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W Check for updates

The Arctic region has warmed nearly four times faster than the global
average since 1979, with far-reaching global implications. However, model
projections of Arctic warming rates are uncertain and one key component
isthe ocean heat transport (OHT) into the Arctic Ocean. Here we use
high-resolution historical and future climate simulations to show that

the OHT through the Bering Strait exerts a more substantial influence on
Arctic warming than previously recognized. The high-resolution ensemble
exhibits a20% larger warming rate for 2006-2100 compared with standard
low-resolution model simulations. The enhanced Arctic warming in the
high-resolution simulations is primarily attributable to anincreased OHT
through the narrow and shallow Bering Strait that is nearly four times
larger thanin the low-resolution simulations. Consequently, the projected
rate of Arctic warming by low-resolution climate simulations s likely to be
underestimated due to the model resolution being insufficient to capture
future changes in Bering Strait OHT.

Arcticwarming, characterized by anincrease in surface air temperature’,
has wide-reaching consequences that extend far beyond local ecosys-
tems. The melting of seaice and glaciers and the thawing of permafrostin
the Arcticare causing substantial transformations in the environment™*.
Moreover, recent studies have revealed a potential connection between
Arctic warming and extreme weather events in the mid-latitudes of
the Northern Hemisphere” ™. Given these findings, it is imperative to
advance our understanding of future Arctic warming. This improved
understandingis vital for effectively adapting to the anticipated impacts
and developing appropriate mitigation strategies for the future.

In addition to temperature feedbacks™'®, research findings con-
sistently affirm the widely accepted notion that Arctic warming is

heightened by the reduction in seaice due to the ice-albedo feed-
back""*. Within this mechanism, the diminishing sea-ice cover results
in greater absorption of solar radiation by the ocean, thereby inten-
sifying atmospheric warming in the Arctic and subsequently driving
further sea-ice retreat. Observational and modelling studies indicate
anotablerelationship betweentheretreat of seaiceinthe Barents and
Greenland Seas and the increase in northward ocean heat transport
(OHT) through the Barents Sea Opening and Fram Strait>*°. Over
the period 1997-2007, the OHT through the Barents Sea Opening
(50-70 TW) and Fram Strait (-36 + 6 TW) isstronger thanthe northward
OHT through the Bering Strait (-10-20 TW)*, resulting in the Atlantic
OHT receiving more attention in Arctic warming studies. Nevertheless,
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recentresearch has shed light on the crucial role of Pacific OHT through
the Bering Straitin driving sea-ice melt. Specifically, theincreased OHT
throughthe Bering Strait shows astrong connection withtheretreat of
seaiceinthe ChukchiSea® ™, aregion that experiences substantial ice
loss during the summer?*. Interestingly, for the same amount of total
Arctic OHT, which includes Barents Sea Opening, Bering Strait, Fram
Strait and Davis Strait, thereductionin Arctic sea-ice area and volumeis
more pronounced whenthereis anincrease inseasurface temperature
(SST) on the Pacific side compared with an increase on the Atlantic
side®. These recent findings underscore the importance of consider-
ing both the Atlantic and Pacific OHT pathways to comprehensively
understand and project changesin Arctic seaice®*”.

The Bering Strait is relatively narrow, spanning approximately
85 km, and relatively shallow with an average depth of around 50 m.In
many IPCC-class models with oceanresolutions of ~1°, the Bering Strait
geometry and ocean hydrography and circulation are not properly
represented, resulting in a weaker-than-observed OHT?**%, Enhanced
ocean resolution can help to better represent ocean pathways in the
openings into the Arctic, such as the Barents Sea®. This could poten-
tially influence the simulated OHT into the Arctic****. While there is
no consensus onasystematicincreasein OHT to the Arctic with model
resolutionincreases among Coupled Model Intercomparison Project
(CMIP) models**, arecent modelling study suggested that increasing
ocean resolution from1° to 0.1° or 0.25° leads to an increased Bering
Strait OHT*. This suggests that the impact of OHT through the Bering
Strait on sea-ice loss and Arctic warming might be underestimated by
most models that have a nominal horizontal resolution of ~1°.

