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ABSTRACT The precise prediction of major histocompatibility complex (MHC)-peptide complex structures is pivotal for under-
standing cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold’s capabilities by fine-
tuning it with a specialized dataset consisting of exclusively high-resolution class I MHC-peptide crystal structures. This tailored
approach aimed to address the generalist nature of AlphaFold’s original training, which, while broad-ranging, lacked the
granularity necessary for the high-precision demands of class I MHC-peptide interaction prediction. A comparative analysis
was conducted against the homology-modeling-based method Pandora as well as the AlphaFold multimer model. Our results
demonstrate that our fine-tuned model outperforms others in terms of root-mean-square deviation (median value for Ca atoms
for peptides is 0.66 Å) and also provides enhanced predicted local distance difference test scores, offering a more reliable
assessment of the predicted structures. These advances have substantial implications for computational immunology, poten-
tially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through
which to view MHC-peptide interactions.
SIGNIFICANCE Major histocompatibility complex (MHC) molecules are central to the immune system, enabling disease
recognition and response by presenting diverse peptides to T cells. By fine-tuning the AlphaFold model with specialized
high-resolution data, we offer a novel tool that surpasses existing methods in its ability to accurately predict the structure of
class I MHC-peptide complexes. This enhanced predictive model has important implications for both infectious disease
and cancer immunotherapy and has the potential to facilitate the development of targeted therapeutic strategies.
INTRODUCTION

MHC class I (MHC-I) molecules play a crucial role in the im-
mune system and are found on the surface of most cells in the
body. They present intracellular specific antigens, such as
viral, bacterial, or cancerous peptides, to cytotoxic T cells,
enabling T cells to recognize and respond to these threats (1).

MHC-I molecules are important to the functioning of the
immune system. By understanding how they bind and pre-
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sent peptides, we can gain insights into disease mechanisms
such as autoimmunity (2). This knowledge would also
empower us to prevent certain infectious diseases through
MHC-based vaccination (3). In the context of cancer immu-
notherapy, this understanding would allow the design of
neoantigen vaccines that enhance the immune system’s abil-
ity to selectively target cancer cells (4).

To ensure that the immune system effectively detects and
responds to a wide range of infections, each MHC-I mole-
cule presents a variety of peptides to T cells. To achieve
this, each MHC-I molecule has the capability to bind a
broad class of different peptide sequences. Although each
person presents only a small number of different MHC-I
molecules (two alleles for each of the three MHC-I genes),
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MHC-peptide complex prediction
many different MHC-I alleles are present in the population
(5), leading to individual differences in MHC-I specificity.
The diversity of MHC-I molecules and peptides allows the
immune system to respond effectively to different threats
and adapt to new challenges. However, this diversity also
poses a significant challenge when it comes to predicting
class I MHC-peptide complexes.

There are different approaches for predicting class I
MHC-peptide complex structures, including molecular
docking (6), molecular dynamics simulations (7,8), homol-
ogy modeling (9), and machine-learning methods (10–12).
The accuracy of their predictions can vary.

One of the advanced tools for predicting class I MHC-
peptide complex structures is the Peptide ANchoreD
modeling fRAmework (Pandora) (13). Pandora uses a data-
base of known MHC structures as templates with anchors-
restrained loop modeling for peptide conformation. Howev-
er, Pandora has some limitations: rare alleles may lack
suitable MHC templates, low sequence similarity in the pep-
tide-binding groove can cause alignment issues, accurate
anchor residues are needed, and ranking output models
can be challenging due to different scoring functions.

Deep-learning methodologies have significantly enhanced
the prediction of protein structural information across various
degrees of complexity (14). These methodologies vary in the
nature of the input data they require and in their architectural
designs, as evidenced by recent studies (15–18). Among
these innovative methods, AlphaFold stands out by employ-
ing a novel equivariant attention architecture to predict pro-
tein structures with remarkable accuracy. This approach
leverages an extensive dataset of structural information to
train its algorithm, enabling accurate prediction of protein
structures even without closely related known structures.
However, despite AlphaFold’s successes, its utility for
MHC-peptide predictions has been somewhat limited by its
generalized training across diverse protein types. This broad
approach, while comprehensive, may not always capture the
intricate nuances necessary for high-fidelity predictions
within specific domains such as MHC-peptide interactions.
Therefore, by fine-tuning AlphaFold with a dataset curated
explicitly from high-resolution class I MHC-peptide crystal
structures, we aim to enhance the model’s specificity and
accuracy in this critical area, thereby overcoming one of
the main limitations faced by practitioners utilizing this
tool for specialized applications in immunological research.

