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1   |   INTRODUC TION

Most studies that utilize phylogenetic comparative methods 
(PCMs)  focus  on  single  traits.  However,  evolution  is  inherently 
a  multivariate  phenomenon.  Traits  are  seldom  genetically  inde-
pendent; for example, one trait's evolution may be influenced by 

selection  on  another  trait  (Lande,  1979;  Lande  &  Arnold,  1983; 
Walsh & Blows, 2009). Moreover, traits may undergo correlational 
selection  (Svensson  et  al.,  2021).  Given  this  complexity,  univari-
ate models are insufficient for fully understanding the implications 
of  the  multivariate  nature  of  selection  and  evolution.  Therefore, 
multivariate models are essential to more accurately represent the 
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Abstract
1.  The PCMBase R package is a powerful computational tool that enables efficient 

calculations of likelihoods for a wide range of phylogenetic Gaussian models.

2.  Taking advantage of it, we redesigned the R package mvSLOUCH.
3.  Here, we demonstrate how the new version of the package can be used to thor-

oughly examine the evolution and adaptation of traits in a large dataset of 1252 
vascular plants through the use of multivariate Ornstein–Uhlenbeck processes.

4.  The results of our analysis demonstrate the ability of the modelling framework 
to distinguish between various alternative hypotheses regarding the evolution of 
functional traits in angiosperms.

K E Y W O R D S
maximum likelihood inference, multivariate Ornstein–Uhlenbeck process, multivariate 
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evolution  of  traits.  The  Ornstein–Uhlenbeck  (OU,  Equation  (1)) 
process is particularly effective in this regard. Its main benefit is 
modelling how a trait's optimum—defined by the 𝜃(t ) parameter—
adapts in response to varying conditions. This model facilitates the 
testing of various evolutionary hypotheses, such as those concern-
ing trade- offs (Bartoszek et al., 2012) and modularity (Bartoszek 
et al., 2023). Here, we present the updated version of mvSLOUCH 
software that  allows users to quickly fit multivariate OU models 
to large datasets, address measurement errors and missing data, 
and precisely define interacting traits and the direction of these 
interactions.

We define the OU process (see Appendix SA2 for additional de-
tails and interpretations) for a k- dimensional trait, �⃗y (t ), as

where ���⃗W (t) is a k- dimensional standard Brownian motion. Equation (1) 
models the changes in a suite of k traits over an infinitesimal amount 
of time. The parameter A is the matrix counterpart of the selection 
strength  parameter  (usually  denoted 𝛼,  e.g.,  Butler  &  King,  2004). 
It  is  crucial  to  underline  that  A's  entries  are  difficult  to  interpret  di-
rectly—one should rather investigate its eigenvalues and eigenvectors 
(Figures 1 and S.1). It is important to point out that from mvSLOUCH 
2.0.0 onwards, users can not only fit models allowing values to popu-
late different parts of the A and 𝚺yy matrices (e.g., ‘Diagonal’, ‘UpperTri’, 
‘LowerTri’, ‘Symmetric’), but can also customize individual cells, allowing 

the user to test several highly specific sets of trait interactions upon 
real data and compare their fit (see Section 3).

Many software packages developed in the last two decades for 
estimating  Equation  (1)'s  parameters  faced  issues  with  long  com-
putation times. Computational running time limited analyses to ca 
400 species for up to six traits. Initially, simplifying assumptions re-
ducing the number of parameters to be estimated were made. For 
example,  the  first  multivariate  OU- based  method  (ouch,  Butler  & 
King, 2004) was restricted to a symmetric- positive- definite drift ma-
trix. Bartoszek et al. (2012) introduced the mvSLOUCH (Multivariate 
Stochastic Linear Ornstein–Uhlenbeck Models for Phylogenetic 
Comparative Hypotheses) R (R Core Team, 2019) package that can 
handle and compare a wide variety of parametrizations for hypothe-
ses concerning multivariate trait evolution.

From  a  broader  perspective,  the  observations  at  the  tips  of  a 
phylogeny come from a multivariate [ K- dimensional, with no miss-
ing observations K is number of tips (n) times number of traits (k)] 
normal distribution with a covariance matrix, V, that depends on the 
tree and evolutionary process. One can obtain the likelihood directly 
using a standard multivariate normal density function. However, this 
comes at a computational cost—obtaining V requires on the order of 
K2 calculations, and then one needs to find its determinant and in-
verse. Constructing V is therefore a major computational bottleneck.

