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NINA HOLDEN AND MATTHIS LEHMKUEHLER

We study Liouville quantum gravity (LQG) surfaces whose law has been reweighted according to nesting
statistics for a conformal loop ensemble (CLE) relative to n € Ny marked points zy, ..., z,. The idea
is to consider a reweighting by [] Bcil...n €? NB_where o € R and Np is the number of CLE loops
surrounding the points z; for i € B. This is made precise via an approximation procedure where as part of
the proof we derive strong spatial independence results for CLE. The reweighting induces logarithmic
singularities for the Liouville field at zy, ..., z, with a magnitude depending explicitly on o7, ..., 0,.
We define the partition function of the surface, compute it for n € {0, 1}, and derive a recursive formula
expressing the n > 1 point partition function in terms of lower-order partition functions. The proof of the
latter result is based on a continuum peeling process previously studied by Miller, Sheffield and Werner in
the case n = 0, and we derive an explicit formula for the generator of a boundary length process that can
be associated with the exploration for general n. We use the recursive formula to partly characterize for
which values of (o : B C {1, ..., n}) the partition function is finite. Finally, we give a new proof for the
law of the conformal radius of CLE, which was originally established by Schramm, Sheffield, and Wilson.
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1. Introduction

Q Liouville quantum gravity (LQG) is a theory of random fractal surfaces with conformal symmetries which Color: 110 116
145 150 155 176
37 arise as the scaling limit of discrete surfaces known as random planar maps. It has its origin in theoretical ;73 173

3g  physics [Polyakov 1981] and has been an active field of study in probability theory for the past fifteen years.

39 MSC2020: primary 60G57, 60J67, 60J80, 60K37, 81T40; secondary 05C80, 60G52, 60G60, 60K05, 60K35.
40 Keywords: conformal loop ensemble, Schramm-Loewner evolution, Liouville quantum gravity.
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o Figure 1. Left: the quantum surfaces obtained by cutting an LQG disk with parameter y
f with a (simple) nonnested CLE with parameter k¥ = y% € (8/3,4) are again independent
12 quantum disks conditionally on all of their boundary lengths. Right: the analogous
13 statement holds when we decorate a generalized quantum disk of parameter y with a
14 (nonsimple) nonnested CLE of parameter x' = 16/ 2 e @,8).
5
Z A particularly fruitful direction in the study of LQG has been the discovery of couplings between LQG

17 surfaces and conformally invariant random fractal curves called Schramm-Loewner evolutions (SLE)
18 [Schramm 2000]. An extensive theory of conformal welding for LQG surfaces, where SLE curves arise
19 as interfaces, has been developed [Sheffield 2016; Duplantier et al. 2021] (see also [Holden and Powell
20 2021; Ang and Gwynne 2021; Ang et al. 2023a; 2024]). These results have had a number of applications
21 for LQG, SLE, and random planar maps; see [Gwynne et al. 2023] for a survey.

22 Miller, Sheffield and Werner [Miller et al. 2022; Miller et al. 2021] study closely related couplings
23 between LQG surfaces and so-called conformal loop ensembles (CLE) [Sheffield 2009; Sheffield and
24 Werner 2012], which are loop versions of SLE. They prove that a CLE drawn on top of an independent
25 LQG disk (which is arguably the most natural LQG surface with a disk topology) breaks the disk into
26 independent smaller LQG disks and explicitly describe an exploration of the CLE decorated LQG disk
27 called the continuum percolation interface (CPI), which is the continuum counterpart of the peeling
28 process for random planar maps. They consider both the regular LQG disk, which has disk topology,
29 and the generalized LQG disk, which has pinch points, where by a pinch point we mean a point whose
30 removal disconnects the generalized disk into two disjoint components. See Figure 1. Their approach

31 allows them to obtain several new results about SLE and CLE.

32 We study a model which generalizes the one in [Miller et al. 2021; 2022]. Our LQG disks will have

33 a finite collection of marked points z = (z; : i € A) (for A C N finite) where the Liouville field (which

34 is a distribution in the unit disk that describes the distortion of the Euclidean metric) has logarithmic
35 singularities. These surfaces arise in a natural probabilistic construction where the law of an LQG disk
36 with a CLE has been reweighted according to CLE loop nesting statistics around the points z. In the
37 remaining introduction we will first introduce the variants of CLE and LQG disks which will be studied in
38 the paper (Sections 1A to 1E) and then we state our main results (Section 1F), namely exploration results

39 for these reweighted loop decorated LQG disks, and recursive formulas as well as finiteness conditions

391/, —

40 for their partition functions.
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% 1A. Motivation and parameters. Let us first give some motivation for our model, and let y € (0, 2).
o The y-LQG disk is a particularly natural y-LQG surface since, for example, it arises as scaling limits of
o random planar maps with disk topology [Bettinelli and Miermont 2017; Miller and Sheffield 2021]. For
~,_ concreteness, let us focus on the regular (not generalized) disk. As demonstrated by Miller, Sheffield,
Y and Werner, it is natural to decorate this disk with an independent CLE,, with x = y2, which is a random
- countable collection of noncrossing nested loops whose law is conformally invariant. Let 4 be the random
e distribution in D describing the unit boundary length y-LQG disk and let I" denote the independent CLE,
Y in D. The field & induces an area measure in D called the y-LQG area measure which heuristically
— speaking has density e”” relative to the Lebesgue area measure. It also induces a y-LQG length measure

10
o along the loops of T".

For finite and nonempty A C N, parameters (o5 € R: B C A), and points z = (z; € D :i € A) sampled in-
5 dependently according to the y-LQG area measure, we are interested in reweighting the law of (&, z, ') by

- [T . (1-1)

15
> @#BCA
16

17 where Np is the number of CLE loops surrounding the points z; for i € B and not surrounding the
18 points z; for i ¢ B. We often write o;, N; instead of oy;y, Ny;) for i € A to simplify notation. Since
19 any fixed point is a.s. surrounded by a loop of a nonnested CLE, the iterative construction of a nested
20 CLE from nonnested CLEs implies that N; = 0o a.s. for any i € A and therefore this reweighting does
21 not make rigorous sense. When trying to define it rigorously, it is natural to apply an approximation
22 procedure where one only considers the CLE loops of size above a certain threshold 6. When defining
23 the size of a CLE loop one wants to choose an infrinsic definition, namely one which does not depend
24 on the embedding % of the y-LQG disk into D. For example, the Euclidean diameter of the loop would
25 not be an appropriate measure, while the -LQG area surrounded by the loop or the y-LQG length of
26 the loop would be appropriate. Therefore, if o; > 0 (resp. o; < 0) then the reweighting we apply will
27 both favor I with a high (resp. low) density of loops around z; and & which is particularly large (resp.
28 small) near z;. This explains why the reweighting (1-1) affects the law of both I' and h. One can argue
29 at least heuristically that the effect of the reweighting should factorize in the sense that I" and / are still
30 independent (given z) after the reweighting. In the rest of this subsection we will give precise definitions
31 of the loop ensemble I' and field & that we expect to get when applying the reweighting (1-1). Section 1C
32 contains an explanation on how the heuristics above match the definitions made in this paper.

33 The y-LQG disk decorated with an independent CLE, for « = y? € (8/3,4) is believed to arise as the
34 scaling limit of random planar maps decorated by a loop O (n) model. Similarly, we conjecture that the
35 variant of the y-LQG disk obtained via the reweighting (1-1) describes the scaling limit of random planar
36 maps with a loop O (n) model whose law has been reweighted according to nesting statistics relative to
37 #A marked vertices. We refer to Section 2 for precise conjectures.

38 Throughout the text, several parameters will have to be tuned in a very particular way for the results
39 to hold. Below, we first associate to each CLE parameter « the corresponding LQG parameter y and

391/, —

40 define how the CLE reweighting parameter o relates to the strength o of the corresponding logarithmic
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1
1Y 27 singularity of the Liouville field. The parameter p; appears in the renormalization term in the definition
of reweighted CLE. The relationships between the various parameters will be justified later. The reader

3

. might wish to skip this definition and refer back to it whenever necessary.

_> Definition 1.1. Fix « € (8/3,8) and let y = /k A4/ /k. We will write Qg = /2+2/p for f > 0. Let

5 o> af bethe strictly increasing bijection from (—oo, —log(—cos(4n//<))) to (Q), —JK /4, Qy) given via
7

s - _ —cos(4r /k)

o —cos(4m/k — 7 - 20k /i)

1% and let o > p¥ be the strictly increasing bijection from R to (—1+ 2/« + 3« /32, o) given via

11

12 o0 — —cos(4m /k) .

13 cos(n\/(1—4//<)2—8,0§//<)

™ Note that Py =g (Qy — Qur) when o < —log(—cos(4r/k)). Whenever A C N is finite, we let
15

16 6,’? = {a e RIBBSAY . 45, ¢ (—oo, —log(—cos(47r//c))) fori € A, oy = O}.

% We also write &, = | J,, & where the union is over all finite subsets A of N. To simplify notation, we
1o Will frequently write o; instead of o, fori € A when o € &4 is clear from the context. For B C A we
0 leto|g = (oc:C C B).
20Y/o—

2 1B. CLE weighted by nesting statistics. We will now define the variant of CLE that we expect to get
*_ when performing the reweighting (1-1). First we state Theorem 1.2, which motivates our definition and
*_is crucial for our weighted CLE to be well-defined. The result should be viewed as making sense of
' the joint moment generating function of the nesting statistics of a nested CLE, where a nesting statistic
*_ counts the number of CLE loops surrounding some points. The difficulty lies in the fact that single points
*°_ are surrounded by an infinite number of loops, which implies that a regularization procedure is necessary
" to make sense of this moment generating function.

" In the theorem statement and throughout the text, whenever U is a disjoint union of proper simply
. connected domains and z € U, we write R(z, U) for the conformal radius of z in the connected component
P oofu containing z. Given a closed curve 1 and a point z, we say that n surrounds z if the index of n

*L around z is 1. We let ° denote the points surrounded by the curve 7.
32

33 Theorem 1.2. Let k € (8/3,8), A CN finite, and D C C be simply connected. Consider distinct points
34 z; € D fori € A and constants op € R for all nonempty B C A. Let I' be a nested CLE,. in D and
35 define Ny (z) to be the number of loops 1 € T" such that n surrounds z; if and only if i € B and such that
36 R(z;,n°) = € foralli € B. Foralli € A, let n; € I" be the outermost loop surrounding z; but not z; for
37 each j #1i. Then

38 B
o Ep”i ) K«
391/22 1_[ o [E<exp< Z JBNg(z)» — [E(l_[g”lR(zi, nf)P«i exp( Z aBNg(z))> <oo as €0
BCA

40 jeA O icA BCA (1-2)
— #B>1 #B>1
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1
11/27 Jfor some (explicit) constants cg, fori € Al We define @, (2) to be the limit on the right-hand side of the
o display above where 7 = (z; :i € A) and 0 = (op : B C A) (with o =0). For § > 0and K C D compact,

sup{® (2) 1z = (zi:i € A) e K4 and |z; — zj| > 8 Vi # j} < 00,
inf{®% () :z2=(z;:i € A) e K* and |z; —zj| = 8 Vi # j} > 0.
The proof of the theorem is found in Section 7. It will in particular rely on a strong spatial independence
result for CLE (Theorem 7.1). Two key properties of the function @, are its conformal covariance and

a type of recursion relation which is closely related to the Markov property of CLE. These properties are
inherited from the associated properties of CLE,, and are stated precisely in Lemmas 7.5 and 7.6. We

=
o | ©o © ~ S | O S

11 refer to the end of Section 1C for a discussion of a possible relationship between ®%,* and a conformal
1o field theory (CFT) for CLE.

13 Inlight of Theorem 1.2, it is natural to expect that we get the following variant of CLE when performing
14 the reweighting (1-1). Before giving the definition, we recall that a loop ensemble is a countable collection
15 of (nonoriented) loops. For k € (8/3, 8) a CLE, is a random loop ensemble which comes in two variants,
16 nested and nonnested, where a nonnested CLE, is obtained by sampling a nested CLE, and only keeping
17 the loops not surrounded by any other loop, where we use the word surrounded as explained above
15 Theorem 1.2. If I is a loop ensemble in a domain D C C then we define the complementary components

19 of I to be the open connected components of the set U, cr n°. The reader may want to come back to

— nel
, 20 part (iii) of the definition below after reading Section 5A, as CPIs are precisely defined there.
20%/2—
2! Definition 1.3. Let « € (8/3,8), D C C be simply connected, A C N be finite, 0 = (o5 : B C A) with

22 o5 =0,and z=(z; :i € A) be as in Theorem 1.2.
23
o (i) A nonnested CLE? (z) in D is aloop ensemble whose law has the following Radon-Nikodym derivative

25

26

1 0 olzw).
- 5% (2) [Tem [T o0™"" Glzw)).
D el

2r " Uest(n®)

= where £{(V) denotes the connected components of an openset V, Z(U) :={i € A:z; e U} for U C D,

29
; and Z|I(U) = (Zi 1€ I(U))

with respect to a nonnested CLE, I" in D:

5, (i) Anested CLE] (z) is a loop ensemble with the law of U k>0 Lk where I'y for k € Ny are loop ensembles
5, sampled iteratively as follows:

33 e Let I'g be a nonnested CLEY (z).

* e Given Iy, ..., 'k—1, sample an independent nonnested CLEZ'I“” (zlz)y) in U for each complemen-

» tary component U of I'y_;. Let ['y be the union of these loop ensembles.

36
5, (i) Consider two prime ends wy and ws of D, and a parameter g € [—1, 1]. We say that 4 is a CPI

L [rom wo to weo with asymmetry parameter § within nested CLE] (z) I if the conditional law of A given

301 /23 IThe sum in the expression for the limit does not range over singletons, i.e., B with #B = 1, so that N ?; is a.s. finite for the

40 considered sets B.
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1
- the outermost loops of I" is the same as that of a CPI from wg to weo With asymmetry parameter 8 within
a CLE, given the outermost loops of this CLE, (see Section 5A).

3
4 If we do not specify where a CLE] (z) is nested or nonnested we refer to the nested variant. We
5 point out that the construction in (iii) is well-defined since the law of nonnested CLE] (z) is absolutely
6 continuous with respect to the law of a nonnested CLE,.. Note however that the nested CLE] (z) is singular
7 with respect to a nested CLE, except if o; =0 for all i € A, in which case it is absolutely continuous.
8 Indeed, in both the case of a CLE and a reweighted CLE, one can see that lim,,_, o, log(R(z;, (n})°))/n
9 exists a.s. and is a deterministic constant if i/, denotes the n-th CLE loop surrounding z;, and these limits

10 differ when one considers different o; values.

11
1o 1C. Regular LQG disks weighted by CLE nesting statistics. We will now introduce the LQG surface

13 We expect to obtain upon applying the reweighting (1-1).

12 Infact, when we define the surface here in the introduction we focus on the even smaller parameter
15 Tange where o; E(Qy —Jx/4, 2) for all i € A since the formulas can be written in a simpler form in
16 this case due to the existence of the «;-LQG area measure. The general case o; € (Qy —Jk/4, Qy)
17 can be treated via a direct generalization (see Definition 8.1 and Proposition 8.10). For A > 0, £ > 0,
15 Kk €(8/3,8)\ {4}, A CN finite, and o € S} such that o; = ot € (Q) — /i /4,2) forall i € A, we define
1o ameasure Mf\z on tuples (h, z) € H~'(D) x D4 by setting

o MZ 5 (dh, dz) = e MO g (2) [ ] il (dz) P(dh), (1-3)
— icA
22

~, Where P is the probability measure describing the field of an embedding of a y-LQG disk without marked

., points and with boundary length £, and w;' is the o;-LQG measure associated to the field .

- Let us explain how this definition relates to the motivation (1-1) by performing the following back of
S, the envelope computation. We present it in the singleton case of A = {i}, writing z = z; and o = o;, but
-, the generalization to more points is immediate. Recall that we let 4 be an embedding of a y-LQG disk

. and I" denotes an independent CLE, in the unit disk . Let us fix € > 0 and consider the y-LQG metric

o ball with y-LQG area € centered at the point z € D. At a heuristic level, we approximate this metric ball
5 by a Euclidean ball B, (z) with r > 0 implicitly given by

2
31 € = p2tr 27 (@)

32
33 Here h,(z) denotes the circle average of the field on d B,(z) and the right-hand side is an approximation
54 Of ,uZ (B, (2)). Let N¢ be the number of loops in I' surrounding B, (z), which we view as an intrinsic way

35 of regularizing the loop count around the point z as alluded to in Section 1A. In accordance with (1-1) we
56 consider the reweighting

37

38

39 where the prefactor involving € is chosen precisely so that the right-hand side has a limit. We now see that

40 the expression on the right-hand side matches with (1-3) in the € — 0 limit by the definition of «-LQG

— 2 _ 2
@/ =1g0Ne V227 he(@) _ pe(Qy=0u) o Ne 0 (2l 2)
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measures and by the definition made in Theorem 1.2. Needless to say, this is only a heuristic argument
but it explains the origin of the definitions made here.

We are excluding the case k¥ = 4 throughout this paper since this corresponds to y = 2 and therefore a
critical Liouville quantum gravity measure, which we do not consider in this work.

The reason for introducing the exponential term involving the parameter A in the definition above is
only that we will be able to show that choosing A sufficiently large will make the measure above finite.
By Girsanov’s theorem for the «;-LQG area measure (see [Duplantier and Sheffield 2011, Proposition
3.4]), it is not hard to see that the measure M‘[’\j'z is supported on fields (%, z) that have an «; logarithmic
singularity at z; for each i € A.

A (regular) y-LQG surface is defined to be an equivalence class of tuples (D, &, z) (with D C C simply
connected, & a distribution on D, and z = (z; : i € A) a tuple of points in D for A C N finite) where
(D, h,z)~ (D', W, 7) if there is a conformal map ¢ : D — D’ such that

= ‘

h=ho¢p+ Q,logl¢'|, ¢(z;) =z foralli € A. (1-4)

We let [(D, h, z)] denote the y-LQG surface given by the equivalence class of (D, h, z) and call & an
embedding of [(D, &, z)] into D. See Section 5B for further details and motivation.

For « € (8/3, 8) \ {4} we consider the measure given by taking the pushforward of MX'E by the function
which maps (%, z) to [(D, &, z)]. Using the conformal covariance of the function CIDE)’K and of the «;-LQG
area measure for all i € A one can check that this measure on y-LQG surfaces does not depend on the
embedding & that we chose for the y-LQG disk above. This follows from the change of coordinates formula

N IR NN NN NN R R -2 R =] =
o | N|o|a|lr|W|[N|rRr|O|jlo|lo|[N|jlo|lu|r|lw|NMN|[rRr|[O|Jlo|lo|[~N|ao|oa|s|w]|N

for 15" in combination with Lemma 7.5, and the precise values of «; appearing in Definition 1.1 are the
only ones which make this property true. When « < 4 we write M ‘/’\'z for this measure on y-LQG surfaces.

We now specialize to the case x € (8/3, 4); the case « € (4, 8) will be discussed in relation with the
generalized LQG disk below. For k € (8/3, 4) we define the weight Wy and the partition function Z3
of the disk as

WXt =Myl and  ZQ =MW (1-5)

20 where | - | denotes the total mass of a measure.” Note that W,/ = 1. The following scaling property is
30 immediate:

2 Z([y\,/z _ 6_1_4/K+(2/ﬁ) Dieat Z([T\’EKZ!I_ (1-6)

32

33 We will see in Theorem 1.4 and Remark 1.5 that Z{", is the natural definition of the partition function for
34 the disk measure introduced above and we conjecture in Section 2 that Z% ", describes the scaling limit of
35 the associated random planar map partition function.

36

37 2The scaling by 1+4/% we do when defining the partition function corresponds to having a disk with a marked point on the
; boundary whose conditional law given the field is that of a point sampled from the y-LQG boundary measure. This is the natural
— convention in our setting since the disks we study will come naturally equipped with such a marked boundary point. We mention
39 this since in the random planar map literature one frequently sees a scaling factor £4/¢ which does not take into account the 1/¢

40 normalization factor arising from sampling a boundary point according to the y-LQG measure.
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1
1Y . 1D. Relationships with conformal field theory. We will briefly comment on relationships between the
~, objects defined above and conformal field theory (CFT). First we remark that if (4, z) is sampled from
M Z'E (normalized to be a probability measure, provided this is possible) and we condition on the location

o of the marked points z, then the conditional law of the field % is the following: it is the field with
— singularities ((z;, ;) : i € A), total boundary length £, and cosmological constant A > 0 that appears in
- Liouville conformal field theory (LCFT) [Huang et al. 2018]; see Section 8A. At the end of Section 8A
T, we explain the relationship between our partition function and correlation functions appearing in LCFT.

Y In particular, we will see that, for « € (8/3, 4),

% Wk =Ce 220y fD A@ﬁ,g’”(z)zk,c{?“),(ﬂ,w) dz, (1-7)

12 where C >0isan explicit constant and ZLFT

AL (a,2),(B,w)
13 function. The tuple (&, z) indicates the logarithmic singularities within the domain while (8, w) are

is a so-called fixed boundary length LCFT partition

14 three logarithmic y singularities on the boundary of the domain. Choosing the location of the latter three
15 singularities corresponds to fixing the embedding of the LQG surface. These LCFT partition functions
16 are closely related to LCFT correlation functions.

17 One can hope that (1-7) uniquely characterizes ®f*(z), which would provide a potential path for

18 computing this interesting CLE observable if the other unknowns in the formula (namely, WX? and

19 ZLCFT
— ZAL(2),(Bw

20 The functions ®f* are of particular interest due to their potential relevance for the construction of a
21 CFT for CLE. It is expected that one can define a CFT for CLE where the n-point function is related to
22 connection probabilities for # points in discrete loop models converging to CLE [Ikhlef et al. 2016; Picco
23 et al. 2016; Jacobsen and Saleur 2019; He et al. 2020]. Such connection probabilities are further related to
24 functions of the form of the right-hand side of (1-2); see, e.g., [Ang and Sun 2021, Section 1.4]. The latter
25 work considers the variant of ®* on a sphere with three marked points and shows that this function is

)) were to be identified. See also Remark 1.10 and Section 8A for more details on this.

201/>

26 gjven by an imaginary counterpart of the three point structure constant in Liouville CFT (known as the
27 DOZZ formula; see [Kupiainen et al. 2020]). In particular, this variant of CDED’K should define the three
28 point structure constant of the CFT for CLE on a sphere and we expect that ®{* with more points is
29 related to the higher order correlation functions of the theory. The field of such a theory is a variant of the
30 CLE nesting field constructed in [Miller et al. 2015].

31 Finally we remark that we expect @ to satisfy the following asymptotic property as z; — z; for
32 4, j e A distinct:

" PN @) ~ &z =2l TR NG, 2 = Gk A,

35 where ¢S is a (nonexplicit) constant and ¢’ = (0 : B € A\ {i}) is given by o, = o for B ¥ j and
36 op =oyyup for B> j.> Such a property for a correlation function @7 “ is related to fusion rules and

37 operator product expansion.

38 —

—  3We do not give a proof of this property but it follows immediately via a heuristic argument from Theorem 1.2 and the

301 /22 Markov property of CLE if we approximate the number of CLE loops Ng, it around z; and z; by the number of CLE loops
40 around z; with conformal radius larger than |z; —z;|.
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1Y 2% 1E. Generalized LQG disks weighted by CLE nesting statistics. The reader can skip definitions and
o results related to the generalized LQG disk on a first reading if they wish, but we will still provide a very
o brief introduction here.
. For y € («/5 2), the generalized y-LQG disk can, roughly speaking, be described as a tree of regular
— y-LQG disks. See Figure 1, right. The tree structure is encoded by the time reversal of a spectrally positive

6
- Lévy excursion E : [0, £] — [0, co) with exponent 4/y? and we call the duration £ of the excursion the

e generalized boundary length of the disk. Each jump of the excursion is associated with an independent

9

1, more details.

11 In our setting, we will consider a variant of the generalized y-LQG disk with additional marked points

,_ indexed by a finite set A C N. Fix ' =16/y* € (4,8), 0 € 6, A > 0, and £ > 0.* The measure on

13

regular y-LQG disk of boundary length equal to the magnitude of the jump. We refer to Section 5C for

surfaces we consider is defined as

— , ’ o—l ‘- /
1 My = Y [ My Pde), (1-8)
15 Qell(e,A) t<{
- Ae;#0

16

17 Where P is the law of E and IT(e, A) is the set of nonincreasing (in the sense of inclusion) cadlag functions

15 9:10,£] — P(A) suchthat Qo =A, Q- = and AQ, := Q,_\ Q; = J whenever Ae¢; :=¢,—¢,_ =0.
1o The interpretation of Q; is the collection of indices of points in the unexplored part of the generalized

5o ¥-LQG disk at time ¢, so in particular AQ; is the collection of indices of points which are in the regular
201/ — 7750,k

o1 ¥-LQG disk with boundary length Ae,. A surface sampled from M’,”, should be viewed as the gluing of

— olag, .k . . .
., surfaces sampled from M, | AQ;tI into a tree structure according to the excursion e.

23

- Wit =ML and Z3 =W (1-9)
26 and (1-6) still holds with A¢%/%" instead of A¢2 in the subscript on the right-hand side and with «’ instead
27 of k. The exponent 8/’ describes how the LQG area scales with the generalized boundary length of

g the disk.

The weight W'y and the partition function Z", of the disk are defined as

29
— 1F. Main results on partition functions and the law of the exploration. For x € (8/3, 4) consider a

z% nonnested CLE, I" in D and fix distinct points wg, we, € dD. In [Miller et al. 2017; 2022], Miller,
- Sheffield, and Werner consider a natural exploration of I". The exploration is a continuous curve A
- known as the continuum percolation interface (CPI) which starts at wy and ends at w,. For a parameter
" B €[—1, 1], first assign independently to each loop in I" a counterclockwise or clockwise orientation with
. probability (1 + 8)/2 and (1 — B)/2, respectively. Then the CPI X is an SLE,/-type curve (k' = 16/k)
o that stays in the carpet and leaves the counterclockwise (resp. clockwise) loops to its right (resp. left).
- See Section 5A for further details.

- We consider an embedding % of a (regular) y-LQG disk of boundary length £ > 0 into the unit disk [

— with the property that a point sampled from the boundary measure of the disk is mapped to wy under

39Yfp—m ————————
40 4We write «’ instead of « in most of the paper when this parameter takes its value in (4, 8).
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Figure 2. Left: illustration of the CPI X (blue curve) until some time ¢ > 0 and the loops
attached to A[jo.s) (red). We have that £(¢) is the union of the blue curve and the red loops,
while D, is the domain on blue background. Center: we have AL, < 0 since X hits the

left boundary of the domain at time 7. The domain which is cut off at time ¢ is shown in
green. Right: we have AR, > 0 since X hits a counterclockwise oriented loop on its right
side at time 7. The domain which is cut off at time ¢ is shown in green.

17 the embedding and such that the clockwise (resp. counterclockwise) boundary arc from wq to weo has
o length £, (resp. £g) and where £;, £ > 0 are such that £; 4+ £x = £. We suppose that the CLE, and CPI
201/2; have been sampled independently of 4. As explained later, by conformal invariance of CLEs and CPIs,

o, Wecan view the CLE and CPI as being drawn on top of the y-LQG disk.

; There is a natural way to measure the length of SLE-type curves using the y-LQG measure, which we
e refer to as y-LQG or quantum natural lengths (see Section 5B). Here, we suppose A has been parametrized
. by its quantum natural length and denote its total duration by ¢.

. For ¢ < ¢, let £(¢) denote the union of A([0, ¢]) and the loops touching A ([0, ¢]), namely

2 §@) :==A([0, DU U n- (1-10)
28 nell
o nNA([0.1])#2

29
30 Let D, be the complementary component of D\ §(¢) which has w on its boundary. For ¢ € [0, ¢), the
31 two points A(f) and we divide the boundary d D; of D, into a left boundary arc and a right boundary arc.
32 Denote the quantum boundary lengths of these by L; and R;, respectively. We set L; = R, =0 fort > ¢.
33 If the CPI A hits the left boundary of D, at time ¢ then AL, := L, — L, < 0 and the domain which
34 is separated from wy by A at time 7 has quantum boundary length equal to |[AL|. If the CPI A hits a
35 clockwise oriented loop 1 at time 7 then AL; := L; — L, > 0 and the quantum length of the loop is equal
36 to AL;. The same statements hold with right, R, and counterclockwise instead of left, L, and clockwise,
37 respectively. See Figure 2.

38 The objects defined in the previous three paragraphs also make sense in the setting of LQG disks and
39 CLE with additional marked points, as defined in Sections 1B and 1C, and we will describe this case in

391/ -
2£ more detail in this paragraph. Assume x € (8/3,4), 0 € G,, A >0, and £ > 0 are such that WX'EC < 00
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1
1Y 27 (we address the admissibility question in Theorem 1.11 below). First sample (%, z) according to M X';

o normalized to be a probability measure and then sample I' ~ CLE? (z) conditionally independently given z.
-, Leta be a CPI within I' as in Definition 1.3, define L, R and ¢ as in the previous two paragraphs and for
or< ¢ let P, € A denote the indices of the points contained in D, (with P, = & for t > ). We summarize
Y all these processes in a tuple

— Y=(L,R,P).

8 Above we considered the case « € (8/3, 4) but all of the objects can be defined in an analogous way for
2 k' €(4,8). Indeed, if " € (4, 8), we consider a generalized LQG surface sampled from M ‘1’\”'2, assuming
10 the parameters are such that this measure has finite mass so that it can be renormalized to be a probability
1 measure. Decorating the LQG surface with a CLE‘,:, (z) and a CPI, we can define ¢ > 0 and a process
2 Y = (L, R, P) as before. We refer to Section 5D for a precise description of these objects in the case of

13 no marked points; the construction is analogous in the case with marked points.

14

o Theorem 1.4. Let k € (8/3,4) (resp. k € (4, 8)) and consider the surfaces and processes introduced
o above. The process Y is a strong Markov process and the rate at which the process jumps from ({1, Lg, B)

o to Uy +s,Lgr,C)and (£p — s, LR, C) for C C B, respectively, is, for a constant v:f} > 0, given by

18 alc.k o|B\C.k olc.k ZU|B\CJ(

— 4 Zp b+ A Zptrttn—s Za

1 —vf cos( — | (1 — g) —LEE 2 and vy TR Bl (1-11)
- K a|p.k 708K

20 ALlp+Lr AL +lR

20Y/o—

391/,

21 The same holds for jumps from ({1, Lg, B) to (Up, g+ s,C) and (€p,Lr —s, C), respectively, except
2 that the multiplicative factor of 1 — B is replaced by 1+ B in the first formula.

23 Conditionally on the process Y the quantum surfaces which are cut out by the CPI ) (corresponding
24 to the negative jumps of L and R) and the quantum surfaces given by the inside of the discovered loops
25 (corresponding to the positive jumps of L and R) are independent regular (resp. generalized) quantum
26 disks with marked points and boundary length as given by Y.

2’ A more precise version of the theorem which also includes an explicit formula for the generator of the
2% process Y is found in Theorem 9.1.
29

o, Remark 1.5. The CPI is the continuum counterpart of the peeling process on planar maps, and the jump

31
5, 2018, equation (14)] and Section 2. Namely, the probability of a particular event is proportional to the

rates appearing in the theorem are reminiscent of those encountered in the peeling process; see [Budd

; broduct of the partition function of the surfaces we encounter on this event; see the numerators in (1-11).

34 Remark 1.6. Variants of the above theorem can be proved in a number of related settings. For example,
35 instead of letting the CPI go towards a target point we, on the boundary of the disk, one can, for instance,
36 explore towards one of the marked points z; or always go into the component with largest boundary
37 length when the domain of exploration is cut in two. The latter exploration in the setting with no marked
38 points is considered in [Miller et al. 2022, Theorem 1.2]. The transition rates in this case are obtained
39 from the transition rates in the boundary-to-boundary exploration, and this proof carries through without

40 changes to the setting of marked points.
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1Y 2% The special case of the theorem where n = 0 was proved in [Miller et al. 2022]. Our proof takes that

o result as a starting point and obtains the general result by applying a reweighting via Girsanov’s theorem

o (see Proposition 8.11).

—  From the proof leading to the above theorem one can prove a recursive formula for the partition
— function of the disk with #4 > 2 marked points in terms of the partition function of the disks with strictly
- fewer marked points. We remark that the process (L, R) appearing in the theorem below can be described
e explicitly (up to a rescaling of time which does not affect the values of the expectations below) via a
Y simple reweighting of a Lévy process; see Section 3. This result arises from decomposing LQG surfaces
o using CPI curves as explained in the paragraph below the theorem statement.

11 Theorem 1.7. Letk € (8/3, 8)\ {4}, A C N finite, 0 € &4, A >0, and £ > 0, and suppose #A > 2. Define
12 X =L+ R,where (L, R) is as in Theorem 1.4 for A= & and A =0. Then

13
by W= Vi, (1-12)
e mENo
15
o where
— 1(AX,;>0 —K al K a|p\AsK
17 VA L= Z [E(K/Z 6/2)(2‘308 (AXr= )1_[ WA |AX| A |BAX,|WA,X, )
o P#BCA 1<t s<t
18

+1 1(AX,>0 -,
- 2 =Eumem (ST Wafons ™ 5O Vaan W35, ). memo
20

201/, — f=f <t

2 We now explain the proof idea and the intuition underlying the result. When we explore the CLE
% decorated LQG disk with the CPI as in Theorem 1.4 there is a positive chance that all the marked points
= are separated from the terminal point wo, of the CPI at the same time, i.e., that they lie in the same
= complementary component of £. On the event that this happens, we can do a similar exploration with a
% new CPI in this complementary component, and we can iterate this procedure until not all the marked
. points lie in the same complementary component of &. Let m € Ny denote the number of explorations we
" need to do before the first exploration where the points are separated. In our definition of W¢" A y we can
l split the integral into a sum of integrals according to the value of m, and this gives the decomposition
nl appearing in Theorem 1.7. The proof of the theorem (found in Section 9) builds on this intuition but also
— needs to rule out certain pathological behaviors of the CPI.

L Inthecase#A e {0, 1} the partition function has the following explicit closed formula. The function K,
% (with v > 0) appearing in the statement is given by the formula

“ Ro() = 22
35 I'(v)

36 where K, is the modified Bessel function of the second kind (see the beginning of Section 4).

K,(x), x>0, K,(0) =1, (1-13)

i Theorem 1.8. Let « € (8/3,8)\ {4}, A ={i}, 0 € 6?, A >0,and £ > 0, and set a = af. Then
38 W—A,K WU K !
WA Wae <09

391/2% w2 (2 A (/8)V(1/2)
4 = e —
— Al = BTN dsin(ry2/4) ’
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iy
i

~

N

and WOk (e/3)v(1/2)
AL =V o —2
wor 2Nk (Qy—a) 4sin(ry2/4) '

We remark that the formulas in Theorem 1.8 are an almost immediate consequence of [Ang et al.

2023b] in the case k € (8/3, 4) (indeed, we will relate the weights appearing in the theorem to the partition
functions in the cited paper), while they follow by combining the cited paper with an explicit computation
for Lévy excursions in the case « € (4, 8).

Note that the formulas in Theorem 1.8 take the same form for « € (8/3, 4) and « € (4, 8) (the exponent
10 (k/8)V (1/2) may appear at first to take a different form, but for both parameter ranges it represents how

Slofo|[~]o|a|s|w]|w

areas scale with boundary lengths). It is interesting that the formulas take the same form since the proofs
are quite different for the two parameter ranges. The fact that the formulas in the two parameter ranges
coincide supports the statement that the generalized disk should be viewed as the natural extension of the
regular disk for k¥ € (4, 8).

R R =
> w N =

1> Remark 1.9. When defining the weights W7 ; and partition functions Z%"', we had to make some arbitrary
16

choices for multiplicative constants involved in their definition. Conceptually, the partition function should

17 give the relative weight of different configurations, so, for example, multiplying all partition functions by
18

19

a constant leaves the physical model unchanged. The degree of freedom we have lies precisely in the
multiplicative constant for the zero-point and one-point partition functions, so if we fix these then the

20! /22 remaining partition functions are given. One can in particular observe that in Theorem 1.4, replacing
21
» zyit by e[ Ja-zut
; ieB
,, forconstants ¢, ¢; >0, i € A, and each B C A leaves the jump rates unchanged. Due to the arbitrariness in
25 the multiplicative constant for the one-point partition function, we only consider the ratio Wy /Wy | in
-6 Theorem 1.8 but we remark that the denominator W(‘i 1 can be computed explicitly using results of [Remy
»7 and Zhu 2022]. For the zero-point partition function we fixed the multiplicative constant by requiring that
28 Wgé‘ =1.

29 Remark 1.10. Combining Theorems 1.7 and 1.8, one can in principle compute the weights WX'E‘ for an
30 arbitrary number of marked points and any choice of o. Such recursive computation of partition functions is
31 closely related to topological recursion, enumeration of planar maps and the loop equation in matrix models;
32 see, for example, [Eynard 2016; Eynard and Orantin 2009]. On the contrary, our approach is quite different
33 from [Belavin et al. 1984; Segal 2004; Guillarmou et al. 2021; > 2024; Wu 2022], where higher-order
34 correlation functions in LCFT (which, like our weights WX:?, are closely related to partition functions) are
35 expressed in terms of lower-order correlation functions via so-called conformal bootstrap; this recursive

36 computation is of a different nature since the modulus is fixed, while we integrate over the modulus.

37
— A key question is when we have admissibility, namely for what parameters the partition function is

. finite. For « € (8/3, 8) \ {4} define the set A, of admissible parameters by

39
391/ R
"0 Ao =1(0, A) €&, x [0,00) : Z5% < o0},
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1Y 2% We will not entirely identify the set .4, but the following theorem gives some of its properties. For example,
o assertion (ii) says that for more than one marked point it is necessary to have a positive cosmological
~, constant A > 0 in order to ensure admissibility. Another feature that is worth emphasizing is assertion (iv),
. which says that for an arbitrary number of marked points — and, more generally, for arbitrary values
T of o; € (—oo, —log(—cos(4rr//<))) —we can find (o, A) € A,. Conversely, from assertion (vii) we see
— that if the number of points is at least two then we can find (o, A) with A > 0 such that (o, A) & A,;
e combined with the previous sentence this implies that the set A, is nontrivial in the setting of at least two
Y points. Precisely identifying the set A, is an interesting open problem.