We present an approach that leverages the robust capabil-
ities of AlphaFold, fine-tuning it to significantly improve
the prediction accuracy for class I MHC-peptide complex
structures. Our model outperforms Pandora in terms of Ca
root-mean-square deviation (RMSD) (median value for Ca
atoms for peptides is 0.66 Å) and also provides enhanced
predicted local distance difference test (lDDT) scores, offer-
ing a more reliable assessment of the predicted structures.
Our model also does not require any input information about
the anchor residues.
RELATED WORK

Structural overview of class I MHC-peptide
complexes

MHC-I is a transmembrane protein composed of two non-
covalently connected chains, a and b2-microglobulin (19).
The a chain consists of three domains a1;a2; and a3 fol-
lowed by a transmembrane part and a cytoplasmic tail.
Each a domain is approximately 90 residues long.

a1 and a2 domains form a symmetric structure composed
of curved a-helices. Together they form a peptide-binding
groove between them. The most variability in MHC-I
sequence is found in this groove region to create a variety
for peptide specificity. a3 and b2-microglobulin domains
do not interact with the peptide.

The number of different peptides that a particular MHC-I
molecule can bind varies depending on the specific MHC
molecule, but in general peptide-binding groove geometry
can accommodate short peptides of length 8–11 residues
(20). However, slightly longer peptides have also been
observed (21–23). Several peptide positions, typically at the
N- and C-termini of the peptide, contribute significantly to
the binding. These specific residues are known as anchors.
Homology modeling (Pandora)

One of the state-of-the-art tools for class I MHC-peptide
complex structure prediction is the homology-based Pandora
(13), which uses homology modeling for the MHC protein
and performs anchor-restrained peptide modeling using
MODELLER (24).

For the homology modeling of MHC-I, Pandora selects a
single template from the custom-made database of known
MHC structures. This approach requires proper template se-
lection, which depends on the availability of the same allele
type, group, or gene within the database.

After selecting the template, the alignment between the
target MHC and the template is carried out. The sequence
similarity between the target and the template may be low
in the peptide-binding groove due to MHC sequence vari-
ability, which can increase the likelihood of alignment is-
sues. However, this groove region is of utmost importance
for modeling because it is the area where peptide binds
to MHC-I.

One of the crucial requirements for Pandora is the inclu-
sion of peptide anchors. Pandora utilizes this information for
anchors-restrained loop modeling of the peptide. This infor-
mation can be provided by the user or predicted by
netMHCpan 4.1, although challenges may arise for non-ca-
nonical anchors.

Pandora provides 20 models for a single peptide-MHC
pair and evaluates them using MODELLER’s internal
scoring functions molpdf and DOPE. In some cases, the
best-scored DOPE and molpdf structures are different,
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which can present a challenging decision for the user in se-
lecting the best model. The authors suggest using molpdf
scoring ranking.
AlphaFold

AlphaFold has been a transformative force in computational
biology, redefining the landscape of protein structure predic-
tion with its transformer-based architecture. This architec-
ture is particularly well suited to processing sequential
biological data, such as amino acid chains, due to its ability
to capture long-distance interactions between amino acids—
a fundamental factor in predicting how proteins fold.

The model’s capabilities, already proven in the Critical
Assessment of Structure Prediction (CASP) competitions,
saw further advancements as evidenced in CASP15. Recent
research (25) demonstrated AlphaFold’s enhanced profi-
ciency in the structure prediction of protein complexes,
marking a significant step forward in the CASP15-CAPRI
experiment. Furthermore, the scientific community has
recognized the transformative impact of AI-based modeling,
such as AlphaFold, on the accuracy of protein assembly pre-
diction (26). These developments underscore AlphaFold’s
broad potential, extending from structure prediction to
advancing our understanding of disease pathology, drug dis-
covery, and enzyme engineering.

However, the generalist nature of AlphaFold, while power-
ful, reveals limitations when tasked with highly specialized
predictions, such as modeling the MHC-peptide complexes.
The complexity inherent in these biological structures, along
with their variability, necessitates tailored versions of the
model. Recent advancements have seen the use of specific
datasets and modified architectures to enhance the prediction
of such complex interactions, exemplifying the need for
specialized approaches in computational biology (27).