Several approaches have been proposed to provide faster like-
lihood calculation algorithms. In particular, Mitov et al. (2020) con-
sidered a wide family of Gaussian models, the  LInv family (Def. S.1) 

(1)d�⃗y (t) = −A
(
�⃗y (t) −�⃗𝜃 (t )) dt + 𝚺yyd���⃗W (t ),

FIGURE 1 Illustration of independent adaptation and coadaptation. The phase portraits, based on A, reflect the dynamics of the mean 
value of the OU process, where the optimum (𝜃) for both traits is 0. Trait 1 is presented on the abscissa, and Trait 2 on the ordinate. In the 
plot, the influence of stochastic perturbations captured by 𝚺yy is omitted (for a thorough graphical depiction of diffusion parameterizations, 
see Clavel et al., 2015). Two example starting points (black open dots) and their subsequent trajectories (indicated by the black lines 
emerging from the dots) are shown moving towards 0. The grey arrows indicate the direction of evolution, and the blue lines represent the 
nullclines. We only illustrate the most general scenarios: (a) where the traits do not influence each other's average trajectory (diagonal A)  
and (b) where one trait's path is mediated by the other (upper- triangular A). In the Supplementary Material (Figure S.1; Table S.1), we show 
more scenarios for A, including both- way interactions (non- triangular A) and repulsion (A has negative eigenvalues). Interpretations of the 
paths towards the optimum (notice that the optimum is 𝜃, so neither the traits nor A  affect the optimum itself,  A only affects the shape 
of the path) come from the investigation of A's eigenvalues and eigenvectors. In (a), we can see that both traits move directly towards the 
optimum in a symmetric fashion (as both have equal eigenvalues equalling 0.01 and (1, 0), (0, 1) are the eigenvectors), while in (b), the path is 
more nuanced. There is an initial pull in one direction (eigenvector (0.5, 1) corresponding to an eigenvalue of 0.05), and after the ‘y’ trait has 
approached 0, we observe a strong change in the direction of the pull (eigenvector (1, 0) corresponding to an eigenvalue of 0.01). Note that 
we never observe a straight line of the pull—rather, it is a curve as the direction of movement is a (non- linearly) weighted average of the two 
eigenvectors, with speeds of movement defined by the two eigenvalues.
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on  phylogenies.  Common  uni/multivariate  PCM  models  like  the 
BM,  BM  with  drift,  OU,  punctuated  equilibrium  (OU  with  jumps 
at  speciation),  white  noise,  early  burst/accelerating- decelerating 
(Blomberg  et  al.,  2003;  Harmon  et  al.,  2010)  or  BM  with  a  trend 
(Harmon et al., 2010) all belong to this family. The likelihood under 
these models can be found in the procedures implemented by Mitov 
et al. (2020) in the PCMBase (with its C++ backend, PCMBaseCpp) R 
package. PCMBase serves as a computational engine for calculating 
the likelihood for  LInv models of evolution. From mvSLOUCH 2.0.0 
the likelihood is calculated using PCMBase. The switch from the al-
gorithm requiring V explicitly, to Mitov et al.'s (2020) one opens com-
pletely new modelling and estimation possibilities for mvSLOUCH. 
Much larger trees can be considered and complex simulation studies 
undertaken. It is now possible to investigate the effects of measure-
ment error, effects of multiplying the data by a matrix (e.g., by an 
orthogonal matrix, i.e., pre- rotation), the likelihood surface, or appli-
cability of various information criteria/model selection techniques.