In this study we assess the importance of accurately simulating
OHT through the Bering Strait to better understand Arctic warming.
By analysing multi-century high-resolution and low-resolution climate
simulations (HR and LR) using the Community Earth System Model**~*
(CESM; Methods), we explore the relationships between Bering Strait
OHT, sea-ice loss and Arctic warming. We begin our analyses by first
validating HR and LR through comparison with available observations,
andthenexplore theinfluence of Bering Strait OHT on Arctic warming.
All results presented here are based on the mean of three ensemble
membersin HR and five ensemble membersinLR.

Model-observation comparison

We compared satellite-observed®®*' and model-simulated SST during
August-September-October (ASO)inthe Bering Straitregion (Fig.1a-d).
ASOQ is a critical period for monitoring and understanding the state
of Arctic sea-ice cover and its temporal changes, as it corresponds to
the time when Arctic seaice reachesits minimum extent following the
summer melting season. The observations reveal that the warmest
SSTin this region is located along the west coast of Alaska, while the
coldest SSTs are observed along eastern Siberia with a distinct SST
gradient across the Bering Strait (Fig. 1a). HR generally captured this
pattern well (Fig. 1b), although the values of the warmest SST in the
east and the coldest SST in the west show some differences from the
observations. In contrast, LR failed to capture many detailed features
ofthe observed SST, with aweaker SST gradient across the Bering Strait
(Fig. 1c). The multi-model ensemble mean (MMEM) of CMIP Phase 5
(CMIP5) simulations, forced by identical external climate forcing to
LR at acomparable resolution, exhibited a pattern akin to that of LR
(Fig.1d), both revealing a substantial cold SST bias.

To compare simulated OHT through the Bering Strait to observa-
tions, we used OHT estimatesinferred from two moorings near the Bering
Strait™asthe observational baseline. The mooring-based OHT exhibited a
distinctseasonal cycle, reaching its peak around August with amagnitude
of42 + 5 TW* (Fig.1e). Model-derived OHT in HR reasonably captured this
seasonal variation, albeit with apeak magnitude overestimated by 30%. In
contrast, model-derived OHT in LR underestimated the mooring-based
peak by 34% (Fig. 1e). When we determined OHT in HR and LR using the
sameinferred calculationmethod used for the mooring-based estimates

(Methods), the estimated peak in LR was nearly four times smaller than
the observations. However, the OHT estimated by the inferred calculation
methodin HR closely replicated the model-derived OHT (Extended Data
Fig.1a). The stronger OHT in HR is attributed not only to the tempera-
ture (Fig. 1a-d), but also to the northward volume transport difference
betweenHRand LR (Fig. 1f). Compared with mooring-based estimates, HR
overestimated the peak magnitude of the northward volume transport
by 25%, while LR underestimated it by 63%. The mooring-based Bering
Strait OHT also showed notable interannual variability and anincreasing
trend® (Fig. 1g) that was only captured by HR. The standard deviation of
the annual mean OHT from 2000-2021 in HR, ranging from 3.8 TW to
4.8 TWacrossensemble members, was comparable tothe mooring-based
estimate of 3.0 TW (Extended Data Fig. 2a). The OHT trend in HR was
2.1 TW per decade (dec), whereas the mooring-based trend stands at
1.6 TW dec™ over 2010-2021. However, it is important to note that the
trendsinthe observationsand HR did not achieve statistical significance
atthe 95% confidence level due to the pronounced interannual variability
and the short duration of the record. In contrast, LR exhibited a much
weaker variability in simulated OHT (Extended Data Fig. 2a) with no
discernible trend (Fig. 1g).

The high level of realism achieved by HR is further demonstrated
by comparing observed and simulated sea-ice-areachangesin the vicin-
ity of the Bering Strait (Fig. 1h and Extended Data Fig. 3). The observed
sea-ice area had a declining trend of 0.025 million km? dec™ from 1979
t0 2022 at the 95% confidence level. In comparison, HR exhibited a less
pronounced declining trend of 0.015 million km? dec™ during the same
period, while LR showed a declining trend of 0.010 million km? dec™,
approximately 50% weaker than that of HR. Therefore, although both
HR and LR underestimated the declining trend in the observations, HR
showed a noticeable improvement. It is also important to note that the
trendsinHR and LR were based on ensemble means, which may contrib-
ute to the weaker model trends, as internal variability could contribute
to the stronger observed trend*>**. After removing the linear trend, the
annual mean sea-ice area showed a covariation with the Bering Strait
OHT, characterized by acorrelation coefficient of -0.86. This relationship
was more accurately depicted by HR than by LR (Extended DataFig.2b).

