

linear transformation, interprets phosphorylation features to

capture relationships with amino acid sequences, while the

other two contribute phosphorylation-specific features to pair

representations, providing the model with insights into how

phosphorylation influences interactions between amino acids.

Enhancements in PredictedLDDT Module:

In an effort to enhance the reliability of plDDT scores, which are

crucial for assessing the quality of protein structure predictions,

we have refined the PredictedLDDT module. The original module,
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consisting of two linear layers, was expanded to include additional

linear layers, each paired with a Rectified Linear Unit (ReLU)

activation function. This adjustment allows for variable layer

configurations and introduces the number of layers as a tunable

parameter during the fine-tuning process.

In addition, our implementation introduces a new approach

for the separate fine-tuning of the PredictedLDDT module within

the AlphaFold architecture. This process involves isolating the

module, separate fine-tuning, and then integrating the refined

weights back into the full AlphaFold model. This independent

fine-tuning of the PredictedLDDT module is particularly

advantageous, as it enhances plDDT scores efficiently without

extensive computational resources. This targeted approach

optimizes plDDT predictions for specific applications, eliminating

the need for complete AlphaFold model retraining.

Experiments

In this section, we present a series of experiments that

systematically evaluate important aspects of our study. These

experiments explore key components such as data preprocessing

techniques, the model’s architecture, and our training methodology.

Our goal is to provide a detailed analysis of each element,

showcasing their individual and combined impact on the overall

performance of our system.

Incorporating peptide MSAs:

In our study, we examined how incorporating Peptide Multiple

Sequence Alignments, which highlight patterns of similarity and

difference in peptide sequences, could enhance model accuracy

in predicting the structures of phosphorylated peptide-protein

interactions. We conducted training experiments both with and

without using these alignments as the model’s input features to

assess their impact on predictive performance.

AlphaFold multimer v.2.2 vs. v.2.3:

In our experiments, we fine-tuned two different versions of

AlphaFold multimer, versions 2.2 and 2.3. This approach was

designed to understand and analyze the differences between

these iterations and to evaluate their respective strengths and

capabilities. Notably, version 2.3 has minor yet significant

architectural enhancements compared to version 2.2. Moreover, it

can process a greater number of sequences from Multiple Sequence

Alignments.

Additional Evoformer Blocks:

In our experiments, we explored modifications of the AlphaFold

architecture by incorporating additional layers known as

Evoformer blocks. We added from one to ten extra blocks to assess

their impact on the model’s performance. The objective was to

determine whether increasing the model’s complexity improved

its ability to accurately predict complex structures.

PredictedLDDT Module Architecture:

In the ’Model Implementation’ section, under the ’PredictedLDDT

Module’ subsection, we describe enhancements made to the

PredictedLDDT module aimed at improving the accuracy of

predicted lDDT scores. We experimented with adding between

1 to 8 additional linear layers, each paired with a Rectified Linear

Unit (ReLU), to the module’s original two-layer architecture.

Focused Training Methods:

In our experimental setup, we explored the optimization of

model performance through the adjustment of weights assigned to

predictions concerning peptide structures. This was accomplished

by modifying the weights in a loss function specifically designed for

peptide-focused part of the predicted structure. We tested a range

of weight values, extending from 0.0, which implies no additional

loss, to 5.0, signifying an increase of the initial loss by a factor

of five for the peptide part. Furthermore, we implemented and

evaluated a preprocessing technique that involved masking out

residues in peptide sequences where atom distances exceeded 5Å

from the protein chain. By focusing on regions in close proximity to

the protein chain, which are generally more biologically significant,

the model could better prioritize and learn from the most pertinent

structural features of the peptides.

Hyperparameter Optimization:

In our efforts to improve the predictive accuracy of our model,

a key focus was placed on hyperparameter tuning. We tested

various hyperparameters, each playing a specific role in the model’s

learning and performance.

• Learning Rate (LR): A fundamental parameter that determines

the step size at each iteration during the model’s training,

directly impacting the convergence speed and quality. We used

values in range from 1e-3 to 1e-7.

• Learning Rate Schedulers: These tools adjust the learning

rate during training, following specific patterns to improve

convergence. We tested several schedulers including CyclicLR,

OneCycleLR, StepLR, LinearLR, CosineAnnealingLR, and

CosineAnnealingWarmRestarts.