In the pursuit of enhancing AlphaFold’s predictions for
MHC-peptide complexes, researchers have embarked on a
variety of methodologies. One prominent approach involves
the development of an AlphaFold-based pipeline which in-
volves additional steps for multiple sequence alignment
(MSA) or template selection (11). In addition, efforts have
been made to fine-tune AlphaFold’s parameters on pep-
tide-MHC class I and II structural and binding data, with
the fine-tuned model achieving state-of-the-art classification
accuracy (28). These advancements, while in some cases
requiring more complex pipelines, reflect the nuanced bal-
ance between achieving broad predictive capabilities and
the pursuit of granular structural details.
MATERIALS AND METHODS

Implementation of AlphaFold in PyTorch

In this study, we faced the challenge of AlphaFold’s unavailability for

training code and its original implementation in JAX (29), which presents
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complexities in modification and testing. Inspired by the OpenFold

model (30), we developed a custom version of AlphaFold using the PyTorch

library (31). This approach not only allowed us to utilize the pre-trained

weights of AlphaFold but also introduced significant flexibility in modi-

fying the code as per our research needs.

One of the primary enhancements in our PyTorch-based AlphaFold im-

plementation is the integration of checkpoints for optimal memory manage-

ment. Given the extensive size of the AlphaFold network, these checkpoints

are crucial for efficient memory usage, ensuring stable and effective pro-

cessing even on large-scale data.

Furthermore, we leveraged the PyTorch-Lightning library (32), which

significantly streamlined our workflow. PyTorch-Lightning abstracts and

automates many routine tasks, enabling us to focus on the core aspects of

our model. It facilitated effective training and easy distribution of compu-

tational workload across multiple GPUs and nodes. PyTorch-Lightning

also brought additional advantages, such as simplified implementation of

advanced optimization techniques and streamlined model-validation pro-

cesses. It enhanced our model’s reproducibility and scalability, allowing

us to efficiently experiment with various configurations and settings.
Dataset

We downloaded class I MHC-peptide complex structures from the RCSB

Protein Data Bank (33), selecting X-ray structures with a resolution finer

than 3.5 Å. We excluded structures containing non-standard amino acids

or a significant number of unresolved residues. Additionally, we limited

our selection to samples with peptide lengths ranging from 8 to 11 amino

acids. From each MHC protein only a1 and a2 domains were used. Our

final dataset consisted of 919 structures from various species, including hu-

mans (Homo sapiens), mice (Mus musculus), and other species. Specif-

ically, the human dataset consisted of samples that encompassed at least

eight distinct allele groups for HLA-A, 20 for HLA-B, and five for

HLA-C. Additionally, the dataset included samples containing alleles

from at least one of each of the HLA-E, HLA-F, and HLA-G genes. For

mice, the dataset reflected allelic variation across five H2-K genes, two

H2-D genes, and one H2-L gene. Furthermore, our dataset incorporated

samples from other species, including chickens, swine, and macaques, to

reflect genetic variability in one gene for each respective species. In total,

the dataset included 618 unique peptides. The detailed breakdown of alleles

can be found in the supporting material. We divided the dataset into three

parts based on the release date, approximately a 60/20/20 split for training,

validation, and testing. This allows the model to learn patterns and trends

from historical data, and during the testing the model it is presented with

unseen data. Additionally, cases with a 98% identity to any MHC sequence

from the test, while sharing the same peptide, were removed from the test

set. This precaution was taken to prevent data leakage from the training set

to the testing set. The training set (releases from October 15, 1992 to

December 7, 2016) and the validation set (releases from December 7,

2016 to June 17, 2020) were used for fine-tuning and hyperparameter opti-

mization, while the test set (releases from June 17, 2020 to August 23,

2023) was reserved solely for final comparison.