In conclusion, the above analysis highlights that HR simulations
provide a considerably more accurate representation of the climatol-
ogy and variability of Bering Strait OHT, SST and sea-ice area. This
improved fidelity enhances the credibility of HR simulations in captur-
ing future changes in Bering Strait OHT and its consequential impact
on Arctic warming.

Projected Arctic warming

Inthe high-emissions scenario (RCP8.5), the Arctic surface air tempera-
ture is projected to undergo warming at a rate of .28 °C dec*in HR
over the period 2006-2100 (Fig. 2a). This warming rate was approxi-
mately 20% higher than the rate projected by LR. Moreover, the change
in surface air temperature in HR surpassed the CMIP5 MMEM, which
indicates a warming trend of 0.97 + 0.17 °C dec™, by more than one
ensemble standard deviation. This underscores the large disparity
between Arctic warming projectionsin HR and LR.

Thestrongest Arctic warmingin HR waslocated near the Canadian
Arctic Archipelago and Greenland (Fig. 2b), sharing a similar spatial
patternwith the historical sea-ice concentration*®, which underscores
the importance of sea-ice melting in the future. The spatial pattern of
warming rates was generally similar between HR and LR, as evident
from Fig. 2b and Extended Data Fig. 4. However, HR exhibited a more
pronounced warming rate in most Arctic regions (the central Arc-
tic, eastern Arctic, Canadian Archipelago, Beaufort Sea, Chukchi Sea
and so on), while showing a smaller rate of warming over the Barents
Sea and Greenland Sea (Fig. 2¢). This result clearly indicates that the
amplified Arcticwarmingin HRis primarily attributed to the warming
difference between HR and LR across the Pacific sector (66° N-90° N,
120° E-240° E; cyan outline in Fig. 2c).
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Fig.1|Model-observation comparison near the Bering Strait.a-d, SSTin ASO
from observations (a, MODIS/Aqua level 3 Mapped Thermal and Mid-IR SST*%*),
HR (b), LR (c) and CMIP5S MMEM simulations (d). Sites A3 and A4 ina are used to
construct OHT using the inferred calculation method (Methods). e, Seasonal
cycle of model-derived OHT through the Bering Strait from the mooring-based
estimates® (observations, obs), HR and LR. Shaded regions represent the model
uncertainty determined using abootstrap sampling method (Methods).

f, Similar to e but for northward volume transport. g, Similar to e but for annual
mean OHT changes relative to the 2000-2004 mean. SST and OHT climatologies
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ina-farebased on averages over the period 2003-2015. Error barsine and f

are the 95% limit of a one-sided Student’s ¢-test with the degree of freedom set
to13 (ref. 32). h, Annual mean sea-ice-area anomalies relative to the 1979-1988
mean. The region used to construct the time series of sea-ice area is shown by the
greenshading in Extended Data Fig. 3. The NOAA/NSIDC Climate Data Record of
Passive Microwave Monthly Sea Ice Concentration® is used to construct sea-ice
area. Note that the analysis utilizes different time periods for various variables,
aligning with variations in the record lengths of corresponding observations. The
model results correspond to the same respective observational time periods.

Given that the retreat of sea ice in the Pacific sector of the Arctic
issignificantly correlated with OHT through the Bering Strait*, which
isalsoseenin Extended Data Fig. 3, we next examined the relationship
between Bering Strait OHT and surface warming. Here the OHT was
computed using model-derived output, not using the inferred calcula-
tion. Theincrease in Bering Strait OHT was considerably more rapid in
HR compared with LR, particularly after 2030 (Fig. 3a). This disparity
between HR and LR OHT projections continued to amplify with higher
concentrations of CO,. From 2006 t0 2100, OHT increased at arate of
0.31 TWyr?(0.09 TWyr™) in HR (LR). By decomposing the changes
in OHT into components induced by temperature changes (vAT) and
velocity changes (TAv) (Methods), we found that the warming of the
Bering Strait throughflow waters predominantly drives changesin OHT
(Extended DataFig. 5), consistent with findings from other modelling
studies?**. The trend of OHT from LR aligned with those of the CMIP5
MMEM. Similarly, in line with surface air temperature, OHT in HR sur-
passed one ensemble standard deviation above the MMEM.