E Theorem 1.11. Let A C N be finite and nonempty, o € &2, and A > 0.
@) If #A =1 then (0, A) € A,.

% (i) If #A > 2 and A =0 then (o, A) & A,.

1 (i) If (o, A) € A and B C A then (o|p, A) € A.

15 (iv) If op < o; wheneveri € B C A and #B > 2 then (o, A) € A, forall A > 0.

% v) If (6, A) € A for A > 0 then (o, A') € A, forall A’ > 0.

i (vi) Suppose o' is such that o} = o; for alli € A and o, < op for all B C A such that #B > 2. Then if

® (o, A) € A, we have (o', A) € A,.
19
) o (Vi) Suppose o’ and B' C A are such that #B' > 2 and oy = op for all B C A, B’ # B. For oy, sufficiently
20°/2 large (depending on o for B # B') we have (¢', A) & A,.

22 We give an alternative proof of the following theorem, which was first proved in [Schramm et al. 2009]
23 vialto calculus.’ The proof is based on ideas from this paper in the k # 4 case and the level line coupling of
24 CLEy4 with the GFF for k =4. In the case « # 4 we will use the explicit law of the boundary length process
25 associated with the CPI for the case of #A4 =0 marked points (as derived in [Miller et al. 2021; 2022]) along
26 with an exact computation for this process. See Section 6. The theorem plays an important role in our proof
27 of Theorem 1.2 and we want to emphasize that our proof of Theorem 1.12 does not rely on Theorem 1.2.

2 Theorem 1.12 [Schramm et al. 2009]. Let I be a nonnested CLE, in D for k € (8/3, 8). We write n

2 for the loop surrounding 0 and recall that n° denotes the set of points surrounded by n. Then, for all
P p>—1 +2/k + 3k /32,

31

—— —cos(4

» E(RO. 1°)") = o]0 ,

= cos(n\/(1—4//c)2—8,0//c)

34 While the expectation is infinite for p < —1+42/k + 3k /32. The density of —log R(0, n°) on (0, 00) is

35 —cos(4m /) ; 1 (1—4/k)? (n+1/2)?

. X = W;(_l) (n-l—z) exp( Sk x— Sk x)

37 -

— 427 /K cos(4m k) ; 1 (1—4/k)? 82 12
3 =— Pep ;(—1) (”+§)GXP(TX_T<H+E>X )

39— ——
40 5The expression for the density in Theorem 1.12 can be found just below equation (2.22) in [Ciesielski and Taylor 1962].
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% 1G. Outline. In Section 2 we will describe some discrete counterparts of our results in the setting of
o random planar maps and formulate scaling limit conjectures. In Section 3 we study certain spatially
. inhomogeneous jump Markov processes (for which the process Y appearing in Theorem 1.4 is a special
o case), derive a formula for their generator, and do an explicit computation that is used later in the proof
Y of Theorem 1.12. In Section 4 we do computations for stable Lévy excursions which will be used when
= computing the partition function of the generalized LQG disk with zero or one marked points. We
o emphasize that the two latter sections can be read without any knowledge of LQG and CLE and only
o build on the theory of stochastic processes with values in R or in R?.

o In Section 5 we present relevant background material on LQG and CLE, and in particular we give
L, a precise description of the results on CLE explorations of [Miller et al. 2021; 2022] that are reviewed
, briefly above. We then conclude the proof of Theorem 1.12 in Section 6 and give the proof of Theorem 1.2
s in Section 7. The technical bulk of the latter section is devoted to a spatial independence result for CLE.
. InSection 8 we give the precise definition of the LQG surface with marked points that appears in
o Theorem 1.4 and conclude the proof of Theorem 1.8. We also argue that the disk with marked points can
o be obtained via a limiting argument involving the disk with no marked points and we use the latter result
|, toprove part of Theorem 1.4. Finally, in Section 9 we use inputs from the previous sections to conclude
s the proofs of Theorems 1.4, 1.7, and 1.11.

19
o We mention in particular a result on renewal processes of independent interest in Appendix A.

The appendices contain various results and computations that are needed for the remainder of the paper.

»1 Notation. We let N denote the positive integers N = {1, 2, ...} and let Ny denote the nonnegative integers

» No={0,1,2,...}. ForzeCand r > 0let B,(z) ={w € C: |z—w| < r} denote the open ball of radius r
-3 centered at z. For an interval / C R we let D(I) denote the set of real-valued cadlag functions on I. We
-, will often identify a curve with its trace.

o5 For functions f, g : § — (0, 00) and some set S we write f(x) < g(x) if there is a constant C € (0, 00)
26 such that for all x € S we have f(x) < Cg(x). The dependence of C on other parameters will be either
57 clear from the context or stated explicitly.

28

o 2. Discrete motivation

30 We will elaborate on the discrete counterparts of our results in the setting of random planar maps. For con-
31 creteness, we will describe all things in the setting of triangulations, but analogous constructions and conjec-
32 tures can be stated in the setting of other planar maps (quadrangulations, general maps, etc.) as well. We call
33 aplanar map a triangulation with boundary if all faces have exactly three edges except for one distinguished
34 face, called the exterior face, with arbitrary degree. The number of edges along the boundary of the exterior
35 face is called the perimeter of the planar map. We allow the boundary of the exterior face to be nonsimple.

36 Fix parameters

37

- A CN finite, ne€(0,2), g,h A>0 and op€eR forall BC A with oy =0.

39 Let T = (Vr, E7, Fr, e) be a finite planar triangulation with boundary of perimeter ¢, where e is a

40 distinguished (root) edge on the boundary. We consider a collection I" of vertex-disjoint (possibly nested)



PROOFS - PAGE NUMBERS ARE TEMPORARY

116 NINA HOLDEN AND MATTHIS LEHMKUEHLER
13— ©
a7 g
LERINERY A ® 4 @ 5,

CLE] on M}", (dense)

k =4/(1 —arccos(n/2)/m), y =4//k

CLE] on M%", (dilute)

Kk =4/(1+arccos(n/2)/m), y = /&

= ‘

- =
© |00 [N |[O o -y w N = o | © 0 | N S | o S w N

8

Figure 3. Top: an illustration of the spatial Markov property of the O (n) planar map
model weighted by nesting statistics: conditionally on the boundary lengths of the
outermost loops and conditionally on the points surrounded by the outermost loops, the
planar maps surrounded by these outermost loops are independent and have the law of
planar maps with a loop O(n) model and marked points. Bottom: the orange area is
the subcritical range where convergence to the continuum random tree is expected. The
generic critical range where we conjecture convergence to the +/8/3 -LQG disk (also
known as the Brownian disk) without loops is colored in green. Finally, the expected
” scaling limits of the blue range and the red point are indicated in the figure. All other
parameters are inadmissible.

N
8 |

-5 loops where the vertices of the loops are on the faces of T'. Figure 3 illustrates the above definitions. For

¢ distinct points x; € Vr withi € A and & # B C A, we let N}_; (x) denote the number of loops surrounding

27

28

29

x; for each i € B but not surrounding the point x; whenever i ¢ B. We let L(I") be the total length of all
the loops in I'. If A = & we write 0 = —.
To each such triangulation 7', configuration of loops I on 7', and x = (x; : i € A) where x; € Vr with

50 I € A are distinct, we associate the weight

n,8.h — — r
L mQ (T T, x) = gL pL Ol g=a#Ve - T pouN),
32 P#BCA

33
" We say that (n, g, h, A, o) is admissible if the total mass

— o.n.g.h } : o.n,g.h
i |m[\”2g | = mA’r;g (Ts Fs x)
36 (T.I',x)

37_is finite for each £ > 1, so that we can define a probability measure

38
— o.n,g.h
L 30 o.n.g.h my (T, T, x)
39%/o— P (T, x)= o.n,g.h
40 My ™

(2-1)
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1
1Y > WhenA=gand A =0 this model is the classical loop O(rn) model on a planar map, which has been

201/>

391/,

o extensively studied using combinatorial and probabilistic techniques; see, e.g., [Borot et al. 2012; Budd
o 2018; Chen et al. 2020]. The model for nonzero o is much less studied; however the asymptotics of the
. law of the nesting statistic N}; (x) when #A =1 have been investigated in [Borot et al. 2023]. The paper
Y [Ikhlef et al. 2016] studies a loop model on a lattice where the weight of a configuration depends on the
topological configuration of loops around a collection of marked points. We call the parameter A the
cosmological constant, as in, e.g., [David et al. 2016; Huang et al. 2018].

The model defined above satisfies a very simple Markov property. Consider

P=(T.T,x)~p}y"

1
and define I, to be the outermost loops of I'. For each loop 1 € T, we let P, be the planar map enclosed

Ju

1
1
15 by the loop n (see Figure 3) and let |5, = (oc : C € By)) where By, is the collection of i € A such that x;
14 1s surrounded by the loop . We also write £,, for the perimeter of P,. Then conditionally on (¢, : n € I's)
. and (B, :n €T'y), the maps (P, : n € I'y) are independent and have the laws
6

=

fu

7

8

9

0

2

3

4

1 aIB,],n.g,h

o P, ~ P, forall n e T,.

1

18 One can explore the planar map via a peeling process where at each step one peels through an edge,
19 which means the following. Consider the part of the planar map that has been explored already, sample

o one of its boundary edges in a Markovian way, and consider the unexplored face on the other side of this

21 edge. We then discover one of the following three scenarios:

2 (1) a face through which no loop passes,

23

24

25

(ii) (at once) an outermost loop (i.e., an element of I',) together with all the faces intersecting it and
surrounded by it, or

26 (iii) a face for which all three vertices lie on the boundary of the undiscovered part of the map.

#' See [Budd 2018] for a description in the setting of quadrangulations. One can write down the probabilities
% for each of these scenarios in terms of the partition function of the surfaces we get after doing the peeling
2 step. The continuum results in this paper can be viewed as the continuum analog of this story: the case (ii)
0 will correspond to the discovery of CLE loops by a CPI, the case (iii) to boundary intersections of the CPI
*! and (i) results in the Lévy compensation in the k¥ < 4 case (whereas in the ¥ > 4 case, the scenario (i)

=2 disappears in the scaling limit).
33

34 2A. Planar maps without marked points. In [Borot et al. 2012; Budd 2018] an asymptotic expression
35 for the partition function of planar maps with the loop O(n) model (i.e., the case A = & and A = 0)
36 was established in the setting of quadrangulations when the loops were required to be rigid, i.e., a loop
37 leaves and enters a quadrangle through opposite sides of a face. The scaling exponent they derived
38 took a different form in four different phases: subcritical, generic critical, nongeneric critical dense, and
39 nongeneric critical dilute. We focus only on what corresponds under scaling limit conjectures to the latter

40 two phases, and we write D C (0, 00)? and {(g«, hs)} < (O, 00)? for the respective parameter ranges. The
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1
~, analogous result of [Borot et al. 2012; Budd 2018] in the setting of triangulations would be, for some
constant C(n, g, h) > 0 and with k =« (n, g, h) and y = y(n, g, h) as in Figure 3,

|mg_,bn’g’h| ~C(n,g, h)€_1_4/K as £ — oo. (2-2)

3

N

5

6 Itis expected that a random planar map sampled according to (7, I'y) ~ pg.‘zn'g’h converges in the
2 scaling limit to a y-LQG surface decorated by a CLE,.. To be slightly more precise, T, defines a metric
5 measure space by equipping 7, with its graph distance and giving each vertex unit mass, and (7, I'y)
o defines a loop-decorated metric measure space. It is believed that if we rescale distances and mass
10 appropriately as £ — oo then (7y, I'y) converges in the scaling limit to the y-LQG disk decorated
n by an independent CLE,. The convergence here is for some natural generalization of the Gromov—
12 Hausdorff-Prokhorov topology [Abraham et al. 2013] for loop-decorated metric measure spaces, e.g., the
13 Gromov-Hausdorff—Prokhorov-Loop (GHPL) topology described in [Gwynne et al. 2021]. We formulate

14 the following precise conjecture.

15 _
o Conjecture 2.1. Let n € (0,2), (g, h) € DU{(g«, hy)} and let (Ty, Ty) ~ po.’;z"’g'h. Letk =«x(n, g, h)

o and a(k) ;=2 A (8/k). Then there exist unique constants d(x) > 0 and ¢, ¢’ > 0 such that (Ty, T'y) viewed

— as a loop-decorated metric measure space, where the metric is given by the graph distance multiplied by
18

o cl™2/4%) and the measure by the counting measure on the vertices multiplied by ¢'£~%®) | converges in
— lawto M 0. ’IK (normalized to be a probability measure) as £ — oo in the GHPL topology. This is a y-LQG

20
. surface with y =y (n, g, h).

22 In fact, the constant d(x) should be the almost sure Hausdorff dimension of the y-LQG disk (see
23 [Gwynne and Miller 2021; Ding et al. 2020] for further information on this). Conjectures of this kind can
24 be found in much earlier literature; see, for instance, the papers on the loop O (n) model on planar maps
25 referenced above. However, unlike in the cited papers, we construct a candidate limiting surface in the
26 dense regime explicitly as a generalized (rather than regular) -LQG disk. The limiting surface should
27 be a generalized (not regular) disk in the dense regime since, as explained above when describing the
28 Markov property, the planar map has the same law as the map surrounded by an O (n) loop conditioned
29 on boundary length, and the latter map converges in the scaling limit to a generalized disk (that is, a
30 disk with pinch points corresponding to the pivotals of the O (n) loop model in the dense regime). One
31 can also verify that the scaling properties of the partition function (2-2) in the dilute and dense regimes
32 are consistent with the respective continuum scaling properties of the regular and generalized disks (see
33 Sections 1C and 1E, in particular (1-6)).

3¢ We conjectured above that in the dense regime, (7, ['¢) ~ py "g"’g h converges to a generalized (rather
35 than regular) disk in the scaling limit. However, if we condition on the event that the boundary of (7, I'y)
36 is simple, we believe that we instead get a regular (not generalized) disk. In particular, the limiting
37 behavior of the planar map depends on whether we require the boundary to be simple or not. In private
38 communication, Linxiao Chen has provided evidence for this belief (in the case of quadrangulations with
39 arigid O(n) decoration) by showing that the partition function for maps with simple boundary (in the

40 dense regime) grows like =4 Vz, namely similarly to the regular y-LQG disk.
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11/27 The case n = 1 and g = h with (g, h) € D describes percolation-decorated triangulations with

o monochromatic (vertex) boundary and percolation parameter 1/2. Indeed, a percolation configuration

o with monochromatic boundary can be mapped to a collection of loops in the bulk of the planar map
o by sending each percolation configuration to the collection of interfaces between clusters of opposite
Y colors. Uniformly sampled triangulations (which can also be seen as percolation-decorated triangulations
- with free boundary conditions and percolation parameter 1/2 after forgetting the percolation decoration)
e do not have pinch points in the scaling limit (even when the boundary of the planar map is allowed to
Y be nonsimple). At first sight this may seem to contradict Conjecture 2.1, where we predict that we get
o a generalized disk (i.e., a disk with pinch points) in the case n = 1, g = h, and (g, h) € D. However,
o there is no contradiction since the boundary data are different in the two settings (monochromatic versus

o free). The crucial point to take away from this discussion is that conditioning the vertex boundary to

5 be monochromatic is expected to result in the appearance of pinch-points in the scaling limit while

14

15

percolation-decorated random triangulations without this conditioning do not have pinch points in the
scaling limit.

1° 2B. Planar maps with marked points. Motivated by Conjecture 2.1 and the results stated in the introduc-
" tion, we formulate the following conjecture. The topology of convergence is for a variant of the GHPL
18 topology which accommodates the appearance of marked points. A key takeaway from the conjecture is

1% the relationship between the o;’s and the o,.’s, where the latter parameters describe the magnitude of the

201/23 logarithmic singularities of the surface (see Definition 1.1).

21
. Conjecture 2.2. Let n € (0, 2) and let (g, h) € DU{(g, hy)}. Letk =« (n, g, h),a(x),d(k) and c, ¢’ >0

; be as in Conjecture 2.1 and let (o, A) € A,. Then (n, g, h, A, o) is admissible and we may sample

o.n.g.h
24 (Tfsrﬁﬁ xl)Npc/A({—u(m’[

25

- By rescaling the counting measure by c’ £

2/d(x)

and the graph metric by cl~ we obtain a loop-

., decorated metric measure space which converges in law to M (17\’(1 (normalized to be a probability measure)
.5 as £ — oo for the GHPL topology. If (o, A) € A then for some function C, we have

29 mZ v |~ Cn, g h, o, A) € L 20V g5 g 00 (2-3)
o and
o C(n.g.h.o,A)-Cln. g h.— N~ Z0h-(Z, )
% [licaCn, g, h,oi, A) a [lica Zilf '

34 The measures p'f\’.'é’g " and M %" are (at least heuristically) obtained from pX’Z"g " and M A ¢ Tespec-

35 tively, by performing a reweighting according to the number of loops surrounding the marked points on

(2-4)

36 the surface. Given Conjecture 2.1 this makes the scaling limit result of Conjecture 2.2 plausible, and the
37 asymptotics of the partition functions in (2-3) are reasonable to expect in analogy with the continuum.

38 In (2-4) notice that we only claim equality of certain ratios of the constants C(n, g, h, o, A) rather
39 than statements for the constants C(n, g, i, 0, A) themselves. When defining the partition functions in

391/, —

40 both the discrete and the continuum there is some arbitrariness in the normalizing constants. Indeed, the
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1
1Y/ e transition probabilities of the peeling process in the discrete and the transition rates of the continuum

N
5
6
7
5
o

10

11

15

16
7
18

, brocess Y are all functions of

o.n,8.h —.n.8.h \#A—1 0.k —.k\#A—1
|y |'|mA,/K | and ZA,1'(ZA,1)

oj,n.g.h ;K
nieA |mA,/g | nieA ZA,l
respectively, modulo the degree of freedom in the continuum corresponding the speed of the process. See

Remark 1.9.
Conjecture 2.2 concerns the case when (o, A) € A,. One can ask about properties of the discrete

’

model for (o, A) € A,.. We will not give a complete picture of this case, but remark that when o; > 1
then the model is not admissible since we can make mg,? 8 ’h(T, I", x) arbitrarily large by considering
a map T with a long and thin “tube” with many loops wrapping around the tube, such that the tube
separates x; and the boundary of T'; by increasing the length of the tube and adding more loops (which
increases N {5} (x)), the weight mgf 8 ’h(T, I', x) increases. We have nonadmissibility when o;; > 1 for
a similar reason, namely it can be proved by letting x; and x; be close and considering a long and thin
tube separating x; and x; from the boundary of the map 7. Even if (o, A) ¢ A, it might be possible to
understand the asymptotic geometry of the planar map, e.g., by considering infinite measures instead of

probability measures and/or allowing infinite planar maps.

2C. Other discrete models. We remark that y-LQG disks with « singularities are also expected to arise

20
201/2; as the scaling limit of planar maps with other statistical physics models than the loop O(n) model. In

391/,

30

31

32

33

34

35
36

37

38

39

40

the more general setting one considers tuples (M, P, x) with M = (Vy, Ey, Fyy) a planar map, P a
statistical physics model on M, and x = (x; :i € A), x; € V. One associates a weight w(M, P, x) to
each such tuple. For certain choices of w we expect that one still gets a surface defined as in (1-3) or (1-8)
in the scaling limit, but typically with the function ® defined differently when n > 1. One still needs &

5
. to satisfy the conformal covariance property of Lemma 7.5 in order for the reweighting one does in the

continuum to be intrinsic to the surface (i.e., independent of the chosen embedding), which in particular
gives a unique choice for ® (modulo multiplication by a constant) when n = 1. One example of a way

. to define w is to let it be the indicator function for some rare event for P at the vertices x (e.g., an arm

event). We believe that rigorous scaling limit results could be established in the special case of critical
percolation on triangulations with one uniformly chosen vertex conditioned to have a certain configuration
of arms to the boundary of the triangulation, building on [Bernardi et al. 2023; Gwynne et al. 2021].

3. Reweighted Lévy processes: generator and explicit computation

We study certain spatially inhomogeneous jump Markov processes. The processes are constructed by
applying reweightings to stable Lévy processes. We derive a formula for their generator (Theorem 3.7)
and do an explicit computation (Proposition 3.12).

Determining the generator is technically challenging and builds in particular on new techniques that
exploit the scale invariance of the process to control its fluctuations close to its starting point, as well
as more standard tools like Palm’s formula for Poisson point processes. We expect that variants of our
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11/2% techniques also work for a large class of other Markov processes that are given by reweighted Lévy
~, processes. The explicit calculation is done via a martingale argument involving the generator of a simple
. variant of the Markov process.

o The Markov processes we consider would typically arise in settings similar to our paper, namely in the
Y setting of growth-fragmentation processes where the jumps represent splitting/fragmentation events, the
. rates of the various jumps can be expressed in terms of the respective partition functions, and we keep
~, track of a fixed number of marked points. In this section we consider jumps rates (or partition functions)
Y of a more general form than the rest of the paper. We emphasize that the proofs in this section do not

o build on properties of LQG and CLE but are done via direct analysis of the Markov processes.
1
L X= (X; :t = 0) be a time-homogeneous cadlag Markov process on E so X is a random variable in the
15 Space D([0, 00), E) of cadlag functions. Then for f: E — R let

14

.1
. Qf(X)=1t1¢r{)l;[Ex(f(Xt)—f(X)) (3-1)

Let us start by recalling the notion of a generator of a Markov process. Let E be a metric space and let

o provided the limit exists for all x € E. We call the operator G the generator of X. Sometimes, uniform

= convergence in x is required in (3-1) but here it is more convenient to work with the definition given

2 above. Throughout this section, we will not determine the whole set of functions f for which (3-1) exists

2 but instead show the existence of and give the expression for G f for certain nice (namely, smooth and
201/2£ compactly supported) functions f.

2 The section is divided into two subsections where we consider the cases with and without, respectively,

2 Lévy compensation. These correspond to the cases where the LQG disks and the CLE are simple,
ke (8/3,4), and nonsimple, «” € (4, 8), respectively. At a heuristic level, the Lévy compensation of
*_ the boundary length process of a CPI occurs while the CPI is moving in between CLE loops (see also
* _ the discrete intuition right before the start of Section 2A). It is not so surprising that a compensation is
% needed in the simple case and not in the nonsimple case since in the former case the CLE loops do not

*"_ touch and the trunk of the CPI “spends more time” in between the loops.
28

29 3A. With Lévy compensation. Let « € (8/3,4) and B € [—1, 1]. We consider independent compensated

30 [évy processes L and R such that the generator of the process (L, R) is given by
31

32ck,ﬁfa,r):/R<f(z+h,r)—f(l, ) —h afgl’ ”)m(dh)

= af (. r)

3 + f (f(l,r+h)—f<z,r>—h - )MR(dh) (3-2)
R

35

36 for feC SO(RZ) where (17 and pg (the jump measures of L and R) are given by
37

* pr(dh) _ —costdrn/k)(1 —)/2

38

/2
10,00y (h) + TG l(—oc,0)(h),

* dh p 144/
39
3972~ wr(dh)  —cos(dm/k)(1+B)/2 172
ﬂ dh = J1+4/x 1(0,00) (h) + —|h|1+4/K 1(_30,0) (h)
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11/2% See [Kallenberg 2002, Theorem 19.10]. More informally, L is a jump process which transitions from / to
o I+ h at rate —cos(4m/k)(1 —B)/2-h~'=4/% and from [ to [ — h at rate (1/2) - h~'=%/%_ This is exactly
~, astable Lévy process of index 4/« € (1, 2) and therefore we need compensation, which is reflected in
o the generator expression via the compensation term —hdf (I, r)/dl. The definition is of course chosen

Y completely analogously in the case of R.

- The compensation term in (3-2) is so that (L, R) satisfies stable scaling with exponent 4/«, that is,
o ((Lyams /A, Ryap, /1) i t = 0) has the same law as (L, R) for any A > 0. From the definition, we see that
Y Ly.p f is a bounded function for f € C fo([R{2). Also, as stated in [Kallenberg 2002, Lemma 19.21], for
o f € C*(R?) the process

11

o t— f(Li, R) — f(Lo. Ro) —/O Lipf(Ls, Ry)ds (3-3)

13 is a martingale. We also let X = L + R.

14

1° Dbesides the existence of the reweighted process (L', R’) considered below, the results of Proposition 3.1

16 are new. For/,r > 0 and f € C2°((0, 00)?) we let
17

In [Miller et al. 2022] a certain reweighting is performed which we now explain. We remark that

18 wel,r) =1 +r)"""Y 10 r>0) and Gepfl.r)= { )Ek,ﬂ(w/(f)(la r). (3-4)
— we(l, r
19

o) .o BY convention, G, g f (0, 0) = 0. From the definition, one can check that G, g f is a bounded function.

e

21 Propeosition 3.1. For eachl,r > 0 there is a strong Markov cadlag process (L}, R}) : t > 0) starting at
22 (I, r), taking values in (0, 00)2 U {(0, 0)} and absorbed at (0, 0) (i.e., after the process (L', R’) hits (0, 0)
23 jt stays at this point) such that
24
Gl Wi (Ly, Ry)
25 Ea.r (&L 0., R'lo.n); t < &) = Eq.ry| ———2g(Lljo.0, Rljo.)i f <70 ) (3-5)
— wi(l, 1)
26
-, whenever g : D([0, t)? — [0, oo] is measurable on the space of real-valued cadlag functions, t > 0,
s ¢'=inf{t>0:L =R =0}and to =inf{t >0: L, <0or R, <0}. If we define X' = L'+ R, then
59 X — 0ast— oo almost surely. Let f € C2°((0, 00)?). Then
30 / / / / ! / /
- o FL R = F(Loy Ry [ Gupf (L, R ds (3-6)
32
- is a (cadlag) martingale. Finally, G, g is the generator of (L', R") on C2°((0, 00)?).
34 Proof. We begin by defining a Markov process (L', R") with values in (0, 00)2U{(0, 0)} by specifying its
55 transition kernel; for # > 0 and [, r > 0 let
36 w,(Ls, Ry)
- t / no__ KA1, M) / /
7 pundl,dr)= (1 - E(l.r)(Wa t< To))5(0,0)(dl ,dr’)
38 l/, /
- ) (L edl, Rocdr, t <),

391/22 wK (ls r)

40 Plo.0) = 50.0)-



PROOFS - PAGE NUMBERS ARE TEMPORARY

LIOUVILLE QUANTUM GRAVITY WEIGHTED BY CONFORMAL LOOP ENSEMBLE NESTING STATISTICS 123

1Y 2% The semigroup property of these transition kernels is straightforward to verify and to see that (p’ : r > 0)
~, is a family of Markov kernels, it therefore suffices to show that the coefficient in front of §(p,0) above
o is nonnegative. To this end, we consider smooth 4, € C°(R) such that i, > 0, h,l1/n.n = 1 and
. haly@ny.2nye =0. Let 7, =inf{t > 0: L, ¢ (1/m, m) or R, ¢ (1/m, m)}. Then we observe that

[E(l,r) (hn (Lt/\tm)hn (Rt/\rm)w/( (Lt/\‘[m ) Rt/\‘[m))

6
2 ‘
Py =wc(,r) +/0 E.ry (L. p(u, v) > hy(u)hy (W) wie(u, v))(Lg, Ry); s < T) ds
% for all n with [, r € (1/n, n). The key is that by Lemma B.3, we have £, gw, =0. Since L;, R, € [1/m, m]
o when s < 1, it is thus easy to see that the integral term above goes to 0 as n — oo for m fixed. The claim
o then follows by applying Fatou’s lemma by first letting » — oo and then taking m — oo.

o As mentioned above, (p, : ¢ > 0) is a family of Markov kernels and hence a process (L', R") with these
o transition kernels can be constructed. To see that (L', R’) has a cadlag version, we will construct several
o supermartingales and argue that these processes having cadlag versions implies the existence of a cadlag
o version for (L', R').

o Let p =P(L; > 0) and pr = P(R; > 0) be the positivity parameters of the Lévy processes L and R.
— We also let o =1 — p; and pg = 1 — pg. By the definition of L and R we cannot have p;, pg > 0. We

18
o show that
- n1+4/k INOL4/K (N1 +4 /K
- (XY and (L) (X)
20Y/o—
21 are supermartingales and so (by Doob’s regularization theorem for martingales) there is a version of

22 (L', R’) such that these two processes are cadlag and we will switch to such a version. Working with this
23 version, we see that X’ is cadlag and hence L' is also cadlag and, finally, the process R’ = X' — L’ is cadlag.

24 We next establish the supermartingale property. By (3-5) applied with g (u, v) = (u; +v,)'**/* we have

25

2% Eq.n (X)) = A+ )" Pyt < 7o) < (1 +r) Y5
27 Then applying (3-5) applied with g(u, v) = (u;)? 4/ (u, + v,) ' T4/%,

28

o Eqr.ry ((L))PE4 (XD < (14 1) 174 By (L) P4 inf > 0)

30
31
32 The final equality is established in [Kyprianou and Pardo 2022, Section 5.4] (this martingale was first

33 identified in [Silverstein 1980, Theorem 2]; see the remarks below (1.15) in the same reference). The

=+ r)1+4/Kl/A)L'4/K.

31 Markov property of (L', R") implies the supermartingale property. By supermartingale convergence, we
35 have that lim,_, o, (X ;)1+4/ “ exists almost surely and since

36
; [E(l,r)((X;)lJ'_MK) = (l +F)1+4/K [I:D(l’r)(l‘ < ‘L'()) —0 ast— o0

38 we in fact have (X})!™/“ — 0 as 1 — oo a.s. and thus X, — 0 as t — o0 a.s.

201/ 39 The claim (3-5) can now be checked using the definition of the transition kernels by first considering
Nl
40 functions g that only depend on finitely many marginals and then using a monotone class argument. To
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1
-, get the strong Markov property, note that for £ € C2°((0, 00)?) the map

3
= I,ry—E L., R)) = E L,,R);infL>0, infR>0
; ,r) a.n(f(L;, R)) ol ) (l.r)<(wl€f)(t ) [15.1[] > [1()r}t] > )
5 14+ t<*L{, r +t“/*R
— =E.0) (e )+ LI 1); inf L > —1t7/* inf R > —rt™*/*
o ' we(l,r) [0.1] [0,1]
7

— from (0, 00)> U {(0, 0)} to R is continuous and bounded. The strong Markov property can be deduced
 from this using the same reasoning that shows that Feller processes are strong Markov processes; see,

2 for instance, [Kallenberg 2002, Theorem 19.17].

2 Finally, we need to show that the process defined in (3-6) is a martingale. By the Markov property
2oof (L', R') it suffices to prove that

12

B Eq.r(f (L}, R)) = f(l,r)+/0 Ea.r)(Ge.pf (Ls. Rs)) ds (3-7)

14
15 forall 7 > 0. To see this, note that by (3-3)

16

e 1= (we f)(Ls, Ry) — (wie [, r)—fo Lip(we f)(Ly, Rs) ds

P isa martingale starting from 0 and hence we can use optional stopping at the stopping time ¢ A 7y to obtain

19

2 By (Wi /) (Linzys Riney)) = (wie HU, 1) + E(z,r)(fo Liep(we f)(Lg, Rs)1(s < 10) dS)-

21

22 The claim (3-7) now follows by first interchanging the integral and the expectation and then using the
23 definition of the process (L', R’). To obtain the generator, note that by right-continuity of (L, R) and
o4 the fact that Ly p(w, f) is a bounded continuous function, we get

25

26 ;/ Lieg(we f)(Lg, R)1(s <10)ds — L g(we f)(L,r) ast]0
0

27 . . .

— provided (L, R) starts from (I, r). The generator result now follows from dominated convergence since
28 . . . .. .
— Ly p(w, ) is a bounded function and hence the terms in the limit above are bounded by a deterministic
29

— constant. O
30

5 Remark 3.2. The process (L')?:4/< (R") x4/ (X")1+4/K i a martingale where we define p; = P(L; < 0)

5, and pg =P(R; <0). Indeed,

3B En (L) (R)PRAN (XYY = (14 ) IFY0 ) (LR (R, ) PRATE, inf L >0, inf R > 0)
34 ’ ’

35 = (4 7) " E (L)% inf L >0) Eqr.ry ((R)PE% inf R > 0)

o = (14 )i

i

38 and the Markov property of (L', R") yields the martingale property. While we are not making use of this
39 martingale anywhere in this paper, we believe it to be potentially useful in understanding the dependence

40 of some functionals of (L', R") on .
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1
1Y 2= The main results of this section will be about reweighting the law of (L', R’). We begin by performing
a reweighting of the Lévy process (L, R), where we need the following result on Poisson point processes.

3
4 Lemma 3.3. Let & be a Poisson random measure with intensity (L on a measure space (E, £). Also, let
> f: E— R be measurable such that

6
7 /,u(dx) le/™ —1| <00 andlet Z:= exp(/s(dx)f(x) — //L(dx)(ef(x) — 1)).

8
E Then E(Z) = 1. Now reweight the law of & by Z. Then under the reweighted measure, & is a Poisson
10 random measure with intensity measure el .

o Proof. Let &£ be a Poisson random measure of intensity e/ . For g : E — [0, 00) measurable we have
o (the second and final equalities follow from Campbell’s formula)

14 E(Z - e/ €@080)y — [ [E@N(f (0+800)y, = [nidx) el =1)

o — eflt(dX)(ef(‘”g(“—l)e—f,L(dx)(ef(x}_l)

16

; _ efef(x)u(dx) (eg()‘)—l) _ [E(e f&’(dx)g(x))’
18
. which implies the lemma by a monotone class argument. U
. /22 The following lemma is now an immediate consequence of Lemma 3.3. We would like to stress that
2l the Lévy compensation term appearing in the generator of (L, R) is unaffected by the reweighting below.
22 We again refer to [Kallenberg 2002, Theorem 19.10] for information on generators of Lévy processes.
23 The assumption 1 — W9 (h) < h? ensures the absolute continuity between (L9, R?) and (L, R) below.
24
. Lemma 3.4. Suppose W7 : [0, 0c0) — (0, 1] is measurable with 1 — W2 (h) < h?. Let (L?, R?) be two
= ) . 2
- independent Lévy processes with generator defined for I, r € R and f € C°(R”) by
2 af . r)
L2, 1) = f (Wg(lhl)(f(l +hr = fam—h s ) i (dh)
= R
2 af )
20 +f(W®(|hI)(f(l,r+h)—f(l, r))—h o >MR(dh)-
— R
31
3 Then whenever f € C° (R?), the process
3 t
s o FLE RO = PSR = [ L2707 RO ds
35
36 is a martingale. We let X° = L? + R?. Then for all g : D([0, t])*> — [0, o] we have
- o o Ear) (T2 W2UAX,D - 8 (Lo Rliou)
38 Eq.r) (L lj0.01, R lj0.01)) = >
o exp(t [(r + mr)(dh)(W2(|h]) = 1))
391/,—

20 We define ty =inf{t >0: L7 <0or R7 <0} anda = [(jur + ug)(dh)(WZ(Jh]) — D).
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1
~, Proof. The martingale property of the process defined in the statement follows from standard results
on Lévy processes; see, for instance, [Kallenberg 2002, Theorem 19.10 and Lemma 19.21], so it only

3
. remains to prove the second part. By definition of the Lévy processes (L, R) and (L9, R?) we have
5 [ 1 1]
2 t> > ALg—tp(R\|-=.=|)) = L.
6 o | n n|
2 X, >
o t—> Y AR —tpg(R\ _1 1] R
— > — - = —
i — N I’LR i n ’ n- 9
10 IAX,|>1

11 1 17
_ 1%} 1%}
- <m—> > ALS—mL(R\ —= = ))—>L ,
- s<t L .
3 lAX,|>1
“ . [ 1 17 .
. t> ) AR —tup(R\|—— —|)) > R
T s<t L _
o |AX,]>

17
o uniformly on compact sets in probability as n — oo, where the processes L? and R? were defined via the

— generator in such a way that the compensation term is the same as for L and R, respectively. We now apply
o Lemma 3.3 (individually) to the Poisson point processes ZtiOzALﬁéO 8¢.aL, and tho:ARﬁéO 8t.aRry. U

21 Throughout this paper, we will make frequent use of Palm’s formula for Poisson point processes.

2> The theory of Palm distributions for general point processes appears, for instance, as a special case in
>3 [Kallenberg 2017, Chapter 6] but let us state the classical case for Poisson point processes (without proof)
-, here for future reference.

25 Lemma 3.5. Let & be a Poisson random measure with intensity i on a measurable space (E, £). Consider
26 a measurable function f : E x M(E) — [0, 0co] where M(E) is the collection of measures on E endowed

27 with the o -algebra generated by the evaluation maps v +— v(A) for A € €. Then
28

29 [E(/f(x,é)c?(dX)) =fE(f(x9§+5x))M(dx)-

30
5, The result extends to f taking values in R provided either side of the equality above is finite when f is

3, Treplaced by |f|.

33 Letus return to the study of the processes (L, R), (L', R") and (L?, R?). A key input is the following
34 Palm’s formula type result that allows us to replace the expected sum of the jumps of a process by an
35 integral over time and over space with respect to some intensity jump measure.

36 This lemma will be used in the following context: If we consider a random surface and, using a
37 peeling-type process, cut it into smaller surfaces with boundary lengths given by the jumps of a Markov
38 process, then we can express the weight of the whole surface in terms of an expectation of a sum over the
39 jumps of the Markov process. The lemma allows us to rewrite this expectation as an expectation of an

40 integral with respect to some intensity measure of the jumps.
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1
11/27 Lemma 3.6. Consider the setting of Lemma 3.4. Suppose that f : D([0, 00))? x [0, 00) x R — [0, oo] is
measurable with f(-,-,-,0)=0. Then

[E(l,r)(Zf(Lg, R? s, AX?); t< t(‘)a)

s<t

tnty
= [E(l,r)(/ ds /W®(|h|)ML(dh) al(L?|j0.5)» R% 0.y LY + 1, R?))
0

3
4
5
6
7
8
9
0

Aty
- + [E(l,r)(/ ds /W®(|h|)MR(dh) al(L?j0.5), R?lj0.5), LY, R? +h)>,
10 0
11

L, Where al(up,ug, ', r'Y=Eu ., (fur®L?, ug®R?, s, h);t—s < tog) 1(l', ¥’ > 0) and where @ denotes

5 the concatenation of two functions. Moreover

14

5 Ean ( Y TTweaaxin-gax,. L, R.’H))

; s<g's'<s

v ¢ wie (L, +h, R)) jur,(dh)

17 (%] / K\™s s l ’

— =Eqr (/ w (IAX/I)/ Ew; 4R, (g(h,L,R))dS)

g ( ) 0 E s wK(L;, R;) ( x+ ’ x)

o ¢ we (L., R, +h) ug(dh)

20 + [E(l,r)(/ l_[ W2(lAX ) f L SL, p Ez,. ri+m(g(h, L', R")) ds),
201/ — 0 4oy wi (Lg, RY)

21

22 whenever g : R x D([0, 00))?> — [0, 0o] is measurable with g(0, -, -) = 0.