To prepare the necessary input for AlphaFold, we generated MSAs

usingMMseqs2 (34), a software suite designed for fast and sensitive protein

sequence searching. Our searches were conducted against the ColabFoldDB

(35), which is a comprehensive and regularly updated database tailored for

such analyses.
Metrics

In protein structure prediction, the RMSD is a crucial metric used to mea-

sure the average atomic distance between a predicted protein structure and a

reference structure, typically comparing backbone atoms. For an accurate

prediction, the RMSD should ideally be below 2.0 Å.
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In our study, we compute several RMSDmetrics to thoroughly assess the

accuracy of predicted class I MHC-peptide interactions. All RMSD calcu-

lations are performed using the PyMol library (36). The primary metric we

utilize is termed the MHC-peptide RMSD. To compute this, we first align

the predicted and true structures based on the MHC chain. Following this

alignment, the RMSD is calculated specifically for the Ca atoms of the

peptide, providing a focused measure of the peptide’s positional accuracy

relative to the MHC.

While the main and most informative metric for our analysis is the MHC-

peptide RMSD, we also report additional metrics such as MHC-MHC

RMSD, peptide-peptide RMSD, and the side-chain RMSD of anchor

residues to provide a more comprehensive analysis of our prediction results,

allowing for detailed evaluation of the separate components and their

interaction within the complex. Detailed information can be found in the

supporting material.

The lDDT (37) is another metric that evaluates the quality of a protein

model at the local residue level. Unlike RMSD, lDDT is a superposition-

free metric, meaning it does not require alignment of the structures and is

insensitive to domain movements. It measures the local conformational

similarity of each residue’s environment by comparing inter-atomic dis-

tances. The lDDT score ranges from 0 to 1, with higher values indicating

better model quality.

AlphaFold’s predicted lDDT (plDDT) scores offer a valuable confidence

measure for the predicted positions of residues within a protein structure.

These scores are instrumental for researchers to gauge the reliability of spe-

cific regions within the predicted structural model, particularly when exper-

imental structures are absent for validation. In our study, we have enhanced

the original AlphaFold’s confidence predictions, enabling a more precise

estimation of structure reliability.

Evaluating plDDT against lDDT can be done through comparison with

known structures or through experimental validation. High plDDT values

in regions that align with high lDDT scores from experimental data can

indicate a successful prediction. To measure the quality of predicted

lDDT scores, researchers often use statistical methods such as mean abso-

lute error and the Pearson correlation coefficient.

Similar to RMSD, we would like to focus specifically on the peptide part

of the complex, which is why we computed the lDDT and plDDT scores

separately for the peptide portions of the MHC-peptide complexes.
Fine-tuning techniques

To refine the prediction capabilities of AlphaFold for class I MHC-peptide

complexes, we started with the foundational AlphaFold multimer model

v2.2. We explored several refinement techniques, focusing on both architec-

tural modifications and training strategies.

Architectural enhancements

Our initial approach involved augmenting the existing AlphaFold model by

adding extra Evoformer blocks, ranging from 1 to 10, to the pre-existing 48.

The design of AlphaFold, with its inherent residual connections, allows for

such integrations without compromising existing functionalities, poten-

tially enriching the model’s learning capacity.

Template usage optimization

Another significant adjustment pertained to the use of templates. While the

standard AlphaFold architecture processes protein chains individually, we

innovated by incorporating information regarding the interactions between

protein chains and peptides. This modification is crucial for our focus on

MHC-peptide interactions, aiming to capture the subtleties of these com-

plex molecular interplays.

Focused loss function

To enhance the precision of structural prediction specifically for peptide

residues within MHC-peptide complexes, our study incorporated a refined
approach to the AlphaFold model’s loss function. Recognizing the intricate

nature of AlphaFold’s loss function, which comprises multiple components

each calculating loss on an individual or pairwise residue basis, we devised

a strategy to recalibrate this mechanism to favor our targeted peptide

structures.

This recalibration was achieved through the implementation of a differ-

ential weighting system within the loss function. By constructing a binary

mask for peptide residues and designating weights to all residues in

the complex, each MHC residue was assigned a baseline weight of 1,

whereas peptide residues received a baseline weight incremented by a

weighting factor. The weighting factor serves as a hyperparameter with

evaluated values ranging from 0 (indicating no additional emphasis) to

3.0 (signifying that the penalty for inaccuracies in peptide residue predic-

tions is quadrupled relative to MHC residues). The integration of this

weighting scheme is important for modulating the loss function, where it

facilitates the computation of a weighted average for the components

constituting the final loss.