Aclear correlation at the 95% confidence level between changesin
simulated Bering Strait OHT and future Arctic warming was detected
in CMIP5 models (Fig. 3b). Models that exhibit larger increases in OHT
are associated with more pronounced Arctic warming. Specifically, a
1TWincreasein OHT approximately correspondstoa0.15 °Cincrease
insurfaceairtemperature. Remarkably, both HR and LR closely adhered
to this statistical relationship, with the HR values residing at the far end
oftheensemble spread. It clearly highlights a shared sensitivity among
different climate models regarding future Arctic warming and changes
inBering Strait OHT.

Itisimportant to emphasize that this sensitivity of Arcticwarming
to Bering Strait OHT is only found within the Pacific sector (Extended
DataFig. 6a). No significant relationship with surface air temperature
was found in the Atlantic sector (Extended Data Fig. 6b). This implies
that the influence of Bering Strait OHT on surface air temperature is
limited to the Pacific sector. Within the Pacific sector, alinear regression
analysisrevealedthatal TWincreasein OHT corresponded towarming
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that would produce the same global warming effect. b, The rate of surface air
temperature changes in HR over the period 2006-2100. ¢, The difference in
the rate of surface air temperature changes between HRand LR (HR - LR). The
cyan (yellow) outline is the Pacific (Atlantic) sector of the Arctic 66° N-90° N,
120° E-240° E (66° N-90° N, 60° W-60° E).

of roughly 0.22 °C, which is higher than the Arctic-averaged warming
of 0.15 °Cby nearly 47%. Numerous studies have correlated the sea-ice
lossinthe ChukchiSeawiththeincreasein OHT based onboth observa-
tions®***% and numerical models®?*>**’, We hypothesize that seaice
serves asaphysical link between Bering Strait OHT and Arctic warming.
With anincrease in OHT through the Bering Strait, more seaice in the
Pacificsector of the Arctic Oceanis prompted to melt. This, in turn, can
resultinanincreasein latent and sensible heat release into the atmos-
phere, initiating positive feedback loops between surface heat fluxand
sea-ice changes, including the ice-albedo feedback. These feedback
mechanisms contribute to accelerated Arctic warming. Consequently,
changesinBering Strait OHT play a pivotal role in shaping future Arctic
warming, and itis evident that accurately modelling Bering Strait OHT
isindispensable to generate reliable projections of Arctic warming.

Seaicelinking Bering Strait OHT and Arctic
warming

Thelarge differences in Bering Strait OHT changes among HR, LR and
CMIP5 models were primarily seen during the boreal winter and spring

seasons (Extended DataFig. 7). These differences suggest that sea-ice
changesin the region may serve as a key link between increased OHT
and Arctic warming. This is because there is seaice in the Bering Sea
and ChukchiSeain winter and spring, while thereis notin summer. To
understand theimplications of the differencesin future OHT changes
for sea ice within the Pacific sector of the Arctic between HR and LR,
we compared sea-ice changes during the boreal spring season (March-
April-May, MAM) (Fig.4). The Arctic sea-ice concentrationreachesits
maximum in March*®, coinciding with the end of polar night, and the
MAM period marks the transition from sea-ice peak conditions to melt-
ing. Starting from 2030, HRrevealed agradual increase in spring sea-ice
loss extending from the Bering Strait towards the central Arctic, with
anacceleration towards the end of the century (Fig. 4a-d and Extended
DataFig.8a-d).In contrast, no substantial sea-ice loss was evidentin LR
north of the Bering Strait during this season (Fig. 4e-h). Both HR and
LR showed anincrease in turbulent surface heat flux from the ocean
to the atmosphere, as well as an increase in the net shortwave surface
heat flux (SW) into the ocean, due to the expansion of sea-ice-free areas
(Fig.4i-p), butin LR the changes were only observed to the south of the
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Fig. 3 | Relationship between projected changes in Bering Strait OHT and
Arctic warming. a, OHT changes relative to the 2006-2015 mean as a function
of CO, concentration increase (bottomx axis) and time (top x axis) in HR, LR and
CMIP5 MMEM simulations under RCP8.5. The grey shading represents the range
of one ensemble standard deviation above and below the MMEM. b, Scatter plot
of changesin Bering Strait OHT and Arctic-averaged surface air temperaturein

HR (triangle), LR (circle) and CMIP5 models (stars, 1-33). See Supplementary
Table 1for more details of the CMIP5 models. The changesin b are defined as the
difference between the 2081-2100 mean and the 2006-2015 mean. OHT in CMIPS
models s calculated using monthly mean temperature and velocity. The black
solidlineinbis linear regression based on CMIP5 models that passes the 95%
significance test with aslope of 0.15°C TW™.