mvSLOUCH and PCMFit (Mitov et al., 2019), handle the widest 
class  of  OU- based  models  among  all  PCM  software  known  to  us 
(Table S.2). Both packages, based on PCMBase, seamlessly handle 
polytomies,  missing  data,  and  non- ultrametric  phylogenies.  Fossil 
data can be incorporated by placing measurements on short, non- 
contemporary  tip  branches  in  line  with  their  hypothesized  timing. 
PCMFit is able, in principle, to handle every model that mvSLOUCH 
handles. While PCMFit is able to handle multiple models on the phy-
logeny (e.g., mixing BM and OUs models) and estimate where mod-
els switched, mvSLOUCH is dedicated towards OU- type models. It 
allows for direct constraining of parameters so that they correspond 
to  specific  evolutionary  hypotheses  (potentially  non- trivial  to  im-
plement in PCMFit) and returns summary statistics describing the 
relationships between the traits from multiple, biologically relevant, 
perspectives. In particular, mvSLOUCH returns half- lives in terms of 
tree height, evolutionary and optimal regressions, and correlations 
between  all  pairs  of  traits.  Parametrizations  of A  based  on  its  ei-
gendecomposition, and control over individual entries, are directly 
offered  by  mvSLOUCH.  This  increase  in  mvSLOUCH's  inference 
capability  provides  new  possibilities  for  users.  Here,  we  describe 
how  to  take  advantage  of  this  additional  functionality  by  means 
of  an  example  analysis  of  functional  traits  in  angiosperms  using  a 
large phylogeny. We provide extensive details on the probabilistic 
framework behind mvSLOUCH (Supplementary Material, especially 
the multivariate OU process), describe newly implemented functions 
(e.g., building blocks for a phylogenetic regression study, Appendix 
SB3), present analytical estimation formulæ for the BM case, discuss 
initial seeds for numerical estimation procedures (Appendix SE), and 
demonstrate the magnitude of the speed- up due to using PCMBase 
(Appendix SG).

2   |   NEW FEATURES OF mvSLOUCH

We present functionality that offers the user a sophisticated toolbox 
for  studying  OU- based  evolution.  For  technical  details,  exemplary 

code,  and  analyses,  we  refer  to  the  Supplementary  Material,  the 
package's documentation and vignette, and the accompanying 
GitHub repository (https:// github. com/ krzbar/ KJVJM RKK_ mvS-
LOUCH).  The  user  can  specify  detailed  evolutionary  hypotheses 
through classes of the OU process's matrix parameters (see Appendix 
SA3; Bartoszek et al.'s (2023) Supplementary Material, Appendix SB) 
or by controlling (e.g., forcing to 0) individual entries of these matri-
ces. Then, model selection can be performed on sets of competing 
hypotheses. mvSLOUCH's estimate.evolutionary.model() function (de-
veloped by Xiao et al., 2018) can compare multiple models and re-
turn the best one (under Akaike's information criterion corrected for 
sample size, AICc (Hurvich & Tsai, 1989); in Bartoszek et al. (2023), 
we also explored AICc's model selection capabilities; however mvS-
LOUCH also returns other information criteria). This function pro-
vides an intuitive explanation concerning the best model. A function 
to compute parametric bootstrap confidence intervals (CIs) was im-
plemented approximately 10 years ago, but only now it is possible to 
obtain appropriate sample sizes (see Section 3). The fast likelihood 
evaluation method allows for efficient calculation of quadratic forms 
with respect to V (Appendix SB3), allowing for the evaluation of phy-
logenetic regressions (Appendix SB4) and, consequently, analytical 
generalized- least- squares estimators for BM models (Appendix SD). 
mvSLOUCH now offers the possibility to perform custom phyloge-
netic regressions and to calculate the phylogenetic residual sum of 
squares for an arbitrary vector (Appendix SB3). These give the user 
the  possibility  to  regress  on  arbitrary  predictors,  not  necessarily 
phylognetically related ones, and can be building blocks for meth-
ods based on quadratic forms. New features have been added to the 
package, including the ability to estimate the root state under OU 
models (previously—fixed at the primary optimum). For OU models, 
estimation is carried out from multiple starting points, one derived 
from analytical considerations (see Section Appendix SE). The user 
can extend optimization from a good starting point from previous 
analyses (see Section 4) and also has control over the number of it-
erations of the numerical optimizer, which can be adjusted to reduce 
run- time. The package's output has been extended with various R 2 
values (Appendix SB2).