23

4 Proof. Since the jumps of (L9, R9) form a Poisson point process with an explicit intensity measure, by

25 applying Palm’s formula (see Lemma 3.5), we get

26

27[EU,,)<Zf(L®,R®,s,AX?);t<t0®)

28 s<t

— t

= =_/ deW®(|h|)ML(dh) Eqry(f(L? +h 1js00). RZ, 5, h): B, )

30 0

— t

» + [ ds [WohDR @ By (FL7 R 4 b g5 B,

32 0

*_ where

34

35 B],I;t’s = {inf[()‘[] Lg, inf[(),t] Rg, inf[t,s] L% + h, inf[,‘s] R? > 0},

36 . . . .

; Blf,t,s = {1nf[0‘,] Lg, lllf[(),t] Rg, 1nf[t,s] Lg, ll’lf[[‘s] R° +h > 0}.

38 By conditioning (L?, R?) on its values up to time s and using the Markov property of (LZ, R?) we get

39
391/,—

ﬂ [E(lr)(f(Lg +h 1[3.00)9 Rga S’ h)a B/i[és) = [E(l,r)(ag(L[?)’s)’ R[?)’s)v Ls@ +h9 ng)v § < ng)
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1
1Y 27 We analogously reexpress the second term to deduce the result. For the second part, we begin by observing

2
20Y/o—

391/,

o that monotone convergence implies

[Eu,r)(Z [[weaax,n sax;. L .. R/.H))

4
s<¢'s'<s

o
o

13 4] / . / / / / —n —n
% _nlingoZ[E(l,r)( Z HW (IAXLD -g(AXL, L L R )I(E € (k27" (k+1)2 ])).
B

k>0 s<k2™n s'<s

" By the Markov property of (L', R’) at time k27" and the construction of (L', R") we get

= [E(z,r)( > TIweaaxun-sax;. L, . R,)1( € k27", (k+1)2—"])>

— s<k27n s'<s

4 = [E(l.r)( Z B ok, (& uL @ L ug®R); ¢ <27 jhoax

15 s<k2—n up=Ly, . |[0.k2—"]

; ur=Ry | ljo.2-n

o JTweaaxin-1g2™ <g/)).
18 ’

P s <s

19

o By the construction of (L', R") and the definition of (L?, R?) the expression above equals

21

g et [E(,,r)< Z [E(L,i_n,sz—n)(g(h’ ur® L up®R); ¢ <27 oaxe

23 s<k27" uL:Lﬁ_, lj0.k2—n]
; “R:Rs{i- l10.42-]
— @ @
25 _ w (L —ns R —n) —
= [T wraaxZ) ' —2 22 gk <) ).
26 N w,(l,r)
- s'€ls,k27")
27
-5 We now apply the first part of the lemma, rewrite the expression and take the limit as n — 0o (again
59 Using monotone convergence) to deduce the result. O
3 . . . . . .
~—  Inthe remainder of this section, we consider a finite subset A N and smooth functions W2 : (0, co) —
31
— (0, 00) for each B C A such that
2

33 W¥ is nonincreasing, W2h)<1, 1-W?2mh) < h? forh >0,

il and w8 (x) < WB(y) for all B C A and whenever 0 <y <x <2y. (3-8)

35

36 By convention we will write W¥2(0) =1 and W8(0) =0 if B # @. We also consider constants o € R
37 for B C A such that o = 0.

38 Foru:[0,00) - R cadlag we let [1(u, B) be the set of nonincreasing (in the sense of inclusion)
39 functions Q : [0, oo) — P(A) such that Qg = B, Q, = @ for t sufficiently large and AQ,:=Q0,_\Q;, =9

40 whenever Au; :=u; —u;_ =0.



1t/5

201/>

391/,

PROOFS - PAGE NUMBERS ARE TEMPORARY

LIOUVILLE QUANTUM GRAVITY WEIGHTED BY CONFORMAL LOOP ENSEMBLE NESTING STATISTICS 129

1
- Theorem 3.7. For each B C A and [, r > 0, we now define a process YW =", RY, PY) taking values
in (0, 00)? x P(A), starting at (I, r, B) and absorbed at (0, 0, @) by

3

4 Eqrp (gL, RV, PYY)
5 1
6
E

=—Fq, L R, 00,10 HAX[=0) O \Cs (A X)) (3-9
WEI+7r) ‘“( 2, sl 0[] e (AX) ). (3-9)

Qell(X',B) s<t'

AX#£0
% For this to be well-defined, we also assume that the right-hand side of the equation is 1 for g = 1 and
ifor all BC Aandl,r > 0. We also let ¢V =inf{t > 0: YtW = (0,0, @)}. Then YV is a strong Markov

o process and the following is well-defined:
11

2 G f.r,B) = f(,r, B) f (e + wr) @Y (WP (] = 1)

13

— 1

14 T I WEGT T Ces ) e wea, W +v) fu, v, B){U 1)

15 K 9

— WEC (|hDw,ed +h, rYWEA 47 +h)

16 K ’ o 1(h>0)

o + dh B\ I+h,rC

- C;B/’“( : we L. YWEI+7) ‘ fHhn Q)
18

— WEC(Ihhw, (L r + WA +7+h)

9 + dh K k) e(TB\Cl(h>0) l’r_{_h’ C
o C;Bfm ) o L W) £ )

2L for f:(0,00)? x P(A) — Rwith f(-, B) € C>((0, 00)?) for all B C A. Furthermore,
22

1
23 lim > Eo.rmy(fX") = fU.r. B)=GY, f(.r. B),

24

. Le., QE/ P is the generator of YV on the set of functions f considered above.

26 The proof is a quite technical and we will need some preparatory lemmas. The first one given below is
27 the simple ingredient, namely a Palm’s formula result.

% Lemma3.8. Let YV be as in Theorem 3.7. Consider £ :(0, 00)> x P(A) — [0, oo] measurable and fix

3M/E[O,oo]. For BC A,l,r >0andt > 0 define
30

3 EM (u,v) = {u([O, 1), v([0, 1]) S <L, M’)},
32 M

i Clt (B C.C C ) = HW®(|AX/|) E : kl_l1 e(}'cl.l(AX;l_>O) WCI(|AX;,|)

34 ([f,-) ’ ’ 05 «vcs k—1) -— (1,") Ky W®(|AX;I|)

i C/vy/ / / .M oy /
-W (X[)f(LpRpC)aEt (L,R) )

s<t fo<-<tr—1<t i=0

36

37

o WY(x +
38 Mg,r)(dx, dy) := 7! H=0) (et 7D

> W2(lx + y))
39

P o= f (e + 1) @)W (JA]) = 1),

(nr(dx)do(dy) +8o(dx)r(dy)),
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1
11/27 when u,v € D([0,00)), C € Band B\ C = Cy U ---U Cy_1 is a union of disjoint sets. With these

definitions we can write

, 1
WN. oM w Wiy E
[E(l,rB)(f(Y[ )’ E[ (L 7R ))_ WB(l+r) a(t[.r)(B’ C? CO?”’ack—l)v

where the sum ranges over all C C B and all (ordered) partitions B\ C = CoU - - - U Cy_ into disjoint
nonempty sets. Moreover afl’r)(B, C,Cy,...,Cr_1) equals

k—1
eC{t

3

4

5

6

7

8

9

10 df0"'dfk—1[E(1,r)</ 1, - - (dx;, dy;)
2w (1) Jocty<oo <t <t R (Lf; +xo++xi—1. R, +Yo++-+Yi-1)
1

2

13

4

5

16

7

1
o cwe(L? +x0+ -+ xk—1, RZ + yo+ - + ye—1)

Ju

B f(LP 4 x0+ - +xk1, RZ + Y0+ + Y1, C)

=

. WO +x0++ X1+ RZ+ Yo+ + 1)

fu

[

e k-1 k—1
- : 1(E;”’ (LQ’ + ) xilpo0 R7+ Dy 1[t,.,oo)))>. (3-10)

18 i=0 i=0

19 Proof. The first claim is easy to see from the definitions and the second claim follows by applying
20 Lemma 3.4 and then the first part of Lemma 3.6 several times. (]

20Y/o—

391/,

> Lemma 3.9. Let YV be as in Theorem 3.7. Then YV satisfies the strong Markov property.
22

g Proof. The weak Markov property of ¥ is a simple consequence of the definition and the weak Markov
24 property of (L', R"). Consider now

25

26

2" with f(-, B) € C2((0, 00)?) for all B C A. Using the first part of Lemma 3.8 with M’ = oo, the definition

28 of (L', R') and stable scaling of (L, R) it is not difficult to see that
29

30 (A, ) Erp(FE))

31
— is continuous from (0, 00)? to R for each B C A (here one needs to make use of the continuity of W¢

32

. and the fact that f(-, -, C) has compact support for each C C B). Using standard ideas from the theory

" of Feller processes (see, e.g., [Kallenberg 2002, Theorem 19.17]) it is then classical to deduce that the

S, process YW has the strong Markov property. (]
5

£:(0,00)2 x P(A) > R

36 A key insight which allows analytical tools to be applied in the proof of Theorem 3.7 without having
37 detailed information about the functions W2 near 0 and co for B C A is established with the following
38 lemma. The main idea of the argument applies to general Markov chains and requires only some
39 continuity properties of the process in the starting point; in our case we get these via stable scaling and

40 the properties (3-8) of the functions W2,
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1
11/27 Lemma 3.10. Let YV be as in Theorem 3.7. Fix1l,r >0, BC A, € > 0 and M € (0, 00). Then there
exists 00 > M’ > M such that

B
’ 1 1 2
5 Pu.r.5) (LW([O, 1) & (ﬁ M/>, (LY, RY), € (M’ M) ) <e-t forall t>0. (3-11)
.
7By symmetry the analogous expression with LY and RY interchanged also holds.
8
5 Proof. Fix €y € (0, 1) sufficiently small and M, sufficiently large such that [/(1 +€p), [, r,r(1 +¢€9) €
o (1/My. My) and
11
— 1 1+€)~!
2 [M’M] c (%,r(l—(weo)—%w).
13

E Letl_=1/(1+¢p) and ry =r(1 +€p) and fix some [, € (I_,[) and r_ € (r, ry). The significance of
15 these conditions will become apparent towards the end of the proof.
16 Note that for any n > 1, ¢ € (0, 1) and any M’ > M we have the lower bound (where, throughout, we

17 set M =2M")

18

10 n—1

19 w 1 y

oy g I]:D(l+.r_,B)<L ([0, 1) € (W’ M//), 1<¢ ) > ;P(l+,r_,3)(Ai) (3-12)
o

,> where
; / 1 . . 1 1
A= ([0, ) e (= mr), v (1S 2D ¢ (),
s n M n n M’
23 W pW 1 2 W
27 (L™, R )c(i-i—l)/n el—. My).,1<¢ i
27 o

28

29
o (3-12) are (modulo multiplication by a constant) at least as large as the left-hand side of (3-11) with

The idea of the proof is to show that each of the probabilities P, ,_ )(A;) on the right-hand side of

L t=c/n. We will prove this by using the Markov property of (L', R") and that the properties of (L', R")
- do not depend too strongly on its starting point. From this we get that the left-hand side of (3-11) is
= (modulo multiplication by a constant) bounded above by the left-hand side of (3-12) times ¢. Observing
. that the left-hand side of (3-12) converges to 0 as M” — oo we conclude the proof. In order to carry out
. this strategy, we first observe that we have the inclusion A} C A; where

36

3 Al = [LW<[O, C—’]) c (1), RW<[O, C—’D C(rry). PV, =B,
- n n

38

39 ci c(i+1) 1 1 2
391/2; LW([;, " ]) Z (W M”), (LY, R iiv1yjn € (ﬁo Mo) < §W]-
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1
1Y 27~ The Markov property of YW as stated in Lemma 3.9 at times i /n and (i 4+ 1)/n implies that

3 , W ci w ci

2 Par.3y(A) = Pa, . p| L 0, - ci-,), R 0, - c(r,ry), P a/n =B

5 ¢ 1 1 g
i . inf Py L[]0, = M), (LY Ry e [ —. M,
6 l/el(rll R B)( ([ n]) Q(M,, ) ( )e/n g Mo
7

5

2

0

r'e(r,ry)

i+ 1
. inf [I:D(l’,r’,C) (1 — cit+D < é'W) (3-13)
[,J‘/G(I/M(),Mo)
CCB

n

11 From the definitions we can see that the first and third terms in the product above are lower bounded by a
12 positive constant which does not depend on M”, ¢, i or n. Combining this with (3-12), (3-13), and the

13 fact that A} C A; yields that
14

f I[P’(z“ B)<LW([O 1) ¢ <A; M) 1<5W>

16

It ¢ 1 1 2
. > inf Py, L"(]0, = —. M), LY, Ry e —. M 3-14
” 1,61(111_ @.r B)( ([ ni|) Z (M” ) ( )e/n g Mo (3-14)
; r'e(r, r+)

201 /22 for all n > 1 and all M’ > M. It remains to understand the dependence of the terms in the infimum on

391/, —

21 the right-hand side on (I’, r"); more precisely we must show that (modulo multiplication by a constant) it
22 js lower bounded by the considered probability with (I, r’) = (I, r) and the considered intervals slightly
23 changed.

24 Forl € (I_,1],r" €[r,ry) and x’ =1'4+r’ by Lemma 3.8 and by unpacking the definitions we get
25

2
26 w c 1 " w w 1
= Py L 0, — — M L", R").ne| —., M
27 (l’ ‘B)< ([ n]) g (M// ) ( ) / (MO 0) )

w !

; WB(X/)(XI)—1—4/K

30 —1= 1
DD [E<o,0)<WC(’C/+ Xem) (&' + Xopn) ™48 1(’/+Lc/n» r'+ Repn € (ﬁo MO))

g k—1

= - ) [festes whqax,y [T wPaax)
34 O<to<-<tr_1<c/ni=0 s€(0,c/n)\{t0,....tk—1}

> c 1
I f L>0, f R>0,I'"+L{]0, M , (3-15
% < +[ 1?/n] >0, r + Oln > + ([ ”i|) <z (M’ )) (3-15)

37

38 where the first sum ranges over all C C B and all (ordered) partitions B\ C = Co U --- U Cy—; into
39 disjoint nonempty sets. We now analyze the dependence on (I, r’) for each of the product terms in the
40 expectation. The integrand in the expectation is not monotonic in [’ but is (up to multiplicative factors)
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1
1Yy . monotonic in r’. To deal with the I’ dependence, we observe that, by stable scaling when Ly = Ry =0,

/

! o~
(L,RZ 7 (L Ry 12 0) = (L R). (3-16)

if we replace (L, R) by (Z , ﬁ) and we will do this when bounding it from below. For the first term in the

6 Also let X = L+ R and write x = [ +7. Since (L, R) 4 (Z, ﬁ), the right-hand side of (3-15) is unchanged
8 expectation in the display (3-15), we note that

Ju

2 1(1 r(]
2 {I+Lc(l/l’)4/’(/n € ;(ﬁo, M()), r+RC(l/l/)4/K/n er — T +;<ﬁ0, M())}

=

(14€)~! (1+€p)”!
2 {l +Lc(l/l’)4/"/n (S <TO, M() , + Rc(l/l’)4/K/n € TO, I"(l - (1 +EO)2) +M0

fu

3
4
5
6
7
8
9
0 {l’+fc/,, S (L, M()), r'+ ﬁc/n € (L, M())}
11 My My
2
13
4
5
16
7

1-4/k

[

17 and remark that x > W¢ (x)x~ is upper and lower bounded by finite and positive constants on each

18 compact set contained in (0, co). For the second term in the expectation in (3-15), we use (3-8), to lower

19 bound
20
201/2; k—1 5
2 oc, 1(AX, >0) G (| A ¥ SOAT
- 3 He =OWC (AKX, ) I1 W2(|AX,])
— O<to<-<ty—1<c/n, i=0 s€(0.c/n)\{to,....tk—1}
23 k—1
2i 2 Z l_[eGCil(AXri>0)WC,'(|AXti|) l_[ Wg(lAXsl)
25 O<ty<-<ty_1<c(l/1"** /n i=0 s€0,c(L/ 1Y% [m\{to. ...tk 1)
26

,7 Note that in the display above, only times where the respective process in question jumps contribute to
,s the sums and products. Finally, for the third term in the expectation in (3-15),

29

30 :l/—{—inf[o’c/n] Z > O, r/+inf[oyc/n] ﬁ > O, l/+Z(|:0, E]) Z (I/M//» M//)}
n

31
- C

32 2 {l +inf[0’c(l/l/)4//(/n] L > 0, r +inf[0’c(l/l/)4//(/n] R > 0, l+ L(|:0, n]) g (I/M//7 (1 +EO)M//)}.

33

> We now use the three last displays to bound the right-hand side of (3-15) (with (Z, ﬁ) instead of (L, R))

* and get
36

1 w ¢ 1 1" w w 1 2
w Perp| L O,; Z W’M , (LY RY) ey € E’MO

1,3 c 1
972 2 Pa.rp (LW<[0, ;]) Z (W (1 +€0)M”), (LY, RM)qrysn € (a, b)2>
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1
11/27 forall I’ e (I_,1), ¥’ € (r, r+) where (a, b) = (1 +€0) ™' /My, r(1 — (1 + €9) ™) + My). We can further
o lower bound this using the Markov property to obtain

4 c 1 1 g
. P(l’,r’,B)(LW([O, ;]) % (M//’ M//>’ (LW’ RW)c/n € (ﬁo’ Mo) )

o

o W c 1 WoooWw 1 2

T "

7 ZP(Lr,B)<L ([0 ;]) Z (W (I+e)M ) (L™, R" e € (MM> )

8

— : inf Py oy (LY, RYY . mase 1o € (a, b)?
0 Py o (( VeI jn—c/n € (@, D)7)
; CCB

1 By construction, [1/M, M] C (a, b) and one can see from the definitions that the infimum in the display
12 above is bounded below by a positive constant uniformly in I’ € (I_, [). Combining this with (3-14) yields

13

2
- w C 1 w 1% 1
i P(I,F,B) (L ([0’ ;]) g (W» (1 +EO)M//>7 (L ) R )C/n € (M’ M) )
15

1 L
16 5 ; [p(l+,r_,3) <LW([O’ 1D £ (M//’ M )’ I< CW>

17
1 foralln>1and c € (0, 1). Using that €y € (0, 1) this further gives that, for some constant Cy > 0 and all

10 t€(0,1)and M’ > My (recalling that M" =2M’),

1,20 1 1 2
PP Puss (LW([o, g (ﬁ M’>, (@Y, R™), € (M’ M) )

22

— 1

3 <CotPy,.r B (LW([O, 1D Z (W M”), 1< §W>-
24

,5 The lemma now follows from this inequality and

i w 1 " w

- Porp|L7M0. 1D £ | 77 M7 ). 1<% ) =0

2

—as M" — oo. (]

29
g Lemma 3.11. Consider the setting as in Theorem 3.7. Then fOIWB(x) dx < oo forall B C A.

* Proof. The case B = O is clear by (3-8), so assume that B # @ and consider /[ = r = 1/2. By the
32

— assumptions of Theorem 3.7 we get that

33

*oo>WE) = [E(z,r)(ZeUBI(AX;>O) [Tw2aax;)- WB<|AX;|>>
3i t<t’ s#£t

36

>0 I . L h,Rl WB h opl(h>0) dh
37 =[E(l,r)(/ l_[WQ’(IAXél)/w (L 1, ROW (e #il )WQ(X;+h)dt
0

/ /
; s<t wK(Lt7 Rt)

39 ¢ we (L., R, +R)YWE(|h])e "=0 1 o (dh)
301/, W2(AX! s s W2 (X, +h)dt),
"o +./0 [Tw=d Sl)f wie(Lt. Ry) Xt

s<t
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1
1Y 27" where to go to the second line we use the second statement in Lemma 3.6 and that, by assumption, the

391/,

o right-hand side of (3-9) is equal to 1 for g = 1. If we had that fol W8 (x) dx = oo then the integrand in
. the final expectation above would be almost surely infinite resulting in a contradiction. O

5 Proof of Theorem 3.7. The strong Markov property appears as Lemma 3.9. We will now prove the main
¢ claim of the theorem. Let us remark that all expressions in the definition of QX/ pf are well-defined by

; Lemma 3.11. By Lemma 3.8 with M’ = oo and applied to the function (u, v, C) — f(u, v, B)1(B=C),
s and by the expression of the generator of (L%, R?) as given in Lemma 3.4, we get by the definitions and
o by Lemma 3.4 that

“ Y"). PV =B e
11 wr.p) (f¥,7): P = )_11)K(Z,F)WB(Z+I”)

Ein(f(Ly o0 RY o WO (XD Jwe(L] o0 RY o)

9 1)
AT, ATy

2 Now by the martingale statement in Lemma 3.4 and optional stopping at time ¢ A ‘L'(;Z we obtain that
13

- %] %] B %] %] %]

i [E(l‘r)(f(Lt/\f(?’ Rt/\r(;z’ B)W (Xt/\r(?)wk (Lt/\r(?’ Rt/\roz))

15

t
o =fl.r, YWB({I +rw.(, r)+[E(,,,)(f0 cﬁﬂg(L?, R2)1(s < r(?)ds>,

17

15 Where g, r"y:=f',r', BYWEBW' +r)w, (', r"). Since [,fﬂg is a bounded function and (L9, R?) is

. right-continuous we obtain (as in Proposition 3.1) by dominated convergence that
1

t
201/, — - [E(,,,)(/ cﬁﬁg(L?, R2)1(s < r(?)ds) — .cf{ﬂg(l, r)
0

22 ast | 0. Combining the above observations yields that
23

= 1
20 tim (B (f (X"): B = B) = [, 1. B))

25

g = f{,r. B) /(ML + 1r)(dh) (W2 ([h]) = 1)
27
% + 1 £2 4@, v) > we (w, VWE @ +v) f . v, B 7).

* we(l, HWE( +r)

% This in particular implies the result when B = &.

o Let M be such that f( -, -, C) has support contained in (1/M, M )2 for all C C A. We will now show that
31

— 1 y
32 1;3)1 " Eorpy(fXY); EX (LY, RY), PV + B)
33

- C B\C

o= Y //u(dh) WD wel b, W27 R) opc10=0) £ 4 1, r, B Co)

5 DACeCB we(l,r)W5(I+r)

* W (lhw,(l, r +h)WB\CO( + 7+ h) Lh=0

37 + Z Jr(dh) u,j L OWEIT eoB\Ccl> )f(l,r-l—h,B\Co)
—_ @#£CyCB eAn

38
30 for all M’ > M where EM (u,v) = {u([0, 11), ([0, t]) € (1/M’', M")} whenever u,v € D([0, c0)).

40 Lemma 3.10 (with the constant M appearing in the statement of this lemma having been defined above) then
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1
1Y . implies the theorem. The display above is an immediate consequence of (3-10) within Lemma 3.8; the key

is that the indicator in the final line of (3-10) yields deterministic bounds on the other quantities in the inte-
gral and we then see that if k > 1 then the integral is O (¢?) and if k = I we obtain exactly the limit above. (]

For the computation of the law of the conformal radius of a simple conformal loop ensemble, we will

3
N
5
6 need to determine a particular functional associated to the process (L', R"). Thus we conclude this section
7 with the following explicit computation. The proof starts by expressing A4 (as defined in the proposition
s below) in terms of an integral over time, using the Palm’s formula type result of Lemma 3.6. Then the key
"o trick is to observe that the integrand can be expressed in terms of Gy.p f for an appropriate function f, which
10 allows us to use a martingale argument with (3-6) to compute the integral. The fact that we can find such an
I f explicitly is very particular to the setting considered here and does not generalize to arbitrary functionals.

12 Proposition 3.12. Suppose thatl,r > 0 such that | +r =1 and let
13

4 A+:[E(m( > |AX§|") and A_:[E(l.,)( > |AX;|H).

15 r<¢’ r<¢’
— AX;>0 AX;<0
16
o, Then Ay <00, A_ < 1and
18 Ay cos(dm/k)
10 1—A_  cos(@m/k —nh)’

- 20 whenever we have 6 € (4/k +1/2,4/k +3/2). Also, if 0 ¢ (4/k, 1 +8/k) then Ay = 0o. Recall that the

/221 subscript (I, r) in the display above indicates that (L', R") starts from (I, r).

22 Proof. By the second part of Lemma 3.6 with W2 =1 and g(x,[,r) =x?1 (x > 0) we get
23
= %0 o how, (L, +h, R) * hw, (L}, R+ h)
24 A, = Eq. (/ wr(dh) et S R | +f wr(dh) A ;t<§/)dt.
. ! /0 o wie(Ly, RY) 0 wie (L. RY)
-6 Note that if 6 ¢ (4/«, 1 + 8/k) then
21 [ hwe(L,+h, R, > hw, (L}, R, +h
28/ wr(dh) & — t)+/ wr(dh) & = )
=~ Jo wy (Ly, Ry) 0 w, (Ly, Ry)
. 4\ (< h"dh (L) + R)'T* /
0 = —005(7)/0 T (L4 R+ ) =oo0 forall r <¢ as.
% This in particular implies the final assertion of the proposition.
—  Suppose henceforth that 6 € (4/x+1/2,4/k+3/2) and define o by e™ =cos(4n/x)/ cos(4r/k —mH).
33
— Applying Lemma 3.6 to A_, similarly as it was applied to A, above, we obtain
34
e [o¢]
* €UA++A—=/ Eq.n(g(Ly, R); 1t < ¢)dt,
36 0
- where
- [es] e(rl(h>0)|h|6)w (l/ +h, I"/) o0 eol(h>0)|h|6w (l/, 7 +h)
= gty = [ wwan L + [t e .
39 —00 we (', 1) —0o0 w, (', ")

391/ R

’ 40 Note that g is well-defined and finite since 6 € (4/k, 1 +8/k).
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1
11/27 The key is now that if we let f(/,r") = (' +r)'1 (I',r' > 0) then G, g f(I', ') = —g(l, ') for all

391/,

I',r" > 0, where we recall the definition of the generator G, g appearing in (3-4). To see this, by scaling,
it suffices to consider I’ +r’ = 1. Let us write ' =6 — 1 —4/k. Then

GepfU',r)+gW 1) = Lep(fw)l'sr)+gl',r")

we (', 1)

3
4
5
6
o0
% = —003(47”) /(; hi—ﬁﬂ(((l +h)" —1—=6'h)
-
-
-

o gp ” / ) " ndh
+/0 W((l_h) 1(h<l)—1+9h)+/om
1 o0 dh 1 h 9,1 h , 1 Q/h r hH dh
" -+ ; W(( —h)’1th<r)—1+ )+ o 2(1_h)1+4//c
il dn /00 h” dh
—COS| — — T AN EY T
i P 0 (1+h)1+4//(
15
=2 =0
g

17 by Lemmas and B.2 and B.3. Putting the results obtained so far together, we deduce that

. AL A= — f B (G p (L], )it < £)dr. (3-17)
0

. In order to conclude the proof it is sufficient to show that the right-hand side of (3-17) is equal to 1.
We consider functions &, € C°(R) with h, > 0, h,|@-n 21 = 1 and hy|g-n-1 gnt1ye = 0. Also let
s Cn=inf{t >0:L; ¢ (27",2™) or R; ¢ (27™,2™)}. By Proposition 3.1 (in particular, (3-6)) and the

-, optional stopping theorem at time ¢ A ¢, for £ > 0,

» / ! / /

2% Eqt.ry (un(Lingy Ripg ) =1 +/ Eq.r)(Ge.pun(Ly, RO s <) ds. (3-18)
0

27

28

29

30

31

32

33

34

35

36

where u, (', r") = h,h, (") f{', r") and provided that [, r € (27", 2"). We now consider the limits
n — 0o, m — o0 and then ¢t — oo in (3-18) on both sides.

We begin with the right-hand side. For each m > 1 there exists a constant C,, such that |G, gu,| < Cy,
on [27, 2]? and for all n > 1. Thus for the n — oo limit, we can use dominated convergence to get

t t
/ Eq.r)(Ge.pttn(Lg, RY); s < &) ds — f Ea.r)Gepf(Ly R s < &) ds <0 (3-19)
0 0

asn — oo forallm > 1 and r > 0. Observe now that since G, g f = —g < 0 we can use monotone
convergence for the m — 0o and ¢ — oo limit to get

t

[e¢]
37 lim lim | Eqn(Gepf(Ly R)is < &) ds = / Et.r)(Gep f (L. R):s < &) ds.
0 0

t— 00 m— 00
38

39 Therefore, in order to conclude the proof it is sufficient to show that the left-hand side of (3-18) goes

40 to zero as we send n — 00, then m — 00, and finally t — oo.
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1
12— PFatou’s lemma and (3-18) together with (3-19) yield

Ei.n (X7 gy)") < Hminf B (e (L5 gy o Rigy)) < 1.

Let 6’ > 60 such that 0" € (4/k +1/2,4/k +3/2). Then by the same argument the above display also
6 "6 holds with 6 replaced by 6’ and therefore the family ((X’ N Y :m > 1, t > 0) is uniformly integrable.
7 Consequently since X N e X] a.s. asm — oo and X, — 0 a.s. as t — oo we deduce that (using
s monotone convergence for the first equality)

2 lim lim lim Eg ,)(u,,(L
— 00

10 t— 00 m— 00 n—

iy Ring)) = lim lim Eq (X7, )"y =0, (3-20)

11 which concludes the proof. U
12

13

14

15

= Lopf 0.0 = [FA+hr) = FA ) @+ [ P+ = 10,0 petah)

3B. Without compensation. Let k' € (4,8) and 8 € [—1, 1]. Consider two independent Lévy processes
L and R (this time without compensation) where this time the generator of (L, R) is

7 for feC é’o([RRZ) and where the jump measures p; and ug of L and R are given by
18

10 pr(dh)  —cos(dn/k")(1—B)/2 1/2
f T = AR Lo,00)(h) + WT/K, l(—0,0)(h),
20
20Y/o— ,
wr(dh)  —cos(4m/k")(1+B)/2 1/2
2t ah = J1+4/k Lo.00)(h) + WT/K, 1(—00.0)(R).
22

391/,

23 By definition, £, g f is a bounded function whenever f € CZ° (R?) and in this case (see again, for instance,
24 [Kallenberg 2002, Theorem 19.10 and Lemma 19.21]), the process

25

2 t— f(Li, R) — f (Lo, Ro) —/ L pf(Ls, Ry)ds
0

27

,g 1s a martingale.

29 Let X = L+ R. Just like in the previous section, we now want to consider a reweighting construction.
3 Forl,r >0and f € CX®(R?) we let

3T i 1—4/«’ d i 1

— (L, = (! T 1 l7 0 ’ N = —
2 we(l,r)=(+r) (l,r>0) and Gepgf(,r) TS
>z By convention, we write G+ g (0, 0) = 0 and one can check that G- g f is a bounded function. Let us
> remark that from Lemma B.4 we get that, for f € C°((0, 00)?) and I, r > 0,

35
we (I+h, V)/LL(dh)

K/ l’ h dh
37 Wy

wyr (L, r)

38 Throughout this section we will not give the proofs since they are all essentially identical to the ones in

EK’,ﬁ(wK’f)(lv }").

39 the previous section but only highlight the small differences (the intermediate lemmas needed for some of
40 the proofs are also exactly analogous).
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1
11/27 The only differing ingredient in the proof of the following proposition is that Lemma B.4 is used
instead of B.3 as was the case in the proof of Proposition 3.1.

3
Z Proposition 3.13. For each l, r > 0 there is a strong Markov cadlag process (L', R') starting at (I, 1),
5 taking values in (0, 00)* U {(0, 0)} and absorbed at (0, 0) such that
6
i we(Ls, Ry)
/ Eq.r(g(L o1, Rlo.)i t <) = [E(IJ’)<K—Hg(L|[O,t]e Rlj.n);t < to),
L wer (L, r)
8
~, Whenever the function g : D([0, t)? — [0, o] is measurable on the space of cadlag functions, t > 0,
o ¢ =inf{t > 0: L} = R; = 0} and where to = inf{t > 0: L; <0 or R, <0}. Moreover, X; — 0 ast — 00
., almost surely where X' = L'+ R'. For f € CZ°((0, 00)?) the process
; /! / t/\;/ / /
. t— f(L[’R[)_./o Ge.pf(Lg, Ry)ds
14
o is a (cadlag) martingale. Finally, G g is the generator of (L', R") on C°((0, 00)?).
16 Using Lemma 3.3 we immediately obtain the following result.

7 Lemma 3.14. Suppose W2 : [0, 00) — (0, 1] is measurable with 1 — W2 (h) < h3/%'. Let (L?, R?) be
18 two independent Lévy processes with generator defined for I, r > 0 by
19

20 Ef’/,ﬂf(l,r)Z/R(f(l-i-h»r)—f(l,r)) Wg(h)m(dh)-i-fR(f(l,r+h)—f(l,r)) W2 (h) pr(dh).

20Y/o—
21

5 Infact, whenever f € CS"(RZ), the process

23

t
- o FLE R = PG R = [ L2708 RO ds
0

— is a martingale. We let X° = L? + R?. Then for all g : D([0, t])*> — [0, oo] we have
27

25

26

2 Ee.ry([Ti<; W2 (UAXD - g(Llo,1. Rljo.n)
7 [E(l-,r)(g(L®|[0.t]vR®|[0¢t])): ( )(H t z[ X " )
28 exp(r [(ur + ur)(dh)(W2(|h]) — 1))
29 g _ . .7 7 _ o

o~ Wedefine 7 =inf{t > 0: L7 <0or R” <0} and o = [(u + ur)(dh) (W2 (|h]) = 1).

31 As in the previous section, we consider a finite subset A € N and smooth functions WE (0, 00) —
35 (0, 00) for each B C A such that

3> W¥ is nonincreasing, W9h) <1, 1—W¥2h) < 1% for h>0
34

o and  WB(x) <W5B(y) forall BC A and whenever 0 <y <x <2y. (3-21)
5

36 By convention we will write W¥2(0) =1 and W8(0) =0 if B # @. We also consider constants o € R
37 for B C A with oy = 0.
38 Recall also the following definition: for u : [0, 0o) — R cadlag we let I1(u, B) be the set of cadlag

39 nonincreasing (in the sense of inclusion) functions Q : [0, o0) — P(A) such that Qp = B, O, = & for ¢

391/ -
’ 40 sufficiently large and AQ; = Q;— \ Q; = & whenever Au; = 0.
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1
11/27 Theorem 3.15. Foreach B C A and L, r > 0, we now define a new process YW =W, RrR", PV taking

values in (0, 00)? x P(A), starting at (I, r, B) and absorbed at (0, 0, &) by

3
X Egrp(@@LY, RV, PY))
5 1 ’
o - WE(M( Yo RO ] erAV_\Qsl<AXS>0>WQS_\Qs(AX;))
- QeT(X'.B) s<t!
- AX!#0
8

. For this to make sense, we also assume that the right-hand side of the equation is 1 for g = 1 and for all
o BCAandl,r>0. Welet:" =inf{t >0: YW = (0,0, @)}. Then YV isa strong Markov process and
o the following expression is well-defined:

% G gf U1, B):= f(l,r, B) /(ML + ur)(dh) (W2 (h) = 1)

14 1 jo] B

o + wo L WEG 1) EK,’ﬂ((u, V) = we(u, VYWZw+v) f(u, v, B)(U,r)

16 WBE (\hDwe (L +h, YWEA+r +h)

- dh - : omctt=0 f(1+h,r,C

al +cc23f‘“( : we @ YWP(+7) ‘ fHhn Q)

18 .

19 WEC(Ihwer (L, r + YW +r + h) "

- + dh onclh=0 (1 r 4 n, C
201/, CCZB/MR( ) W, (L, rYWB( +r) ¢ A )

2 =

391/,

21

5 Jfor f:(0,00)? x P(A) — Rwith f(-, B) € C2((0, 00)?) for all B C A. Then

23

1
; lim > Eqm) (f (1) = f 1. B) =Gy Lo B),

25

26

27 The proof of the following proposition is exactly analogous to the one of Proposition 3.12 except that

ie., QE/,’ g is the generator of YV on the set of functions f considered above.

28 Lemma B.4 is used instead of Lemma B.3 in the computations.

29
o Proposition 3.16. Suppose thatl,r > 0 such thatl +r = 1 and let

31

= A+=[E(,,,)( > |AX§|9> and A-:[E(,,,)( > |AX§|9>.

— t<t’ t<t’
33 AX;>0 AX;<0

% Then A, <00, A_ < land A /(1 — A_) = cos(dm/k")/ cos(4m /K’ — m0) whenever we have 0 €
— 4/ +1/2,4/k" +3/2). Also, if 0 & (4/k’, 1 +8/k’) then AL = 0.

36

37

— 4. Some functionals of Lévy excursions
38

g We will carry out computations for stable Lévy excursions. These will be used when finding the partition
40 function for the generalized LQG disk with zero marked points or one marked point in Section 8A.
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iy
i

~

N

Suppose that v € (1, 2). Throughout this section, let (B;);>o be a stable Lévy process with exponent v
and no negative jumps started at 0. We fix the normalization as in [Curien and Kortchemski 2014], that is,
by requiring that

E(e *B)y=e""" for A >0and s> 0.
The jump measure of the Lévy process B is w(dh) = F(—v)_lh_l_"l(oéoo)(h) dh. Let us define

7y =inf{t >0: B, <—y} and t,_=inf{t>0:B; < —y}

[ e |~ lofo]a]e]w

10 for y > 0. Note that we have 7, # 7, precisely if B|j;,_ ) is an excursion from —y to —y staying

1 strictly above level —y on the interval (t,_, 7).
12

Then by excursion theory (see, for instance, [Kallenberg 2002, Chapter 22]) there exists a random
13

13 nonnegative process (b;) starting at 0 and absorbed again at O at time 1 with the following property. Let

14 7, be the law of (¢£1/Vb, se it >0),1.e., ng is a probability measure on excursions of duration £ which is

15 obtained by rescaling b appropriately. Define

16

R 1 o0
17 n= —/ dee='=" i,
— v-I'A—=1/v) Jy ’

18

10 so that 7z is an infinite measure on excursions of nonfixed duration obtained by combining the measures 71,
20 (called the excursion measure of the Lévy process). Then

20Y/o—
21 . . . . ~
> &= Z S(y,B(Iy_JF_)My_BIy_) is a PPP with intensity 1|0, o0) ® 71
7 y=0
23 Ty>Ty—

* on (0, 00) x D([0, 00)) where A is the Lebesgue measure on R and D([0, o0)) is the space of cadlag

®_ functions. In other words, the excursions made by B above its running infimum indexed by the value
% of the infimum have law of a Poisson point process (PPP) with intensity 1| o) ® 7. The process

7 «'vb, se -t > 0) is called the spectrally positive stable Lévy excursion with exponent v and length £. We

28 . . . . . .