• LR Gamma, LR Multiplier, LR Step Size Up, and LR

Warm-up: These parameters are associated with learning rate

adjustment, helping to fine-tune the model’s training process.

• Accumulate grad batches: This parameter allows for the

accumulation of gradients over multiple batches, simulating

a larger effective batch size, which can be crucial for model

stability and performance.

Results

Phosphorylation integration in model’s architecture

Analyzing the predictive performance of the model before and

after the integration of information about the positions of

phosphorylated residues within the peptide sequence into the

model’s architecture revealed a significant improvement in the

model’s ability to predict the structure of phosphopeptides. As

illustrated in Figure 1, using the representative sample (PDB

ID: 7oqj), we can observe the practical implications of this

modification. In cases where the peptide contains multiple serine

residues, the initial model, lacking this modification, shifted the

peptide structure within the binding site, causing it to twist.

However, the updated model accurately identifies and positions

the correct phosphorylated serine at its true location.

Additionally, for this sample, we conducted an experiment

by relocating the position of the phosphorylated serine residue

in a masked feature to a non-phosphorylated serine. Specifically,

this serine was placed two positions to the left from the

actual phosphorylated residue in the peptide sequence. The

manipulation resulted in a misalignment in the model’s

prediction, where it incorrectly identified a non-phosphorylated
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Fig. 1: Model Comparison in Predicting Phosphorylated Residue

Structure. The overall protein structure is shown with a zoomed

view of peptide alignments: red indicates the true structure, cyan

represents the original model’s prediction which places a wrong

serine residue at the expected phosphorylated residue position,

and blue depicts the updated model’s prediction. The updated

model correctly identifies and aligns the phosphorylated serine,

highlighting its enhanced predictive accuracy.

serine as the phosphorylated residue. This underscores the

significance of incorporating phosphorylation information into

the model to enhance its accuracy in modeling the structure of

phosphopeptides.

Furthermore, the integration of phosphorylation information

in the model led to faster convergence during training. This is

demonstrated by consistently lower mean structure loss values

for the peptide segment in Figure 2, where the average is

calculated across five models. These results suggest that the model

with phosphorylation integration achieves optimal predictive

capabilities more efficiently, emphasizing the valuable impact of

this architectural enhancement on both accuracy and efficiency in

our task.

PredictedLDDT module

The scatter plots in Figure 3 compare the mean predicted and

actual lDDT scores for peptide residues using two models: the

original AlphaFold and the same model but with the fine-tuned

PredictedLDDT module. The dotted diagonal line represents the

ideal prediction where predicted scores perfectly match the actual

scores. The data points of the enhanced model are notably closer

to this line than those of the baseline, indicating a more accurate

prediction of lDDT scores and thus, more reliable protein structure

predictions. This is supported by a significant reduction in the

Mean Absolute Error (MAE) between true and predicted lDDT

scores for peptides—from an average MAE of 15.06 for the original

AlphaFold to an average of 7.8 in the model with the fine-tuned

PredictedLDDT module. The ability to train the PredictedLDDT

module separately for specific tasks and subsequently integrate it

into the AlphaFold model underscores a significant advancement

in our modeling approach, offering flexibility and task-specific

optimization without the need to retrain the entire network.

Fig. 2: Comparison of mean peptide structure loss during multiple

training epochs between Phosphorylation-Integrated and Non-

Integrated models. The plot illustrates averaged loss values across

five models, emphasizing accelerated training convergence in the

Phosphorylation-Integrated model.

Fig. 3: Scatter plots visually demonstrate the impact of separate

fine-tuning by comparing the alignment between predicted lDDT

scores and actual scores in the baseline model versus the baseline

model featuring a fine-tuned PredictedLDDT module.

Optimal Parameter Settings

Following an extensive experimentation process aimed at finding

the optimal model’s architecture and training methodology, we
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have identified the best set of parameters for our specialized

AlphaFold-based model:

Additional Evoformer Blocks:

Experimenting with the number of additional Evoformer blocks,

we discovered that increasing the original 48 blocks positively

impacted the model’s performance. Specifically, for our task,

incorporating 1 additional blocks proved to be the most effective.

This configuration enhanced the model’s ability to capture

intricate details of protein structures, showcasing an optimal

balance achieved between model complexity and performance

enhancement.

Focused Loss Function:

Our experiments, which aimed to prioritize the importance

assigned to the prediction of peptide structures within protein

complexes through weighted adjustments to the loss function,

did not result in substantial improvements in the overall model

performance.