3   |   EXAMPLE ANALYSIS: EVOLUTION OF 
FUNCTIONAL TRAITS IN A DATASET OF 
1252 VASCULAR PLANTS

Size determines many morphological, anatomical, and physiological 
characteristics  of  living  organisms.  However,  the  scaling  of  these 
various traits with size (allometries) reveals considerable variation, 
likely generated by natural selection in response to environmental 
problems (Voje, 2016). Although the general allometric relationships 
between plant size and their leaves, roots, fruits, and seeds have been 
documented (Niklas, 1994), there are several interesting exceptions. 
One of them is the relationship between seed mass and leaf area, 
where a wide range of leaf area values co- occur with small seed mass 
values. Yet, this leaf area variation narrows as seed mass increases, 
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forming  a  triangle- shaped  distribution  (Cornelissen,  1999;  Santini 
et al., 2017). We intuitively expect a positive scaling relationship, be-
cause of the observed positive relationships between leaf area and 
twig  thickness  as  well  as  between  leaf  area  and  size  of  infructes-
cence. The absence of this correlation, at least in tested woody and 
annual  plants,  was  due  to  the  occurrence  of  species  having  large 
leaves  and  small  seeds  (Cornelissen,  1999;  Santini  et  al.,  2017).  It 
was hypothesized that differences among habitats in plant ecologi-
cal strategies play a critical role. For example, while stress- tolerant 
and competitive strategists possess either small seeds and leaves or 
large leaves and seeds respectively, there is a group of ruderal plants 
with small seeds and large leaves occupying early successional habi-
tats (Cornelissen, 1999; Santini et al., 2017).

mvSLOUCH provides an opportunity to test these allometric hy-
potheses in a comparative framework consistent with the process 
of natural selection. Especially important is the option to fit param-
eters of multivariate OU processes, Equation (1), (OUOU models—
some traits are interpreted as predictors and others as responses). 
This allows both independent and dependent continuous variables 
to reflect adaptive evolution. A second advantage of mvSLOUCH is 
that its multivariate nature allows for the construction of relatively 
sophisticated evolutionary models, that can be interpreted in some 
causal framework (Reitan et al., 2012).

We obtained measures of leaf mass, leaf area and seed mass for 
1252 European angiosperm species from Carmona et al. (2021), who 
curated these measures from the TRY database (Kattge et al., 2011). 
To this, we added a fourth trait, plant height, which we curated from 
TRY.  We  collected  Ellenberg  indicator  values  for  nitrogen  (ELL- N) 
(from Chytrý et al., 2018), which are divided into nine classes (1–9) 
ranging from low (1) to high (9) productivity habitats. We mapped 

the  nine  ELL- N  categories  to  our  phylogeny  using  parsimony  with 
delayed transitions (DELTRAN) using mvSLOUCH::fitch.mvsl() 

(Table S.6; Figure S.6). There are 19 branches which required manual 
resolution, based on the fact that Ellenberg values are ordinal. The 
assignment is visible in the supplementary material's code. It should 
be pointed out that there are more sophisticated approaches, like 
stochastic character mapping (e.g., phytools::simmap(); Huelsenbeck 
et al., 2003; Nielsen, 2002; Revell, 2012), that we encourage users 
to explore. In Appendix SC7, we provide a small example of how to 
integrate phytools::simmap() output with mvSLOUCH. Furthermore, 
using  probabilistic  approaches  would  provide  estimates  of  uncer-
tainty for regime placements. The dated phylogeny is the supertree 
of plants used by Carmona et al. (2021).

We tested several adaptive hypotheses concerning the effect of 
habitat  productivity  on  allometric  relationships  by  altering A.  The 
A matrices were parametrized in six ways (visualized in Figure 2) as 
follows:

1. Plant  height  is  the  driving  factor  of  changes  in  leaf  and  seed 
traits,  which  in  turn  affect  each  other's  optima;  plant  height, 
which is linked to the species' competitive ability, may be 
affected  by  productivity,  with  taller  plants  selected  in  more 
N- rich  habitats.

2. This model differs from the previous one in that plant height does 
not affect leaf and seed traits, which evolve independently; this 
model assumes that the diversity of plant architectures (branch-
ing pattern, growth form, etc.) in angiosperms is very high, pre-
venting  any  simple  allometric  relationship  between  height,  leaf 
and seed traits. We expect a stronger effect of habitat regimes on 
leaf and seed traits, yet less so on plant height.