— refer to [Curien and Kortchemski 2014, Section 3.1.1] for more information on these constructions.

29 . .. . . . .

—  We will now compute some explicit functionals associated to such Lévy excursions. Recall the

o definition of the modified Bessel functions of the second kind:
31

— 1 o0 d
2 K0 =5 [Tt A
X 0 y

33

3¢ We will now prove the following theorem; as the proof will reveal, it is quite remarkable that the

35 expectations of the functionals below have a completely explicit form.

36

- Theorem 4.1. Considerv e (1,2),¢c>0,0 € (1,14+1/v) and let

3 o) 2(cx/2)"

N g X)) = ————
501/ 39 I'(v)

Nl

40 fx)= x1+”K1+u_9U(cx) for x > 0and f(0)=0.

K,(cx) for x >0andg(0) =1,
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1
V2= Let ¢’ = ¢"2'=V. Then, forall £ > 0,

2(c'e /)Y
1/v I e A /
[E(Lll gt Ab,)) = "Tam Ky (ct),

J1/vD(=1/v)sin(m(1+1/v—0))
E I/v A | | 1/v A 1+1/v /
( o AL br) v 8(t b )) VT (=v)sin((1+v —6Hv)) ¢ Kit17-6(c0).

To prove the theorem we need two lemmas, one on Lévy processes and the other on the computation
of some integrals involving the modified Bessel functions of the second kind. The latter is Lemma B.1.

=
Slofo|[~]o|a|s|w]|w

11 Lemma 4.2. Consider v € (1,2). Let G : [0, 00) — [0, 00) be twice continuously differentiable with
1 G(0) = G'(0) =0. Suppose that » > 0 and p;, > 0 are such that

13

w b= [ €O = L @

15
o The integral in the display above is finite for any p; > 0 because of the assumption G(0) = G'(0) =

. Then, with B as above,

B —p; =log [E(e_m_z’“l GaB) (4-2)
3 /00 de —)J [E( _Z . G(fl/“Ab )) 1) (4 3)
g e 1< 1 — . -
201520 vF(l —1/v) i

21
5 Let F : [0, 00) — [0, 00) be twice continuously differentiable with F(0) = F'(0) = 0. Then

23

d
— (e~ P e~ PH=G) Py
24 dk(e )F( U)_/ h1+v ()

® —an=Y._. G(ABy)
26 = [E( E F(AB,)e "M %s=n s )
<7
27
28 _ e % dt Z /v A=Y GV Aby)
20 S =1/v) Jy ety . FETAb) e = (44

= t<l

30

o where now we need to assume that a p, > 0 satisfying (4-1) is defined on some open set of .. > 0 values in

- order for the derivative to be well-defined.

g Proof. Let M be the cadlag process

34
g MT — e—/))LBT—)LT—ZtET G(AB,)’ T Z 0

% We will first argue that E(M7) = 1 for any 7 > 0. Since B has stationary and independent increments,

¥ it will follow that M is a martingale. By the construction of the compensated Lévy process B as a

38 compensated sum over its jumps (see, e.g., [Bertoin 1996, Chapter I]), we have

39
391/,— _ -
/240 M;l_‘ = e_p}»(Zth:AB,>l/n AB—TT'(-v) 1flc/on hh 1= dh)_Zth:AB[>l/n G(AB)—AT N MT
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1
1Y . in probability as n — oco. Campbell’s formula and the definition of A imply that

20Y/o—

391/,

T
r'(—v)

logE(M7}) = —AT +

* —pah—G(h dh
/(e 0 ()_1+mh)m_>o as n — o0o. (4-5)
/n

B
N
B
6

A similar computation shows that (M} : n > 1) is bounded in L? and in particular uniformly integrable.
-, Therefore E(M7}) — E(M7) as n — oo. Using this, (4-1), and (4-5), we get that E(M7) = 1 as required.

s The fact that M is a martingale and optional stopping now implies that, for any 7" > 0,
2 1 = E(My ) = E(e 5100 HIAT=Eicrnq GAB),
10

11 Sending T — oo and using dominated convergence with dominating function e” we get the first equality
12 of (4-2). For the second equality of (4-2), we observe that

13

14 i+ G(AB) = f £(dy. de) (Age +>° G(Aet)) as., (4-6)

15 Py (0.1)x D([0,00)) by

16
o where ¢, = inf{t > 0 : ¢, = 0}. Hence since n is the intensity measure of the Poisson point process &, we

— obtain
18

3 log [E(e—lTI_Zt<rl G(ABr)) — / n(dy, de)(el{'g-‘rzkzg G(Aer) _ 1)
20 (0.1)x D([0.00))

Z The result follows from the definition of 7.
2 The proof of (4-4) will make use of Palm’s formula in several places (see Lemma 3.5). Let us start

23 . . . . . .
— with the excursion theory perspective as this is somewhat simpler. Indeed, we write
24

i X = Z F(ABI‘) e_)htl_zx<rl G(ABs)

26 1<t

5 N / s(dy. de) ( ) F(Aet)) o~ JonxD0.00) E@ AN (180 + X, G(AD)
ﬁ (0,1)x D([0,00)) vy

29
50 By Palm’s formula we obtain

31

o E(X) = f n(dy, de)(z F(Aet)>

- (0,1)xD([0.00)) 1<C

33 ¢ / / /
34 : [E(e_f(().l)xD([O.oo))(s—i_a(Y«@))(dy de) (M4, G(Aes)))
35 e

35 = f n(dy, de)(z F(Ae;)e e Losce G(AES))

36 (0.1)xD([0,00)) t<l,

i : [E(e_fm.nw([o.oo)) 5@y de) M+, G(Ae;))).

38

g Note that by (4-6), the final expectation in the display above equals e™”* and the second equality of (4-4)
40 follows again from the definition of n.
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1
1Y . Lastly, we compute E(X) using the Poisson point process structure of the jumps of B. We will need
the notation

B"" =B 4+h 1,4 and tl(t’h) =inf{s >0: B"" < —1}.

Again by Palm’s formula we get

E(X) = E(Z F(AB)1(t < 1)) e "1 2s<n G(A&))

3
4
5
6
2
5
— t>0
9

10

o0 o0 dh _ (t,h)_ (t.h)
= / dt/ — F(h) [E(e ATy Z;<fl G(ABy )’ f < tl(l‘,h)).
r'—v) Jo o hl*v

11

12 Note that {t < fl(t'h)} = {t < 11} a.s. and by using the strong Markov property of B at time 7; we get

13 Ly (t.h) (k) (1.h)

I [E( )‘Il ZS<T1 G(AB;y )’ t < _L.l(t’h)) — ( /"fl Zx<rl G(ABs). t < .L_l)

; — —G(h) [E( —ATi— Zs <71 G(ABy), t <1 )[E(e }Lfll_zs<r/1 G(ABAV))
16 AT —

o — e_G(/'l) [E(e Aty Zs<1.’l G(ABS); < tl)e—PAh‘

17

E Plugging this into the expression for E(X) derived above yields
19

) E(X) = 1 foo dh F(h)e=GW—pih [E(e_“l_ZKfn G(ABS)II)

201/2i r(=v) Jy httv .

21

-, The first equality of (4-4) now follows by using that the expectation on the right-hand side of the last

; display is equal to d(e™"*)/dA. ]

g Proof of Theorem 4.1. Let F(£) = f(£)/g(¢) and G(£) = —log g(¢). Let us first compute p, for A > 0 in
25 the setting of Lemma 4.2. We have

26

- 2(ch/2)’
& e v)./ h1+v( mh%K”(Cm_HM)

l _ vl {COS v, if py € (0, c], where 0, € [0, w/2) is defined by p; = ccosb;,

29

30
5; by Lemma B.1 and Euler’s reflection formula. This can be inverted:

32 . cos(y, /v)  if A € (0, ¢"2'7V], where ¥, € [0, 7/2) and A = ¢"2'7" cos ¥y,
33 7 7 \cosh(y/v) if A > ¢¥2'7Y, where ¥; > 0 and A = ¢"2!~" cosh ;..

coshvf, if p, > ¢, where 6, > 0 is defined by p, = ccosh6,,

34 . .
— Moreover, again by Lemma B.1 and Euler’s reflection formula,
35

* - dﬁ —MW / _)
37UF(1—1/\;)/ gl+1/u( (/) Kip(ct)—1

38 — (-1 cos(y;,/v)  if A € (0, ¢'], where v; € [0, w/2) and A = ¢’ cos v;,
N cosh(y, /v) if A > ¢’, where ¥, > 0 and A = ¢’ cosh ;.

39
39—
40 = _p)»
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1
1Y 27 by the definition of ¢’. The first part of the theorem then follows from the injectivity of the Laplace
transform and the first part of Lemma 4.2. For the second part of the theorem, again by a Laplace inversion

3

-, argument and the now the second part of Lemma 4.2, it suffices to show that

5 d(e=P)di [ e P dh e ey ,

o  T(-v) /o hl+v f) = vI(1—1/v) /o i+l ct Ki1p-0(c0)
7

o where

— c J1/v(=1/v)sin(m(1+1/v—0))
9 = .

VT (=v)sin((1+v —06v))

=

0
11 This can be verified directly via Lemma B.1. In the computation it is useful to note that ¢, = v6,. U

12

13 5. Background on CLE and LQG

14 . . . . . .

— We present various background materials which are needed in the remainder of the paper and in order
15 . . . . . .

— to give precise statements of our main results. In Section 5SA we review results on CLE explorations from

® [Miller et al. 2017; 2021; 2022]. In Section 5B we introduce the Gaussian free field and the notions of
i regular and generalized LQG surfaces. In Section 5C we define regular and generalized LQG disks. In the
® case of the regular disk we allow the disk to have a given number of marked points at given locations. Our
2 definition coincides with the one given in [Huang et al. 2018] and we will consider this disk in both the
201/22 regular and the generalized cases in Section 8. Finally, in Section 5D we review results from [Miller et al.

— 2021; 2022] on explorations of CLE decorated LQG disks and explain some consequences of these results.
22

23 5A. CLE explorations. We assume basic familiarity with SLE [Werner 2004; Lawler 2005] and CLE
24 [Sheffield 2009; Sheffield and Werner 2012]. We will however present one of the outcomes from [Miller
%5 et al. 2017] that will be used in this paper. The ideas below are illustrated in Figure 4.

26

27

28

29

30

31

32

33

34

Full SLE?, (x' — 6)
SLE.(p,k — 6 — p)

» Figure 4. Left: a CPI (red) in a CLE, with « € (8/3,4) and with parameter § has
36 SLE, (o', k' —6 — p’) as its marginal law and the exploration path is a SLE,/f (k —6)
3 curve. Right: when « € (4, 8), then the marginal law of a CPI (red) in a CLE, and with
38 parameter 8 is a SLE, (o, x — 6 — p) curve and the obtained exploration path is then a
301,20 full SLEK’S, (k" — 6) curve. Here k and «’ are related by x' = 16/«. The blue loops are

40 those discovered by the CPI while the green ones are not discovered by it.
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1Y/2=—  The concept that is important is that of a continuum percolation interface (CPI). We begin with the
simple case k < 4 (the x = 4 case is slightly different [Miller et al. 2017; Lehmkuehler 2023] and will
not be needed here). Fix a parameter 8 € [—1, 1] and let I" be a nonnested CLE,. in H. Conditionally
on I', we independently assign to each loop a counterclockwise orientation with probability (1 + g8)/2
and a clockwise orientation with probability (1 — 8)/2. This way, we obtain a collection I'g of oriented
- loops. A CPI A from 0 to o0 in I'g is a (random) continuous curve in H that is generated by a Loewner
e chain, does not intersect the interior of any loops in I'g and obeys the following properties:

% (i) The law of (T'g, A) satisfies scale invariance.
10
o (ii) All counterclockwise (resp. clockwise) loops in I'g intersecting A are on the right (resp. on the left)

o of the curve A.

13 (iii) Fix # >0 and let K; be the union of A([0, #]) and the filling of all loops in I" intersecting A ([0, t]). We
14 condition on Aljo.71 and all the loops in I'g intersecting A ([0, ¢]). Given this information, the conditional
15 law of (I'g, A) is given by sampling independent nonnested CLE,. (with i.i.d. orientations as before) in
16 the bounded complementary components of K; and an independent copy of (I'g, A) mapped conformally
17 into the unbounded complementary component of K, where we concatenate A|j , with the curve in the
18 mapped in domain.

19
o Details of this definition can be found in [Miller et al. 2017, Section 2.3]. By [Miller et al. 2017, Section 4]

201/2; this uniquely characterizes the law of (I'g, A), however almost surely the conditional law of A given
—— I'g is nonatomic as established in [Miller et al. 2020]. Informally this means that almost surely, we

22
5, cannot deterministically obtain A from I'g. By [Miller et al. 2022, Theorem 1.6], the law of A is a

o SLE. (o', k' —6 — p’) curve where k' = 16/« and

2. , 2 sin(rrk’/2)

= — arct "—6,0],
26 P = A S /D) — 2/ (=) < ¥ ]

27
— where the branch of arctan(-) is chosen for each value 8 such that the value on the right lies in the

% specified interval. The curve obtained by following A and tracing each loop that X intersects according
o to its orientation and in chronological order is a so-called SLEE (k — 6) curve (see [Sheffield 2009] and
o [Werner and Wu 2013]).

o When «’ € (4, 8) there is an analogous concept of a CLE percolation interface which we will also
- abbreviate by CPI. Again, we fix 8 € [—1, 1], let I" be a nonnested CLE, in H and obtain a CLE with

" orientations I'g in precisely the same way as in the simple case. It turns out that a.s. there exists a unique

. simple curve A from 0 to oo in H which does not intersect the interior of any loop in I's and which has
o the property that each counterclockwise (resp. clockwise) loop in I'g that intersects A is right (resp. left)
- of A. When 8 =1 (resp. B = —1), A simply traces the negative (resp. positive) real line. If § € (—1, 1)
- then A has the law of a SLE, (p, kK — 6 — p) curve where « = 16/« and

39 2 < sin(wk /2)

39%/5— p = — arctan
40 b4 14cos(mk/2)—2/(1—p)

)—26(—2,1{—4)
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1Y 2% as established in [Miller et al. 2021, Theorem 1.3]. As in the simple case, the conditional law of I'g given A
o and all loops in I'g that A intersects is obtained by sampling independent nonnested CLE,/ (with i.i.d. orien-
o tations as before) within each complementary component of the union of A and the filling of all the loops it
. touches (see [Miller et al. 2017, Section 6]). Lastly, one can obtain a curve by moving along A and tracing a

~, loop whenever itis first hit by A according to its orientation. This can be defined rigorously and the curve so

- obtained is a full SLEf, (k' —6); see [Miller et al. 2017, Section 6] for definitions and details on these results.

 In the above discussion, we explained the background on CPIs in the upper half plane starting at O
Y and ending at co. If we consider an arbitrary simply connected domain with two distinguished prime

o ends, then by mapping the CPI and CLE to this domain along a conformal transformation which sends 0

., (resp. oo) to the first (resp. second) distinguished prime end, then this allows us to generalize the above
o definition to the setting of arbitrary simply connected domains. We call the tuple (I, A) a CLE coupled

s with a CPI with asymmetry parameter f3.

* 5B. The Gaussian free field and Liouville quantum gravity. For any domain D C C, let C2°(D)’ denote

15 . . . . . . . .

— the space of distributions (also known as generalized functions) on the domain D with its usual topology;

 the o-algebra is generated by the evaluation maps & — h(f) for f € C2°(D). Note that this space is not

" metrizable and hence not Polish. For technical reasons, it will therefore be advantageous to also work with

®a subspace of C2°(D)’ on some occasions (the disadvantage of this subspace is that it is not invariant under

19 .. . . . ..

— precompositions with conformal transformations). If D has harmonically nontrivial boundary, we let
201/2£ HO1 (D) be the Sobolev space which is the Hilbert space closure of C2°(D) with respect to the inner product

21

22

1
— (f,8v= —/ Vf()- Vg dz
23 27 Jp

> for f. 8 € C(D) (the 2rr factor makes the explicit Green’s function expressions below simpler). Its

% Hilbert space dual H™ (D) := HO1 (D) embeds continuously into C°(D)’. The space H~'(D) is a metric

. space and it is also separable and hence Polish.

2 Let Gp : D x D — (0, oo] be the Dirichlet Green’s function on D:

28

29 Gp(z, w) = —log(|z — w]) +log(|1 — zw]).

30

51 The Dirichlet Gaussian free field on D (see [Sheffield 2007; Werner and Powell 2021]) is the random
5, element hp of H ~1(D) such that Ap(f) is a centered Gaussian random variable for each f € C (D)
53 and such that

34 E(hp(f)hp(8)) =f Gp(z, w) f(2)g(w) dzdw.

35 DxD

36 One can deterministically associate to Ap its circle average approximation which is a collection of random
37 variables ((hp)c(z) : € > 0,z € (1 — €)D) which is continuous in its parameters; see [Duplantier and
38 Sheffield 2011]. Then

391/22

40 Var((hp)e(z)) = log(é) + R(z,D)+o0(l) ase— 0forall zeD. (5-1)
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1
11/27 If y € (0, 2) then there is a measure ,uZD (called the y-LQG area measure) supported in D such that

20
20Y/o—

391/, —

whenever f € C,(C) (i.e., f is continuous and bounded), we have
/ F)e Per )@ gz s /f(z) iy (d2)
(1—e)D D

as e — 0in L' and

[E(/f(z) MZD(dz)) =/f(z)R(z, D)"*/2 dz. (5-2)
D D

B
N
B
6
7
B
B

_? This type of result is classical and due to Kahane [1985], see also [Duplantier and Sheffield 2011] and

10 [Berestycki 2017] (the conformal radius factor appears in order to make this definition agree with the one

11 involving circle averages). Note that if b is a random function inducing a distribution in H~!(D), then

12 (in view of the circle average definition) it is natural to define
13
" o (dz) =€yl (dz). (5-3)

15 There is an analogous concept of an LQG boundary measure which we introduce in the particular case
16 of a Neumann GFF on the unit disk. Throughout this paper, G : D x D — (0, oc] denotes the Green’s

17 function for the Neumann GFF in D with mean zero on 9D, namely

18

19 G(z, w) = —log(lz — w1 — zwl).

An important property of G and Gp which underlies conformal covariance properties of several measures

21 appearing in this paper is that for any Mobius transformation f : D — D we have

22

. G(f@). f(w) =Gz, w) —log|f'(2)| —log|f'(w)| and Gp(f(2), f(w))=Gp(z, w).

24 The Neumann GFF 1% on D with mean zero on 9D is then the random element of H~'(D) such that

25 hO(f) is a centered Gaussian random variable for all f C*(D) and
26

27 E(R°(f)h°(g)) = f G(z, w) f(2)g(w) dz dw.

o DxD
28

29 One key property of 1 is the following spatial Markov property that it satisfies: Consider disjoint balls
30 B, (zi) €D fori =1,...,n. Then there are random harmonic functions h; on By, (z;) and i.i.d. Dirichlet
31 Gaussian free fields h; in D for i <n such that (h; :i <n) and (h; : i <n) are independent, and

32

3 h° IU; B, (zl)—Zh ( )IB (z,)+2[7 1B, ()

34 i=1

35 We call the first summand the projection of 1 onto H~'(lJ; B, (z;)) and the second summand the
36 harmonic extension of h? restricted to the complement of | J; By, (z;). Note that the same is true for any
37 continuous function g on D: We can uniquely decompose g into a function supported on | J; By, (z;)

38 and a continuous function which agrees with g on D\ U By, (z;) and is harmonic on U B,,(z;). Thus

30 this projection decomposition extends to the case when /" is replaced by a field which is the sum of a
40 continuous function and an independent field which is absolutely continuous with respect to h°.
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1
1Y > To understand the LQG area and boundary measure associated to 4", let us observe that
3 G(z, w) = Gp(z, w) — 2log(|1 — zw]). (5-4)
4

. By the Markov property explained above, we can construct a random continuous function b on ) (extended

, tobe 0on C\D) independent of a Dirichlet GFF hp on D such that b is a centered Gaussian process with
7

E(h(z)h(w)) = —21log(|]1 —zw|) forall z, w € D.
8
5 By (5-4) h® = hp + b is then a Neumann GFF on D with mean zero on the boundary. Thus “ZO is defined

1o Vvia (5-3) and it follows that, for each f € C,(C) and all y € (0, 2),

11

— f f(Z)Gyz/zeyhg(Z) dz — ff(z) ,uZO(dz) in L' as € — 0.
(1—e)D D

12

1 We can now define the semicircle approximations
14

15 (hg(z) c€€(0,2), ze D) to h° and (h(z):€ €(0,2), z€ dD) to b;

1% gee again [Duplantier and Sheffield 2011]. The y-LQG boundary measure associated to h° when y €(0,2)

" is the measure v}zlo supported on 0D such that, for all f € C,(dD),

18

19 Fw)e? Aerhe@2 gy f fw)vlydw) inL'ase—0. (5-5)
20/ 20 oD oD
0

21 Note that Var(hg(z)) =2log(1/€) +0(1) as € — 0 and hence the expected total mass of UZO is 2. Itis
22 not hard to deduce from this, that the above convergence also holds when A? is replaced by b and it
23 follows that V;,/o has a version which is measurable with respect to h. Again, when g is a random function
24 inducing a distribution in H (D), we set

25

14
26 vh°+g

27 This construction can be generalized by replacing the Lebesgue measure (as the background measure)

(dw) = """ V) (dw).

28 by more general measures, in particular those induced by the Minkowski content of (random) curves.
29 This way one can associate to segments of SLE-type curves a y-LQG length. We refer the reader to
30 [Benoist 2018] for details on this.

31 Let us recall the definition of a decorated y-LQG surface (the labeling of the marked points by
32 arbitrary index sets will simplify the notation at a later stage in the paper). Below 9D is the set of
33 prime ends of a domain D and D = D U dD. In the definition below, we will also use the notation
¥ 9 ) =(¢p7" @) :i€A), ¢ (w)=(p " (wj):jeB)and ¢~ oT ={¢p ' on': 5 €T}

z% Definition 5.1. For y € (0, 2) we define an equivalence relation on tuples (D, h, z, w, n, I'), where

. D C C is simply connected, h € C°(D), z=(z; :i € A) withz; e D fori € ACN, w= (w;:j€B)

- with w; € 3D for j € B C N, p is either a placeholder value — or a continuous curve in D viewed up to

o reparametrization, and I" is a collection of loops (each loop viewed up to reparametrization). We let
391/,—

w0 (D, h,z,w,n,T)~, (D', hop+ 0, log|d'l, 6" (), ¢~ (w), ¢ on, ¢~ o)
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11— €t A
3 -~
0 /
5
o f
L Figure 5. We illustrate the encoding of a looptree with a distinguished point (marked
2 with a line segment) when the total length of all the loops in the looptree is finite. We
2 trace the loops in clockwise order starting at the distinguished point. In this simple
0 example, the process e increases linearly with slope 1 except when a loop is completed
o in which case it jumps down by the height of the loop. The dotted lines represent the
12 completed loops at this point of the exploration and the blue points correspond to the
13 start of tracing a new loop.
1
5

if ¢ : D' — D is a conformal map. A regular decorated y-LQG surface is an equivalence class

=
[=)]

-® of tuples (D, h,z,w,n,I'). We let [(D,h,z,w,n,I")] denote the equivalence class associated to
Y (D,h,z,w,n,T). We write — for the empty tuple and the empty collection and use the shorthand

18 notation (D, h,z, w, —, —) = (D, h, z, w). We call [(D, h, z, w)] a regular y-LQG surface.
19

The motivation behind the above definition (in particular, for the transformation rule for the field #) is
20%/ 2., that the y-LQG area measure and y-LQG boundary measure are invariant under the map ¢ in the sense

22 Y __ Y Y Y
o K = Pilhopro,0g¢r Yh = PxVhop 0, log |- (5-6)

g In fact, above we defined v}l/ only for the unit disk, and by using that (5-6) holds for the unit disk we get

25 a natural definition of v}l/ for a general simply connected domain D by defining
26

Y. y
27 Vp = ¢*vho¢+leog 4k

28 where ¢ : D — D is conformal. See [Sheffield and Wang 2016] for a proof that (5-6) holds simultaneously
2% for all conformal transformations ¢.

3 What the definition of ¥-LQG surface above excludes is the possibility of pinch points that the surface
3! might have. The definition of such generalized y-LQG surfaces relies on the notion of looptrees as

32 introduced in [Curien and Kortchemski 2014] (see also [Duplantier et al. 2021, Section 10] where they

33 appear in the context of forested lines). We will recall the motivation for the following definition below.

34
55 Definition 5.2. A generalized (decorated) y-LQG surface is a pair

3 S=(e.{t.S):t>0, Ae; #0}),
37

38 where e : [0, 00) — [0, 00) is a nonconstant cadlag function with only negative jumps such that ep =0

301/ 39 and ¢, =0 for all t > ¢, = inf{s > 0: e, = 0}, and S, are regular (decorated) y-LQG surfaces whenever
y—

40 Ae; =e; —e— #0. We call ¢, the boundary length of §.
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1
1Y 2 We will now explain how e encodes a looptree. The construction is illustrated in Figure 5. We define
an equivalence relation ~, on the interval [0, ¢.] by specifying

t~esup{s <t:es <e;} when Ae; #0.

B
4
5

_° The quotient topological space [0, ¢.]/ ~. is still a metric space (i.e., the quotient pseudometric is a
7

metric) and is called the looptree associated to the function e. This topological space has a distinguished
8 point, namely the equivalence class [0]. Each time ¢ € [0, ¢.] with Ae; # 0 corresponds to one particular

9 loop in the looptree and each of these loops has a distinguished point [¢] on it. The intuitive picture
19 of S is now that we ‘glue’ each S; when Ae, # 0 into the loop corresponding to time ¢ according to
11 the boundary length of the quantum surface; to fix this gluing uniquely, it is performed so that the first
12

marked boundary point of each quantum surface is glued to the distinguished point on the respective loop

13 (needless to say, this assumes that each quantum surface has at least one marked boundary point). If some

14 of the decorated quantum surfaces have a continuous curve as part of its decoration, the picture is that we

15 concatenate these continuous curve segments so that the curve starts at [0] (provided this is possible).

16

17 5C. Regular and generalized Liouville gquantum gravity disks. The Liouville quantum gravity (LQG)
18 disk is an LQG surface of particular importance since it arises as the scaling limit of random planar maps
19 with disk topology; see Section 2. As we will see, when this disk is coupled to an independent conformal
- /22 loop ensemble (CLE) and reweighted according to the CLE nesting statistics around n marked points, the
21 field of the disk will get logarithmic singularities at the marked points. It turns out that the latter field is

22 precisely equal to a field which arises in Liouville conformal field theory (LCFT) on the disk as defined
23 by Huang, Rhodes, and Vargas [Huang et al. 2018]. In Definition 5.3 right below we give their definition

24 of the boundary length ¢ Liouville field with marked points.
25
-6 Definition 5.3. Suppose that o; € R for i € A and ; € R for j € B for some finite possibly empty index

o7 sets A, B C N satisfy

28

2
o @i <Q, foralli, g;<@Q, forall j, Q},—Zai—%z,ﬁj<;/\min{Q},—,Bj:jeB}. (5-7)

; icA jeB

> Let h° denote a Neumann GFF in D with mean zero on dD. For distinct points z; € D where i € A and

2 w; € 0D for j € B define

33

3 : 2 2

. h =h0+2a,~G(-,z,-)+Z%G(., w;), hy=h—=1logv] (dD)+ = loge.
— icA jEB Y Y

36

37 For A > 0and ¢ > 0 we define a probability measure by

38

— (e.2) —Auj, D))y 20y /v =2 ica20i/y=2_jen Bi/

a0t P gy . CipanE(x ()OI @ 3ea R By
20 AL : Ziﬁf)’(ﬁ’w)

(5-8)



PROOFS - PAGE NUMBERS ARE TEMPORARY

152 NINA HOLDEN AND MATTHIS LEHMKUEHLER

1
11/27 for X € C°(D)’ measurable where

@2 = D)~ /2 T eerGnz) B1/2:812:Gwjw) T peifi/2G i)
C(ﬁ.w)_nR(Z“D) l_[ ¢ l_[ e % l_[e i j
i€A ii'eA j.jeB icA
i<i’ j<j jEB

and where the denominator in (5-8) is the normalizing constant which ensures that (5-8) defines a
probability measure. The measure is called the Liouville (disk) field with marked points ((z;, ;) : i € A),

3
N
5
6
7
s ((w;, Bj) : j € B), cosmological constant A and boundary length £.

_° Remark 5.4. It follows from the proof of [Huang et al. 2018, Corollary 3.10] that if (5-7) holds, then
1% the boundary length v, (0D) has finite moments of sufficiently high order so that (5-8) is well-defined as

' a probability measure.® The cited corollary is for the case A = 0 but having A > 0 is only making the
= expectation smaller; however we require a; < Q, such that ,uZ* (D) < oo. In the setting of no bulk points
B (A=2)and B ; =y forall j € B we need to have #B > 3 in order for (5-7) to be satisfied.

14

1 One natural question is whether there are relations between disks with different singularities. The

o broposition below resolves this question in the special case where we show how to construct a Liouville
, field with one « bulk singularity and one y boundary singularity by starting with a Liouville field with no
s bulk singularities and three y boundary singularities, forgetting two of the boundary marked points and

19

20
20Y/o—

21

sampling a bulk singularity essentially from the a-LQG measure. In Sections 6 and 8A, this proposition
will be key as it allows us to explicitly compute some partition functions and in particular establish their
finiteness.

22 Proposition 5.5. Consider distinct and counterclockwise oriented points w,, wp, we € 0D. Whenever
23 W, = Wy, Wp, W, are distinct, let Yy : D — D be the unique conformal or anticonformal transformation
24 mapping W =Wy, Wy, W) to W =(wy, Wy, we). Then

25

o 20N [P0 an [ @) [ @i fievs'+ 0, toelrg ! o)

27

; — 2cw£2/dz R(Z, D)Ol(Qy—Qw)Zf\a‘-,gZ)e((V»VqV),W) /PI(\(JT,EZ).((V.V»V),W)(dk)f(k’ Z),
D

29

o where ¢y = exp(—(G(wa, wp) + G (wp, we) + G(we, wa))/Z). If a <2 we have

g dZ R(Z, D)a(QV—Qa)Zifll;),((%y,y),w /P/(\tilkz),((yyy)w}(dk)f(k, Z)
32 D '

3 — Zj\—j—),((}’e%)/),w) '/‘PI(\Y_é_)’((y’y‘y)’W)(dk)/Mg(dz) R(Z, D)Q(QV_QO‘)f(k, Z)-
D

34

35 The key in the proof of the proposition above is the following elementary change of variables result. It
36 will allow us in the proof of the proposition to switch from an integral over an interior point to an integral
37 over two boundary points.

38 ———

—  OThereisa typo in the statement of [Huang et al. 2018, Proposition 3.2] where there is an incorrect minus sign in the exponent

391 /22 of the Poincaré metric at an interior point; in our setting the correct definition to make things consistent with the remainder of
40 [Huang et al. 2018] is given above where the exponent on the conformal radius is negative.
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1
- Lemma 5.6. Let g : D — [0, 0o] be measurable. Let I be the set of distinct (u, v) € (3D \ {1})2. Fix
o (w—, wy) € I such that (1, w_, wy) is ordered counterclockwise. Then

4
o f g (Wi, () |9y, (DG, (@) Wi, (W) - [, (0) > dib_ diiy = 2~ (G IHCULw+Glnwe /2 / g(2)dz,
—JI D

6

- where Yrg, : D — D is the unique conformal or anticonformal transformation mapping (1, W_, wy) to
s (L, w_, wy) whenever (W_, w,) € 1.

9
o Proof. Let f :H — D given by f(u) = (u —1i)/(u +1i) be the Mobius transformation mapping (oo, i) to
o (1, 0) with inverse f~'(z) =i(1+2z)/(1—2). By performing a change of coordinates, for any measurable
o function g : H — [0, oo] and x_ < x4 we have

B 3 RN I I

1 /g(u)du :/ gz, () ———=3 1G- <X;)dx_dx,, (5-9)
= H R2 (Xy —x-)

15

— where

= o e —x ) (DX Fy —xy

17 Vs = .

- Ty — %
18

19 Letxy = fN(wyg). If X2 = f~ (1) then f o Vi =i, o f and hence
20

= yh @y =L@ X xS o

22 fl(xy) X4 —x— fl(x2) xp—x—

23 k(i . (5-10)
i / (0)_ f (‘ﬁ;i(l)) Xy — X , (1)_ Xy —X_

= V.= fr@  F—i V(D= Xp—x_

25
-6 We now consider g =(go f)- | £/|?> and let I’ be the set of (u, v) € I such that (1, u, v) is counterclockwise

»; ordered. Then by two changes of coordinates and (5-9) we get

28

- / ¢(2)dz = / e(F ) f ) du
D H

30

® R Tl R

31 = | g((fovE))|f (Wi )| T—=5 1G- < ) di_di,

. R2 (X4 —x-) _ 1

- e G RIS @O @Ol
n - /I SFW 1)) | W 0] e L 4T

34

3° Note that (f o ‘/f;—n(,;i))(i) =Y. (0) and if X4 = £~ (W) then, by (5-10),
36

37

e g2 (e = x DAY @) (D (W)

8 |f (e ()] Gomi)

39 ~ ~ |f' (@)
— Uk AU (T - s (D] - [ (0)]2 .

w0 [V, (W) - [, (W) - ¥, (D] [, (0)] G- Lf )| o — )
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1
. Finally

2 |f ()] Y @Ol DY )l 1
2P el ey —x0) 2(f~ " (wy) = f~H(w-)) T —w_|- [T —wyl|- [w_ —wy
i — e(G(l,w_)+G(1,w+)+G(w_,w+))/2.

6
"7 Putting everything together yields the claim. Note that the extra factor of 2 in the statement arises since
s on the right-hand side of (5-9) we only consider tuples (¥_, X)) that give rise to a conformal (rather than
"o anticonformal) transformation vz, ([

10

— Proof of Proposition 5.5. Without loss of generality we may assume that A =0 and ¢ = 1; the general
11

L, case follows by scaling and the fact that MZ (D) is a measurable function of the field k. Also, without loss
o of generality w, = 1. In the notation of Definition 5.3 and by Girsanov’s theorem we get

14

— [E( / / Vo (dip)v) (d D) g (Wp, e, h°)>
15 oD JoD

16 ~ o~
= f f T ( o Ty, Teoh+ L G- )+ LG (-, Be) )) dTp B
ap Jop 2 2

17

18
o forany measurable function g : (dD)? x C°(D) — [0, oo]; this in particular yields

20
w0 20N [Tk [ [ @ flkows'+ 0, tog 5" 1. vs )

391/,

22

23

24

= v/; D\{l})zdwb dwc Z(()‘j‘lso)s((y-yay)»w) fPO(’OZI»O)»((V»V»V)aw)(dk)f(kow';l 4 Qy lOg |(w51)/|’ ww(()))
J

s = [ amdm [J s @l oo
(3D\{1})? ;
26
Ww0).((v.y. 7). Yw0).((v.7.7),
27 . Z(()(’xlll’ 0).((y.v,y).w) ‘/P()(iw 0).((y,y.y) W)(dk)f(k, 1//]_5(0))’

28

g where the second equality follows from the change of coordinates formula [Huang et al. 2018, Theorem 3.5].
30 Note that

31

32

[Yr(0)[* @y =4/ = R(yrg(0), D)*(Lr =2 |yl ().

*_ The first claim now follows from Lemma 5.6. The second claim follows from another application of

34 .
— Girsanov’s theorem. O
35

£ Definition 5.7. Let k be the Liouville field with #A = 0, #B = 3, B; = y for all j € B, where the
37 singularities are located at distinct points w; € dD for j € B and we have boundary length ¢ and
38 cosmological constant 0. Then the y-LQG surface [(D, k, w)] is called the (regular) y-LQG disk with
g boundary length ¢ and three marked boundary points. We get the (regular) y-LQG disk with boundary
40 length £ and zero (resp. one, two) marked points by keeping zero (resp. one, two) of the marked points.
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Figure 6. Left: we consider a regular y-LQG disk decorated by a CLE, (red loops) and
a CPI with asymmetry parameter 8; the CPI up to some time ¢ is colored in blue and
the remaining part of the CPI is colored in green. The future part of the disk at time ¢
(which is the surface in which the exploration continues) is shown in light blue. Note
that the disks colored in white are precisely the disks that touch the CPI up to time z.
Right: the figure illustrates a generalized y-LQG disk decorated by a CLE, and a CPI
with asymmetry parameter § with the same coloring convention as in the simple case.

= ‘

- =
© | ~N | O o -y w N = o | © 0 | N S | o S w N

It follows from [Huang et al. 2018, Theorem 3.5] that the law of [(DD, k, w)] does not depend on the
locations of the marked points (w; : j € B). The paper [Cerclé 2021] shows that this definition agrees

20

201/2; with the one given in [Duplantier et al. 2021, Definition 4.21].

391/,

. We will now define the generalized y-LQG disk with (generalized) boundary length £ > 0. This will
; be a generalized y-LQG surface in the sense of Definition 5.2. Recall the definition of spectrally positive
o stable Lévy excursions from Section 4.

25 Definition 5.8. Suppose that V2 < y <2and £ > 0. Let (E, : t € [0, £]) be the time reversal of a
26

2" be independent y-LQG disks with one marked point sampled from the y-LQG boundary measure and

28 with boundary lengths |AE,| whenever 7 € (0, £) is such that AE, # 0. Then
29

30 (E.{@, S):t <€, AE, #0})

31

. is called the generalized y-LQG disk with boundary length £.