Optimizing training parameters

On the training front, we experimented with various hyperparameters to opti-

mize the model’s performance. This included testing different learning-

rate schedulers, such as CyclicLR, StepLR, and CosineAnnealingLR,

with learning rates spanning from 0.001 to 0.000001. We also employed

accumulate grad batches, serving as an analog to batch size, to manage the

model’s learning processmore effectively. This broad range of hyperparameter

experimentation allowed us to finely calibrate the model for optimal perfor-

mance in predicting MHC-peptide structures.
RESULTS AND DISCUSSION

Optimal parameter settings: MHC-Fine model

After extensive experimentation, we have identified an
optimal set of parameters for our AlphaFold-based model,
now termed MHC-Fine, tailored for predicting class I
MHC-peptide complex structures. These parameters were
determined as the most effective in balancing computational
efficiency with predictive accuracy.

Additional Evoformer blocks

We treated the number of additional Evoformer blocks as a
hyperparameter and found it had a positive correlation with
the lDDT scores for peptides and was one of the most impor-
tant parameters. This indicates that more blocks could
improve the model’s accuracy in predicting peptide struc-
tures. However, through hyperparameter optimization, we
determined that adding exactly two additional Evoformer
blocks was the best choice. This process involved testing
different combinations of model parameters to find the
one that worked best for our dataset. The inclusion of two
blocks achieves the optimal balance, potentially allowing
for the capture of additional information about MHC-pep-
tide interactions without unnecessarily complicating the
model.

Template utilization

The introduction of high-quality templates emerged as a
crucial factor. Although the model was capable of learning
independently of templates, their inclusion significantly
Biophysical Journal 123, 2902–2909, September 3, 2024 2905



FIGURE 1 Comparative analysis of prediction accuracy for class I

MHC-peptide complexes using RMSD calculated for Ca atoms of peptides:

performance of AlphaFold, Pandora, and MHC-Fine.
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accelerated the training convergence, underscoring their
value in our fine-tuning process.

Focused loss function

The optimal value for the weighting factor was determined to
be 0.4 through hyperparameter optimization, indicating that
the loss function for peptide residueswas adjusted to 1.4 times
that of MHC residues. This outcome was lower than initially
anticipated. Further investigation revealed that similar levels
of accuracy could be achieved without increasing the loss
for peptide residues. Nonetheless, the implementation of a
peptide-specific mask remained beneficial for refining the
training process. It provided enhanced visibility into the
model’s learningprogress, particularly allowing for theprecise
monitoring of peptide loss improvement even after the overall
loss for the MHC-peptide complex had stabilized. This
approach underscores the utility of the peptide mask in facili-
tating nuanced control over the model’s training dynamics.

Optimizing training parameters

We employed the CosineAnnealingLR scheduler with a
learning rate of 0.0003. This configuration facilitated a more
dynamic adjustment of the learning rate, aiding in finer
convergence. We set accumulate grad batches to 1, with the
model being trained across eightGPUs. This effectivelymeant
a real batch size of eight, allowing for a more precise gradient
update, which proved beneficial at this stage of the model’s
training.TheMHC-Finemodel,with these refinedparameters,
has shown the capability to outperform established bench-
marks. Its single-model framework simplifies the prediction
process while maintaining high accuracy, marking a signifi-
cant step forward in computational immunology.
Benchmarking baseline performances

To assess the baseline performance of AlphaFold on our test
set prior to fine-tuning, we utilized parameters of all five
multimer models of AlphaFold version 2.2 using our script.
For each sample in the test set, we systematically evaluated
the predicted structures generated by each model. The best
result for each sample was selected based on the highest
plDDT scores.

To ensure a comprehensive and fair comparison, we
similarly evaluated the performance of Pandora. We meticu-
lously removed any instances where our test set overlapped
with Pandora’s template database to avoid any potential
bias from Pandora having prior knowledge of the structures
in our test set. For each sample, the most probable structure
predicted by Pandorawas selected, using themolecular prob-
ability density function (molpdf) as the scoring function.

Employing this approach allowed us to establish a robust
benchmark for the original performance of both AlphaFold
and Pandora. This benchmark serves as a critical reference
point against which we could measure the enhancements
achieved through our fine-tuning process.
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Comparative analysis

Our fine-tuning of AlphaFold led to a model with enhanced
predictive performance for MHC-peptide complexes,
showing a statistically significant reduction in median
RMSD values compared to both the original AlphaFold and
the homology-modeling-based Pandora approach. Fig. 1
illustrates the distribution of RMSD values for predicted
MHC-peptide complex structures across three different
computational methods: the original AlphaFold (median
RMSD calculated for Ca atoms of peptides 1.59 Å), Pandora
(1.31 Å), and our MHC-Fine model (0.66 Å). The MHC-Fine
model shows not only lower median RMSD but also a signif-
icantly narrower interquartile range, indicating higher accu-
racy and consistency in structure prediction. This suggests a
closer approximation to the high-resolution crystal structures
in our test dataset and indicates a marked improvement in the
spatial accuracy of our model’s predictions. Further metrics
and information concerning peptide length are available in
the supporting material.