FIGURE 2 Left: Graphical representation of models 1–6. Arrows indicate which trait affects which trait through A. Right: Classes of A 
corresponding to each of the six models considered in the analyses of the vascular plants' functional traits data. 0 means the specific entry 
is constrained to be 0 in the estimation procedure, and +, that it is constrained to be positive. Entries denoted by ? are free to vary over the 
whole real line, they are not constrained to be all equal to each other in the matrix. These are, respectively, represented by 0, ‘+’ and NA 

when calling mvSLOUCH. The order of the variables for the A matrices is plant height (PH), seed mass (SM), leaf area (LA), and leaf mass 
(LM).
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3. We remove adaptive links between leaf and seed traits here; we 
assume  that  taller  plants  and  bigger  seeds  are  advantageous  in 
nutrient- rich, competitive habitats.

4. Contrary to model 3, we assume independent evolution of seed 
mass while considering adaptive links between plant height and 
leaf  size;  nitrogen- rich  habitats  may  select  for  tall  competitive 
plants with large leaf areas capturing more energy.

5. Here  there  are  no  adaptive  links  among  studied  traits;  setting 
A  to  a  diagonal  matrix  means  that  all  traits  are  independently 
shaped by selection. This could be a plausible assumption given 
angiosperms are hugely diverse and display a myriad of life history 
strategies.

6. In this most parameter- rich model, we allow the A Eq.(1) matrix to 
be fully parametrized, which we interpret as a trait–trait adaptive 
co- evolution as expected from allometric theory.

These  six  models  were  contrasted  with  the  BM  model.  We 
point out that it is possible to run all of these analyses in a single 
function call, mvSLOUCH::estimate.evolutionarymodel(). However, 
given the tree's size and number of initial seeds, the running times 
would be very large, risking the loss of all calculations in case of, 
for example, a computer's crash. We conducted two sets of analy-
ses for each of these models, in order to explore differences in the 
non- adaptive component of the trait evolution. In the first set, 𝚺yy 
was diagonal, implying no interactions between the traits in the 
noise component of evolution. In the second set, 𝚺yy was upper- 
triangular,  indicating  interacting  evolution  of  the  traits  due  to, 
for example, developmental constraints or covariation with other 
unmeasured  trait  under  selection.  To  improve  maximum  likeli-
hood  (ML)  estimation,  500  runs  of  each  model  were  conducted 
from the same 500 starting seeds for the optimizer. Five hundred 
unique starting points were used for each of the 𝚺yy diagonal and 
upper- triangular  versions  (see  ‘Numerical  optimization’  section 
of  mvSLOUCH's  vignette  for  an  analogous  example).  All  anal-
yses  were  completed  using  the  computing  cluster  FUN- K  at  the 
Biological  and  Chemical  Research  Center,  University  of  Warsaw 
using one node with 48 threads. It took 6.3 days to accomplish all 
computations, including bootstrapping.

4   |   RESULTS AND DISCUSSION

After fitting all six models, we found that the model with the low-
est AIC c was model 6 with 𝚺yy diagonal. However, the alternative 
model 6 (𝚺yy upper- triangular) had a lower log- likelihood value than 
model 6 with 𝚺yy diagonal. This cannot happen if the optimizer hit 
the  global  optimum,  as  a  diagonal 𝚺yy  is  a  special  case  of  an 𝚺yy 
upper- triangular. We therefore used the model 6 𝚺yy diagonal out-
put  as  a  starting  point  for  a  new  run  of  model  6  with 𝚺yy  upper- 
triangular (using ouchModel()'s start_point_for_optim argument), from 
which we then obtained our lowest, among all models, AIC c score. 
This highlights that, after fitting several models to a dataset, it is 
beneficial to take sub- models with good likelihood and AIC c scores, 