33 We emphasize the time reversal of the excursion in the definition. Indeed, a positive excursion with

3% only positive jumps is easier to construct, but the process with only negative jumps is more natural from

spectrally positive stable Lévy excursion with exponent 4/y? and duration £. Conditionally on E, let S,

3> the perspective of the looptree.
36

g 5D. Exploring CLE decorated LQG disks. We briefly review the results by Miller, Sheffield and Werner
38 on exploring LQG surfaces decorated by independent CLE. The case where the quantum disk is decorated
39 by simple CLE appears in [Miller et al. 2022] and the case where the generalized quantum disk is

40 decorated by a nonsimple CLE appears in [Miller et al. 2021].
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1
1Y/ > We begin by explaining the simple case. See the left-hand side of Figure 6 for an illustration of the
ideas below. We consider parameters

V8/3<y <2, «k=vy% Bel-1,11 and £, Lz>0.

Let (D, h) be any embedding of a regular y-LQG disk S = [(DD, #)] with boundary length £ = ¢; + £g

B
N
5
6
~ into D. Let wy € 3D be chosen uniformly according to the y-LQG boundary measure and let woo € 9D

5 be such that the clockwise boundary arc from wy to we has length €,.. Then the counterclockwise arc
s from wy to weo has length ¢.

1 Conditionally on £ and on (wg, weo), let (I', A) be a nonnested CLE, in D coupled with a CPI from

11
o (T, 1), the law of the decorated regular y-LQG surface [(D, &, wg, weo, A, I')] does not depend on the

1, embedding (D, ) of the quantum disk. We may assume that A is parametrized according to y-LQG
1, length and call its total duration ¢. For each t < ¢ we write £(¢) for the union of A([0, ¢]) and all the
s loops in I' touching it (see (1-10)). Denote by D, the complementary component of D\ §(7) containing
1o the boundary point we.

17

s Dr from A, to b. By convention, we set L, = R, = 0 for ¢ > ¢. It turns out that this process has a cadlag

1o version ((L;, R;) :t > 0) which takes values in (0, 00)2U{(0,0)}. Let X =L+ R. To help the reader

5o compare the construction here to the one in the nonsimple case presented below, let us also define the
201/2; regular -LQG surface S; := [(D;, h|p,)].
»  When AX, = X, — X, # 0 we let AD, = (ﬂt,d D[/) \ D, and we call the quantum surface
o AS = [(ADy, h|ap,)] the cut out quantum surface at time ¢. The surface AS; has boundary length |[AX,|.
5, Note that L (resp. R) has a positive jump at time 7 if A hits a clockwise (resp. counterclockwise) oriented
55 1oop 7 for the first time at time 7, and we have AD; = n? and hence AS, =[(n°, h|,)] in this case. On

., the other hand, L (resp. R) has a negative jump at time 7 if A hits the boundary of its past hull at time 7

27

wy to Wee With asymmetry parameter S (see Section 5A). By the conformal invariance of the law of

Let L; (resp. R;) denote the y-LQG length of the clockwise (resp. counterclockwise) boundary arc of

on the left (resp. right) side. In the latter case, we call AD, a trunk component.

28 Theorem 5.9 [Miller et al. 2022]. There exists a constant vf € (0, 0o) such that
29

— d / / .

. (L, R)E (Ll Ry ) i1 2 0),

31 where (L', R') is defined in Proposition 3.1. Conditionally on (L, R) the cut out quantum surfaces which
32 correspond to jump times t > 0 with AX, # 0 are independent regular y-LQG disks with boundary

33 lengths |AX,|.
34
. Remark 5.10. In Section 3 the variables L and R were used to denote two independent Lévy processes.

5 In all other parts of the paper, including this section, L and R denote boundary length processes within
- LQG disks.

38 In order to use LQG tools to understand CLE, it is useful to split a regular y-LQG disk decorated by a

301/ 30 CLE into the components obtained by restricting the surface to all the individual CLE loops. The following
e
40 corollary explains how one can evaluate functionals depending on the restrictions to the CLE loops.
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1
- Corollary 5.11. Let ¥ be a measurable function on the space of regular y-LQOG surfaces with values in
[0, oo]. Consider a regular y-LQG disk S with boundary length ¢ > 0 and decorated with an independent

3
. nonnested CLE,. Let (S, : n > 1) be the y-LQG surfaces cut out by the CLE loops with some arbitrary
o ordering. Then
0 [E«(Z \If(s,o) =Y fil®)
4;7 n>1 k>0
e where
2 foe) = [E(e/z,e/z)< Z ‘I’(ASt)) and (@) = [E(/z/z.e/z)< Z fk—l(|AXt|)) for k>1.
10 1€(0,7) 1€(0.9)
1 AX,;>0 AX,; <0

12 The subscript £ on the left-hand side of the statement indicates the total boundary length of the y-LQG
13 disk S and a subscript of the form (£, Lg) indicates that the CPI exploring the LQG disk is started with

14 boundary lengths (£1, £R).

15 Proof. The proof is based on an exploration procedure for iteratively discovering all the y-LQG surfaces
16 cut out by the CLE loops on S.

17 We first pick a boundary point from $ uniformly according to the y-LQG boundary measure (indepen-
18 dently of the CLE) and consider the unique point at distance ¢/2 along the boundary away from it. We
19 then sample a CPI with asymmetry parameter 8 within the CLE and let (L, R), X, and AS, be defined as
20 in the discussion above. Then the y-LQG surfaces AS; in the case AX, > 0 correspond to the case of
21 CLE loops intersecting the CPI being cut out.

22 Within each of the trunk components AS; (i.e., AX, < 0) we now independently sample a boundary
23 point uniformly from its -LQG boundary measure and subsequently also consider the unique point at
24 distance |AX,|/2 (along the boundary of the trunk component) away from this point. We can now again
25 consider a CPI with asymmetry parameter 8 from the first to the second of these boundary points in
26 each of the trunk components. Again, the CLE loops intersecting the newly constructed CPI cut out a
27 collection of y-LQG surfaces and we also obtain a collection of trunk components for each of the CPIs.
28 By iterating this procedure within each of the trunk components, we obtain a collection of y-LQG

29 surfaces (S, : n > 1). Moreover, by construction and Theorem 5.9 we have
30

3 [Ez(Z\P(S;)) =Y fi(©. (5-11)

32 n>1 k>1

33 Clearly, (S) :n > 1) forms a subcollection of (S, : n > 1), so to establish the corollary, it suffices to show
34 that these collections are identical. To prove this, it is sufficient to establish the identity

35

36 [EZ(ZA(S,Q) =[E«(ZA<S,,>), (5-12)

37 n>1 n>1

g where A([(D, h)]) = ,uZ (D) denotes the total area of [(D, h)]. We will now verify this identity. The
39 right-hand side of (5-12) equals E¢;(A(S)) = E;(A(S)) €2 since (modulo boundary curves with zero LQG

40 area) S can be viewed as a disjoint union of the surfaces S,. To prove that the left-hand side of (5-12) is
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1
1Y . also equal to E{ (A(S)) £> we will use the explicit formula (5-11) and Proposition 3.12 with # = 2. Indeed,

in the notation of the proposition just mentioned we have fy(£) = ALE;(A(S)) £? and by induction we
see that fy(£) = AL AXE(A(S)) ¢%. Therefore by Proposition 3.12 we obtain

3
o
= Ez(ZW(S’)) S —
6 ’ " 1—A
3
5
o

Ei(A(S)) €% = E1(A(S)) £%.

n>1 k>1
The claim follows. O

We will also need a more general version of the previous corollary in order to prove Theorem 1.7. In
10 the following, recall the definition of I1(X, B) just before the statement of Theorem 3.7. The next result
11 will be used in the context where W'(S) is the weight of a y-LQG surface with no marked points and
12 W; (S) is the weight of a y-LQG disk with one marked point, indexed by i € A (see (1-5)). Applied in
13 this context, the corollary says that the weight 2 (£) of an LQG disk with the marked points contained
14 in distinct outermost CLE loops can be computed using an iterative CPI exploration. The requirement
15 that the marked points are in distinct outermost CLE loops corresponds to the fact that in the definition of

16 fB(¢) we only sum over m € Ng with distinct components.

1" Corollary 5.12. Let (W, : i € A) and V' be measurable functions on the space of regular y-LQG surfaces

18 with values in [0, 0o]. Consider the same setup as in Corollary 5.11. We assume that
19

20Y/o—

391/,

20 Ec(V'(5) = E ( I1 w’<sn>>. (5-13)

21 n>1

22 For B C A let
23

2% fB(E)=[Ez< doTTwisw ] \v/(sno),

o5 meNE i€B n'¢{m;:ieB}

2 \here the sum is only over tuples with distinct components. Then fB() =Y k=0 ka (€) where

27

= foB(Z)=[E(e/2,e/2)< Yoo 11 r*%aax- ] vasy ] wi<Ast)),

29

- Qellt(X,B) t€(0,¢) te(0,¢) t€(0,2)
30 AX;<0 AQ=9 AX;>0
— AQ#D AQ,={i}
31

2 fkil(m:[wm( Y rBaaxy ] w’(AS») fork =0,

33 1<¢ s€(0,0)\{r}

— AX,<0
34

55 Where we write [17 (X, B) for the set of Q € T1(X, B) such that #AQ, < 1 whenever AX; > 0 and we

5 Trequire that AQ; # B whenever AX; < 0.

£ Proof. Let us condition on both the CLE and the LQG surface, and fix m € Ng with (m; : i € B) distinct.
38 The idea is to define an iterative CPI exploration until we have discovered all loops »; corresponding to

39 the surfaces (S, ), i.e., each such loop »; intersects at least one of the CPIs. Suppose we are exploring the
40 CLE decorated LQG disk with a CPL. If all the n; are in the same cut out component (and none intersect
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% the CPI), we do another CPI exploration in the one cut out component containing all the n;. We repeat
o this until not all of the »; are in the same cut out component of the CPI. This procedure terminates by the
-, argument in the previous corollary showing that the iterative CPI exploration discovers all CLE loops.
o The corollary follows since ka is equal to the expectation defining fZ restricted to the event that we

Y need exactly k£ + 1 such chordal explorations in order for not all n; to be in the same complementary
.~ component of the CPI. Indeed, the terms in the sum in the definition of fOB (€) correspond precisely to
o the event that not all »; are in the same complementary component in CPI exploration. The iterative

o definition for fkil (¢) precisely captures repeating the construction in one of the cut out components. [J

10 The situation is analogous in the setting of a generalized y-LQG disk decorated by a nonsimple CLE.
11 See now the right side of Figure 6 for a graphical depiction of the following definitions and results. We

12 fix parameters

13

B 16
” V2<y <2, €=5 Bel-L1] and £.tz>0.

" The detailed definitions are a bit more involved than in the simple case considered above and we refer to
16
— [Miller et al. 2021] for more details. Consider a generalized y-LQG disk with boundary length ¢ =¢; +£g,

17 .
— that is,
18

o S=(E, {(s.[(D, hs, w]) : s <l+r, AE; #0}),

20 where E is the time reversal of a spectrally positive stable Lévy excursion with exponent 4/y2 and

21 duration ¢, and conditionally on E, we have that (D, i) is an embedding of an independent regular
22 y-LQG disk of boundary lengths |A E| and wy is independently picked according to the y-LQG boundary
23 measures for each s < £ with AE; # 0. As explained in Section 5B we view the LQG surfaces as “glued
24 into” the loops of the looptree defined by E, and we do this so that the point wy is identified with the
25 point on the loop that is closest to the root of the looptree in the metric of the looptree.

26 The times 0 and ¢, (in the parametrization of the excursion E) correspond to two points on the looptree

27 associated to E (see Section 5B) and there exists a unique curve of minimal length from the first to the

28 second of the points above with the property that it only traces loops of the looptree in clockwise order —

29 we call this curve a clockwise geodesic. Recall that each s < ¢ for which AE; # 0 is associated with

30 a loop in the looptree and let / (E, ¢;) denote the collection of such times corresponding to loops that

31 intersect the clockwise geodesic mentioned above. For each s € I (E, £1), we let L(E, £1), be the length

32 of the intersection of the clockwise geodesic with the loop corresponding to the time s.

33 Now, for each regular y-LQG disk of the generalized y-LQG disk we sample an independent CLE,
34 (on D). After sampling i.i.d. orientations for all the CLE,- loops (clockwise and counterclockwise with
35 probability (1 —8)/2 and (1 + B)/2, respectively), we deterministically associate to each s € I (E, £,) a
36 CPI with asymmetry parameter 8 from wy to wg, where wy, is chosen so that the clockwise boundary
37 segment from wy to w, has y-LQG length L(E, £1); with respect to the field Ay; formally, this yields
38 a decorated generalized y-LQG surface where the surfaces corresponding to the loops connecting the
39 (generalized) boundary points corresponding to 0 and ¢; are decorated by a collection of loops together

40 with a curve and all other surfaces are only decorated by a collection of loops. We parametrize the CPI
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11/2% by the y-LQG length of the CPI in the generalized quantum disk, i.e., it is the sum of all the y-LQG
o lengths of the CPIs in the regular -LQG disks. We let ¢ be the total y-LQG length of the CPI.
. For t € [0, ¢), we (informally) define a generalized y-LQG surface S; as follows (see again [Miller
. et al. 2021] for details). Let us consider the CPI stopped at time 7. For s < ¢ with AE # 0, let A} be
Y the set of points in D such that the corresponding point in the [(DD, 4,)] (which is a part of S) can be
- connected within S to the generalized boundary point associated to / along a path which does not intersect
e the CPI stopped at time ¢ and which does not intersect the interior of any of the CLE loops intersecting
Y the CPI stopped at time ¢. This is illustrated in the right-hand side of Figure 6, where the purple (resp.

o white) points are contained in A} (resp. D\ AY).

o It can be argued that the collection of sets (A} : s < ¢, AE # 0) defines a generalized y-LQG disk S,
o with two marked points; the point visited by the CPI at time ¢ and the terminal point of the CPI (the latter
— of which is equal to the boundary point of the original generalized disk corresponding to time ¢, for E).

13
" For ¢t < ¢, the clockwise (resp. counterclockwise) generalized y-LQG length from the first to the second

L. one of these generalized boundary points is called L; (resp. R;). If t > ¢, we simply set L, = R, = 0.

o As in the simple case, it turns out that (L, R) has cadlag version ((L, R) : ¢ > 0) which takes values in

o (0, 00)> U {(0, 0)} and we also make the definition X = L + R.

. Whenever ¢ € (0, ¢) is such that AX, # 0, the collection of sets (AAJ :s € (0,/+7r), AE; #0) with

o DAl = (M= A3) \ A also defines a generalized y-LQG surface AS, (called the cut out generalized

o quantum surfaces at time ). As in the simple case, if AX; > 0 then the CPI discovers a CLE loop at
201/2; time ¢ and AS; is the generalized y-LQG surface given by the interior of the CLE loop. If AX, < 0, this

. corresponds to the CPI hitting its past hull and cutting out what we call a trunk component.

23 Theorem 5.13 [Miller et al. 2021]. There exists a constant v,’? € (0, 0o) such that
24

d
2 (LR E(Lly, Rly) 12 0),

26

5, where (L', R') is defined in Proposition 3.13. Conditionally on (L, R) the cut out (generalized) quantum

g Surfaces which correspond to jump times t > 0 with AX; # 0 are independent generalized y-LQG disks
with boundary length |AX,|.

29

o Corollary 5.14. Let W be a measurable function on the space of generalized y-LQG surfaces with values
3L in [0, 0o). Consider a generalized y-LQG disk S with (generalized) boundary length £ > 0 with each of its
32 (regular) components decorated by an independent nonnested CLE,.. Let (S, : n > 1) be the (generalized)

3 y-LOG surfaces cut out by the CLE loops. Then
34

. rEe(Zwsn)) =D filo,

36 n>1 k=0

37 where

38

301,20 fo(®) := [E(e/z,e/z)< Z ‘I’(ASt)) and fi®) = [E(e/z,e/z)( Z fk—l(lAXtD) for k> 1.

40 te(0,¢) te(0,¢)
- AX,>0 AX,<0
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1
1Y 27 The subscript £ on the left-hand side of the statement indicates the total boundary length of the y-LOG
o disk S and a subscript of the form (£, L) indicates that the CPI exploring the LQG disk is started with
. boundary lengths (L1, LR).

_> Proof. The proof is entirely analogous to that of Corollary 5.11 except that we now use Proposition 3.16

6 with # = /2 instead of Proposition 3.12 with 6 = 2. ([
7
5 Remark 5.15. Corollary 5.12 also has an analogous version for the theory of generalized y-LQG disks

~ discussed above (with only the word “simple” replaced by “generalized” and Corollary 5.14 in place of

1o Corollary 5.11).

10

11

12

6. Law of the CLE conformal radius

1 We will give a new proof of Theorem 1.12 when « # 4 using techniques from Liouville quantum gravity.
% We also present a new proof using similar ideas in the x = 4 case. The cases of simple and nonsimple
> CLEs will be considered separately although the proofs are essentially identical and will rely on [Miller

16 et al. 2022] and [Miller et al. 2021], respectively (see Section 5D for a review).
17

15 Theorem 6.1. Letk € (8/3,4) and o € (2/y +y/4,2) where y = /. Let T be a nonnested CLE, in D

19 and let no be the loop in T that surrounds 0. Then

20 _ cos(4m /)
202 ¢ :=E(R(0, ng)*(@r=0)) =

22

23

24

o W(((D, K)]) = f R(z. D)*(@=29 ¢ (dz) € [0, o0
D

cos(4m/k —m - 2a/y)

Proof. The key idea of the proof is the following. To a regular y-LQG surface [(D, k)] we associate a value

= provided the measure pf is defined —and \IJ([(D, k)]) = 0 otherwise, say. It is not hard to check that
27
— W is well-defined (i.e., does not depend on the representative (D, k) of its equivalence class) by using

28
o the definition of a regular y-LQG surface (Definition 5.1) and how pf transforms under the application
2

o of a conformal map (see (5-6)).
3
—  Let (D, &) be an embedding of a y-LQG disk with boundary length 1 into the unit disk [ which is

31
. independent of I, i.e., & and I" are independent. Then

33

e E(¥([(D, 1)) = [E( / R(z, D)*(@r=2v) uz(dz)> < o0,
D

*_ where the finiteness is a consequence of the definition of & as a y-LQG disk and the second part of

o Proposition 5.5 with f = 1 and A = 0 (note that o > y /2 so that the Liouville partition functions
. appearing on both sides of the second equation in the proposition are finite; see Remark 5.4). Moreover,

* [(D, h+2/y -log£)] is a regular y-LQG disk with boundary length £ by Definition 5.7 and

39
39—

40 E(W([(D, h+2/y -log0)])) = %7 E(¥([(D, h)])). (6-1)
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1
1Y 27 Forany z € D, let n; be the loop around z (if no such loop exists, which is a probability zero event for any

fixed z, we take 5, to be the curve tracing 0D, say). Recalling that ¢ = E(R(O, ng)“(Q“_QV)) € (0, oo]

3
o and using conformal invariance of CLE, we get
5 E(R(z, n2)*Q«=27)y = ¢. R(z, D)*9«=2Y)  forall z € D.
6
Z We now first use the previous equation, exchange integration with expectation and rewrite the expression
~8 within the expectation to obtain
9
o e rwa@ ) = [ERG @ 0 i ) = [ R oo i)
ol D D
11
- o [ meorre e ugan) =5 S wis).
13 nel’ n° n>1

! where (S,) denotes the quantum surfaces cut out of [(D, 4)] by I', noting that we are taking the expectation
> over both the LQG field and the CLE.

1 Let(L’, R’)and X' = L'+ R’ be as in Proposition 3.1 and conditionally on (L', R’) let S, be independent
! regular y-LQG surfaces with boundary length |[AX i| whenever AX] # 0. By Corollary 5.11 and

1% Theorem 5.9 we have
19

o [E(Zws,o) =Y fill)

201/2; n>1 k>0
;where
23
= fo<e>=[E<e/z,e/z>( ) \If(Sz)):[E(lv([(D, W)= [E(l/z,l/z)( ) <Ax;>2“/y),
- 1€(0.2") te(0,¢")
25 AX]>0 AX!>0
26
- fkw):[sz.em( > fk_1(|AX;|>) for k > 1.
— 1€(0.%)
28 AX;<0

391/,

*_ where we used (6-1) to get the second equality. Note that in the first of the previous two displays, we

0
P are taking an expectation over the random variable (S,) while in the second one we are taking one over
31
— (L', R', X', (S))). By Proposition 3.12 with 6 = oy /2 we see by induction (and using the notation of

2 the aforementioned proposition) that for all £ > 1,
33

* [ =E(¥([(D, )]))e7 AL AL

35

36 Using this, we obtain that

37 4
'y Sy = — ST gy 1, ny))

> e cos(m/k —m - 2a/y)
39 =

40 and the claim follows. g
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1
~, Theorem 6.2. Letk' € (4,8)anda € (1/y +y/2,2) withy = 4/\/«'. Let T be a nonnested CLE, in D
and let ngy be the loop in U that surrounds 0. Then
cos(4m/k’)

::[E R 0’ o OI(QV_Qa) — .
c (R(0, mp) ) cos(dn /' —m -ay/2)

Proof. The proof is very similar to the proof of Theorem 6.1. We define the following functional on the
space of generalized y-LQG surfaces:

W(e, {(t. [(D. k)]) 120, Ae, #0)) = ) f R(z, D)™@r=9) % (dz) € [0, 00]
Dy

10 t>0
1

3
4
5
6
7
8
9
- Ae,#0

1

2

o provided the measure . is defined for all 7 and define the functional to be 0 otherwise. Again, the integrals
o do not depend on the particular equivalence class of the y-LQG surfaces [(D;, k;)]. Let (E; : t € [0, 1])
o be the time reversal of a spectrally positive stable Lévy excursion with exponent 4/y2 and duration 1 and
o conditionally on E, consider independent regular y-LQG quantum disks [(D, 4,)] for any ¢ € [0, 1] with

% AE; # 0. Then by stable scaling

7 Se= (€774 E 1o, {2, [(D, by +2/y -1og(€” M AE )] : 1 < €, AE e #0)))
= is a generalized y-LQG disk with boundary length ¢. By definition, we therefore obtain

19

2 E(W(Sy) = [E( > W”“mmnz"/y) [E( f R(z, D)*(@r =00 g (dz)>
21 -/ D

;;’ Aéue#o

i — ZO!}//Z [E( Z |AE[|2a/y) [E</R(Z, D)Ol(Qy_Qa) Mg(dz))

24 t<1 D

— AE#0

25
.6 hoting that the two expectations on the right-hand side are finite — for the first expectation, this is a

57 consequence of Theorem 4.1 and for the second expectation this follows from Proposition 5.5 with f = 1.
.5 If S is a generalized y-LQG disk with boundary length 1 then we can decorate this surface with an
.o independent CLE,+ on each of its regular y-LQG disks components. By a similar argument as in the
50 proof of Theorem 6.1 we get

31

= c-rE(\p(S))z[E(Z\II(Sn)),

n>1
33

5. Where (S,) denotes the collection of generalized y-LQG surfaces cut out by the CLE, decoration. The

- conclusion now follows similarly as in the proof of Theorem 6.1, now using Corollary 5.14, Theorem 5.13

35
56 and Proposition 3.16. U

37 The k = 4 case is actually the one which is understood best due to the level-line coupling with the
38 Gaussian free field by Miller and Sheffield (see, e.g., [Aru et al. 2019] for a self-contained presentation).
39 For the sake of completeness, we also give a proof of the computation of the law of the conformal radius

40 in a similar spirit as in the « # 4 case. Note however that the CLE decoration is not independent of
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1
1Y 27 the field but instead determined by it. While the proof is interesting, let us remark that the law of the

201/>

391/,

o conformal radius can also be read off more directly in the proof of the level-line coupling (see again [Aru
— et al. 2019]) or one could attempt to take the limit x — 4 in the theorems above.

4
5 Proposition 6.3. Consider I' ~ CLEy (nonnested) in D and let ng be the loop in " that surrounds 0. Then,
6 foranyy €(0,2),
! 1
s [ER0,°V2/2=—.
2 (R(O, mo) ) cosh(mry)
9

10 Proof. Let us recall the level-line coupling of a CLE4 with a Dirichlet GFF due to Miller and Sheffield:
1; Let & be a Dirichlet GFF in D as introduced in Section 5B, let us write I' = {#; : i > 1} and conditionally
1, on I, let (h; :i > 1) be ii.d. Dirichlet GFFs in 77 and (o; : i > 1) be independent i.i.d. and uniform on
13 {%£1}; then

1 hE > (o +hi) .

15 i>1

16 Tt follows that, for y € (0, 2),
17

15 [E< fD ,uZ(dz)) = [E(Z f Wi, (dz)) = [E(Z [E( / gy, @) | r)) (6-2)
e | "

3 i>1 i>1 i
20
Z By (5-2) we get

21

2 [E(f,u%(dz)) =fR(z, D)2 dz,
23 D D

l [E( / ,LLJJ;JiJrhi(dz)IF):cosh(yn) R(z. #)" P dz as.,
if iy

25 m;

2% where we use for the second identity that E(e?™%) = cosh(yx). For z € D, let 5, be the a.s. unique
2" loop in T' surrounding the point z taking 7, to be the curve tracing 9D if no such loop exists. Then

28 E(R(z, n?)yz/z) = R(z, l]:l))yz/2 E(R(O, 770)”2/2) for z € D by conformal invariance of I" and thus, by (6-2),
29

. Cosh(yﬂ)‘lfR(z, D)Vz/zdz:[E(Z/ R(z, ﬁf)yz/zdz) :[E(/R(z, n;’)yz/zdz)
D i D

31 i>1

32

o :/[E(R(z, n?)"" %) dz = E(R(O, ng)yz/z)fR(z,D)Vz/zdz.
D D

* The claim follows. -

35

36 Combining the results above we conclude the proof of Theorem 1.12.

S Proof of Theorem 1.12. Let us first consider k € (8/3,4) and y = k. If « € 2/y + y/4.,2), let
= p=a(Qy — Qo) € (—1+2/k +3k/32, \/k +4//k —4). Since

40 V(A —4/)? —8p/k =4/ —2a/k + 1
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1
11/27 by Theorem 6.1 we get
cos(4m/k) —cos(4m/k)

oN\PYy — oo (Qy—0y) — —
E(R(O, ng)”) = E(R(O, ng) ) cos@n/k — 7 - 20/7) COS(JT\/(I Y. 8,0//() )

when p € (—1 +2/Kk +3k/32, Kk +4/ K — 4). In particular, the two functions
—cos(4r/k)
cos(n\/(l —4/K)% — 8p//<)
are both analytic functions on {p € C: Mp > —1 4+ 2/k + 3« /32} (for the second function this statement

pr> E(R(o.np)”) and pr>

is obvious) and agree on a set containing an accumulation point. The two functions therefore are identical
on{peC:MNp>—1+2/k+3k/32} as required.

12 Inthe x € (4, 8) case we let y =4/,/k, consider « € (1/y + /2, 2) and define p = a(Q, — Qq) €
B (=142/k +3k/32, \/k +4//k —4). Then we have

=

Ju

=

o VA —4/K)? —8p/ic =4/k —ay 2+ 1

fu

3
4
5
6
7
8
9
10
1
2
13
4
5
16

and the result follows for p € (—1 +2/K + 3k/32, ik + 4/ — 4) by Theorem 6.2 and the same
7

1 reasoning as in the ¥ < 4 case. We again get the full range of p values by analytic continuation.
18

[

Finally, we consider the k = 4 case. Proposition 6.3 yields the claim for p € (0, 2). The moment
19 generating function of the random variable —log R(0, ) characterizes its law and we see that the moment

20! /22 generating function of —log R(0, ng) agrees with that of the random variable 74| = inf{t > 0: |B;| =}

21 where B is a standard Brownian motion. The moment generating function of 74 is explicit on the entire

22 range where it is finite. 0

23

24 7. CLE weighted by nesting statistics

25
o We prove Theorem 1.2, which justifies that the CLE weighting considered in the introduction is natural,

27
. LQG surface by the number of CLE loops surrounding any subset of these points. See Section 1C for a

o description of this weighting in the case of a regular LQG disk. A key input is Theorem 7.1, which is a

L, Spatial independence property for CLE that is necessary in order to establish finiteness of the (claimed)
o limit in Theorem 1.2. Theorem 7.1 will be proved in Section 7C for « € (8/3, 4] and in Section 7D for
L K€ 4, 8).

33 7A. Weighting CLE by nesting statistics: Proof of Theorem 1.2. As discussed in the introduction, we

3% want to mimic in the continuum the definition of the O(n) model weighted by the number of loops

3° surrounding points. Due to the fact that the number of loops in a nested CLE surrounding a single point is

36 almost surely infinite, a renormalization is needed to weight a CLE by the exponential of the number of

3" loops surrounding points. Making sense of this rigorously will be the main achievement of this section.

since, given a tuple of points, it corresponds in some sense to reweighting the law of a CLE coupled to an

38
. Theorem 7.1. Let§ > O and let z4, . . ., z, € D be such that
391/ -
%40 |zi —zj| >8 and |zi|] <1-—6 forall i,j<n,i#]j.
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1
1Y 2 LerT be a nested CLE, in D for k € (8/3, 8) and define n; to be the outermost loop surrounding z; which

does not surround z; for all j #i. Suppose p; > —1+2/k +3k/32 foralli =1, ..., n. Then there is a
constant C > 0 depending only on §, py, ..., p, such that

3

T

5 n

. [E(]_[R(Zi,n?)p") <C.
? i=1

s

The proof of the theorem is deferred to Sections 7C and 7D in the simple and nonsimple case,

5 respectively. The proof of this result will make strong use of a quasi-independence property of the CLE:
o the conformal radii of the outermost loops only surrounding one particular point do not correlate strongly
o with each other; indeed the proofs in Sections 7C and 7D will exploit two different constructions of CLE
o from which this quasi-independence can be deduced. Before we can establish Theorem 1.2 we will also

. need two lemmas on CLE. Related results also appear in [Miller et al. 2015], however, both the finiteness

" and convergence of exponential moments of nesting statistics presented here is new.

E Lemma 7.2. Let I" be a nested CLE, in D where k € (8/3,8). Whenever € > 0 we write N, for the
16 number of loops n € T surrounding 0 and with R(0, n°) > €. Then

= E(e°N) < o0 forall € >0,0 €R and € E(e"Ne) — s asel0

18

19 for some explicit constant c,, € (0, 00).

201/23 Proof. Let (n; : i = 0) be the loops in I" surrounding 0 ordered according to their nesting structure (i.e.,

391/,

2L y; surrounds 7; for i > 0) with the convention that 5y parametrizes dD. Then by the spatial Markov

2 property of CLE,

23

s X; =—log R(0,n?) +1og R0, n{_)), i=>1,

% are i.i.d. and their density f and Laplace transform L f are given in Theorem 1.12. Also note that
2 Ne=sup{n>0:X;+---4+ X, <log(l/e)} for € > 0. Also by Definition 1.1 we have o = —log L f (p%).

" The claim now follows from Proposition A.1 where the conditions can be verified using Theorem 1.12. [
28

o, Lemma7.3. Letz € D\ {0} and let I" be a nested CLE, in D with « € (8/3, 8). We also let N, be the

o number of loops in I surrounding both 0 and z. Then for all § € (0, 1) and 6 > 0 there is a constant C > 0

5, such that E(exp(6 No;)) < C for |z]| = 6.

g Proof. Let n; be the 2i-th loop surrounding 0 (counted from the boundary of D) with the convention that
33 no parametrizes 90D and let us write A,, for the event that 1, surrounds w. Then P(A,) — 0 as [w| — 1;
34 indeed, if this was not the case then there would exist (w,) with |w,| — 1 and limsup,,_, ., P(A,,) >0
35 and hence P(A,, i.0.) > 0 which is impossible since n; € D. Let N(;Z be the largest i such that n;
36 surrounds z so that in particular

37
— N§, <2No, +1. (7-1)

38

39 Let ¢i : D — C; be conformal transformations with ¢;(0) = 0 and ¢;(0) > 0 where C; is the connected

40 component of 1 containing 0. Consider ¥ > 6, let € > 0 be such that P(A,) < eV forall jlw|>1—g¢,
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1
11/27 and define 1, = inf{i >0: |¢i_1(z)| >1-— e} where by convention qﬁi_l(z) =11if z ¢ C;. By the Markov
~, property of nested CLE,,

1) S EE™) sup E(eNow).

T ON’ ot, ON|
D E(e""0:) = [E(e r“[E(e Uw)lwztﬁr_
: z |w|>1—€

_® Let us treat the two factors separately. First of all, by the growth theorem for univalent functions [Lawler
_" 2005, Theorem 3.21] applied to ¢; = ¢;/ ¢;(0) at the value ¢~ 1(z) whenever z € C;,

8

—1
. e s — 1
0 (I-l¢;7 @) (1-l¢; @I)
11
> Since |gi(¢; ()] = |zI/R(0, 1?), we obtain that

13

14 -1 R(0, n?)

f o, (D) =1— W whenever z € C;.
15

19 Let M, be the number of i > 1 such that R(0, n¢) > |z|€2. Then by the above estimate, 7, < M, + 1 and

17 therefore by Lemma 7.2, E(e”%) < e” E(¢”M:) < C for some constant C < oo only depending on 8. Let

18 us now consider the second factor. For n > 0 and |w| > 1 — €, by the Markov property for nested CLE,,

19

) 20 P(Ng, =n+1) =E(P(A)]
20%/2—
21
. By the Schwarz lemma, |gz5n‘1(w)| > |w| and thus P(N, = n+1) < eV P(Noy, > n) for |w| > 1—e.
. Therefore I]D(N(/)w >n) <exp(—yn) for all n > 0 and |w| > 1 — €. The claim follows by combining
o everything and using (7-1). O
4

N2
v=¢ ()3 Now =1, 2 € Cp).

25 We can now combine the above to deduce the main result.

6
27 Proof of Theorem 1.2. Without loss of generality A=[n]={1, ..., n}. Let C; be the connected component

o of n? containing z; for i < n (recall that n; denotes the outermost loop in I" surrounding z; but not z; for
. Jj #1). We explore the nested CLE I" from the outside until we discover the loops (1, ..., 1,). By the

o strong Markov property of the CLE and since R(z;, n/) = R(z;, C;), we get

31 "o n

€ . R K CNTE; €
37 1_[ P [E(eZBQ[n]:#le UBNB(Z)) — [E( 1_[ &0 1(R(z;.Ci)>€) ép"i[E(eU’N l)|€i=€/R(Zi»Ci) . eZBg[n]:#B>1 UBNB(Z))’
; i=1 i=1

g where N€ is the number of loops 1 in a CLE, TinD surrounding 0 with R(0, n°) > €. From Lemma 7.2
35 it follows that

36

n
o . ,
3 [ [ e REIDZO P (€N | mepriey ) - €2ptmvan=1 BN
3g i=1
- n
39 o; K NS 05N (z)
39%/5— — l_[e ‘g R(zi, mi)oi - e&petm#-1 788 as.as € 0. (7-2)
40
_ i=1



PROOFS - PAGE NUMBERS ARE TEMPORARY

168 NINA HOLDEN AND MATTHIS LEHMKUEHLER

1
1Yy . Also by Lemma 7.2, there exists a constant ¢ > 1 such that, for all € < 1,

3 N E@™N ) ez sy < R Gy 1)) (e < Rz, 1)) + €™ 1(e > R(zi, 1)
4 .
. <2¢R(z, n0)""" forall i <n.
_® In the first line of the above display, we split into the cases € < R(z;, n/) (where Lemma 7.2 is applicable)
_" and € > R(z;, n{) where the expectation on the left-hand side equals 1. Thus we can deduce the first part
_8 of the theorem using dominated convergence for the sequence in (7-2) and using the dominating function
° n
10 l_[2C eO'i\/OR(Zi n{))p,‘/\o . 1_[ eOBNE,(Z)
= N )
1 i=1 BC|n]
#B>1

12

13 The fact that this expression has finite expectation follows from Theorem 7.1 and Lemma 7.3 after using
14 Holder’s inequality with exponents p and (¢ : B C [n], #B > 1), taking the exponent p sufficiently
15 close to 1 so that (p; A 0)p >—142/k +3k/32 for all i <n (noting that —1 +2/k + 3k /32 < 0).

16 For the universal upper bound at the end of the statement of the theorem we use Holder’s inequality
17 with the above exponents to get

1/p
19 [E( [ RGi. 0 exp( > aBNf;(z))) < [E( []e" R, n?)’”"’f) [ Ecerronts@)tian,

20 i€ln] BC[n] i€ln] BC[n]
201/ — #B>1 #B>1

. The result now follows from Theorem 7.1 and Lemma 7.3.

23

a contained in €D. For each i, let ¢; : D — D be a conformal map with ¢; (0) = z;. Then by compactness

o of K and since § > 0 there exists €g = €g(D, K, §) € (0, 1) such that ¢; (D) N{z1, ..., 2.} = {z;} for

26

It remains to establish the universal lower bound. Let 7, be the outermost loop in r surrounding 0 and

all i. Thus by conformal invariance of CLE, for any ¢ > 0,

7 P(R(zi, nf) > ¢) = P(1¢;(O)| R (0, 7l,) > ¢).

28
20 Moreover, |¢'(0)| > 8y for some 8y = 8o(D, K, 8) (again, this follows from the compactness of K and
50 the fact that § > 0). Hence, by a union bound,

31

- c
32 P(R(Zi,n?)>cVi)Zl—n'P(R(O, neo)S(S—)Z%
— 0

33
5, for ¢ =c¢(D,K,é8,n) > 0 sufficiently small and by decreasing it further, we can also ensure that

3 R(zi, D) < 1/c for all i. By Holder’s inequality,

36

= 1 1pil /2 NN
- 5]_[0 <E( [] RGi. )

— ieln] ien]
8 RN RN
39 . 70\Ps; opNg(2) —0opNg(z)
301, s[E( []RGi.n)™ T e ) [E( [T e > :
40 i€ln] BC|[n] BC|[n]

- #B>1 #B>1
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1
1Y 2= The claim now follows since the second term on the right-hand side can be bounded from above by a
constant that only depends on D, K, 8, n and o. O

The next lemma will not be used until Section 7D. However, since the flavor of the proof is similar to

Lemma 7.4. Let I' be a CLE, in D with k € (8/3,8) and let r € (0, 1). If 1, is the outermost loop
surrounding 0 that is contained in rD, then E(R(0, n?)”) < oo if and only if p > —1+2/k + 3k /32. If

_8 7y is the outermost loop surrounding 0 that is surrounded by 1}, then we have E(R(0, 72)") < oo.