Hyperparameters:

Among the hyperparameters explored, the learning rate proved to

be the most critical factor influencing the model’s behavior and

performance. We set the learning rate at 0.00001, noting that

lower rates enhance training stability by allowing the model to

take smaller optimization steps. Furthermore, we implemented

the CyclicLR scheduler with a LR Gamma value of 0.9, a LR

Multiplier value of 25, and a LR Step Size Up value of 2000.

While the impact of these parameters on convergence speed and

model stability was less pronounced than the learning rate itself,

careful consideration of these parameters remains essential. We

configured the accumulate grad batches parameter to 3. Since we

used 3 GPUs for training, this configuration effectively translated

to a real batch size of 9, allowing for more precise gradient updates

and proving advantageous at this stage of the model’s training.

After fine-tuning the full AlphaFold multimer model, we

focused on improving its lDDT score predictions by fine-tuning

the PredictedLDDT module separately. In this process, we made

adjustments to the module’s architecture and hyperparameters.

Specifically, we used a OneCycleLR scheduler, added 8 additional

linear layers, and set the learning rate to 0.05, with a LR multiplier

of 2 and LR Warm-Up of 0.1. This allowed us to make our

lDDT score predictions more accurate, thereby enhance the overall

performance of our Top 1 model.

To assess the performance of both the original AlphaFold model

and our fine-tuned version on our test set, we utilized all five

multimer models available in AlphaFold. We assessed each sample

in our test set by analyzing key metrics for the predicted structures

produced by each model. The optimal result for each sample

was selected based on plDDT scores for the Top 1 model, with

preference given to the one with the highest plDDT score for the

peptide part. For the Top 5 model, the selection was determined

by the highest lDDT score for the peptide component obtained

during the evaluation process.

During our initial fine-tuning with AlphaFold v.2.2, we

achieved a 14.2% improvement for the Top 1 model and a 12.98%

improvement for the Top 5 model in the weighted average lDDT

score for peptides compared to their respective baselines. However,

fine-tuning with version 2.3 significantly enhanced our predictive

capabilities. In version 2.3, the fine-tuned Top 1 model surpassed

Fig. 4: Comparison of Peptide Pose Prediction Accuracy between

the Original and Fine-Tuned AlphaFold Models (v.2.3) for both

Top 1 and Top 5 models. For the Top 1 model, we select predictions

with the highest predicted lDDT scores among the five fine-tuned

AlphaFold models, while for the Top 5 model, predictions are

chosen based on the highest real lDDT scores within the same

trained set of five models. The evaluation is based on the weighted

average lDDT scores for peptides.

the baseline by 31.07% in the weighted average lDDT score for

peptides, while the Top 5 model exhibited a 27.71% improvement

in the weighted average lDDT score for peptides. This version

upgrade also led to more stable training, characterized by reduced

fluctuations and smoother convergence patterns.

In Figure 4, we compare the performances of the fine-tuned

AlphaFold multimer models v.2.3 (Top 1 and Top 5 models) with

their original AlphaFold v.2.3 counterparts. This comparison is

based on examining the weighted average lDDT scores specific to

peptides. We apply a weighting scheme considering the diversity

of protein families in our test set. This scheme assigns weights

to samples based on their respective protein families’ sizes,

with higher weights assigned to samples from less prevalent

families. This ensures a balanced evaluation that emphasizes the

contribution of smaller families in assessing the overall model

performance. The comparison reveals that the fine-tuned models

showcase enhanced predictive accuracy compared to their original

AlphaFold counterparts.

Comparative Analysis

The comparison between our refined Phospho-Tune model and

the baseline AlphaFold model is illustrated across 14 case

studies representing various protein families (Examples A to N)

in Figure 6. Phospho-Tune varies in prediction accuracy but

consistently outperforms AlphaFold by more accurately modeling

overall peptide structures and specifically phosphorylated residues.

For instance, in Example B (PDB ID: 7nrk), Phospho-

Tune achieves a significantly lower Cα-pRMSD compared to

AlphaFold (0.54 Å vs. 2.97 Å). In some cases, such as

Example J (PDB ID: 6l03), Phospho-Tune demonstrates moderate

accuracy in predicting peptide component of the complex

structure. In other cases, like Example M (PDB ID: 6rh6),

both models show prediction discrepancies, suggesting room

for further improvement. Overall, Phospho-Tune demonstrates

higher predictive accuracy for phosphopeptide-protein complex
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structures compared to AlphaFold, even in challenging scenarios

encountered by both models.