and use these as starting points for their generalizations. In fact, 
we followed this procedure for all models, refining the best found 
diagonal 𝚺yy point to 𝚺yy upper- triangular. This refinement usually 
found  a  point  with  a  higher  likelihood,  than  when  started  with  a 
random numerical seed. Interestingly, in a number of cases, the di-
agonal structure of 𝚺yy was retained in the ML point, despite the 
optimization  algorithm  being  free  to  vary  the  off- diagonals.  We 
point out that many repetitions of the same model, using different 
random seeds/starting points, are necessary to obtain the best pos-
sible estimates of model parameters. As the likelihood surface of 
phylogenetic OU models is still not well understood, we cannot yet 
guarantee a global optimum. To gain from using the output of one 
estimation as the input for another, the parametrization of the latter 
should be less restrictive ( 𝚺yy upper- triangular is the most general 
one). In addition, after many repetitions (computational constraints 
allowing) it is advisable to check if the highest scoring subset results 
in similar parameter estimates; in particular, the optima, and com-
pound statistics like regressions, covariances and correlations. The 
estimates of Ayy, and 𝚺yy can be very variable but still lead to similar 
covariance or regression estimates.

After the reanalysis, model 6 with 𝚺yy upper- triangular had the 
lowest AIC c value (16,381.058, Table 1). Because the second best 
model (model 6 with 𝚺yy diagonal) had AICc greater by over 46 units 
from the best one, there is little empirical support for any model but 
model 6 with 𝚺yy upper- triangular. Model 6 is superior to all other 
models, as the next best model (Model 3) is over 1774 AIC c units 
away, regardless of the form of 𝚺yy.

It is noteworthy that there is a high variation in the end values 
of the likelihood function among different runs of the same model. 
For  the  best  model,  these  varied  in  the  range −172, 526.72  to 
−8127.739. Additional outputs for the lowest AIC c fit for each of the 
six main models are provided in the supplement, including values of 
the estimated A (Table S.8) and 𝚺yy (Table S.9) matrices, and primary 
optima vectors (Tables S.10–S.15).

The best model is consistent with an adaptive effect of habitat 
productivity on all organ traits. We can observe a positive shift in 
trait optima values as the ELL- N increases (Figure 3; Table S.15). 
A possible explanation for this pattern is construction cost, 
which can limit trait size in nutrient- poor habitats. This has been 
demonstrated in many studies, especially for leaf size, which de-
creases at the inter-  and intraspecific level (e.g. Givnish, 1987; Xu 
et al., 2009). This agrees with our analyses as leaf size, represented 
here by mass and area, showed the most substantial shift across 
the gradient of habitat productivity. Because our model assumes 
trait–trait co- evolution of all four studied characters, the primary 
optimum for each trait is influenced not only by habitat productiv-
ity, but also by all other traits. The strength of this influence comes 
from cross- trait effects in the primary optima, summarized by A, as 
well as from non- adaptive interacting evolution summarized by 𝚺yy.  
This influence is not identical in all cases as revealed by regression 
coefficients (Table S.16).

Plant  size,  the  leading  contributor  to  competition  for  light  and 
propogule  dispersal  is  most  affected  by  leaf  mass  and  weakly  by 
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Model

𝚺yy diagonal 𝚺yy upper- triangular
LogLik AICc R2 df LogLik AICc R2 df

1 −10,598.94 21,305.04 0.052 53 −10,607.68 21,334.80 0.05 59

2 −9968.793 20,038.615 0.076 50 −9747.051 19,607.392 0.054 56

3 −9996.868 20,088.645 0.077 47 −9024.085 18,155.326 0.035 53

4 −10,373.82 20,844.58 0.082 48 −9918.165 19,945.529 0.105 54

5 −9995.955 20,080.709 0.088 44 −9533.795 19,168.618 0.040 50

6 −8156.907 16,427.104 0.088 56 −8127.739 16,381.058 0.094 62

BM — — — — −10,912.55 21,853.19 0.003 14

Note: The best model discussed is marked in bold.

TABLE 1 The best AICc scores, from 
the 2001 fits per model, along with the 
log- likelihood (LogLik), R2 and degrees 
of freedom (df) values for the six models 
analysed with diagonal and upper- 
triangular 𝚺yy.

FIGURE 3 The deterministic optimum 
values for four morphological traits ( ��⃗Ψ 
from the best- fitting model). These values 
display a general trend of increasing 
character values with habitat productivity 
represented here by ELL- N. The plotted 
points indicate the estimated values 
and the whiskers represent the 95% 
regression- based confidence intervals 
CIs (whiskers). See Table S.15 for the 
numerical values with CIs.
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TABLE 2 Phylogenetic half- lives with 95% parametric bootstrap (500 bootstrap replicates) CI reported here as percentage of tree height 
in the eigenvector directions for the best model 6.