3
N
"5 other proofs given in this section, we state and prove it here.
6
2

o Proof. The second assertion of the lemma is an immediate consequence of the first assertion by the
o Markov property of CLE, and Theorem 1.12. When p < —1+2/k 4 3«/32 or p > 0, the claim also
o follows directly from Theorem 1.12, so suppose that p € (—1+2/x 43« /32, 0). We first prove the result
. for a single r € (0, 1) (sufficiently close to 1) and will at the end deduce the general case. Let 1; be the
o 2i-th loop surrounding O (counted from the boundary of D) with the convention that ng parametrizes 9.
o Since n; € D a.s. (i.e., the loop 1; a.s. does not touch the boundary of the domain),

16 pri=PmCrD)—1 asrt1lforn>0. (7-3)

T Let C; be the connected component of 1y containing 0 and let ¢; : D — C; be the unique conformal

® transformation with ¢; (0) = 0 and ¢;(0) > 0. For each n € N define an event A, as
19

201,20 Ap={pi(miy1) £rDfori =0,...,n—1and ¢,(n,41) € rD}.

e
2 By the spatial Markov property of CLE,, P(A,) = (1 — p,)" p,. In particular, almost surely A, occurs
% for some n > 0 when p, > 0. Moreover, by the Schwarz lemma, on the event A,, we have the inclusion
= ny 2n, - Hence, when 1/p+1/q =1,
24
25 E(R(0, 7)) < Y E(RO. nj ;)5 An) < Y E(R(O, ny1)) /PP (A,)
26 n>0 n>0
27 — Z E(R(O, m)Pﬂ)(n-i-l)/P(l _ pr)n/qprl/q‘
28 n=0
29 By Theorem 1.12, we can take p > 1 sufficiently close to 1 such that E(R(0, n;)??) < oo and then by
30 (7-3) we take r € (0, 1) sufficiently close to 1 such that
31
- E(RO, n)")!P(1 = pp)? < 1.
33 Thus E(R(0, 7)) < oo for r sufficiently close to 1. We now prove that E(R(0, ﬁrk)/’) <E(R(O, ﬁf)/’)k
34 for k > 1 by induction from which the general statement directly follows. The k =1 case is trivial. For
35 the induction step, let C, be the connected component of 7, containing 0 and let v, : D — C, be the
36 unique conformal transformation with v, (0) = 0 and v/(0) > 0. By the Schwarz lemma | (z)| < |z
37 for z € D so that ¥, (r*~'D) C r*D and hence, by the spatial Markov property of CLE,,
38
” E(R(0, 77)"”) < E(R(O, 717-1)”) E(R(O, 7))")

39—

40 since p < 0. The claim follows. g



PROOFS - PAGE NUMBERS ARE TEMPORARY

170 NINA HOLDEN AND MATTHIS LEHMKUEHLER

1
1Y 2~ TB. Properties of the nesting statistic. We list some key properties that the function ®7,* introduced in

3
4
5
7
8
o
10
1

12

13

14

15

16

17

18

19

Theorem 1.2 satisfies. In the later sections on LQG, these properties (rather than the precise definition) of
the function ®7* will be used. We will make use of the terminology from Section 5A, in particular the
notion of a CPI. There are completely analogous statements for the two lemmas in the « = 4 case which

, we omit since they will not be used in this paper and the description of the CPlIs is slightly different in

that case.

Lemma 7.5. Fix k € (8/3,8), 0 = (o0 : & # B C A) and consider a conformal transformation
¥ : D — D' for D and D' simply connected strict subsets of C. Let T be a nested CLE,, in D and write

Iy for the collection of its outermost loops. For z € D (with z; # zjfori# j)and U C D, we write
ZWU)={ieA:z; €U}. Then

O (W) i€ A) =] @I ©5* (@),

ieA

(7-4)
5 (2) = [E( [Te= T @™ Glzw ))’

nely Uel(n)

7 where (V) denotes the set of connected components of an open set V.

Now suppose that k % 4 and consider a CPI ). (with some asymmetry parameter) in I" from one prime
end wy to another prime end W, of D. Let L) be the collection of all loops in Ty that A intersects and let

201 /22 C;. be the collection of all open complementary components of the union of A with all loops in L. Then

21

22

23

24

25
2%
7
28
2

30

31

32

33

34

35

36

37

38

39

391/, —

40

% () = [E( [T [1 @Z'I(U)’K(zlﬂm))- (7-5)

1’]€L;L UECA

Proof. The first equality of (7-4) is satisfied by conformal invariance of CLE, and since we have
R(z;, U) ¥/ (z))| = R(W(z;), ¥ (U)) for any set U C D which is a disjoint union of simply connected
open sets (this follows directly from the definition of conformal radii). The second equality will follow
by conditioning on the outermost loops I'y of the nested CLE,.. In the following, we use the notation
appearing in Theorem 1.2 and we will split the outermost CLE loops into those surrounding exactly one
point and those surrounding at least two points. We obtain

E(l_[eniR(Zi, n?)" 1_[ e Ns@ | Fo)

i€eA BCA
#B>1

= l_[e""R(Zi,nf)p”f-< [T e ] qDyIW)'K(Zh(U)))

ni§14 nelo\{ni:icA} Ueld@®®)

i€lo

— l_[ £0Z@%) l_[ CD‘;]'I(U)*"(MI(U))’ (7-6)
nely Uel(n®)

where the second equality follows from the definitions. The second equality in (7-4) thus follows by
taking expectations on both sides and by using the definition of ®%* (z).
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1
1Y 2= The statement (7-5) is obtained as follows. First of all, note that I" and A are conditionally independent
o given ['y. Therefore

[E<l_[€mR(Zi, nl{))P{K,i 1_[ eGBNg(Z) | (&, Fo)) _ l_[ £9Z00) l_[ cb?]lI(U).K(ZlI(U))

i€A BCA nely Ueil(n®)
#B>1

[E(l_lemR(Zi, nl{))ﬂgi 1_[ eaBNg(z) | (r, Lk)) — [E( 1_[ 0T 1_[ ¢GU|I(U).K(Z|I(U)) | (A, Lk))~

N

>

o

_7_ by (7-6). By the tower property we get
8

o
0 icA BCA nelo Uetl(n°)

— #B>1

11

1, By Section 5A, the conditional law of I'y given (4, L;) is obtained by taking the union of L, together
13 —. with an independent nonnested CLE, 'y within each U € C} := Cj \ U,7E L, $1(n°). We deduce that

14

—_— o h opN°
15 [E(l_[e "Rz, 77?)/)0’ 1_[ e i@ | (&, Lk))

— icA BCA
16 < #B>1
17
- o olzw).K o alz(vy.K
. = l_[ 20T l_[ @7, (zlzw)) - l_[ [E( l_[ eOT00) l_[ @7, (zlzevy)) | Tu
— neL; Uell(n®) UeC; nel'y Vell(n?)
19
o olzw).K
20 = 1_[ e0T00) . 1_[ ® ,
201/ U (zlzw))
21 neL; UeC;

22

.~ Where the final equality follows from the second part of (7-4) applied to dJZlI(U)’K (zlzw))- The claim (7-5)

S, how follows by taking the expectation on both sides. ([

25 Lemma 7.6. Consider k € (8/3,8)\ {4}, B € [—1, 1] and a simply connected domain D C C. We also fix
26 two distinct prime ends wo and we. Let (I, 1) be a coupling of a CLE,. in D and a CPI with asymmetry
27 parameter 3 from wg 10 Weo in D.

28 Similarly, we let (I'', ") be the coupling of a CLE, (z) with a corresponding CPI from wg to weo in D
29 (see Definition 1.3). Recall the notation of (Ly, Cy) from Lemma 7.5 and define (Ly:, Cy) analogously.
30 Also recall the other notation from this lemma. Then the Radon—-Nikodym derivative of (1', L;) with
31 respect to (A, L) is given by

32

3 XY l_[ emo - [ o7 (2lzw)).
‘DD (2)

34 UeC;

*_ The conditional law of T’ given (), Ly) is given by taking an independent CLE,C(”I“” (zlzwy) for each

* vecy together with the loops L.
37

g Proof. By definition, the Radon-Nikodym derivative of I'; with respect to Iy is given by

39

1, o
39 /240 ( ) l_[ eUI(n} l_[ ¢U|I(U) (Z|I(U))

o nel’o Uei(n°)
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1
1Y . Therefore the Radon—Nikodym derivative of (A, L;/) with respect to (A, L;) equals

nel; UeC,

51

i m [E( 1_[ eUI(nO) 1_[ cI)UUlI(U}’K(le(U)) | ()\” Lk))

4 b nel Uett(n®)

5

S 1 .

. =g 10 1 o0 @lzwp. )
7

8

where the equality follows from Section 5A as in Lemma 7.5. To see the final part of the lemma, by

o the definition of a nested CLEY (z), it suffices to describe the conditional law of T given the process
10 (A, Lj/). The statement in this case is a consequence again of reweighting the conditional law of 'y
11 given (A, L;) described in Section 5A. O

12 7C. Spatial independence for simple CLE. The aim of this section will be to establish Theorem 7.1 in
13 the case k € (8/3, 4]. For this, we rely on the construction of nested CLE, using the Brownian loop soup.
' We thus begin by quickly reviewing this construction. Consider D C C and define the following infinite

> and nonatomic measure on C([0, o), C) by
16

- o
17 MD:/ dz/ ar P& pi( L (10.17) € D).
e D 0 t

1o Here p;(z, w) = exp(—|z — w|?/(2t))/(2t) is the heat kernel, PZt is the law of a Brownian bridge in C

5o from to z to z of duration ¢, i.e., it is the law of z+ B. ., — (1 A (- /1)) - B; where B is a two-dimensional

20Y/o—

391/,

»1 standard Brownian motion and w is the coordinate process on C ([0, oo), C). The measure pup is called
-, the Brownian loop measure and was introduced in [Lawler and Werner 2004].

-3 Two key properties of the Brownian loop measure are its conformal invariance and its restriction
-4 property. To state them properly, let ~ be an equivalence relation on C (9D, C) such that n ~ 7 if there is
-5 an orientation-preserving homeomorphism ¥ : 9D — 9D such that n(s) = (¥ (s)) for all s € dD. Then
26 C(0D, C)/ ~ is the set of loops on C viewed modulo reparametrization of time. The measure 1 p induces
,7 ameasure fip on C(dD, C)/ ~. Conformal invariance means that ([£] > [¢ o £])+ip = fip for every
- conformal transformation ¢ : D — D', and the restriction property means that jip restricted to the loops
.o that are contained in D’ is the measure fip whenever D’ C D C C. The conformal invariance can be
50 found in [Lawler and Werner 2004] while the restriction property is immediate from the definition.

351 Let L. be a Poisson point process with intensity cup (called the Brownian loop soup of intensity ¢
3 in D). L, is a.s. an infinite collection of loops and we say that two loops ¢, £’ € L, are in the same cluster
53 if there exist loops £, ..., £, € L. such that £y = ¢, £, = ¢/, and ¢; intersects ;| fori =0, ...,n— 1.
54 For each cluster, we can consider the closure of the union of all the loops within it; whenever the outer
55 boundary of a cluster is a simple curve, we add it to a set C. (all curves are viewed up to reparametrization).
36 In fact, it turns out that almost surely, all clusters have a simple outer boundary. The remarkable result

57 due to Sheffield and Werner [2012, Theorem 1.6] is that C. is a CLE.

38 Theorem 7.7 [Sheffield and Werner 2012]. When c € (0, 1], C. is almost surely an infinite collection of
39 disjoint simple loops and has the law of a nonnested CLE,. in D with « € (8/3, 4] where k and c are
40 related via ¢ = 3k — 8)(6 — k) /(2k).
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(g k>1) (nf: k> 1)
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© |00 [N |[O o -y w N = o | © 0 | N S | o S w N

Figure 7. Illustration of the proof of Theorem 7.1 for k € (8/3, 4]. Left: the clusters of
the loop soup restricted to the ball Bj>(z;) that touch the outermost and second outermost
cluster are drawn in red and green, respectively. The blue loops are not contained in
Bs2(z;) and we therefore obtain larger clusters. Right: these are the (nested) clusters of
the whole CLE. Note that some of the red loops on the left no longer touch the boundary
of the new outermost cluster and hence now contribute to the boundary of the second
outermost cluster.

It is also true that £. encodes an entire nested CLE,.. Indeed, let CC1 = C, and inductively define C;’H
o from C" and L. as follows: Let £*! be all the loops in £, that are surrounded by a loop in C” but do
S, hot intersect any loop in C”. The collection C"*! is then obtained from £"*! as its set of outer cluster
g boundaries (analogous to the construction of C. from L.). Finally, let C2° = Unzl Cl.

-3 Proposition 7.8. When c € (0, 1], C2° is a nested CLE, in D with k € (8/3, 4] where k and c are related
5 by c= Bk —8)(6—k)/(2k).

25 Proof. This is an immediate consequence of [Qian and Werner 2019, Theorem 1] and Theorem 7.7. [

2° " We can now establish Theorem 7.1 in the case where the CLE is simple.

j% Proof of Theorem 7.1 for k € (8/3, 4]. Without loss of generality D =D and py, ..., p, <0. The proof
o will exploit the coupling in Proposition 7.8 of a nested CLE, CZ° with a Brownian loop soup £,.. Note
o that the balls B;s/»(z;) € D foralli =1, ..., n are pairwise disjoint. For each i < n, if L.(i) denotes
o the set of loops in L. that are contained in Bs;(z;) then L£.(i) has the law of a Brownian loop soup in
o Bs»(z;) and hence defines a nested CLE, CZ°(7) in Bs/>(z;) via the outer boundaries of its clusters. For
- i <n,let

. (ix:k=1) and (g :k=1)

35 denote the loops surrounding z; in C2°(i) and C2°, respectively, such that both collections of loops are
36 ordered according to their nesting structure.

37 Fix i <n. The key property we need is that (1, ;)° S (n;fk)” for all k > 1. We prove this key property
38 by induction on k. See Figure 7. The induction hypothesis k = 1 is clear. For the induction step, we
39 assume that the claim holds for £ and we wish to deduce it for £ 4+ 1. This follows from the simple

40 observation that a Brownian loop that is strictly contained in (n;)? is also strictly contained in (n;rk)".
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1Y > Inthe notation of the theorem, let N be the minimal integer such that

3 (niy)° Sny forall i <n.

4
~, Combining this with the inclusion (n; ;) € (n;fk)o whenever i, kK > 1 and applying Holder’s inequality

s With exponents p, g > 1 such that 1/p+1/g =1 yields
7 n n
o [E(]"[R(zi,n,-”w) 5ZE(HR(Zi,(n;k>O)Pf;N=k)
o i=1 k=1 Ni=1
I n 1/p
o < Z[E(HR(ZL', (n;k)")f’fl’) P(N =k)!/4
i k=1 Ni=1
12 n
— _ 1
5 = > [TERG:. 70)7?) "RV = k)
14 k>1i=1
= =2 1_[ 2V ERQ. 70 RN =
16 - . 2 kil 7] - ’
il k=1 i=1
17
s where 7 is the outermost loop in C2° surrounding 0, and we used independence of the CLEs (C°(i) :i <n)
1o and the conformal invariance of CLE. We take p > 1 sufficiently close to 1 such that p; p > —1+2/k+3k /32
-0 for all i < n. Observe that

20Y/o—
N <max{N;;: 1 <i<j<n}< Z Nij,
22 I<i<j=n
% where N;j is the number of loops in CZ2° surrounding both z; and z;. Now take 6 > 0 such that
24
25 !
E(R(O, 7°)PiP 1/p /q .
” 1‘! (RO, 7)")P < e
=
27
- By Markov’s inequality, Holder’s inequality and Lemma 7.3,
29 P(N = k) < e "  E(e"V) < =0 [E( l—[ eeN,-,) <o 1—[ E(e" (= D/20Nj 2/ (in=1) < ¢ . =0k
30 1<i<j<n l<i<j<n
31
- for some constant C > 0 where C only depends on §, 6 and the number of points n. The result is now
— immediate. (]
3
3% 17D. Spatial independence for nonsimple CLE. We will prove Theorem 7.1 for ' € (4, 8). The idea of
35 the proof is to use a coupling between CLE,. and a GFF & based on imaginary geometry and then use
36 gpatial independence properties of the GFF. Throughout the section we set k = 16/k’.
37 We say that & is a GFF with clockwise (resp. counterclockwise) boundary data on (D, —i) if it is a
3% Dirichlet GFF in D with boundary data given by
30%/,— b1 b/

X 3xm
+ =— + x arg(z) and — — + x arg(z),

Vid 2 Vi 2

40 —
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1
11/27 respectively, where x =2/+/k — +/k /2 and arg(z) € [—m/2, 37/2). For D an arbitrary simply connected

o domain with a distinguished prime end zo we say that 4 is a GFF on (D, zg) with clockwise (resp.
o counterclockwise) boundary data if & o ¢p — x arg(¢’) is a GFF with clockwise (resp. counterclockwise)
o boundary data in D for a conformal map ¢ : D — D satisfying ¢ (—i) = zg9. We use the name clockwise
Y (resp. counterclockwise) since in the coupling between the GFF and the branching SLE, described in (i)
- and (ii) right below, if the branching SLE,+ encloses a domain D by tracing its boundary in clockwise
e (resp. counterclockwise) direction, then /| p will have clockwise (resp. counterclockwise) boundary data.

E Lemma 7.9. Let D C C be a domain, let §, p > 0, let z € D be such that dist(z, C\ D) > &, and let h be
10 a GFF in D with clockwise or counterclockwise boundary data. Let by denote the harmonic extension of
11 h|p\p to B where B = Bs;»(z). Then there is a constant ¢ = c¢(D, 8, p) € (0, §/4) such that for all r < c
12 we have

- E(exp(p 15,0 1%)) <"

14
15 Proof. Using, for instance, [Evans 2010, Section 2.2, Theorem 7] (and the harmonicity of the function b)

16

1w IVh(w)| < €0 ave(lhl; 333(1))’
18

E where ave(|h|; d Bs(z)) denotes the average of |h| over d Bs(z). Therefore, for r € (0, §/2) and by Jensen’s

we can see that there is a universal constant co > 0 such that, for all w € Bs/(z),

20 inequality,

20Y/o—
21 2
- 2 2(r 2,
= 1615013 = w3 (5)ave(h?; 9B (2)). (7-8)
z Again using Jensen’s inequality implies
24
— 2
s exp(mped () ave(h 05;(2))) = ave(™ S 9By (2)). (7-9)
26
,; By combining (7-8) and (7-9) we get
28 2 2{ T 2 2.«
Y E(exp(p 1915, 13)) < E(exp(mpcd(5) ave(v’ 0Bs(2) )
» < ave(E(™ 5/ ); 0By (2)).
31
. The lemma now follows since the random variables h(w) for w € d Bs(z) are Gaussian with variance and
= expectation bounded above by a constant depending only on D and §. O
g We will now recall that there exists a coupling between the following three random objects, such that
35 each object determines the other three objects:
® (1) a GFF h on (D, —i) with clockwise boundary data,
37
55 (i) a branching SLE £ = (A; : z € Q) in [ started from —i with force point at (—i)~ (where Q is the
39 set of rational points in D),
391/ R

“40 (iii) aCLE, T in D,



iy
i

~

N

= ‘

- =
© |00 [N |[O o -y w N = o | © 0 | N S | o S w N

PROOFS - PAGE NUMBERS ARE TEMPORARY

176 NINA HOLDEN AND MATTHIS LEHMKUEHLER

Figure 8. Left: illustration of the coupling between (i) and (ii) and the definition of a
pocket (see Definition 7.10). The figure shows A, for some x; € Q (black), S;IV (blue),
and 5 (red). The two domains in light blue are pockets while the domain in light yellow
is not a pocket since its red boundary arc is ordered clockwise and its blue boundary arc is
ordered counterclockwise. Center: illustration of the coupling between (ii) and (iii). The
path obtained by concatenating the green, purple, brown, and orange path segments is
Azl[0.7,], while the path segments A |4, 1,1 (purple) and A, |(4,.1,] (Orange) are contained in
the outermost and in the second outermost CLE loop surrounding z, respectively. Right:
illustration of the proof of Theorem 7.1 for «” € (4, 8). The relative size of the various
circles is not to scale.

201 /22 There is also a coupling with counterclockwise instead of clockwise boundary data in (i) and with (—i)™"

21

22

23
4
25
2%
7
28
2
30
3
n
3
u

35

36
37
38

39

391/, —

40

instead of (—i)~ in (ii). We will focus on the case of clockwise boundary data and force point at (—i)~
and only point out the cases where the coupling is different for counterclockwise boundary data and force
point at (—i)*. We refer to Figure 8 for an illustration of the coupling.

A branching SLE, in D started from —i with force point at (—i)~ is a set of curves L=(A;:z € Q)
such that for each z € Q, the curve A, has the law of a radial SLE, (k' — 6) from —i to z with the following
force point behavior: The force point is initially located infinitesimally to the left (i.e., clockwise) of
the starting point —i; the force point flips to the other side whenever the curve completes a clockwise
(resp. counterclockwise) loop around z and before the flip, the force point lies right (resp. left) of the
tip of the curve. For any z, w € Q, A, and A, are identical until z and w lie in different complementary
components of the curve, and afterwards the two curves evolve independently.

The coupling between the objects in (i) and (ii) is based on the theory of imaginary geometry [Miller
and Sheffield 2016; 2017]. Recall from [Miller and Sheffield 2017] that for each z € Q, one can define
the following curves:

e an east-going flow line EZE : [0, 00) — D for h started at z which by convention merges into the
curve d) upon hitting it and traces a segment of 9D in counterclockwise direction until hitting —i,

 a west-going flow line .’;“ZW : [0, o0) — D for A started at z which terminates at —i but does not merge
into dD before that.

The flow lines are determined locally by % in the sense that if z € U € D for some fixed domain U
then the curves §ZE , §ZW stopped when they first leave U are a.s. determined by /|y . If an east-going (resp.



PROOFS - PAGE NUMBERS ARE TEMPORARY

LIOUVILLE QUANTUM GRAVITY WEIGHTED BY CONFORMAL LOOP ENSEMBLE NESTING STATISTICS 177

1
1Y 27 west-going) flow line hits another east-going (resp. west-going) flow line, then these two flow lines merge,

~, Wwhile if an east-going (resp. west-going) flow line hits a west-going (resp. east-going) flow line, then it
. will bounce off without crossing the west-going (resp. east-going) flow line.

o We next review some properties of the coupling between (i) and (ii) here and refer the reader to [Miller
Y and Sheffield 2017, Section 4] for a complete description. For any z € Q the curve A, can be constructed

7

-, aregiven by §ZW and §ZE , respectively. Suppose V C D is a complementary component of D\ (SZW U ézE )
— which lies between SZW and SZE ,and let x € 9V (resp. y € dV) denote the point of intersection between
o & and £F on 9V which is ordered last (resp. first).

. We obtain A restricted to V as follows: To the field i|y we associate the counterflow line in V
o from x to y (see [Miller and Sheffield 2016, Theorem 1.1]), which has the marginal law of a chordal
5 SLE,/(k'/2—4;k"/2—4) in V (from x to y); this is a boundary filling SLE with force points. If the GFF
" has clockwise boundary data and the force point of £ is at (—i)™ (i.e., counterclockwise or to the right

. of —i) then the coupling described above is identical.

16

. D\ A;. For a connected set I € 0V N A, we say that [ is oriented clockwise (resp. counterclockwise) if
e the points of / are visited in clockwise (resp. counterclockwise) order by A,. In particular, this definition
L, can be applied to the full boundary 9V (i.e., the case I = dV) when 0V C A,. If 3V N 9D # & then
—— we say that 0V is oriented clockwise (resp. counterclockwise) if dV N A is oriented clockwise (resp.

For z € Q let V be a complementary component of X, i.e., V is a connected component of the set

20
20'/>— counterclockwise) and the boundary data of / are clockwise (resp. counterclockwise). The crucial property

391/,

21

22

23

24

25

o and outputs a collection of curves on that domain, such that in the coupling above we have £ =

>, Yorr—sLe(h) almost surely.

28 Definition 7.10. Consider a coupling of the objects in (i) and (ii) above. A domain V C D is called a

29 pocket if it is a complementary component of A, for some z € Q and if dV is ordered either clockwise or
30

31

32
53 If z,w € Q, V is a complementary component of A,, and w € V, then A,, can be written as the

of the coupling with # is the following: if a9V is ordered clockwise (resp. counterclockwise) then the
conditional law of /|y given A, is that of a GFF with clockwise (resp. counterclockwise) boundary data
and the fields in the different complementary components of A, are conditionally independent given ..

We define a function Ygpp_. si.g Which takes as input a distribution on some simply connected domain D

counterclockwise. For U € D we say that V is a pocket in U if V is a pocket and the closure of V is
contained in U.

3, concatenation of A. until this curve encloses V and a curve A’ contained in V. Let £|y denote the
55 collection of paths consisting of these curves A’ forallw € Q NV.

* Lemma 7.11. The set of pockets V in U is a measurable function of h|y, and for any pocket V C U it

> holds a.s. that Yore—sLe(h|y) is well-defined and equal to Ly .
38

39 Proof. We encourage the reader to look at Figure 9 while reading the proof. We will argue that with
40 probability 1, a domain V C D with simple boundary is a pocket if and only if we can find a sequence of
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2
2

4
2
o
L

8
2 Figure 9. Illustration of the proof of Lemma 7.11. Left: § x/, *;'K, S;)IV (blue), é ,f , lfl,
0 and £ (red). Center: X, (black), &)V (blue), and £ (red). Right: A, (black), &}
f (blue), fl (red), and a pocket V (light blue). The pocket V is a pocket in U, where U is
12 the disk with boundary oU (light green).

13
1

= points (w;) € V N Q converging to some w € D and curves é w é L starting at w and ending at —i such
2 that the following holds (or the following with the role of left/right and E/W swapped):
16

17 » The boundary of V is equal to an initial segment of £

18 o The curves & u‘z, §£j merge into élﬁV , é E respectively, such that .§:}; Aé W and 55,- Aé L have diameters

19

w
w *

converging to 0 as j — oo.

20 A A A
20'/>— » The curve {,-‘fj contains EE, eV NV =gandéENV =0.

391/,

21

g The first assertion of the lemma then follows since flow lines are locally determined by the field to which
23 they are coupled.

24 If V is a pocket, pick x; € Q such that V is a complementary component of A,, and let T denote the
25 time at which Ay, encloses V (that is, the time at which A, finises tracing dV'). Existence of appropriate
26 points (w;) is now immediate since we can let (w;) € V N Q be points converging to A, (t) and we can

27 let éx’ and §£ be the left and right, respectively, boundary of A,, infinitesimally before time 7.
AE

. . W
28 Conversely, suppose we are given points (w;) and curves &7, &

satisfying the given properties
29 and assume without loss of generality that dV is equal to an initial segment of é W and not of é E We
30 claim that él}f’ and éf are the left and right, respectively, boundaries of A;, infinitesimally before this
g curve encloses V. If the claim was not true then A, would enter V at some point Z € 3V \ {w} before
32 finishing to trace @V, so (by definition of £) all the curves A;; would enter V' at z. This contradicts the
33 assumption that the left and right boundaries of A;; converge to the curves é W and § E 50 the claim is
34 correct. Furthermore, by letting x; € VN Q be a point which is not lying between 55 and 52‘}1‘/ and which
35 i in the same complementary component of A, infinitesimally before this curve finishes tracing 9V, we
36 get that A, N Az, is equal to Ay, stopped upon enclosing V' and that V' is a complementary component
37 of xi. Also observe that 9V is oriented counterclockwise, while it would have been oriented clockwise if
38 we had assumed that 9V is equal to an initial segment of 3 E instead of 3 v,

39 We have that Ygrr_ s e(h]y) is a.s. well-defined for all pockets V' since h|y has the law of a GFF

40 with clockwise boundary data (if 9V is oriented clockwise) or counterclockwise boundary data (if dV is
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1
—— oriented counterclockwise). We get further that Ygrr— s e(h|v) = L]y a.s. since by the construction of
L in terms of & we have that L]y is determined a.s. by the flow lines of the field 4|y . ]

The coupling between the objects in (ii) and (iii) is from [Sheffield 2009] and is also reviewed in,
e.g., [Miller et al. 2014] and [Gwynne et al. 2023, Section 3.6.3 and Remark 3.28]. We will not give a
complete description of the construction but recall some key properties.

We say that A, completes a counterclockwise turn around z at time t if A, hits its left boundary at
time t. We say that A, makes a counterclockwise turn around z during [o, 7] if it completes a clockwise

turn around z at time t and o = sup{r € (0, 7) : A,(¢) = A,(7)}. Define clockwise turns in the same manner
10 with right instead of left. Let [0, t;] be the first interval during which A, makes a counterclockwise
11 turn around z. Iteratively, for each even (resp. odd) k € N let [0y, 7] denote the first interval after
12 [0k—1, Tei] during which A, makes a clockwise (resp. counterclockwise) turn around z. The coupling
13 between the objects in (ii) and (iii) is such that A, ([og, Tx]) C nk, where 7y is the k-th outermost loop
14 of T surrounding z. We can find a sequence of z j € Q converging to A (o) such that ; is the limit of
15 Ag ; ([Oij , r,fj ]) for (say) the Hausdorff topology as j — oo.

16 If the GFF in (i) has counterclockwise boundary data instead of clockwise boundary data so that £
17 has a force point at (—i)* instead, then the exact same holds, except that the role of clockwise and
18 counterclockwise loops is swapped. Let Ts g cLg be a function such that I' = Ysr g cLe(£) a.s.

10 Forapocket V,let I'|y :={n €T :n C V} denote the loops of I" which are contained in V. A key
20 property of the coupling between (ii) and (iii) is that if V is a pocket then I'|y = Ysp g cLe(£]y) almost
21 surely. This can be seen by observing that if 9V is oriented clockwise (resp. counterclockwise) then the
2> outermost loop in V around a point z € V N Q corresponds to the first counterclockwise (resp. clockwise)
23 turn made by A. around z after entering V.

22 For U € D let 'Y denote the collection of loops 1 for which there exists a pocket V in U such that

s nCV.

26 Lemma 7.12. For any fixed domain U C D the collection of loops TV is a measurable function of h|y. If
27 n,n €Ty and n' is surrounded by n then n’ € TV

28 . . . .

— Proof. The first assertion is immediate by the last assertion of Lemma 7.11 and since, as stated above the
29

— lemma, I'|y = Ysi e cLe(L]y) for each pocket V. We get the second assertion by observing that the

30 . . .
— complementary component of 1 which contains 1’ is a pocket. O
31

5> Note that 'Y C{n el :neU}and that Lemma 7.12 does not hold with the set on the right-hand side

53 instead of 'V, i.e., the set of loops contained in U is not a measurable function of 4|y .

3 Proof of Theorem 7.1 for k' € (4, 8). It is sufficient to consider the case when p; < 0 for all i since this
g implies the general case. Pick p, g > 1 such that pp; > —1+2/k’+3«’/32and 1/p+1/q = 1. Then in
36 the notation of Lemma 7.9, pick r € (0, c¢(DD, é, n(g — 1)/2)).

37 Consider the coupling between a Dirichlet GFF /& with clockwise boundary conditions and a CLE,
38 in D described in (i), (ii) and (iii) above. Define B! := B,(z;). Let n; , denote the outermost loop in
30 B containing z; and define I; = R(z;, n; )”. Note that I; > R(z;, n?)”" since n; , is either equal to or

40 surrounded by n;. Define B; := Bs/3(z;).
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1 ~
11/27 Let F denote the o-algebra generated by h restricted to D \ |J; Bi, let h; be a GFF in B; with
o clockwise boundary conditions, define f, just as I; but with the field h ; instead of &, and let X; denote
the Radon-Nikodym derivative of /|p given F with respect to hil /- We have

[E(l_[l,-) = E(E(Uli |f)) = E(UE(Ii |]—")) - [E(U[E(iixi |;:)>

< [E(l_[ E( | PR | f)”") = l‘[[E(E”)””[E(l‘[[E(X? |f>”q>

< [TEG) P EEX] | Fy /ot (7-10)

1

4
5
6
7
8
9

10

11

12 By the last assertion of Lemma 7.12, the second outermost loop in B/ surrounding z; is either equal to or
13

14

5 [JET) < 0.

16

surrounded by 7; . Using this and Lemma 7.4 we get

17 For fixed i let b denote the harmonic extension of 4 from 9 B; to B;, minus the harmonic extension of the
18 boundary data of fz,- in B;. We have

19

201/2— i =exp| (hilg;. blp)v ——
21

— and further
22

) 1615112 "/
3 E(E(X] | F)V4) = [E([E<exp<q(hilB,-’» hilg)v = q#) | f) )

> _E n @ —=alblgl3
2 =[E|exp 5 5 .

27

— This is finite by Lemma 7.9, which implies that the right-hand side of (7-10) is bounded by a finite

28

. constant depending only on §. ]

30

— 8. LQG disks weighted by CLE nesting statistics

31

32 8A. Definition of the LQG disk weighted by CLE nesting statistics. We introduce the LQG surfaces
33 that are studied in the paper. We proceed in two steps: First, we construct a measure on fields on the
34 unit disk (Definition 8.1) and then use this to build the weighted LQG surface and weighted generalized
35 LQG surface in the simple and nonsimple cases (that is, without and with pinch points), respectively,
36 (Definitions 8.5 and 8.7). Then we derive explicit formulas for the partition functions of the disks in
37 the case of zero or one marked bulk points, and finally we explain the relationship between the partition
38 functions and LCFT correlation functions.

201/ 39 In the following definition we use the notation from Sections 5B and 5C and Definition 1.1. Let us
Nl

40 point out that the measure defined below is not a probability measure.
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1
11/2j Definition 8.1. Suppose that A, B C N are finite with #B = 3 and that w; € 9D for j € B are distinct
o points. Also, we consider ¥ € (8/3,8) \ {4}, 0 € 6,’?, £>0and A >0. Let o; = a(’; fori € A and

~ v =+/k A4/ k. We can now define a measure My ; on the space H~'(D) x D* by

02y D
(==) (v, 7, 7). w)
0.¢

MO0 =~ / Az oG @Zy T / PO (G 1y (k. 2)
D

5
6
2
8 for X € H~'(DD) x D* measurable. We write M, ", , when we want to emphasize the dependence on w
9 and we write — for the empty tuple.

% Remark 8.2. By Definition 1.1, when « < 4, the condition 0; < —logcos(4x/k) translates to o >
o 2/y +y/4 and when « > 4 it translates to oy, > 1/y + ¥ /2. These constraints appear also in Section 6
5 for the same reason. Indeed, in both cases this threshold arises because we need to assume finiteness of

" CLE conformal radius moments.

15 Remark 8.3. The constant prefactor in the definition of the measure is chosen such that |M, ;| = 1 and
6 Mg = P2y Lo |Mg (| for £ > 0. These conventions are the most convenient ones when stating results

17 such as Proposition 8.11.
18

19
o field in the definition above does not depend on w.

20Y/o—
21 Lemma 8.4. Let us consider the setting of Definition 8.1 with B = {a, b, c} and consider another tuple

The following change of coordinates result implies that the law of the y-LQG surface associated to the

22 (w}, wy, w,) of distinct points. Let ¢ : D — D be the unique conformal or anticonformal transformation

23 mapping (Wq, Wy, we) to (W), wy, w..). Then
24

> f My*s (K d2) f(K op+ Qylogld'l. 671 (2) = f M (dk, dz) f (K, 2).

26
27 Proof. By unpacking the definitions and subsequently using the change of coordinates formula [Huang
5 etal. 2018, Theorem 3.5] (see also Section 5B where the relevant Liouville conformal field theory notions
29 Were introduced) we get

30

o | MyS, @K dZ) f(K op+ 0y logld|, 67! ()

2 2y 2 ) o
= dz’ o

33 7y /DA Z®p (@)

34 0.¢

& 2 [P I £ 09+ 0, log 10 67

36

; 020y Yai

38 Z(()—e,—).((y.yyy),w )

, - £ (Qy—ak /2 -
/ dz’ @) [ TI@™Y @I @2 [T i@~ w)
DA ieA jeB
39
391/, — @ (VY p)s L@ (v y), -
fa Lz Oy "’)/Pﬁ"f[” @ g £ 71 ().



PROOFS - PAGE NUMBERS ARE TEMPORARY

182 NINA HOLDEN AND MATTHIS LEHMKUEHLER

1
1Y 27 Moreover, again by [Huang et al. 2018, Theorem 3.5],

(= =) ((y.7.7)w") (==).((y,7.y),w) -1
2y ) 2 g ST 7 ()]
jeB
and the claim is then immediate after making the change of coordinates z’ = ¢ (z) and using the behavior

of ¢B‘K under conformal transformations as stated in Lemma 7.5. O

The previous lemma implies that we can define a y-LQG surface with marked points in the following

ofef~]ofo]s]e]

way.

E Definition 8.5. Let x € (8/3,4),£ >0, A>0ando € 6,’3 for finite A € N. Then we define a measure
i M 'I’\'z on the space of regular y-LQG surfaces by
12

13 M7 (X) = f My (dk, d2)1([(D, k. 2)] € X)

14
o for each measurable set X. We also let

O.K . | aq0.k) __ 0.K
16 Wiy = |MA,€|_|MA,€|‘

17 —
o If WYy < oo we say that (g, k, A, £) is admissible and call M f\'z /W{'y the regular y-LQG disk with
o boundary length ¢, cosmological constant A and weights o.

20 Remark 8.6. We consider fields with three marked boundary points since this guarantees that (5-7) is

20Y/o—

391/,

o1 satisfied; see Remark 5.4. Having three marked boundary points gives a natural way to fix the embedding
2> of the disk since we can map the three marked boundary points to three fixed points on the boundary of
23 the disk.