Our analysis is demonstrated through three case studies,
each with varying prediction accuracy. Fig. 2 illustrates
these differences: Fig. 2 a shows high accuracy with the
fine-tuned AlphaFold, Fig. 2 b depicts moderate accuracy
for both models, and Fig. 2 c highlights significant discrep-
ancies in predictions.

In addition, our fine-tunedmodel exhibited enhanced confi-
dence in prediction. We evaluated the average plDDT values
for peptide residues across all test samples, ensuring accurate
and reliable lDDT score predictions. The mean absolute error
between the true lDDT values and the predicted ones for pep-
tide residues was 3.0, with a Pearson correlation coefficient of
0.62, showcasing good performance. Fig. 3 presents the distri-
bution of the deviation in plDDT scores for peptide residues,
revealing that the MHC-Fine model generates a significantly



FIGURE 2 Comparative visualization of class I MHC-peptide complex prediction accuracy, reporting MHC-peptide RMSD calculated for Ca atoms. True

peptide structure is shown in red, Pandora model in orange, andMHC-Fine in blue. (a) PDB: 6vb3: high precision of MHC-Fine. MHC-peptide RMSD for Ca

atoms is 0.25 Å for MHC-Fine and 1.44 Å for Pandora. (b) PDB: 7n2o: moderate accuracy for both models. MHC-peptide RMSD for Ca atoms is 1.23 Å for

MHC-Fine and 1.19 Å for Pandora. (c) PDB: 7mj7: significant deviations in predictions for both models. MHC-peptide RMSD for Ca atoms is 3.73 Å for

MHC-Fine and 4.30 Å for Pandora. To see this figure in color, go online.
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narrower error distribution compared to the original model.
This reduced spread indicates more consistent predictions,
suggesting that our fine-tuning process achieves a more
dependable and precise measure of structural confidence
with significantly fewer large deviations. Additionally,
Fig. 4 illustrates that within our test dataset, a mean plDDT
score for peptide residues above 90 is linked with an MHC-
peptide RMSD of less than 1.5 Å, and scores above 95 corre-
late with RMSD of less than 1.0 Å. These findings highlight
the refined accuracy of our model in structural prediction,
particularly for peptide residues.
CONCLUSION

In conclusion, our study presents a refined AlphaFold model
tailored for the intricate task of class I MHC-peptide com-
plex structure prediction. By fine-tuning with high-resolu-
tion domain-specific data, we have achieved superior
performance compared to both the original AlphaFold and
FIGURE 3 Error distribution for plDDT values of peptide residues. The

red distribution represents the original AlphaFold model with a standard de-

viation of 9.2, whereas the blue distribution highlights our MHC-Fine

model, which achieves a reduced standard deviation of 4.6, indicating a

more precise confidence in structural predictions for peptide residues.
traditional homology-modeling approaches. Our focused
metrics on the peptide regions have yielded RMSD values
indicative of high-precision predictions, while improve-
ments in the plDDT scores reflect an enhanced confidence
in the structural assessments provided by our model. These
advancements hold promising implications for computa-
tional immunology, potentially expediting the discovery
and design of novel therapeutics and vaccines.
DATA AND CODE AVAILABILITY

The inference code and datasets utilized in this study are
publicly available to facilitate further research. To enhance
accessibility and ease of use, we have developed a compre-
hensive Jupyter Notebook within Google Colaboratory. This
interactive environment allows researchers to seamlessly
execute the code and analyze the datasets featured in our
study. The code, datasets, and the link to Notebook can be
accessed via the following path: https://bitbucket.org/abc-
group/mhc-fine/src/main/.
FIGURE 4 MHC-Fine confidence prediction. Samples are grouped by

mean plDDT values for peptide residues. The chart displays the distribution

of MHC-peptide RMSD alongside the percentage of samples within each

specific plDDT range.
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SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2024.05.011.
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