Model 6

Directions (eigenvectors)

e⃗ 1 e⃗ 2 e⃗ 3 e⃗ 4

PH 0.007 0.015 −0.686 0.184

SM −0.046 0.351 −0.353 0.863

LA 0.122 −0.668 −0.367 0.351

LM 0.991 −0.656 −0.52 0.313

Half- life 0.0002% 0.033% 0.407% 2.028%

(CI no seed) (0.107%, 72.392%) (26.214%, 192.568%) (66.732%, 1630.682%)

(CI seed) (0.00015%, 0.00033%) (0.333%, 1.111%) (0.489%, 2.613%)

Note: The abbreviations relate to measured plant height (PH), seed mass (SM), leaf area (LA), and leaf mass (LM). As bootstrapping involves running 
500 simulations, followed by re- estimation (see Appendix SC6), there is no guarantee that CIs will encapsulate the estimated parameter values 
from the best model. The first row of the CIs corresponds to the situation where no numerical seed is provided for the likelihood optimization for 
the bootstrap replicates; the second row when the same numerical seed, as in the case of the best found estimate, is provided for the likelihood 
optimization. The CIs in the first row do not cover the true values, illustrating the known difficulties of estimating the A scalar parameter in the one 
dimensional case (Cressler et al., 2015).

(7.416%, 80.331%)

(0.0262%, 0.065%)
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other traits (Table S.17). This underscores leaf mass as the dominant 
factor  driving  the  evolution  of  plant  height.  Seed  mass  was  posi-
tively affected by both leaf area and plant height, but negatively by 
leaf mass. The unexpected negative relationship between seed and 
leaf mass (but notice that the CIs cover 0), might stem from the trait 
distribution on the phylogeny or from a preponderance of plants in 
the dataset that have heavy leaves and small seeds, such as pioneer 
species  (Cornelissen,  1999).  The  positive  correlation  of  seed  mass 
with  plant  height  can  perhaps  be  attributed  to  the  basic  fact  that 
small plants can bear only small seeds while larger plants can sup-
port much larger ones. Again, the bootstrap CIs cover 0 (when the 
numerical seed is not fixed). Interestingly, our results revealed that 
seed mass only has a marginal affect on other traits (regression co-
efficient  in  all  cases  does  not  exceed  0.11)  in  spite  of  being  used 
as  a  predictor  in  other  studies,  such  as  those  analysing  leaf  traits 
(Hodgson  et  al.,  2017).  This  might  suggest  that  directional  selec-
tion can change seed mass without a strong effect on other traits. 
However, seed mass is significantly influenced by shifts in the values 
of other characters.

The last two studied traits, leaf mass, and leaf area, have a strong 
mutual effect on each other, as evidenced by the estimated regres-
sion coefficients of 0.910 and 0.846, respectively. The bootstrap CIs 
for these coefficients do not include 0 (Table S.16). The influence of 
other traits on leaf mass and leaf area is much weaker (Table S.17). 
Leaf area and mass have been shown to be strongly correlated with 
many physiological processes in plants, such as maximum photosyn-
thetic rate, leaf life span or relative growth rate (Moles, 2018), and 
both are certainly optimized by selection to adjust a plant's physiol-
ogy to a particular environment.

Our model also provides information about the tempo of adap-
tation, measured as a half- life (Bartoszek et al., 2012; Hansen, 1997). 
Here,  unlike  in  univariate  models,  the  phylogenetic  half- lives  can 
be interpreted as rates of adaptation towards the primary optimum 
along the directions in the trait space described by the correspond-
ing eigenvectors. All four eigenvectors and eigenvalues in our model 
indicated  adaptation  to  changing  primary  optima,  ranging  from 
0.0002% to 2.028% of tree height, translating to ca. 300a–2.82Ma 
(Table 2). It is important to emphasize that these half- lives refer to 
the adaptation of a group of complex developmental traits, not just 
one  trait  as  in  univariate  analyses.  Given  this,  the  rate  of  adapta-
tion can be considered very rapid—a pace expected for ecologically 
relevant  traits.  For  example,  the  first  eigenvector,  associated  with 
the  lowest  half- life  of  300a,  is  dominated  by  leaf  mass  (entry  for 
this trait is 0.991, compared to the second largest entry of 0.122). 
Although this half- life might be underestimated, it aligns well with 
empirical studies. Leaf traits have been demonstrated to frequently 
experience strong selective pressure and possess high evolvability 
(Donovan et al., 2011). In consequence, they evolve rapidly within 
species or between closely related taxa inhabiting contrasting envi-
ronments (Donovan et al., 2011).