Conclusion

In this study, we have introduced the Phospho-Tune model, a

fine-tuned version of the AlphaFold model tailored for structural

modeling of phosphopeptide-protein interactions across distinct

protein families. Through a detailed fine-tuning process involving

a specialized dataset and refined architecture, our study confirms

the advantage of the Phospho-Tune model over the original

AlphaFold. This is evidenced by enhanced accuracy and robust

confidence scores, specifically tailored for precise evaluation of

structural modeling, with a particular focus on phosphopeptides.

This positions Phospho-Tune as a valuable tool for advancing our

understanding of complex cellular processes and opening pathways

for transformative progress in drug discovery and therapeutic

research.

Acknowledgments

This work was supported in part by the National Institutes

of Health grants RM1135136, R01GM140098; by the National

Science Foundation grants DMS-1664644, DMS-2054251. This

research used resources of the Oak Ridge Leadership Computing

Facility at the Oak Ridge National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy.

References

1. Fatima Ardito, Michele Giuliani, Donatella Perrone, Giuseppe

Troiano, and Lorenzo Lo Muzio. The crucial role of protein

phosphorylation in cell signaling and its use as targeted

therapy (review). Int J Mol Med, 40(2):271–280, Aug 2017.

2. Helen M. Berman, John Westbrook, Zukang Feng, Gary

Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov, and

Philip E. Bourne. The Protein Data Bank. Nucleic Acids

Research, 28(1):235–242, 01 2000.

3. Lukas Biewald. Experiment tracking with weights and biases,

2020. Software available from wandb.com.

4. K D Copps and M FWhite. Regulation of insulin sensitivity by

serine/threonine phosphorylation of insulin receptor substrate

proteins irs1 and irs2. Diabetologia, 55(10):2565–2582, Oct

2012.

5. William Falcon and The PyTorch Lightning team. PyTorch

Lightning, March 2019.

6. J N Mark Glover, R Scott Williams, and Megan S

Lee. Interactions between brct repeats and phosphoproteins:

tangled up in two. Trends Biochem Sci, 29(11):579–85, Nov

2004.

7. Ernest Glukhov, Dmytro Kalitin, Darya Stepanenko, Yimin

Zhu, Thu Nguen, George Jones, Carlos Simmerling, Julie C.

Mitchell, Sandor Vajda, Ken A. Dill, Dzmitry Padhorny, and

Dima Kozakov. Mhc-fine: Fine-tuned alphafold for precise

mhc-peptide complex prediction. bioRxiv, 2023.

8. Pauline Johnson and Jennifer L Cross. Tyrosine

phosphorylation in immune cells: direct and indirect

effects on toll-like receptor-induced proinflammatory cytokine

production. Crit Rev Immunol, 29(4):347–67, 2009.

9. John M. Jumper, Richard Evans, Alexander Pritzel, Tim

Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Źıdek, Anna
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Fig. 5: The overall pipeline of the Phospho-Tune model prediction process described in the paper. (1) We collect data by searching for and

downloading known phosphopeptide-protein structure complexes from the Protein Data Bank (PDB); (2) We use HHsearch to generate

hhr files, which are then used for grouping together proteins; (3) We create input features for the model by extracting information from

the input file; (4) For input protein and peptide sequences, we generate Multiple Sequence Alignments (MSAs) derived from the Genetic

Sequence Database. We crop peptide sequences to include only 4 residues before and after phosphorylated residue. We create binary

masks, with the phosphorylation mask indicating the position of the phosphorylated residue within the sequence, and the peptide loss

mask indicating peptide residues with a minimal distance to the protein chain below a threshold of 5 Å; (5.1) Input protein and peptide

sequences, as well as MSA features, are transformed into latent representations, where each amino acid in the sequence is encoded into

a 128-dimensional embedding vector. The encoding process is also applied to the phosphorylation mask; (5.2) The original AlphaFold

model architecture consists of 48 Evoformer blocks, we introduce the option to increase this number by adding extra blocks, denoted

as 48 + N blocks; (5.3) The Structure Module takes the final representations as input and generates a three-dimensional structure of

phosphopeptide-protein complex. We evaluate the final predicted structure with RMSD, plDDT, and lDDT metrics; (5.4) We can train

the PredictedLDDT module separately. This involves using the true per-residue lDDT score and the internal structure representation

from the Structure Module as input. During training, we have the flexibility to adjust the number of linear layers.
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(A)