24

Next, we will make an analogous definition in the case when «” € (4, 8). In the following definition, recall
2> the definition of a Lévy excursion from Section 5C and the definition of generalized disk without marked

25 points from Definition 5.8. In the definition below and throughout the text we write o |3 = (o¢ : C C B)
27

28 — ’
o Definition 8.7. Let «’ € (4, 8), A C N finite, o € 6?,, A > 0and ¢ > 0. We now define M‘I’\'j to be a
., measure on the space of generalized y-LQG surfaces as follows. Let E be the time reversal of a length £

whenever B C A.

o spectrally positive Lévy excursion with exponent 4/2. Then we set

2OME(X) = [E( > /1‘[ M,jff;;\AQ,g;‘”'(dkt,dzt)l((E,{(r,[(D,k,,z,,wa)]):t<z, Aet;éO})eX)>
170

33
ell(E,A) t<t
¢ AE

34
35 for each measurable set X where [T1(E, A) denotes the set of nonincreasing cadlag functions Q : [0, £] —
36 P(A)suchthat Q9= A, Q¢ = and AQ, := Q,;_ \ Q; = & whenever AE, = 0. We also let

- Wi = 1ML

38

30 If WXj'zl < oo we say that (g, «/, A, £) is admissible and call A7I‘1’\”'z,// WK’; the generalized y-LQG disk
40 with boundary length ¢, cosmological constant A and weights o



PROOFS - PAGE NUMBERS ARE TEMPORARY

LIOUVILLE QUANTUM GRAVITY WEIGHTED BY CONFORMAL LOOP ENSEMBLE NESTING STATISTICS 183

K/

1
1/, . . . = . . .
1/ 5 We do not include w in the notation M ‘;\ ¢ since this measure does not depend on the choice of w (by

~, Lemma 8.4).
~,  Akey question is when admissibility holds and what the values for the partition functions are. Here, we
~, will answer this question in the case of a single bulk singularity, i.e., #4 = 1 or no bulk singularities, i.e.,

~_ #A =0 both in the simple and the nonsimple case. The case of more than one singularity will be studied
in Section 9. By making use of Proposition 5.5 the proof will be quite short. For the following results,
recall the definition of modified Bessel functions of the second kind (see the beginning of Section 4) and
-, define K, as in (1-13).

E Lemma 8.8. Suppose that k € (8/3,8)\ {4} and let y = \/k N4/ /k. Assume that A ={i} and let & = af..

11 Then [M, ;1. IMy"y| < oo forall £ > 0 and A = 0, and
12

- 0 .K

13 e = A IMpel — oury = A
= My l=Kyolt- ] : = = Koy 0,—a| € :
» | Al | 4/y2< sin(ny2/4) ) |M&,1K| 2/y(Qy—a) sin(ny2/4)

2 Proof. By Definition 8.1 (with w as in that definition) we get
16

(==) (¥, 7,7)w)

e —k _ ZAE _ | Al @ p=)(ry.y)w)
18 IMyel= Z O rnw —/e Fo. (@k).

19

— The two results [Ang and Gwynne 2021, Theorem 1.2] and [Ang et al. 2023b, Theorem 1.3] show that

20
20 2 the law of the area of the unit boundary length y-LQG disk as defined in Definition 5.7 is an inverse

391/, —

22

—1/(4si 274
i /e—AN—k (D) P(— =) (V7. 7)s W)( ) 1 fme—Aﬁzt e /(@sin(zy?/4)1) dt
- F(4/)/2)(4 sin(ry2/4))4/7? 114772

25

Gamma distribution with shape parameter 4/y? and scale parameter 1/(4 sin(y?/4)). Thus

—ALx@sinGrya)—1/x 94X

& B F(4/y2> /0 ‘ X
- and the first claim of the lemma follows from the definition of the modified Bessel functions as given at

“_ the beginning of Section 4.
29

— If#A ={i} then CIDYD’K(Z) = R(z;, D)” where p := p5 = a(Q, — Q). By Proposition 5.5 therefore
30 i

31 620(/}/
3 |MO| = 1 (G wawp)+G (wp.we)+G (we.w)) /2 7@.0).(v.1)
32 AL Z(—»—)A((V»J/y)/),w) 2 ALl

— 0.¢

33

- where the finiteness of the partition functions on the right-hand side is recalled in Definition 5.3. Therefore,

< 00,

35 0.k (a,0),(y,1) (@,0),(y,1)

= 20y Myl Zxy Zle _ /e—le‘Z(D) GNP
0.1 T L (@0).(r.1) T 5 (,0).(y.1) 0.1 ’

— Mol zy, Zys

37

g As stated in [Ang et al. 2023b, Theorem 1.2], the law of MZ (D) when k ~ P, (O{ 0-@:D i¢ an inverse Gamma
30 distribution with shape parameter 2/y - (Q, — a) and scale parameter 1/(4 s1n(71 y2/4)); note that in their
40 setup the boundary y singularity is mapped to a point that is uniformly sampled from 9D which of course
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1
1Y . does not affect the law of the total area. The second claim now follows from a computation similar to the

20Y/o—

391/, —

one for the first claim. O

3

4 We now deduce the corresponding results for the total masses of the measures on the space of
5 (generalized) LQG surfaces and conclude the proof of Theorem 1.8. One thing worth remarking is that
"6 in the definition of a Lévy excursion we introduced an arbitrary convention: if b is a unit length Lévy
7 excursion constructed from a Lévy process B (see Section 4) and ¢ > 0 a constant then ¢ - b is the
“& unit length Lévy excursion associated to the Lévy process ¢ - B. This arbitrary choice in multiplicative
"o normalization is reflected in the appearance of the sin(ry%/4) term below; by changing the normalization
10 of the Lévy excursion in the ¥ > 4 case, we could also replace it by another arbitrary constant depending
11 on y and «, for instance, sin(mw« /4).

12 Proof of Theorem 1.8. The case k € (8/3, 4) is immediate from Lemma 8.8 and Definition 8.5. For the

13k e (4, 8) case let
14

_ A A 2/}’2
15 c= s v=4/y} O=ay/2, c/=0”21_”:2(#) '
16 sin(ry=/4) 4sin(wy=/4)

17 'We only consider the A > 0 case; the A =0 case then follows by monotone convergence. By Definition 8.7

18 we have
19

20 WX.’;:[E< l_[ | A|AE,||) Wiy = < Z IM3AE, l_[ M, |AE5||>

t<t t<t st
21 AE,#0 AE#0 AEg#0

22
; where E is a spectrally positive Lévy excursion of exponent 4/y2 and duration £ (since we are only using

o the sequence of jump heights, we do not have to consider the time reversal). Thus by Theorem 4.1 and

. Lemma 8.8, we get

% Wyt = [E( [ I?V(cAE,)) =Ki(c'0)
27 t<t

- AE#0

.9 from which the first claim follows. Also

30 WX*Z 2(C/2)1+v—9v |
— = AE)'™K AE K, (cAE,
o R TG ( Z (AE)"' K14y g0 (cAE)) 1;[ o(c ))
32 AEﬁéO AE #0
33 2(0/2)1+V_9U /1/vI(—=1/v)sin(m(14+1/v—80)) 1+1/VK (/K)
= * - C
34 T(14+v—0v)  Jy[ (=) sin(r(l +v—6v)) 1+1/v=0
3i A 2/)/
="Ky oo | 20| ——5—
. ¢ 712\ “\ Fsin(mp2/4)
37
g for a constant ¢” > 0 which does not depend on A and £. The claim follows. (]

39 For future reference, let us also record the following corollary which is a direct consequence of
40 properties of modified Bessel functions and will be applied in Section 9.
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1
11/27 Corollary 8.9. Suppose that k € (8/3,8)\ {4}, A= {i} and A > A" > 0. Then there exists a constant

-, C=C(oi,k, A, A") such that WX:Z <C W;,‘!'z forall € > 0. There is C, > 0 such that, for all A > 0 and
— £>0,
4

s 1= Wy < Ce AL,

; ,
~, Proof. Let us first recall the following asymptotic for modified Bessel functions of the second kind (see
3 Equations (9.6.2) and (9.6.10) in [Abramowitz and Stegun 1964]):

iK B bid 1 X _V+ 1 X _”+2+ 1 x\"
10 “(x)_zsin(m)(r(—vH) (5) T(—v+2) (5) F(v+1)(§))

— +O0E™" M 4+x"?) asx—0
12

13 forall v > 0. Therefore, by Euler’s reflection formula and the definition of K,,

14

5 1=K = — (5)2+ i (f)zv+0<4+ 2042 S0 381
B VW =TT1\2) T sinea T+ D\ 2 o L= -

16

17 In particular we obtain K,(x) — 1 as x — 0 and this combined with the Bessel function asymptotic (see
18 Equation (9.7.1) in [Abramowitz and Stegun 1964])

19

- s —x

20 K,(x)~. —e as x — o0
201/, — 2x

21

5, and Theorem 1.8 readily yields the first claim. For the second claim, we observe that (8-1) implies that

o, forv e (0,2) there is C!, > 0 such that

24 1-K,(x)<C x*® forall x > 0.

25

,6 The claim then follows again directly from Theorem 1.8. U

27 In the « € (8/3, 4) case, by considering the total mass of the measure in Definition 8.1 we get

28

= 2y X

29 WX: — /Adz d)ED,K (Z)Zx’l’;)a((%%}’lw). (8-2)
D

; Z(()Tg,—),((y,y,y).W)

31 Let us now consider the setting of Definition 5.3 and define s :=) , o; +1/2 )" j Bj — Q. In the context

#2_ of Liouville conformal field theory, the constants
33

- 2s/y—1
34 Z[I;CFT 207 "

£(e.2).(Bw) "=
35 @0 (B.w 14

£ are the fixed boundary length LCFT partition functions (with certain boundary and bulk singularities) —
37 the multiplicative prefactor is an arbitrary convention which we include to make our presentation consistent
38 with [Huang et al. 2018]. We believe the relation (8-2) to be possibly useful for the following reason.

~%

e i ﬁf/SZE\Oi,EZ),(ﬂ,w)

39 This work explains how the expressions WX:; can in principle be iteratively computed (see Remark 1.10)

391/, —

40 so if the fixed boundary length LCFT partition functions could also be determined as a function of the
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% position of the singularities and the cosmological constant, then this could be used to obtain information
-, about the CLE observable op .

", We remark that the constant Zé}’_)’((y’y’y) ) appearing in (8-2) can be determined explicitly using
-, results of [Remy and Zhu 2022]. We also remark that the fixed boundary length LCFT partition functions
T, are closely related to the LCFT correlation functions; indeed, if /4 is as in Definition 5.3 then the LCFT
~ correlation function is given by

5
o

LCFT B2/8 ~(a,2) —Altpie(D _ LCFT
ZA (a,2),(B.w) — =e Z] ﬂ] C(ﬁ,w) -/[E(e Hie( ))ecs dec = fZA,e.(a.z),(B,w) dga

10 where the second equality is obtained by making the change of coordinates ¢ =2/y - (log £ — log v, (3D)).
11 Note however that the LCFT correlation functions (in contrast to the fixed boundary length LCFT partition
12 functions) will be insufficient to extract information about the CLE observable ®{* since the LCFT
13 correlation function is a polynomial in the cosmological constant A; this can be seen by making a change

14 of coordinates £/ = £+/A in the above display concerning LCFT correlation functions.
15

16 8B. The LQG disk weighted by CLE nesting statistics as a limit. This section is devoted to the proof of
17 the following proposition. It says that the field describing a -LQG disk (or a single component of such a
15 disk in the generalized case) with zero interior marked points (see Section 5C) converges to the field of a
10 disk with singularities (a; : i € A) (see Section 8A), upon a reweighting by the expression

201/22 l_[(éa /2 petihc (z,

391/,

21
_ i€eA

z where the z; points are sampled independently from the Lebesgue measure and 4. (z;) is an appropriate
z approximation to s evaluated at z;. In other words, we are showing how to obtain the measures in
= Section 8A using a limiting procedure which is going to be crucial in the proofs in Section 8C in order to
2% transfer results from Section 5D, i.e., the case without marked points, to our setting with marked points. In
— Section 8C we will be in a scenario where the mollifier we use to define /. (z;) is not entirely independent
g of the field & (because these mollifiers will depend on mapping out functions defined via the field /) and
— for this reason we prove the result below in this generality. The reason for including the space E in the
% result below is that we want to allow for sampling other geometric objects conditionally on the field 4,
o for example we will sample a CPI where its target point is sampled from the LQG boundary measure

— associated to h.
32

33 Proposition 8.10. Let x € (8/3,8)\{4},£>0,r € (0, 1/4), A C N finite, A > 0, and define K < DA by
? K={z=(z:i€A) e B_(0)": By (z;)N B (z;) = DVi # j}.

36 Consider some measurable space E. Let B ={a, b, ¢}, (Ba, By, Bc) = (¥, ¥, ¥), and let w = (wq, wp, W)
37 be three distinct boundary points of 0D ordered counterclockwise. We consider a probability kernel p
38 from H™ (D) to C(Dx (0, r/2) xD) x E (so u is a probability measure on C(D x (0, r/2) x D) x E for
39 eachk € H~ (D)) where we denote elements 6 of C(D x (0, r/2) x D) by (z, €, w) —> 0:(w). Let Gp, ()
40 denote the Dirichlet Green’s function in B, (z). We assume that for all k € H™ YD), (0, x) — 0)yux is
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1
1Y . supported on functions 0 with the property that for all z € B1_»,(0) and € € (0, r/2) we have
[z du =140, suppei) € oo
D

1
/.;)zG(w’ wHOF(w)0F (w') dw dw' = log RG.D)e +0¢(1), (8-3)

f G 5,10y (w, w))OZ ()02 (w') dw dw' = log = + 0, (1)
B, (2)* €
as € — 0 where the o.(1) is uniform in 7 € Bi_,(0), in 6 and in k.” Lastly, we suppose that f :

H (D) x DA x E — [0, 00) is measurable, bounded and satisfies f (k, z, x) =0 for z & K. Almost every
11

— k sampled from Mw 0.¢ satisfies lim, oo f(k + g5, z, x) = f(k, z, x) if (g3) is a sequence of continuous
12

B
N
B
6
7
B
B
0

— functions with compact support in | _J; Ba,(z;) which converge uniformly to 0 away from the points of 2
13

— such that lim,,_, o || g% || -1y = 0. Then
14

. f Flk, 2, 0) @5 2) [ J (€4 24k ED)eME®) 1y 1o (6, dx) dz My (dk)

2 icA

17

e —>/f(k,z,x)uku(de,dx)M,‘;f\e(dk,dz) (8-4)

18

19

20

201/ 27, extension of k restricted to the complement of \U; B+ (zi) (see Section 5B).

as € — 0 where dz denotes Lebesgue measure on tuples z=(z; €D :i € A) and k12 denotes the harmonic

22 Proof. For each z € K*, we decompose 4 (a Neumann GFF in D) as h° = h% 4 b7 into its projection onto
23 g1 (Ul B, (zi)) (called h?) and the harmonic extension of A° restricted to the complement of | J; B (z;)
24 (called h*). Crucially, A and h* are independent and 4% has the law of an independent Dirichlet GFF on
25 eachball B,(z;) fori € A. Let G*: D x D — R (resp. G* : D x D — R) denote the function describing

26 the covariance of h* (resp. h*), and note that G = G* 4 G*. Recall that (using that h0 = b2 + h?)
27

2 2
2 h:ﬁZ%@Z%G(-,w,), h*=h—;logv,’:(8D)+;log€.

29 JjeB

2 As pointed out in Section 5B we have that v}: (0D) = v}:_ 42 (0D) and we see that this random variable is

31 .
— measurable with respect to h*. Furthermore,
32

. 2 2
3 h*“:f)z—i-Z%G(-,wj)—;logv}l/(aﬂ]))—i-;logﬁ,

34

35
o which is hence also measurable with respect to h? (this is the crucial observation which will momentarily

- allow us to apply Girsanov’s theorem). By unpacking the definitions and using the notation (with no

jeB

38 —————
— "When 6% (w) dw is replaced by the probability measure o7 with uniform mass on the circle d B (z), (8-3) is also satisfied.

391/,— 39 One can make sense of the function (z, €) — k(o) in the setting of the proposition and the random process is called the circle
40 average process associated to k. However, for technical reasons, we work with smooth bump functions instead.
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1
1Y . marked points in the bulk, w as the marked points on the boundary and boundary length ¢) appearing in
Definition 5.3, we obtain that the left-hand side of (8-4) equals ¢ - f x Ae(z) dz where

3
£ o Y (D472 = Aty (D) 7. o2/2 i (67)
. Ac(z) :=E [ v, (OD) e fhe, 2, x)®Pp" (2) | | €%/7e WLz (dO, dx)
— icA
6
7 and cp= [E(v}l’ D) Vz_z)_l. For z € K we now condition on h?, fix a realization of  and apply Girsanov’s
8 theorem in the setting obtained after conditioning on the field h* by considering the reweighting
2 neaf/zeaih*(ejf) _ ehz(gb)—%f(/)(w)gb(w’)Gz(w,w’)dwdw’
10
—_ ‘EA - Z.
= | ' l_[(eaiz/zediz/ljér(mz G*(w,w")o (w)o (w') dw dw’)
£ icA .
= e O 2R sen GO ED,, gy =2y g2 7,
14 icA

% where ¢ =), _, «;0% and we used that G*(w, w’) =0 if w € B,(z;) and w’ € B,(z;) fori # j. Note
o that we have written the expression in the display above so that the first line on the right-hand side has
o expectation 1 and is the term we are reweighting by when applying Girsanov’s theorem. Indeed, the
o Girsanov weighting

20 exp(hz(qb) 1 /gb(w)gb(w’)GZ(w, w’) dw dw’)
201/, — 2

21

5, induces a shift of the field 4% by

=3 |

. > a fGZ(-,ymj' (y)dy.

- i€A

25

., Formally, for z € K the field ;. has the same law as that of & weighted by

27

. exp(h @)~ & [ 916w w) dw du).

% where we make the definitions

30

o Gi.w) = [ G yor o ay.

32

. hoe = +h+ Y @Gz + Y TG w)).

2 icA jEB

3 2. oy 2

— h*z.e = hz,e - — log Vi (8|D) +— IOg L.

36 Y o 4

37 For later reference we also let (7,0, hsz,0) and (hz, hy;) be defined analogously, only with G* and G,

38 respectively, in place of GZ (compare the latter definition with Definition 5.3). Girsanov’s theorem yields

39
39—

40 Ac(g) =027 Zeact [E(/ BdZﬁ,x)Mhiz(dH,dx))
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1
1
17/2 5 where

20Y/o—

391/,

Be(z.0.x) = v] (D)7 7272 Tiesng=Muhec @ f(h, 2, 1) D% (2)
: H(Ea?/zea?/z'fmmz G .6 (! (') dwdw’ a7y /250 G w0y
icA
By our assumptions (noting that G* = G p,(;;) on B, (z;)? by definition), we see that
Be(z.0.x) = v (D)7 2727 Reaciom Mo @ f (2. ) (2)

' H(ra?/zeawa,-)w/z Yjen Gy

ieA

=
= o | © o] ~ o | a S w

E as € — 0. Note that the right-hand side does not depend on 6. Moreover, since 4/y?—2—2/y Diea@i <0
13 and using our assumptions, we may bound
14

r Be(z. 0.3) S i G220 Reaer TP = Ce(2),
i€cA

16

17
g deterministic constant for z € K we used Theorem 1.2. By the mean value property of harmonic functions,

19

20

where the implicit constant does not depend on z € K and also not on 6; to upper bound &7 (z) by a

we see that SUPg,, 1) h* < Ch*(z;) uniformly in z € K for some constant C < oco. Using Holder’s
inequality and the fact that the total mass v%’z i (D) has all negative moments and that these are bounded
uniformly in z € K (see [Rhodes and Vargas 2014, Theorem 2.12]) we see that sup, ., E(Cc(2)) < oo.
Thus by dominated convergence, we obtain

21

22

23
; / Ag(Z) dz — £2/V ZieA o /[E(v}l/zo(a[]))4/yz_2_2/y ZieA aie_AILh*z,O(D)f(h*z,O’ Z, x)
—__JK ’

25

26 O (2) - [ [ 2e Oty 2R e Glery) ))> M= (d6, dx) dz

27 i€eA

28

as € — 0. The right-hand side can be rewritten as follows. Note that since G* = G — G* and by the
2% continuity of G* we have G*(z;, z;) = —log R(z;, D) — log(r) and furthermore G*(z;, z;) = G(z;, z;) for
30§ # j. We perform a Girsanov shift by

eZieA aib®(z) eZieA aih* (@) =1/23; jep icjG (zinz)) n(rR(Zi, D))_aiz/z l_[ eaiai’G(Zi»Zj)7

31
i€cA i,i'eA

32
i<i’

33

**_ which shifts the field b up by > ;.4 @iG*(-, z;). Rearranging the resulting expression (which now

*_involves the fields . and h,;) yields the claim. ]
36

37 8C. Chordal exploration of LQG disk weighted by CLE nesting statistics. This section is devoted to
38 the proof of Proposition 8.11 below. The proposition says that if we consider an LQG disk with an
39 independent CLE, weighted by the CLE nesting statistics (as in Definitions 8.5, 8.7, and 1.3), then the
40 boundary length process of the CPI has a law which is reweighted in an explicit way as compared to the
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1
-, case with no marked points, and the loop-decorated LQG surfaces in the complementary components of
o the CPI have the law of independent CLE decorated LQG disks reweighted by CLE nesting statistics,
conditioned on their boundary lengths and marked points.

4
o The idea of the proof is to start with the analogous result for disks without marked points (proved in

Y [Miller et al. 2021; 2022]) and then do a particular reweighting of the measures. The reweighted measure
- gives us the surface and loop ensemble in Definition 8.5 (or, in the generalized case, Definition 8.7) and
e Definition 1.3, respectively, via an application of the Girsanov theorem. A closely related strategy was

Y used to prove a conformal welding result for a surface with an « singularity on its boundary in [Ang et al.
o 2024]. However, the case considered here is substantially more technically challenging, e.g., since there

11

12

13

14

15
o kernel from E to E’, i.e., v = (v, : e € E) is a collection of probability measures on E’ such that the map
e V. (A) from E to R is measurable for any measurable A C E’. Let (u ® v)(de, de') = u(de)v.(de’)
e and define ¢ = fi (1 ® v) to be the pushforward of © ® v along f. In words we will describe the

are multiple marked points the locations of which are random and the considered mollifiers and curves
are not always independent of the field (even if we condition on the location of the marked points).

We borrow the following terminology from probability theory in the setting of (finite or infinite)
nonprobability measures, i.e., measures whose total mass is different from 1. Suppose that E, E’ and
E” are measurable spaces, u is measure on E, f : E x E' — E” is measurable, and v is a probability

o construction of ¢ as follows: sample e ~ w, conditionally on e sample ¢’ according to v,, and let ¢ denote
o the law of f (e, ¢). It is often more convenient to introduce ¢ in words as in the previous sentence since
5, the precise formula for f is rather involved.

> In order to state Proposition 8.11 precisely, we first need to introduce some more notation and definitions.
o, Forx €(8/3.8)\ {4} and a finite and nonempty set A S Nleto € GA. Also let y = \/k A4/ /K, A >0,
a lp,lr>0,and g € [—1,1]. Let £ =€ + ¢R.

o We define three measures W‘T\ZL R’ Wfl’\fd and M_C‘I’\'ZL ¢, on the space of decorated regular y-LQG
o surfaces. We first consider the k € (8/3, 4) case.

a o Let (h,z)~ MX:IEL+ZR (see Definition 8.1 with w given by wg = —i and wi| = £1). Let weo € 0D be
28 the point such that the clockwise (resp. counterclockwise) arc from wg to wo has length €, (resp. £g) from
29 wo t0 Weo. Let I' ~ CLE] (z) and then sample an associated CPI A with parameter § (see Definition 1.3
30 and Section 5A). We obtain a decorated y-LQG surface [(D, &, z, I', 1)] and we call its law mfj\z -
e If (D, h, 2. T, )] ~ML}Y, , we write ML}"; for the law of [(D, &, z, I")].

32

5. * Let I'g denote the loops in I intersecting A. If [(D, &, z, ', )] ~ Wf/’\z ¢, then M_C'Z'EL 1, denotes

. the law of [(&, z, Ty, A)].

g As in Section 5D, we can associate to S =[(D, h, z, I, )] the following objects: the y-LQG length ¢ of the
36 CPI, for each ¢ < ¢ the future part of the disk S; (this is now a loop decorated y-LQG surface with marked
37 points) and boundary length processes L and R (writing X = L+ R). Let J(X) :={r < ¢ : AX, #0}. Then
38 for each 1 € J(X), the cut out y-LQG surfaces AS; is now a loop decorated y-LQG surface with marked
39 points, more precisely AS, = [(ADt, hlap,, Zlz,(ap), In€T:n° C ADt})] where Z,(U) :={i€ A:z; e U}

40 whenever U is open. Here, AD; is one of the complementary components that the CPI with attached CLE
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% loops cuts out. We write P, = Z,(D;) for the indices of the points which are in the future of part S; of the
o disk. Then AP, = P,_\ P, for t € J(X) are the indices of the marked points on AS,. The process P is a
set-valued cadlag process and we summarize the processes as Y = (L, R, P).

IfS=[(D,h, z, Ty, )], we can again associate to it £, L, R, X, S;, AS;, P and Y, the only difference
being that S; and AS; are now y-LQG disks with marked points but without a loop decoration. As in
Section 5D, we can write the cut out y-LQG surface as AS; = [(A Dy, hlap,. zlz,(ap,)]-

In the case x € (4, 8) we define these measures analogously. We refer the reader to Section 5D for

4
5
6
3
5
Y information on the relevant constructions in this case.

o In the following, we will leave the dependence of the boundary length processes and cut out quantum

. surfaces on the underlying decorated y-LQG surface implicit. For example, the process Y on the left-
o hand side of the first indented equation below depends on the integration variable S and we leave this
5 dependence implicit in the notation.

14 Proposition 8.11. In the setting above, for any measurable function f with values in [0, 1],
15

16 /f(Y,{(t,ASt):teJ(X)}) ML%', ,.(dS)

17

15 =[E< > /f((LO,RO, ). {t.$):tetx™) [] e"AQtl(AX?>O)Wf\l’?ﬁgfl(dS;)),

19 Qell(X9,A) teJ(X9)

“—— where the expectation on the right-hand side is taken with respect to the random process (L°, R®) from
~— Section 5D (corresponding to A = @) with X° = L° + RC. In particular, the case f =1 yields

23 oK _ oag, L(AX?>0) 1,0 180, -4
= WA,/Z_[E( ) fl_[ eI axo )
_ QEI'I(XO,A) teJ (X%

25

s We will also use a version of the proposition in the case where we decorate a y-LQG disk with marked

5, points with a (nested) weighted CLE and consider the collection of components which are cut out by the

-5 outermost CLE loops.

29 Proposition 8.12. Let (S, : n > 1) and (£, : n > 1) be the y-LQG surfaces cut out by the collection
30

31

32

33 any measurable function f with values in [0, 1],

34

s ff({(en,sn>:nz1})1\TL‘;;§(dS>=[E( > ff({(e,?,s;,):nzl})]'[e"Bnl\TLi'f;;;"(dS,’g),

6 U, B.=A n>1

37

— where the sum on the right-hand side is over all partitions of A into disjoint sets.
38

of outermost loops on S and the associated boundary lengths (both sequences ordered according to
decreasing boundary length). Let (K,? :n > 1) be the sequence of boundary lengths of a nonnested CLE,
decorating a (regular) y-LQOG disk (also ordered according to decreasing boundary length). Then, for

30 Proof. The proof is omitted since it is identical to that of Proposition 8.11. In fact, the proof is slightly

40 easier than that of Proposition 8.11 since we do not need to consider the CPL U
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27— e next lemma is a variant of Proposition 8.11 where we consider surfaces decorated by (I"g, A) instea
1Y o Th 1 i i P ition 8.11 wh id f d dby (I'p, ) i d
o of (', A). The statement therefore only differs by the fact that we are not considering the decoration by
o loops inside the cut out surfaces.
s Lemma 8.13. In the setting above, for any measurable function f with values in [0, 1],
6 NACO K
— /f(Y, {(t, AS) 1 € J(X)}) MCY, , (dS)
8 0 —0|AQ, K
- = [E( > / FLO R QG )t e J(XO)) [ ernot@X=0 70 (dS;>),
— Qell(X°,4) 1eJ(X)
10

11, where the expectation on the right-hand side is taken with respect to the random process (L°, R®) from
1> Section 5D (corresponding to A = @) with X° = L° + RO,

13 Proof of Proposition 8.11 given Lemma 8.13. We only need to prove the first statement since the second
14 one is immediate. The difference between the proposition and the lemma is that in the latter case we are
15 only considering the CLE loops that are intersecting the CPI while in the former case we are considering
16 a full nested CLE. The result is then a consequence of the definitions and the final part of Lemma 7.6. [J

1" It remains to prove Lemma 8.13. We will first do the proof for k € (8/3, 4).

= Proof of Lemma 8.13 for k € (8/3,4). We start by introducing some notation. Sample the tuple

e (h,z) NM&’[ (Definition 8.1), and define weo, I', A, T, Y = (L, R, P), X, J(X), Z;(U), and (AD;)scj(x)
201/2g as above.

2 Let w? denote the marked point on A D, which is equal to the point on dAD; that is hit first by

*the CPI A. Then let w! and w; ! be sampled independently according to the (normalized) y-LQG

23 . . - .
~ boundary length measure with respect to 4 on 3 A D; conditioned on w, := (w?, w}, w, D) being ordered

* counterclockwise. Let Y : D — AD; be the unique conformal map which is sending w; to (—i, 1, —1)

25
— and define
26

27 hy=hoy,+Q, log|y]|, z}=v;"(z;) forte J(X)andi € AP,, 7'=E!:teJ(X), icAP,) (8-5)

28
= whenever z € D4. We also let
29

- ~

30 ML’R’(,;”’ be the conditional law of (;);cj(x) given L, R, (ﬁ,)tej(x)

*L in the setting of A = @.3 We denote the law of (&1, g, A, (w;)res(x)) by MC(;’ZKL.ER. For any nonnegative

* measurable function f, by [Miller et al. 2022] (see Section 5D for a review),

33

i /f(L» R’ (ﬁt’ wt)[) dMC(;gKL,eR(hv FO’ )\'» (wt)IEJ(X))

35

36 = [E(/f(LO, R, (flt, Vi) MLO,RO,(/;

’)reuXO)(d(l//t)tEJ(XO)) 1_[ M(;[ZX?l(dht))' (8-6)
z 1eJ(X0)

38 T o .. -
= ®Infact, it is stated in [Miller et al. 2022, Remark 3.6] that (Y1) ey (x) is almost determined by L, R, (h;);e(x) in the sense

301 /22 that L, R, (h t)teJ(x) determine a collection of conformal transformations (1]7,) teJ(x) such {5; = ¢ o y; for some conformal
40 map ¢ : D — D. We do not rely on this result.
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1Y 2% Note that we are abusing notation slightly since %, and v, are functions of the integration variables on
-, the left-hand side while they are integration variables on the right-hand side.

Given a tuple z € D we write P, = {i € A : z; € D,}, leaving the dependence on z implicit. In the

. following, we will write Ay for the Lebesgue measure on U where U C C is open. The product measure

, onU B for B C A is denoted by )%B with the convention that A%’@ is a Dirac delta of mass 1 on the empty

7
~,  Foranyr e J(X), the pushforward of )L%B along ¥, ! is given by (Iy/ o vt | =21 ap,)®5. Using (8-6),
T, we obtain that, for f nonnegative and measurable,
; g —_— ~
o / fUL, R, P), (b 2 )0 AMCG S, (B Do ks (wier) [ [T W/ GHIT* 25 d2)
il teJ(X)ieAP,
12
B = [E( / > SR Q) (he 2 ) My go i, (@ Wiesx))
o QeTl(X, A)
15
1. [T Mgk @he) 255 <d2f>). (87)
17 1€J(X0)

— By the same type of abuse of notation as before Z’ has different meanings on the right- and left-hand side
19
— of the equation, namely, on the left-hand side it is defined by (8-5) while on the right-hand side it is the
20

201/2; integration variable. Let 6 : C — [0, co) be a smooth radially symmetric bump function satisfying

22

. /9 =1, supp(®) CD, ffG(z)G(z/) log(|z| v |Z/|)_1 dzdz7 =0.
C

24

. Foree(0,1)and z € D set 67() = € 20(¢~!(Z — 2)) and for a distribution /& define /. (z) := h(6?). Fix
. r€(0,1/16). Consider a function f = f, of the form

26

Y, e 200 = FO, iy 2000 s (s 2, W)

28 ~
o [T @pm@erant@X=0=M05 O T cal 2l (5.8)

30 teJ(X) ieAP;

> where t] < --- <ty are all the times satisfying |AX, | > r and where f is assumed to be measurable,

*  take values in [0, 1] and have the following properties:
33

34« The function £ is continuous in each of the fields with respect to the topology of H~!(ID).

35

— e Ifn<NandZ" = (Zit” :i € B) then f takes the value 0 whenever
36

T min( = 57D A (L= GO A Y, GIIEA min (57 =27 A, ) = v, G)] < 44T
. i

391/22 . - .

40 e The function f takes the value 0 if AP, U---UAP, # A.



1Y

20Y/o—

391/

PROOFS - PAGE NUMBERS ARE TEMPORARY

194 NINA HOLDEN AND MATTHIS LEHMKUEHLER

1
. Inserting (8-8) into (8-7), we will show that the left-hand side of (8-7) converges, as € — 0, to

/ FO Gy 2, AMCSS (R 2, To, b (W)res(x) (8-9)

and that the right-hand side of (8-7) converges, as € — 0, to

[E</ Yo PO R, Q) (2 ) [ ereeteXiZ0

Qel(X0,4) teJ(X0)

-
[Bfefel~]ole|a]e]

Ju
=

Mo go i, ©@d@Weesxo) 1] MZ{ff;;Q(dﬁ,,dzf)) (8-10)
teJ(X9)

12
13 50 (8-9) is equal to (8-10). Before proving the convergence results, we claim that Lemma 8.13 follows

14 from the fact that (8-9) and (8-10) are equal. The identification of (8-9) and (8-10) gives by a monotone

15 class argument and using the fact that the constant » was arbitrary that for any nonnegative, bounded, and
16 measurable function f,

17

18 /f(Ya (ljlta Zt)l‘) dMC([T\’_;L,gR(ha zv F09 )"9 (wt)tEJ(X))

20 =[E< f Y. f@R. 0. (2D ] e“AQt“AXf>°>Mi{ffg(gl(dht,dz’)). (8-11)
21 QeM(x°.4) 1eJ (X0)

22 The lemma therefore follows by combining the following two observations (both of which follow directly

23 from the definitions):
24

25 o Ifwesample (h, 2. To. A, (w;)resx)) ~MCY”, , then the law of [(ID, &, z, T'p. A)] is MCY", , .

2 T (. 2 ~ M2 then the law of [(D, iy, 2] is MY 225
27 ' e

g It remains to prove that the left- and right-hand sides of (8-7) converge to (8-9) and (8-10), respectively.
29 Convergence of the right-hand side of (8-7) to (8-10) is immediate by Proposition 8.10 since we can
30 check that the functions (55)“ satisfy (8-3) with O instead of o (1) and 55 instead of 7. It therefore

31 remains to prove the following:

32

33

34

—  We will now prove (8-12). To this end, we suppose that f(Y, (ﬁtn, 2™ Y, )n) > 0. Foreachi € A

35

— withi € AP;, let
36

7 §=ely[GDI. 05 =y oy 72O oy ).

38
g Varying e this defines 6’ for § € (0, r/2). Extend 65 for z € D\ {z; : i € A} such that they satisfy (8-3)
40 (with § instead of €) and set hs(z) = h(6y).

the left-hand side of (8-7) converges to (8-9) as € — 0. (8-12)
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1
1Y . We first argue that 65 satisfies the condition (8-3) (with § instead of €) of Proposition 8.10. Indeed,

this follows from [Lawler 2005, Theorem 3.20], which implies that

3

4 1 t

— 7) — Z;

: (¥ ) (2) (lﬁtt (G ) _ 05, (1) for [z—3!| <8,

. [ Ee]
_" as §; — 0 with the os, (1) deterministic. The first identity of Lemma 7.5, hy =hoy,+ Q, log |y, and
_® the fact that log |y/| is harmonic yields that

9
10 K 2 @i _ . 212 s (2
0 T eptrren [T ete @ @ieni? = T] ol @lan) [ e,
i reJ(X) i€EAP, 1eJ(X) i€EAP,

12

13 Let M), denote the law of (I'g, A. (w;);es(x)) given h if (h, To, A, (Wy)rerx)) ~ MCX:ZMR. Note that
12 M), can be made sense of as soon as the y-LQG boundary measure on the boundary of the domain and
15 on the boundary of each of the components A D; is well-defined. We will use Proposition 8.10 to argue
16 that,ase — 0,

17

18 /fe(Y, (hyys 2, Yy, )n) dMy (Do, Ay (Wi (x)) My (dh)dz

19

IAPt 1(AX,>0)
— ]_[teJ(X) D" (] ap)eTar AKX
2 R f FO Gy 2%, 0)0) T
o dMp(To, A, (W/)res(x)) MX:’E(dh, dz), (8-13)

391/, —

3 which is sufficient to conclude the proof of (8-12) since the left-hand side of (8-13) is equal to the left-hand

— side of (8-7) and the right-hand side of (8-13) is equal to (8-9) by Lemma 7.6. To this end, define F by

25

26 ‘7|AP K 1HAX,>0
26 H[eJ(X) (| ap,)eosh (AX;>0)

27 F(h,z,To, A, (W) resx)) = FY, (hyyn 2, 90, )n)
; (D[D (z)

29 We now want to apply Proposition 8.10 to this functional. In the proof above, we described the probability
30 kernel used to sample (Lo, A, (w;);es(x)) and (05) in (8-13) conditionally on (%, z). The key observation
31 is that this probability kernel only depends on (%, z) through z and the restriction of 4 to the complement of
32 |J; B/(z;). This is indeed true since the target point of the CPI wy is sampled from the y-LQG boundary
33 measure with respect to 4 which is measurable with respect to the restriction of / to the complement of
34 Ui B, (z;). Similarly, the points (w;);c(x) are sampled from the y-LQG boundary measures of the cut out
35 components which are also measurable with respect to the restriction of / to the complement of ( J; B, (z;).
36 In order to prove (8-13) it is therefore sufficient to argue that the function F satisfies the assumptions
37 appearing in Proposition 8.10.