Bering Strait. From the 2070s to the end of the century, HR exhibited
accelerated sea-ice lossin the central Arctic with astrong SW response
(Fig. 4d,l and Extended Data Fig. 8d). In comparison, those changes
in LR remained more limited and weaker (Fig. 4h,p). The notable dis-
parities in sea-ice loss and SW response between HR and LR during
the boreal spring have substantial implications not only for sea-ice
melting in the following summer, but also for sea-ice formationin the
subsequent winter.

Compared with the spring season, the SW response is absent in
the Arctic during winter due to the lack of solar radiation, but the
warmer ocean conditions driven by the stronger SW response from
previous seasons canimpede the growth of seaice during winter. The
declining patterns of basal sea-ice growth closely corresponded to the
warming of ocean temperatures withinthe upper 50 m (Extended Data
Fig.9a-h). Note that by the end of the century, the winter sea-ice edge
will recede substantially northwards of the Bering Strait (Extended
DataFig. 81). This shiftin the sea-ice edge positionisthe reason behind
the notably warmupper ocean and surface air temperatures. Awarmer
ocean can also lead to thinner and more vulnerable ice cover, making
it more susceptible to break-up and melting during winter storms or
when exposed to warmer air temperatures®®*. When combined with
the stronger OHT through the Bering Strait during the boreal winter

in HR, the result was much less sea-ice formation compared with LR.
Consequently, there were increased turbulent heat fluxes from the
ocean to the atmosphere (Extended Data Fig. 9i-p). These findings
suggest that the differences in Arcticwarmingrates betweenHRand LR
were probably attributable to Bering Strait OHT-induced sea-ice loss,
which directly influences the air-sea heat exchange. Itis worth noting
that HR exhibited a more pronounced negative sea-ice bias over the
Arcticthan LR*. However, a detailed analysis of sea-ice bias indicated
that the majority of the negative sea-ice biasin HR was concentratedin
the Atlantic sector of the Arctic, and the bias over the Pacific sector was
lessseverein HR thanin LR. Consequently, it is unlikely that the sea-ice
bias substantially impacted the findings of this study.

Conclusions

Several studies?***“' have documented the anomalous advection of
warm Pacific Water into the Arctic through the Bering Strait, referred
to as Pacification. Under the RCP8.5 emissions scenario, our study
reveals that HR projectsamorerapidincreasein Bering Strait OHT than
LR and other CMIP5 model simulations. The intensified Bering Strait
OHT in HR results in accelerated sea-ice loss in the Pacific sector of
the Arctic, strengthening theincreasein SW absorptionin the region.
Consequently, more heatis released from the oceanto the atmosphere
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a 2030-2039 b 2050-2059

Fig. 4| Future changes insea-ice concentration and surface heat fluxes.

a-d, Changes in sea-ice concentration during boreal spring (MAM) in HR (colour
shading) averaged over the periods shown at the top relative to the mean over
2006-2015. The contours represent turbulent heat flux during MAM at 10 W m™
intervals with 20 and 40 W mlabelled. Positive turbulent heat flux is upwards

2070-2079 d 2090-2099

(%) uoneluaduUOod 80I-e8g

(from the ocean to the atmosphere). e-h, Same as a-d but for LR. i-1, Changes in
SW during MAM in HR in the same respective periods asa-d. m-p, Same asi-I1but
for LR. Positive shortwave surface heat flux is downwards (from the atmosphere
tothe ocean).

inHR than in LR. The larger heat release in HR would lead to greater
Arcticwarmingin HR. These findings indicate that CMIP-class models
are probably underestimating the influence of the Bering Strait OHT
on Arctic warming. Despite the small spatial extent of the Bering Strait
withinthe global ocean, the corresponding OHT can have a substantial
upscaling impact on the larger climate system. It is therefore crucial
to recognize the need to improve the representation of Bering Strait
OHT and its impacts in future model developments.