Our mvSLOUCH analyses provided several interesting additions 
to existing studies. Our best model showed that habitat productiv-
ity positively influences the adaptive optima of all studied traits. In 

addition to habitat quality, all traits co- evolve adaptively. However, 
the strength of the effect of each trait on the optimum of the other 
traits is not identical: plant height is influenced mainly by leaf mass, 
seed  mass  by  all  traits  approximately  equally,  while  leaf  area  and 
mass  affect  each  other's  optima  with  weaker  influence  of  other 
traits.  All  adaptive  changes  are  rapid  on  macroevolutionary  time 
scales, taking no more than 2.82 Ma. A key motivation of the above 
example was to demonstrate the feasibility of mvSLOUCH exploring 
several competing hypotheses of adaptation and evolution for large, 
multivariate datasets. Such a study  was made possible due to the 
immensely  reduced  running  times  (Appendix  SG)  that  allowed  for 
thousands of estimation reruns under different setups and starting 
points. This is also facilitated by simplicity of coding of the differ-
ent biological hypotheses—the user just needs to write a matrix with 
entries NA (anything), ‘+’ (positive), ‘−’ (negative) or ‘0’ (equals 0, any 
other numerical values can be provided here).

Two drawbacks of our analyses have to be acknowledged. Firstly, 
we did not have measurement error estimates—only the mean value 
for  each  species.  It  has  to  be  reminded  that  measurement  error 
can  have  profound  effects,  resulting  in  biased  estimates  (Hansen 
& Bartoszek, 2012) or masking of adaptive effects (Bartoszek 
et  al.,  2023).  Secondly,  in  order  to  focus  on  the  possibilities  of 
mvSLOUCH itself, we mapped the regimes using mvSLOUCH's in-
built Fitch algorithm (Fitch, 1971), using the simplest handling of am-
biguous mapping, with additional post- hoc manual assignment of the 
remaining 19 unresolved branches. There are more advanced regime 
placement methods that we would encourage users to explore.

Lastly, the user needs to be aware of some limitations of 
mvSLOUCH.  Running  times  can  be  still  long  for  high- dimensional 
models and large trees. As observed in our study, the variability of 
the  returned  likelihood  value  is  very  high—and  hence,  also  of  the 
parameters' estimates. This can be mitigated, at the moment, only 
by  considering  multiple  starting  points  for  the  optimizer.  Finally, 
model  identification  capabilities  are  not  entirely  clear  (Bartoszek 
et  al.,  2023)  and  some  parameters  are  more  difficult  to  estimate 
than  others,  especially A,  under  very  general  parameterizations 
(mvSLOUCH will warn if a known unreliable parameterization is cho-
sen). However, these seem to be reservations common to all con-
temporary multivariate PCM software.

On  the  other  hand,  the  improved  likelihood  calculation  algo-
rithms  and,  in  turn,  reduced  running  times,  will  allow  for  investi-
gating  these  issues.  We  are  able  to  design  now  large  simulations 
studies  (e.g.  Bartoszek  et  al.,  2023;  Bartoszek,  Fuentes- González, 
et al., 2024) that can aim to identify which model pairs (biological hy-
potheses) are distinguishable, which parameters can be consistently 
estimated, what tree sizes (under a given tree model) are required, 
and what are the effects of, for example, measurement error or miss-
ing data. Multivariate models are more complicated to fit to empirical 
data and require substantially more computational power than their 
univariate counterparts. However, the upside is the ability of these 
models to reveal more realistic knowledge of adaptation and evolu-
tion among suites of traits. Simpler models should not be preferred 
if the question at hand demands complex multivariate approaches.
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