38 Measurability of F is immediate, and boundedness follows from boundedness of f and the upper and

39 lower bounds at the end of Theorem 1.2. To argue that F satisfies the required continuity property, we
40 consider a sequence (g7,) as in Proposition 8.10. By the support condition on (g%, ), adding the functions
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1
1Y/2— to the field does not affect the process ¥ and the boundary lengths of the cut out components. Thus

20
20Y/o—

391/

2
3 olap K 1(AX,>0)
- x ~ - [Ties) ®p (z|ap)e?s 2%
i F(h—f_g,ia Z, FOa)\'v(wl)tGJ(X))=f(Y’ (ht,,‘f‘g,iol/ft,,’ ztn’ wt,,)n)' (e - 0,K
5 q)[[p (z)
? - F(h» Z9FOa )\'»(wI)IEJ(X))
T asm — oo as required in Proposition 8.10. (]
8

9 Proof of Lemma 8.13 for k € (4, 8). The proof for generalized disks is identical to the case of regular
10 disks, except that a surface is represented by a countable collection of fields rather than a single field due
11 to the difference in topology between the disks. We will therefore just state the counterparts of (8-6) and
12 (8-11) in the setting of generalized disks and leave the details of the proof to the reader. In the following,
13 we will use the index u to denote the time parameter of the excursion that encodes the generalized y-LQG

14 disk on which we have a CPI, we will use ¢ to denote the time parameter of the exploration process, and
15

16 disks. We write «” instead of « below.
T We start by defining a measure MC%", , on tuples (e, (hy. 2. Ty Au). (W))r.s).

we will use s to denote the time parameter of the excursions encoding the cut-out generalized y-LQG

18

19 « First sample (e, (hy, Zu)ueci)) as in Definition 8.7. Note that Definition 8.7 gives a measure on
(generalized) y-LQG surfaces rather than fields but it can be immediately adapted to give a measure
21 on fields.

2« Then sample an independent copy I';, of CLEE,'B (zy) for each u € J (e) if z, is indexed by the set B.

= Consider the CPI and write A, for the segment of the CPI if it goes through the component of the

= generalized y-LQG disk corresponding to the index u (and A, = — otherwise). Let '’ denote the
» loops in I',, intersecting A,,.
26

o7 e Define Y =(L, R, Q) and X = L+ R as in Section 5D. For 7 € J(X), let ¢’ be the excursion encoding

os the cut out generalized y-LQG disk, sample boundary points w! and consider the mapping out
29 functions ¥/ as in the simple case whenever t € J(X) and s € J(¢'). Define & and Z/ analogously
30 to the simple case.

31
- In the case A = @ we write (L°, R?, X°, (E")) instead of (L, R, X, (¢')). The counterpart of (8-6) in the
S, case of generalized disks, which follows from [Miller et al. 2021] (see again Section 5D), is then

34

g /f(L» Rv (et)t» (i:l'l;v w;‘)l‘.s)dMCX:IEL’[R(ea (huv Fua )”u)ua (wé)t,s)

36

o = [E( / SO RO (EN, (R ¥ris) Myo go iy, @@ [ ] M;;,“AEé,(dfzz)),
t,s

38

39 where, every time we index over 7, s, u, we mean t € J(X),s € J ("), u € J(e) on the left-hand side and
22 t € J(X°), s € J(E") on the right-hand side.
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—— Adding marked points via a limiting procedure as in the case of regular disks we get the following,
o which is the counterpart of (8-11) in the generalized case:
i /f(Y9 (e[)t# (l’;liw ZS[)) dMC(I’\’,’Z,LKR (ev (hu, Zu>» Fu’ )\u)u’ (w;)t,s)

5
[ N N ~ al " ,K./ - _
- B [E(/ Y FULO R, Q) (BN, (i, 2)0s) Mo go oy, dWDis) [ [ My X @ dzj)),
L 0.(0" s

8
Y where the sum is over Q € IT1(X%, A) and Q' e [1(E’, AQ,) for all t. By Definition 8.7 we deduce the
— result. (]
10

11

— 9. Recursive formula and finiteness of partition functions
12

13 We will put the result together from previous sections and conclude the proofs of Theorems 1.4, 1.7,
14 and 1.11. Recall the definition of the weight functions in Definitions 8.5 and 8.7; see also (1-5) and (1-9).
15 One simple property that we will use frequently is the following scaling property of the weight functions
16 for marked disks. For x € (8/3,8)\ {4}, A>0,£>0and o € 6? we have

17
18 WX? = (V) Tier WXZ;/\(&/K}’I' 9-1)

19 Throughout the following sections, to simplify notation we will introduce the shorthand notation

20
— WE) = wgs* (9-2)

21

22 for B C A when o and « are clear from the context.
23
-4 9A. Recursive partition function formula and law of boundary length process. We conclude the proofs

,5 of Theorems 1.4 and 1.7. The following is an extended version of Theorem 1.4.

26 Theorem 9.1. The assertions of Theorem 1.4 hold. The generator of Y is given by g,ff/ 8 from Theorem 3.7
27 inthe k < 4 case and Theorem 3.15 in the k > 4 case, where the weights (WB(£) : B C A, £ > 0) of the
28 [atter theorems are given by (W{'; : B C A, £ > 0).

% Proof. We first treat the case k € (8/3, 4) and start by verifying that the weights Wf (£) satisfy (3-8).
o Let us first mention that we have a monotonicity property, namely that A — Wff (€) is decreasing. This
. and (9-1) immediately imply the first assertion of (3-8) (monotonicity). The second assertion of (3-8)
. (boundedness by 1) follows from the monotonicity property and since WOg (€) = 1. The third assertion of

" (3-8) is given as the second part of Corollary 8.9. The final assertion of (3-8) follows from (9-1) and the
o monotonicity property

g W5 (x) = x V) Ticai wE (1) < Ky @) Y i nyz(l)

37 )

— < y VR Ticaen W2a()=WZ(y) for0<y<x<2y.

39 By Proposition 8.11 and Theorem 5.9 we know that the process Y in Theorem 1.4 is equal to the

40 process YY" in Theorem 3.7 since it satisfies the defining property (3-9) of YW. It is therefore immediate
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1
1Y 27 by the latter theorem and (3-8) that the generator of Y is given by QW The assertion about the jump rates

5 —— of Y in Theorem 3.7 is now immediate from the definition of Q W The final assertion of Theorem 1.4
-, follows from Proposition 8.11.
——  The proof in the case x € (4, 8) is the same, except that we consider (3-21), Theorem 3.15 and
s Theorem 5.13 instead of (3-8), Theorem 3.7 and Theorem 5.9. When verifying (3-21) we again use
— (9-1) and the fact that the function A — Wf (€) is decreasing, but the asymptotics of Wf (£)as € —0is
-, different and given as part of Corollary 8.9. U

2 We will now prove Theorem 1.7. The intuition behind the result is explained below the statement
. of the theorem in the introduction. One technical obstacle with turning this intuition into a proof is
" that one needs to exclude the possibility that the scenario where all the marked points lie in the same
= complementary component of the CPI in all the infinitely many iteration steps has positive mass. If we
“_ however consider a nested weighted CLE and discover the nested loops layer by layer, then it is clear
% that the points will be split after finitely many iterations. The key of the proof below is relating this CLE

— exploration back to the CPI exploration.
16

" Proof of Theorem 1.7. We prove the result in the case x € (8/3, 4). The nonsimple case where « € (4, 8)
% s exactly the same. Let (£, : n > 1) denote the y-LQG lengths of a nonnested CLE, which decorates a
1% (regular) y-LQG disk and let (L, R) be the boundary length process associated to a CPI in a y-LQG disk.

201 /22 For notational convenience, let us define an operator

391/, —

21

22

— Aﬂ:h(ﬁ):[Ew/z,zZ/z)( > raaxh ] Wf(mxsn).
- 1€(0,¢) s€(0.0)\{r}
24 +AX,>0 AX#0

25
o By Proposition 8.11 we have that, for any B C A,

27
. Wf(€)=[E(z/2.z/2)( Z 1_[e”AQfI(AXf>O)WfQ’(|AXt|)). (9-3)

— M(X,B
- Qell(X,B) 1<¢

30 Moreover, by Proposition 8.12 we get
31

32

o WAw)—[Ez(Z ) ]‘[e“BW (ﬁ) H W@wn)) (9-4)

—_— m>1 B1U--UB,=B ni<--<np i=1
34

35 where the second sum in the display ranges over all ordered partitions of B into m nonempty sets (this
36 includes the case where m = 1 and there is just one element in the partition).

37 We now consider the (possibly infinite) measure M ‘1’\'2 and decorate it with an independent nested
38 CLEy. Since this measure of y-L.QG disks with marked points carries zero mass on configurations where
39 not all of the marked points are distinct, we can consider the first nesting level j + 1 for some j > 0 in

40 the nested CLE] where not all of the marked points lie in the same CLE loop. Splitting into all of the

.....
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1
1Y . possible values for j and then applying Proposition 8.12 yields

= Wi =) g,

A Jj>0

5 m

6 80(5)=[Ee<z > > JTemwiwn |1 Wf(/zn)),
7 m>1 B{U---UB;,=A ni<--<ny i=1 néf{ny,..., Ny}

£ g;(t) = [E«(Ze"f*g,-_lwn) I1 Wf(zn/))

i n>0 n'#n

1
o Note that here the sum over partitions does not include summing over the trivial partition which contains
— only one element. By Corollary 5.12 we have for each j > 1 and ¢ > 0 that

B g0 =" e A A g1 (0).

14 kj >0

— By using Corollary 5.12 together with (9-4) we obtain

g =Y A% (), where gow):[am,em( > He“AQr”“t>°>WAAQf(|AXt|>>,

= ko=0 Qell(X.A) t<(
19 AQ,CAVt<(

2015 20 where k¢ represents the number of CPI iterations one needs to do before not all marked points lie in the

2l same complementary component. Putting everything together yields

22

o WhO= " Y e A AR g0

o J=0ko.....k; =0
5 =35 > A AL A AARG (0 = Y A+ e A G (D). (9-5)
26 m=>0 j>0 ko+---+k;+j=m m=>0

27

— We will now show that go(¢) = V[(\) ¢ for all £ > 0. To see this, we first sum over all possibilities for the
28

o first jump time ¢ and the associated jump A Q; = B and then combine this with the Markov property of

o (L, R) together with (9-3):

31

o 0= Y [E(e/z,e/z)< > [Twraax e @ =Owg(ax,)
— P#BCA t<¢ s<t

33 AX;#0

i . Z 1_[ eaAQSI(AXS>0)W1€Qs(|AXs|)>
35

= Qell(X,A\B) se(t.¢)
A\B

36 0=

37 A\B

— =) [Ew/z,e/z)( 3 [IwRaaxpers @X=Owgax,pwy" (Xt))
— P#BCA t<¢ s<t

39 AX,#0

39— 0
40 = VA YA
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1Y 2% Let us comment in slightly more detail on the second equality above. One first turns the sum over the ¢
values into an integral with the use of the final statement in Lemma 3.6, then one applies (9-3) and finally,
one again uses Lemma 3.6 to turn the integration back into a sum over jump times. At an intuitive level,
we are applying the Markov property at the time ¢, however we need to reason slightly differently since
the time ¢ appears in a sum within the expectation. We leave the details to the reader.

A similar reasoning as the one in the previous paragraph yields that

Ash(€) :=[sz,«/2>( > h(axh J] Wf(mxsn-wf(xt))

1€(0,) s<t
1 +AX,>0 AXs#0
11

— and the statement then follows from (9-5) and the result that go(£) = V[(\), , forall £ > 0. O

3
4
5
6
7
8
9
0
12

13 9B. Finiteness of the partition function: Proof of Theorem 1.11. The goal of this subsection is to prove
% Theorem 1.11, which gives a partial characterization of which parameters are admissible. The theorem is

> split up into the Lemmas 9.3 and 9.4 below.

1 Our proof is based on the recursive expression for the partition function in Theorem 1.7, along with

" basic monotonicity, scaling and continuity properties of the partition function. We also use Propositions

18 3,12 and 3.16 in the proof of (ii). The proof of (iv) in Lemma 9.4 will be particularly involved; see the

19 paragraph before it for a brief outline. For the proof of Lemma 9.3 the following direct consequence of
201 /22 Theorem 1.7 will suffice.

21

-, Lemma 9.2. Suppose that #A > 1. For any (o, A) € 6?,

23

o UNGEEDY rE@/z,e/2)<Ze"BWf>°>]'[Wﬁ’(mxs|)W£(|Axt|)Wf\A<Xt)>. (9-6)

o5 @#BCA t<¢ s<t

26 In particular, each term on the right-hand side is strictly smaller than the left-hand side.

27
. Proof. This identity follows immediately by using the expression for W;;‘ (¢) in Theorem 1.7. To be more

oo brecise, note that it is sufficient to argue that the term on the right-hand side of (9-6) corresponding to

o B=A isequal to Y | VX'(|AX,]), and we get this by replacing W;:‘(|AXt|) in the former expression
o by Zf:f:o VA'(JAX;]) and then using the recursive definition of V;'(|AX;|) in Theorem 1.7. O

33

5, Lemma 9.3. Assertions (i), (ii), (i), (v), (vi) and (vii) of Theorem 1.11 hold.

32 The following lemma gives Theorem 1.11 except assertion (iv).

3% Proof. Assertion (i) of the proposition is immediate from Theorem 1.8 and assertion (vi) is immediate
3% from Definition 8.1 since Wxg is monotone in o for #B > 2.
3" We continue by proving (ii), i.e., if #4 > 2 and A = 0 then (o, A) & A,. By the final assertion of

3% Lemma 9.2, the fact that WOg (¢) =1 and
2
e W (@) = £CVR) Tieaa i 1)
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1
1Y 2=~ we have that
3 .
- WD) > e Wf(l)[E(m,l/Z)( 3 jax, | GVEY ) 9-7)
_ 1<¢
5 AX,>0
6

20Y/o—

391/,

— By Definition 1.1, a; - 2//k > 4/k +1/2, so (2/ﬁ) -»_;a; > 1+ 8/k. This implies via an application
. of Proposition 3.12 (when « € (8/3, 4)) and of Proposition 3.16 (when k € (4, 8)) that the right-hand side
= of (9-7) is infinite, which gives (ii).

2 Next we prove (v), i.e., if (o, A) € A, for A > 0 then (o, A') € A, for any A’ > 0. It is immediate
o from Definition 8.1 that WA( 1) is decreasing in A, so if (v) was not true then there would be some
° Ag € (0, 00) such that WA(l) < oo forall A > Ag and WA(I) = oo for all A < Ag. We suppose such
2 a Ay exists and want to derive a contradiction. Suppose A > Ay. Then the right-hand side of (9-6) is
2 infinite since it holds with probability 1 that there is a ¢ € (0, ) for which A |AX,|>"®/) < A and since

14
— we have
15

0 WAIAX,]) = [AX,|CVOTiawd (1) = oo

17

E for such ¢ € (0, ¢). Therefore WI‘\“(I) = 00, which is a contradiction to A > Ay, and we conclude (v).
19 Now we prove (iii), i.e., if (¢, A) € A and B C A then (0|5, A) € A,. We will prove the contrapositive,
20 namely that (o |p, A) € A, implies (o, A) € A,. By (v) and the scaling property we have that, for each
21 E > 0,

22

; W) <oo ifandonlyif (o|p,A) € A,.

f Therefore the right-hand side of (9-6) is infinite if (o|p, A) & A, so (9-6) gives that (o, A) & A,. This
® concludes the proof of (iii).

. Finally, we prove (vii), i.e., if 0’ and B’ C A are such that #B’ > 2 and o, = op forall BC A, B# B,
" then by choosing o, sufficiently large we have (¢, A) & A,. In the following we will not use the
® simplified notation for the weight functions from (9-2) since the dependence on o is important. By (iii) it
2 is sufficient to consider the case B’ = A. The case (o, A) & A, is immediate since WXj‘[ is increasing
z% in o, so suppose (o, A) € A,. Since WXflK increases as A decreases, for all £ € (1/2, 1),

=2 YLCTNCD DT Wok

28
s A/ | 7

34 Applying Lemma 9.2 and this estimate we get
35

o'k ! —.K — K
o Wil > eﬂAE(1/2,1/2)< Z l_[WA iax, Wa. |AX,|WA,X,)

37 t<¢ s<t

— A
- X,e(1/2,1)

39 > 2~ V) Ty’ eA[E(1/21/2)( Z [TWaiax, Xf(t)

40 s<t
- AXte(l/Z 1)

—(2 Qi ’
2 (/\/;)Zl(x WX,IK'
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1
11/2* It follows that (¢, A) &€ A, if

3 -2 i g
T 2 (/\/E)ZtaenA[E(l/z’l/Z)( Z l_[WAlAXI AX) >1’
D 1< s<t

: AX e(1/2,1)

6

_~_ which we can obtain by choosmg o, sufficiently large since the expectation on the left-hand side is

" positive and does not depend on o’ 4 This implies (vii). ([
8

"5 It remains to prove assertion (iv) of Theorem 1.11, which will be done in Lemma 9.4. The idea of the
10 proof is to split the y-LQG disk with marked points into components containing just one marked point
; each (by decorating it with a weighted CLE) using Theorem 1.7 and then decoupling the individual disks
1, at the cost of decreasing the cosmological constant A.

13 Lemma 9.4. Assertion (iv) of Theorem 1.11 holds, that is, if og < o; wheneveri € B C A and #B > 1
4 then (o, A) € A, forall A > 0.

15
o Proof. The proof will proceed via induction on #B. We will show that there are constants pp 5 < 0o and

- 0<Apa < A such that for all £ > 0, we have

18 W) < ppa )y Wi (0) and WZ() <pp AWy, (0. (9-8)
19 ieB
201/22 This implies the lemma since the right-hand sides are finite by assertion (i) of Theorem 1.11.

21 We start by verifying the induction hypothesis #B = 1. The first identity of (9-8) is trivial in this case

?_and the second one appears as the first statement of Corollary 8.9.

? For the induction step, we use the induction hypothesis to get, for A A =min{Ac p:2#C C B}

24

= and Vf’m (€) just as V', in Theorem 1.7 but with A replaced by B C A,
25

o* B\C
. Vi@ <e” Y [E(e/z,e/z)<zn WY (AXDWE(AXHWS (X»)
2 ACCB =g s<t
28
o Y emeaep m)(z [TwRaax,pwgaax,) AB\CA(X»)
; @#CCB t<g s<t
3 <e” Z pevc.ae” We, (0,
5 @#£CCB

33 where 0* = max{|o¢| : C C A}. By the induction hypothesis (9-8), we therefore get that there exists

34 pp o < 00 such that
35

3 VRO < o a D WAL (0. (9-9)

37 ieB

38 Fori € B we now define

39 . . . ,
W U0 =W, U@ := [E(/z/z.e/z)(z eonl(BX=0) Uf*’qutD).

- t<t
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1
11/27 Since op < o; fori € B with #B > 1 we get

Ul < [E<1/2,1/2>(Ze“"““f>°> Wé”uAXtD) =Wy,
t<¢
We can therefore define ap; 1= Wéi}(l)/Uf’i(l) € (0, 1). By scaling, for £ > 0,

[E(e/z,e/z)<z oA Wé”(mxtn) = UM () = ap Wy (0).

1<t

[ e[~ ]ofo]s]w]

10 To proceed, we will argue two statements, each of which is established using induction on n. Note that the
11 induction on #B above is not complete, and the induction step of that proof requires the further inductions

12 on n that we do right below.

13 First we argue by induction on n that

14

- UL (0) = ()" W, (&) (9-10)

16 forall £ > 0 and n > 0. The cases n =0, 1 are immediate, and assuming the assertion is true for n — 1
17_(with n > 2) we get that it also holds for n since by first applying the definition of U5 (¢), then using the

18 induction hypothesis, and then using (9-12)
19

201,20 U () = [Ew/z.m)(Ze“BI(AX’>O)Uf;i1(IAXt|)> (9-11)
21 t<¢
22 _ ) ; ;
— = (a5.)" I[E(e/z,e/z)(zeg’lmx’>0) W, }(|Axt|>) = (ap.)" Wy @),  (9-12)
- t<¢

24

. which concludes the proof of (9-10) by induction.

26

z VELO < ppa > UL (9-13)

28 iecB

Next we argue via yet another induction on n that

2 forn >0, ¢ > 0. The case n = 0 is (9-9). Assuming the induction hypothesis has been proved for n we

3% gee that it also holds for n + 1 since
31

2 VR w1 (© = E.ep2) ( S [T weaax,pest@x=o VAB,n(|AXt|))

33 t<t s#t

34 1(AX,>0)y7B.i _ B,i

o < X;pé,A[E(z/z.e/z)(;e"B AX=0y! (|AX,|)> = Pp.A 2}; U, (0,
—_— e < IS

36
57 where we used W? (JAXs]) < 1. This completes the proof of (9-13) by induction.

55 Combining the above, we get

301/, W@ =" VE @ <pp A D D UL O =pp A YD (@) Wy (€) < o0

40 n>0 i€B n>0 i€B n>0
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1
1*/2—— and the induction step of the main induction (where we prove (9-8)) is done by setting

201/>

391/,

1
/
PB,A :pB,AZ - U
icB I —ap,

Appendix A: A result on renewal processes

— This section establishes an asymptotic result on exponentials of renewal processes, namely Proposition A.1
8

— right below. While we think that this addresses a very natural question which has likely appeared earlier
9

— in other contexts, we were not able to locate similar statements in existing literature. For the statement
10

— below, recall the definition
11

1

LFO) = / e F (1) di
0

2
13

14

15 Proposition A.1. Let (X;) be an i.i.d. sequence of random variables in (0, 00) with density f and

of the Laplace transform of a function f : Ry — R.

16 cumulative distribution function F and suppose that

17
. Fit4+o)—F@)

— t
18 sup & and inf ——————= >0 for somec > 0.

<0
— =0 1 — F(1) =0 1—F(t)

20 Suppose that L f (pg) exists for some py € R. Assume p > pg with p # 0 is such that L f(p+iy) = L f(p)

21 forall y e R\ {0}. Let 6 = —log L f(p) € R and define N to be the renewal process associated to X, that

22 IS,

23 Ny=sup{fn >0: X1 +---+ X, <t} fort=0.
24

s Then

o —6 1— —6

= B(t) :=E( NPy — ¢ v me P ( e/ )/p as t — 0o
27 —(Lf)(p)

28

= and B(t) < oo forallt = 0.

29

30 The proof of the proposition uses as an essential ingredient a Tauberian result which relates the
51 asymptotic behavior of a function to the asymptotic behavior of its Laplace transform. A proof of the
5> theorem below is given in [Korevaar 2004, Chapter III, Theorem 7.1].

3> Theorem A.2 [Korevaar 2004]. Let « : [0, 00) — R be measurable and bounded so that the Laplace
3% transform La exists on {z € D : Rz > 0} and suppose that Lo has an analytic extension to a neighborhood

3 of each point on the imaginary axis which we denote by La too. Then
36

t
37 f a(s)ds — La(0) as t — oo.
0

38

39 Proof of Proposition A.1. The idea of the proof will be to observe the process N at a random independent

40 exponentially distributed time 7; ~ Exp(2) for A > 0 and deduce the result using the Tauberian theorem
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1 1
1%/2— gtated in Theorem A.2. We begin by observing that for A + p # 0 we have

EEMn =Py =3 e B T e (X4 o+ X Xi o+ X))
n>0

__* oI E(o= DX+ X,) _ =t ) (Xr+ X))

A4

n>0

__* ya- ¢ "
=135 (= LSO+ N LSO+ )

n>0
_x I=LfO+p) _)e“’(l—e‘(’)/p
At p l—e'Lf(A+p) —(Lf)(p)

noting that £ f (A + p) < Lf(p) = e~ . If . = —p we get by an analogous computation that

E(e"NrrThy = _Kl(ﬁf)e/(())‘
—e

as A — 0, (A-1)

R RS
[=)] o -y w N = o | © 0 | N S | o S w N

Our goal is to show that the limit in (A-1) (as A — 0) is the same as the limit of 8(¢) as t — oo; this is
17 intuitive since Tj — oo in distribution as A — 0. In the last step, we will apply Theorem A.2 with o = 8’
18 to conclude the proof.

19 The technical bulk of the proof will be establishing the boundedness of B and its derivative g’. Fix
20 ¢ > (. By the memoryless property of 7, we can bound

201/>
2 E(e"™ 70 = B T = 1+ ¢)
; = [E(e‘QNTA+(r+c)—P(TA+(I+6))) P(T, >t +c). (A-2)
24
e To simplify notation, let us write J, = X; + - - - + X, for the jump times. The key observation which
— follows directly from the definition is that the conditional law of Jy,41 given (N;, Jy,) has density
- fC = JIn)1.00)/(1 = F(t — Ju,)), so by the renewal property of N at time Jy,+1, for any 7 > 0,
os N T+ +c
— E(e"Ne+i+0) > fl —————— / f(s—Jn,) e’ E(e"Nrrre=s) ds
30 eHN, t+c v N
2 >E| —————— s —Jn,)e” E(e"" ) ds
o - (I—F(t—fmft = el : )
32
> F(t —JIy)—F@—J
3 > e(’) [E(eHNT) F e(')N, ( +c Nt) ( N,)
3 1-F(t—Jy)
- > C-E("™) E(e"™)
35
36 using the lower bound from the assumptions where C is a constant depending only on ¢, f and c.
37 Therefore (A-2) and the above imply that
38
- g [E(eﬁNn—ﬁTx) > [E([E(eHNrJr(tﬂ?))lt:TA e—p(Tx-i-(t-i-C))) P(Ty, > t+c¢)
y—

40 > Ce P E(e"! NPTy E(e" NP P(T, > 1 +¢).
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1
1Y . Since P(T;, >t +c¢) = e~ ! for A = 1/(t + ¢) and the left-hand side of the above estimate is finite, we can

391/,

cancel the two terms to obtain the required uniform bound on 8. To establish the existence and find a
uniform bound for g8/, let us first write

E(e'N) = Z Pt €[y, Jui1)) = Zef*" /00(1 —F(t—s5)) f*(s)ds+1—F(1),

n>0 n>1 !

where f*" is the density of J,. Note that each of the summands is differentiable, indeed a straightforward

3
N
5
6
7
5
Y computation shows that
10
1

1 % /oo(l —F(t—ys)) f*n(s) ds — f*(n-i-l)(t) _ f*n([)

12 . .
— Moreover, by assumption there is C’ < 0o such that
13

W ) = S R~ G dy 2= 3 [E(M' t L Jnm)

15 =0 =0 v 1—-F@t—J,)

<C' ) " Pt €Uy Jor1) = C'EE™).

16
n>0

17

18
o From this, it follows directly that B is differentiable and |B’| is bounded.

We therefore infer that, for any A > 0,

LBHO) = f TN p () di = / TN B di — 1 = BT _ |
0 0

= =—1+ * -{l_ﬁﬁzm Ap 70,

24 1—e’Lf(A+p) —(Lf0) A+p=0.

z We will show that the right-hand side extends to an analytic function on a neighborhood of {A € C: A > 0}

26
— by defining the extension at O to be
27

28

/ 6_9(1_6_9)//)
L =14+ ——-
- YO ==1+—— 50

3% Qur strategy is to show that the right-hand side of the identity above defines an analytic function on a set
31 of the form U \ {0} where U is an open neighborhood of {A € C: A > 0}. This will yield the claim since

32 by (A-1) the function has a removable singularity at 0.
33 To this end, note that since p > pg, the function £ f(- + p) is an analytic function on a neighborhood
34 of {» € C: M > 0}. In order to conclude, it is now sufficient to argue that e’ L f (A + p) # 1 for all
3> X € U for some set U as above. This property is satisfied since for all A € C with RA > 0 we have
3 |LF(A+p)| < Lf(p)=e"? as f is a probability density function from (0, c0) to [0, co) and moreover

3" we may use the assumption that £ f(p + 1) # L f(p) for each A # 0 with RA = 0.

38 The result now follows since

39

40 ﬂ(t):ftﬁ/(s)ds+1—>£(,8/)(O)+1=M as t — 00
0 —(Lf)(p) '
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1
1*/2=— where the convergence part follows from Theorem A.2 applied with o = g’ and where £(8")(0) denotes
the analytic continuation of £(8’) to 0. O

Appendix B: Integral computations

This paper, and in particular the study of Lévy processes here, relies on the explicit computations of
various complicated integrals. These computations could not be located by us in the literature and have

_8 therefore been included in this appendix. Lemma B.1 is the key computation that will be used in Section 4
9 to explicitly compute functionals of Lévy excursions and Lemmas B.3 and B.4 are used in Sections 3A
10 and 3B, respectively, to evaluate functionals associated to the spatially inhomogeneous Markov processes
11 discussed in these sections.

12 The integrals are rather involved and it is not clear if there exist explicit closed-form antiderivatives of
13 the integrands; the computations rely on the fact that we consider indefinite integrals. Several computations
14 involve the integral of sums of terms which are not integrable individually. A key trick we will use
15 multiple times is to evaluate such integrals via integration by parts. In Lemma B.1 we further rely on
16 Cauchy’s residue theorem.

17 We start with the computation of certain Bessel integrals. Recall the definition of the modified Bessel

18 functions of the second kind:
19

/ooe—(Xﬁ)zy—l/y dy (B-1)
0

yl—i—v

o.¢]
1
K — —x cosh(t) h(vt) dt =
201, v JC ‘ oDt =
21
5, Itis easy to see that 2(x/2)"K,(x) — I'(v) as x | 0. Also, the derivative of (x/2)"K,(x) (a smooth

,; function) with respect to x is —(x/2)" K, —1(x).

24 Lemma B.1. Suppose that a € (0, 1), B € (0,2)\ {1} and p > —1. We write p = cos0 for 6 € [0, )
% when p € (—1, 1] and p = cosh @ for 6 > 0 when p > 1. Then

26
— sinaf/sin6 pe(—1,1),

27 /‘oocosh(at) dt b/ )
== ’ p=1,
28 ht +
09 0 cosht)+p  sin(ma) sinhaf/sinh6d p > 1,
JE— . . 2
30 /_oo cosh(Brydi (ﬂ(lcos ,32))7300% sin 86)/ sin” 6 P i(l—l, 1),
. o Gosh)+p7  sinerp) | PP L T
32 (coth@ sinh 6 — B cosh 86)/sinh“ 6 p > 1.

33 Forve(1,2),v € (0, 1) we have
34

> /ooﬂ<e_ph 2(h/2)" Kv(h)—l+ph) _27n/sin(=mv). {COS o pe=1L11
0

o hltv L) C(l+v) coshvd p>1,
g /00 dh / (e_phz(h/z)V’ Koy () — 1) _ =215 /sin( ') Jeosve pe(=1,1],
38 o At @) r'd+v) coshv'd p>1,

40

301,20 /Oodh K () = /oocosh(v/t) dt.
il 0 o cosh(?)+p
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1Y 2% Proof. The first two integrals are applications of Cauchy’s residue theorem. In particular, we carefully

— choose a rectangular contour such that the asymptotic contribution of the left and right segments vanish
and the limit of the top and bottom segments can be related to the integral in the lemma. We only
explain the first computation, the second one is analogous. Let us consider the contour integral of
u(z) = e*(cosh(z) + p)~! along the boundary of (—R, R) +i(0, 27) (oriented counterclockwise) and
send R — oo to obtain the identity

et a(t+2mi)
2mi Z Res(u,z)=/ h—dt_/ - — dt
2€R+i(0,27) r cosh(?) + p R cosh(r +2mi) + p

1

h(at
- —o(1— 2ma)/ cos (a )
. cosh(t) +p
12

o Computing the residues yields the result. Let us consider the integrals involving Bessel functions. For the

N
B
6
7
B
B
0

— third integral in the statement, we write h~v~! as the second derivative of 7'~ /(v(v — 1)) and integrate
14

— by parts twice to get

15

16/0 %(e—f’h—z(rlf(/;) Ku(h)—l-l-ph)
17

g 21—1) 00 oh 5 5

— =————— | (4 p)hK,2(h) + 2ph+ 2p*(v — 1) — D)K, 1 (h))dh
19 v(v—1DI'(v)

201,20 21 % (14 p?) cosh((2 — v)t) 4+ 2p cosh((v — 1)z)
27— =

21 v(v—1DI(v) (cosh(t) + p)?

22 217v2p2(v—=1)=1) > cosh((v—1)t)

23 vy —1DI' () o cosh(t)+p

= by the definition (B-1). Using the first part of the lemma and applying trigonometric identities yields the
2

®_ result. The fourth integral can be computed similarly, except that only one integration by parts is needed.
6

® For the final integral, (B-1) can be used directly. O
27

-5 Inthe proof of Lemmas B.3 and B.4 we will need the Beta function and the incomplete Beta function,

.o Which are defined by the respective formulas

30 ! % F(@T (b

— B(a,b) = / =0t de = / M+ dr = L@IO) - o0 b >0,

3 0 0 I'(a+Db)

32 x

o B.(a,b) =f 1 '1—0P'dt fora>0,beR, xel0,1).

> 0

**_ The next lemma recalls some basic properties of these functions.

35

o Lemma B.2. Fora, b > 0and x € (0, 1) we have B, (a, b)+ Bi— (b, a) = B(a, b) and, fora > 0, b € R,

5, *€l[0. 1),

38 b 4(1—x)"

= B ) =B @b 2L=N

39 b b

39—

40 Moreover, I'(a)I'(1 —a) = /sinwa fora ¢ 7.
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1
1Y 27 Proof. The first claim is trivial. The second one follows since it holds at x = 0 and the derivatives of both

201/>

391/,

sides agree for all x > 0. The third claim is Euler’s reflection formula. (]

Lemma B.3. Let k € (8/3,4). For 0 <4/kx and u € (0, 1) define

K h1+4/K 2h1+4/;<

B

i

> 4 © dh < dh

6 Aﬁ=—008(—ﬂ)/ —((l—i-h)"—l—eh)-l—/ ——((1=h)1(h <u)—1+06h)
5 0 o

- ©  dh ,

8 + ; S (=W 1 < T—w) = 1+6h).
9

1-4/k

10 Then A, =0forallue(0,1)and, forall9 € (—1,4/k) and u € (0, 1),

n N “  hdh me o pfdn (o 14 o
12 ) sa o T sy — os@OB{O+ L =0 ).

W Proof. We write

. 1 d2 pl-4/k 1 d [ hi=%«
= —_— = — d —/—=— .
16 hi+ale dh? (4//{-(4//(- 1)) N WA T dn (1—4//c)

1" Applying integration by parts multiple times thus allows us to establish the following integral identities.

18 Foru e (0,1) and # < 4/k we have
19

- < dh P 0@ —1) 4 4

20 T((l—i—h) —1-0h)=———"_B(2——,——0),

o o A 4/ - (4fkc = 1) <k

o [T _dh 0 —1) 4

2 ———((1=h)"1(h —1+0h)y)=—— B,(2—=.0—1

; A hl+4/l€(( ) ( <1/l) =+ ) 4/K(4/K—1) u( B

2% I el T (et D

24 _ '
25 4/k-(4/k = 1) 4/k

5

. Forthe & =—1—4/k case, applying the indented equation in Lemma B.2 four times allows us to express

57 Bu(2—4/k, =2 —4/k) in terms of an expression involving B, (2 —4/k,2 —4/k). One then verifies that
% indeed AY =0 for 0 = —1—4/k.

2 Suppose now that 6 € (—1, 4/«k). Then

0 % 4k I—u po gp
/ —((1—h)91(h<u)—1+9h)+/
0 0

i hl+4/x (1 _ h)1+4//c

= _[T_dn 1-m1h <1 1+6h “__Kdh
5 = ), g (=M< D= =100 + |- e
- © dh ,

5 = W((l—h) 1(h<1)—14+6h)

36

— 1—4 0)(2—4 0 4

37 _( /K +6)( /K + )B(Z——,9+1),

38 4/ -(4/k —1) K

39 where the second equality is obtained by writing it as the # 1 1 limit in the second equality of the second
40 display above, and then applying the indented equation of Lemma B.2 twice to determine the limit.
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1

11/2j Replacing u by 1 —u we also get

3/00 AL < 1—w)—110h)+
0

“  nodh (1-4/k+0)(2—4/k+6) ( 4 )
T = B ,
4 h 14/

- 2—2,0+1
o (I—h)1+4/x 4/k-(4/k—1) PR

_>_ Combining the previous displays,

6

— 4 [ hdh = hfdn

LA s T 51— iia/c

. 0 2(1—m)H4 = Jo 2(1 — h)1+4/x

— 06 —1 4 4 1—4 0H(2—4 0 4

B =—cos(4n/x)¥B(2——,——9)+( [k 4O /K+)B(2——,9+1)
10 4/ -4/k —1) K K 4/k -4/ —1) K

11 4

— =—cos(n9)B(9+1,——9),

L K

13 where the final equality follows by writing the Beta functions in terms of Gamma functions and using
1% Euler’s reflection formula. O
15

16
= sation. Note that the actual formula is formally the same as in the previous lemma.

We now establish a similar result which will appear in the context of Lévy processes without compen-

E Lemma B.4. Suppose that k' € (4, 8) and define A? to be
19

20Y/o—

391/,

o0 o0
20 —cos(i—jf)/o %((H—h)ﬁ—l)—i—/o ﬁ((l—h)"lmm)—l)
% +/OOL((1—h)HI(h<1—u)—1)
-~ 0 2p1+4/k’ ’
23
24 whenever 6 < 4/k" and u € (0, 1). Then A;1_4/K/ =0forallu € (0, 1) and
» o [*  hdh = nYdh 4

27

—forall® € (—1,4/«’) and u € (0, 1).

28

g Proof. The proof of this result is completely analogous to the proof of Lemma B.3. By integration by parts,
30

ol > dh L’ — 1) — 0 s(1 4 4 g

31 A W((‘i‘ )_)_4//<’ oY)

. T —mi hoo g (1o4 )0

3 A W(( —h)"1(h <u)— )——m ul L7 —T.

g The result that Au_l_4/ “ —0forue (0, 1) then follows from a lengthy calculation — see Lemma B.3

36 for some more detail on this. Suppose now that § € (—1,4/«k’). Then
37

T dh 1—m)1(h 1 T_hdh (% dh 1=n1h<1—1
38 0 h1+4/,(f(( - ) ( <Lt)_ )+ 0 (1—h)1+4/K - 0 h1+4/’(/(( - ) ( < )— )
39

2 1 =4/’ +6 4
20 =_LB I——.0+1).
= 4/k’ K’
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1
1Y 27 The results now follows by putting everything together and simplifying the expressions, making use of
~, Euler’s reflection formula. (]
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