By increasing the ocean resolution to 0.1° and atmosphere reso-
lution to 0.25° in CESM, we observed that Bering Strait OHT, volume
transport, SST and sea-ice changes in the Pacific sector of the Arctic
aligned more closely with observations. Arecent study highlights that
Bering Strait volume transport emerges as a pivotal factor influencing
the strength of the coupling between Bering Strait OHT and sea-ice
changes®. These improvements boost confidence in projecting the
effects of Pacification using HR. However, the Pacification mechanism
revealed by HR would benefit from further validation through other
high-resolution long-term climate simulations and longer-term ocean
observations. Nevertheless, the long record of surface air temperature
observations does indicate that the Pacific sector of the Arctic has
been warming at a faster rate than the entire Arctic region since the
mid-1970s. Conversely, the Atlantic sector shows a less pronounced
warmingtrend in comparison with the broader Arctic region (Extended
DataFig.10). While these observations align with the findings fromHR,
more observations are required to conclusively confirm the prominent
role of the Pacification mechanismin future Arctic warming. Although

theresultsin this study suggest a potential driving role of Bering Strait
OHT in future Arctic warming, further investigations are required to
validate this claim. Interactions among Bering Strait OHT, sea-ice loss
and Arctic warming are highly complex. To fully determine the role of
Bering Strait OHT and causality among these interactive processes,
future process-level sensitivity experiments are necessary. Future
high-resolution modelintercomparison studies are also critical to fully
elucidate the role of Bering Strait OHT in Arctic warming.
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Methods

CESM simulations

HR and LR simulations were based on CESM1.3, for which the atmos-
pheric component is the Community Atmosphere Model version 5
(CAMS) with the Spectral Element dynamical core, the ocean com-
ponent is the Parallel Ocean Program version 2 (POP2), the sea-ice
component isthe Community Ice Code version 4 (CICE4) and theland
component is the Community Land Model version 4 (CLM4). HR had
anominal horizontal resolution of 0.1° for the ocean and sea-ice com-
ponents and 0.25° for the atmosphere and land components, whereas
LR had anominal horizontal resolution of 1° for all components. Both
HRand LR produced a500 yr pre-industrial control (PI-CNTL) climate
simulation and a historical-and-future transient (HF-TNST) climate
simulation from1850-2100. PI-CNTL was forced by a perpetual climate
forcing that corresponded to the 1850 conditions, whereas HF-TNST
was branched from PI-CNTL at year 250 and forced by the observed
climate forcing until 2005, after which the climate forcing followed
a high-emissions scenario (that is, RCP8.5). For HR, two additional
HF-TNST simulations were performed, branched from the 1850-2100
HF-TNSTin1920 with slightly different atmosphericinitial conditions.
Thus, anensemble of three HR HF-TNST simulations is presented in this
study. Similarly, five ensemble members of LR HF-TNST simulations
were used in the present work.

Inferred calculation method for estimating OHT

Datafrom two mooringsites were used to obtain the observational OHT
estimate®: A3 (66.3° N, 169° W) and A4 (65.6° N, 168.3° W) as shown
in Fig. 1a. These two points were also utilized to compute CESM OHT
using theinferred calculation method. To calculate OHT, the reference
temperature (that is, freezing point) was —1.8 °C in CESM and -1.9 °C
inthe observational estimates. Away from the Alaska Coastal Current
(ACC), velocity shows barotropic structures, while temperature shows
atwo-layer structureinthe verticalinnon-winter seasons. As shown by
observationsin previous work®>¢*-¢¢ the temperature from A3 can be
used asabest approximation of the mean properties of non-ACC waters
ofthe Bering Strait. Therefore, SST, combined with the temperature at
45 m(midpointbetween40 and 50 m)in HR and that at 25 m (midpoint
between 20 and 30 m) in LR at A3 was used to capture the two-layer
structure. The depth of 25 mwas usedin LR because the configured Ber-
ingStraitwasshallowerinLR thaninHR.Inaddition, the depths at which
meridional velocity (v) wasusedin CESMwere 45 minHRand 25 minLR.
They were the most consistent respective model depths with the one
used in observational estimates (43 m). The stratification correction
Was 2 X (SSTy; = Tysma3) X UasmazsiNHRANA 2 X (SSTy3 = Tasim a3) X Uzsmazin
LR.Asvat15mcanberegarded as the depth-averaged flow inthe ACC
region, the ACC correction for OHT across Bering Strait was calcu-
lated as2 X (Tssm e + 1.8) X (Uismas — Vasmaz) iINHRANA 2 X (Tysp, 44 + 1.8) X
(U1sm.a4 — Uasm a3) in LRbased on A4 data. Finally, the estimate for Bering
Strait OHT was the sum of OHT at A3, the stratification correction and
the ACC correction. The corresponding volume transport included
estimates at A3 and the ACC correction.