Domain type: SH2 domain

Number of samples: 9

Representative PDB iD: 7r8x

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 4.27 1.27

Cα-phosRMSD, Å 1.83 0.58

pept. plDDT 43.56 85.11

pept. lDDT 58.96 90.82

(B)

Domain type: 14-3-3

Number of samples: 148

Representative PDB iD: 7nrk

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 3.97 1.15

Cα-phosRMSD, Å 2.19 0.45

pept. plDDT 38.30 88.53

pept. lDDT 58.51 92.17

(C)

Domain type: PTB domain

Number of samples: 1

Representative PDB iD: 5njk

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 4.54 0.74

Cα-phosRMSD, Å 6.11 0.72

pept. plDDT 39.13 75.15

pept. lDDT 52.00 94.52

(D)

Domain type: IAP2

Number of samples: 4

Representative PDB iD: 7lbo

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 4.79 0.77

Cα-phosRMSD, Å 3.54 0.71

pept. plDDT 43.97 93.68

pept. lDDT 50.58 96.80

(E)

Domain type: PRU domain

Number of samples: 1

Representative PDB iD: 6oi4

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 3.69 0.83

Cα-phosRMSD, Å 3.39 0.66

pept. plDDT 41.24 90.45

pept. lDDT 52.40 94.67

(F)

Domain type: BRCT domain

Number of samples: 4

Representative PDB iD: 6hm4

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 6.76 1.55

Cα-phosRMSD, Å 7.80 1.36

pept. plDDT 60.45 79.95

pept. lDDT 67.80 88.76
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(G)

Domain type: PIAS domain

Number of samples: 1

Representative PDB iD: 6v7q

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 0.93 1.18

Cα-phosRMSD, Å 0.65 1.13

pept. plDDT 76.86 93.40

pept. lDDT 96.39 98.36

(H)

Domain type: FIP200 Claw domain

Number of samples: 1

Representative PDB iD: 7czm

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 1.16 2.22

Cα-phosRMSD, Å 0.71 0.73

pept. plDDT 95.73 95.73

pept. lDDT 97.64 96.39

(I)

Domain type: Polo box

NUmber of samples: 2

Representative PDB iD: 6mf5

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 3.34 1.64

Cα-phosRMSD, Å 1.97 1.15

pept. plDDT 50.60 80.80

pept. lDDT 64.52 88.32

(J)

Domain type: Tyrosine phosphatase

Number of samples: 1

Representative PDB iD: 6l03

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 4.61 2.36

Cα-phosRMSD, Å 3.46 0.45

pept. plDDT 36.56 67.39

pept. lDDT 54.46 73.82

(K)

Domain type: FHA domain

Number of samples: 1

Representative PDB iD: 6ar2

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 3.97 2.91

Cα-phosRMSD, Å 1.79 0.27

pept. plDDT 85.45 90.81

pept. lDDT 75.06 86.66

(L)

Domain type: PSD-95/SAPAP

Number of samples: 1

Representative PDB iD: 5ypo

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 4.39 4.13

Cα-phosRMSD, Å 3.72 3.71

pept. plDDT 43.04 57.11

pept. lDDT 58.00 75.89
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(M)

Domain type: AP2

Number of samples: 1

Representative PDB iD: 6rh6

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 10.54 6.12

Cα-phosRMSD, Å 5.38 5.45

pept. plDDT 30.94 36.85

pept. lDDT 43.52 44.47

(N)

Domain type: C2 domain (kinases)

Number of samples: 1

Representative PDB iD: 5w4s

Avg.metric Original AF Phospho-Tune

Cα-pRMSD, Å 30.27 9.28

Cα-phosRMSD, Å 32.04 8.86

pept. plDDT 33.96 42.29

pept. lDDT 18.05 42.79

Fig. 6: Comparative Visualization of Phosphopeptide Pose Prediction Accuracy. Each example is presented with two images: the left

displays the overall protein structure with colored predictions for peptide structures, while the right provides a zoomed-in view of peptide

alignments. In these visualizations, the true peptide structure is highlighted in red, the original AlphaFold model in yellow, and Phospho-

Tune (fine-tuned AlphaFold) in blue. Additionally, each dot on the peptide structures signifies the CA atom position of a phosphorylated

residue.
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