A comparison between the model OHT computed using the
inferred calculation method and that from the direct model out-
put showed excellent agreement in HR, but in LR the model-derived
OHT was substantially larger than that computed by the inferred
calculation method (Extended Data Fig.1). The disparity between the
inferred calculation method-computed and model output OHTin LR
implies that the temperature from A3 isinsufficient to represent the
mean properties of non-ACC waters of the Bering Strait, which was
improvedin HR.

Decomposition of OHT

The total OHT through the Bering Strait (-66° N) was directly output
by the model. The mean-flow-induced OHT (MOHT) could be calculated
with monthly mean meridional velocity (7) and temperature (T) as

Jf vTdxdz, where dxand dzare increments along the axes of longitude
and depth, respectively. The eddy-induced OHT could be obtained
through the difference between monthly OHT and MOHT, which was
negligible at the Bering Strait (Extended Data Fig. 5); that is,
OHT = MOHT. Changes in OHT ((¢T),, - (¢7),,) can be further decom-
posed into the components associated with velocity change and tem-
perature change as:

(07), = (0T),, = 02 = 0a) Ta + (Ta = Ta) Oa + (02 = 00) (Tia — Tar),

where t1is the current period and ¢2 is the future period. The first
and second terms on the right-hand side are contributions from the
circulation change (that is, TAv) and temperature change (that is,
VAT), respectively. Thelast term onthe right-hand side is the nonlinear
interaction of changes in circulation and temperature (thatis, AvAT),
whichis small (Extended Data Fig. 5).

Bootstrap sampling

This method aims to minimize theimpact of interannual variability on
the seasonal cycle of OHT. With the assumption that the OHT seasonal
cycle did not change appreciably over the period 1950-2019, we ran-
domly drew 13 years from 1950-2019 to construct a seasonal cycle of
OHT and repeated this process 1,000 times.

OHT in CMIP5

Given the minimal impact of eddies on Bering Strait OHT (Extended
DataFig. 5), the total OHT in CMIP5 models can be estimated by inte-
grating the product v and T in the zonal and vertical directions, repre-
sented as [y oTdxdz.

Data availability

The CMIP5 data used in this study can be downloaded from
https://esgf-node.lInl.gov/search/cmip5/. The CESM data used
in this work are available from https://ihesp.github.io/archive/
products/ihesp-products/data-release/DataRelease_Phase2.html.
The MODIS data canbe download from http://apdrc.soest.hawaii.edu/
data/data.php. Themooring data can be downloaded from https://psc.
apl.washington.edu/HLD/Bstrait/Data/BeringStraitMooring
DataArchive.html.

Code availability
The CESM codes are available via GitHub at https://github.com/ihesp/
CESM_SW (ref. 67).
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Extended DataFig. 1| Inferred calculation method computed OHT. (a-b) Similar to Fig. 1e & g, respectively, butincludes both inferred calculation method-computed
(dashed) and model-derived (solid) OHT in HR (red) and LR (blue). Error barsin (a) are the 95% limit of a1-side Student’s t-test with the degree of freedomas 13.

Nature Climate Change


http://www.nature.com/natureclimatechange

Article https://doi.org/10.1038/s41558-024-02008-z

(@),

5 4.0 T T
R 4.4
E 4 3.8 ]
5
S 3
=3t i
=
3
- 27 17 1.7 19 -
@ 14
3 14
§1p 1
n

0 -

Obs HR LR

c
k<]
©
o -0.47]
3
L -0.63
.0_7'0-67-0.69
-0.86
- L L L
Obs HR LR
Extended Data Fig. 2| Standard deviation of OHT and correlation coefficient 2021inobservations, HR, and LR. Different colors in each group represent
betweendetrended seaice areaand OHT. (a) The standard deviation of different ensemble members. The correlation coefficients are significant at 95%
OHT from 2000 to 2021in observations, HR, and LR. (b) The correlation confidence level but not from LR ensemble #3 (-0.22). Different colors in each
coefficient between detrended seaice areaand OHT anomaly from 2000 to group represent different ensemble members.
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Extended DataFig. 3 | Definition of the region near the Bering Strait. Area with green shading is used to construct sea ice timeseries near the Bering Strait in Fig. 1h.
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Extended Data Fig. 4 | Projected Arctic warming. The rate of surface air temperature changesin LR over the period 2006-2100.
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Extended Data Fig. 5| Decomposition of changes in the Bering Strait OHT in to temperature change AT; MOHTAv: change in MOHT due to velocity change Av;
HR. The change is defined as the difference between the mean over 2081-2100 MOHTATAV: change in MOHT due to the nonlinear product of temperature and

and that over 2006-2025. MOHT: monthly-mean OHT changes computed using velocity change ATAv.
monthly-mean temperature and velocity output; MOHTAT: change in MOHT due
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Extended Data Fig. 6 | Scatterplot of changes in annual-mean Bering Strait Changes are defined as the difference between the mean over 2081-2100 and
OHT and Arctic surface air temperature over the Pacific and Atlantic sectors. that over 2006-2015. The linear regression in (a) has aslope of 0.22 °C TW!and is
(a) Arctic surface air temperature over the Pacific sector and (b) the Atlantic significant at a 95% confidence level, while the linear regression in (b) has aslope
sector of the Arctic from HR (triangle), LR (circle), and CMIP5 models (stars). of 0.06 °C TW'and is not statistically significant at a 95% confidence level.

Nature Climate Change


http://www.nature.com/natureclimatechange

Article https://doi.org/10.1038/s41558-024-02008-z

December January February
68000 2027 2043 2054 2064 2073 2081 2089 20952100 2000 2027 2043 2054 2064 2073 2081 2089 20952100 2000 2027 2043 2054 2064 2073 2081 2089 20952100

— [ HR LR CMIP5 MMEM|

ange T
o o

OHT Chan
o

n
o

o o o

OHT Chan
o

n
o

o o o

OHT Chan
o

n
o

i Seqtembpr

ge (

OHT Chan

365 465 565 665 765 865 965 1065 11651265 365 465 565 665 765 865 965 1065 11651265 365 465 565 665 765 865 965 1065 11651265
CO2 equivalence concentration (ppm) 002 equivalence concentration (ppm) CO2 equivalence concentration (ppm)

Extended Data Fig. 7| Monthly Bering Strait OHT anomaly relative to the mean over 2006-2015. Results are from HR (red), LR (blue), and CMIP5 models with
RCP8.5 forcing (gray) as a function of CO, concentration increase (bottom x-axis) and time (top x-axis). Black for the CMIP5 multi-model ensemble mean.
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Extended Data Fig. 8 | Seaice concentration during different periods. (a-d) Seaice concentrationin MAM in HR. (e-h) Similar to a-d, butin LR. (i-I) Seaice
concentrationin DJF in HR. (m-p) Similar toi-l, butin LR. Orange contour is sea ice edge defined as 15% seaice concentration.
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Extended Data Fig. 9 | Future changes in basal seaice growth, upper-50-m- boreal winter (DJF) in HR depicted by color shades (contours). (m-p) Same
ocean temperature, sea ice concentration, and surface heat fluxes. (a-d) asi-Ibut for LR. The first to fourth column represents changes averaged over
Changes in basal growth of seaice (ocean temperature in the upper 50 m) during 2030-2039,2050-2059,2070-2079, and 2090-2099 relative to the mean over
boreal winter (DJF) in HR depicted by color shades (contours). (e-h) Same as a-d 2006-2015, respectively. Contour intervalina-his 0.5°Cand ini-pis10 Wm™,
but for LR. (i-1) Changes in sea ice concentration (turbulent heat flux) during
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Extended Data Fig.10 | Observed surface air temperature anomalies relative Arctic (orange). The Pacific sector covers the area from 66°N to 90°N and from
to the1950-1980 mean. GISTEMPv4 annual-mean surface air temperature 120°E to 240°E. The Atlantic sector covers the area from 66°N to 90°N and from
anomalies from 1950 to 2020, relative to the 1950-1980 mean, averaged over the 60°W to 60°E.
Arctic region (blue), Pacific sector of the Arctic (red), and Atlantic sector of the
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