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1 | INTRODUC TION selection on another trait (Lande, 1979; Lande & Arnold, 1983;
Walsh & Blows, 2009). Moreover, traits may undergo correlational

Most studies that utilize phylogenetic comparative methods selection (Svensson et al., 2021). Given this complexity, univari-

(PCMs) focus on single traits. However, evolution is inherently ate models are insufficient for fully understanding the implications

a multivariate phenomenon. Traits are seldom genetically inde- of the multivariate nature of selection and evolution. Therefore,

pendent; for example, one trait's evolution may be influenced by multivariate models are essential to more accurately represent the
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evolution of traits. The Ornstein—-Uhlenbeck (OU, Equation (1))
process is particularly effective in this regard. Its main benefit is
modelling how a trait's optimum—defined by the ~ &t) parameter—
adapts in response to varying conditions. This model facilitates the
testing of various evolutionary hypotheses, such as those concern-
ing trade- offs (Bartoszek et al., 2012) and modularity (Bartoszek
et al., 2023). Here, we present the updated version of mvSLOUCH
software that allows users to quickly fit multivariate OU models
to large datasets, address measurement errors and missing data,
and precisely define interacting traits and the direction of these
interactions.

We define the OU process (see Appendix SA2 for additional de-
tails and interpretations) for a k-dimensional trait, )ﬁt) as

( )
D) = —A ) - &) di + Z,dPOP (1)

where m@ ak- dimensional standard Brownian motion. Equation (1)
models the changes in a suite ofk traits over an infinitesimal amount
of time. The parameter A is the matrix counterpart of the selection
strength parameter (usually denoteda; e.g., Butler & King, 2004).

It is crucial to underline that A's entries are difficult to interpret di-

rectly—one should rather investigate its eigenvalues and eigenvectors
(Figures 1 and S.1). It is important to point out that from mvSLOUCH
2.0.0 onwards, users can not only fit models allowing values to popu-
late different parts of the A andZX,, matrices (e.g., ‘Diagonal’, ‘UpperTri’,

‘LowerTri’, ‘Symmetric’), but can also customize individual cells, allowing

the user to test several highly specific sets of trait interactions upon
real data and compare their fit (see Section 3).

Many software packages developed in the last two decades for
estimating Equation (1)'s parameters faced issues with long com-
putation times. Computational running time limited analyses to ca
400 species for up to six traits. Initially, simplifying assumptions re-
ducing the number of parameters to be estimated were made. For
example, the first multivariate OU- based method (ouch, Butler &
King, 2004) was restricted to a symmetric- positive- definite drift ma-
trix. Bartoszek et al. (2012) introduced the mvSLOUCH (Multivariate
Stochastic Linear Ornstein—-Uhlenbeck Models for Phylogenetic
Comparative Hypotheses) R (R Core Team, 2019) package that can
handle and compare a wide variety of parametrizations for hypothe-
ses concerning multivariate trait evolution.

From a broader perspective, the observations at the tips of a
phylogeny come from a multivariate [ K-dimensional, with no miss-
ing observations K is number of tips (1) times number of traits (k)]
normal distribution with a covariance matrix, V, that depends on the
tree and evolutionary process. One can obtain the likelihood directly
using a standard multivariate normal density function. However, this
comes at a computational cost—obtaining V requires on the order of
K2 calculations, and then one needs to find its determinant and in-
verse. Constructing V is therefore a major computational bottleneck.

Several approaches have been proposed to provide faster like-
lihood calculation algorithms. In particular, Mitov et al. (2020) con-
sidered a wide family of Gaussian models, the (pp, family (Def. S.1)
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FIGURE 1

lllustration of independent adaptation and coadaptation. The phase portraits, based on A, reflect the dynamics of the mean

value of the OU process, where the optimum (&) for both traits is 0. Trait 1 is presented on the abscissa, and Trait 2 on the ordinate. In the
plot, the influence of stochastic perturbations captured by X, is omitted (for a thorough graphical depiction of diffusion parameterizations,
see Clavel et al., 2015). Two example starting points (black open dots) and their subsequent trajectories (indicated by the black lines
emerging from the dots) are shown moving towards 0. The grey arrows indicate the direction of evolution, and the blue lines represent the
nullclines. We only illustrate the most general scenarios: (a) where the traits do not influence each other's average trajectory (diagonal A)
and (b) where one trait's path is mediated by the other (upper- triangular A). In the Supplementary Material (Figure S.1; Table S.1), we show
more scenarios for A, including both-way interactions (non- triangular A) and repulsion (A has negative eigenvalues). Interpretations of the
paths towards the optimum (notice that the optimum is & so neither the traits nor A affect the optimum itself, A only affects the shape

of the path) come from the investigation of A's eigenvalues and eigenvectors. In (a), we can see that both traits move directly towards the
optimum in a symmetric fashion (as both have equal eigenvalues equalling0.01 and (1, 0), (0, 1) are the eigenvectors), while in (b), the path is
more nuanced. There is an initial pull in one direction (eigenvector (0.5, 1) corresponding to an eigenvalue of 0.05), and after the ‘y’ trait has
approached 0, we observe a strong change in the direction of the pull (eigenvector (1, 0) corresponding to an eigenvalue of 0.01). Note that

we never observe a straight line of the pull—rather, it is a curve as the direction of movement is a (non- linearly) weighted average of the two
eigenvectors, with speeds of movement defined by the two eigenvalues.
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on phylogenies. Common uni/multivariate PCM models like the
BM, BM with drift, OU, punctuated equilibrium (OU with jumps
at speciation), white noise, early burst/accelerating- decelerating
(Blomberg et al., 2003; Harmon et al., 2010) or BM with a trend
(Harmon et al., 2010) all belong to this family. The likelihood under
these models can be found in the procedures implemented by Mitov
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code, and analyses, we refer to the Supplementary Material, the
package's documentation and vignette, and the accompanying
GitHub (https:// github. com/ krzbar/KJVIJMRKK_mvS-
LOUCH). The user can specify detailed evolutionary hypotheses

repository

through classes of the OU process's matrix parameters (see Appendix
SAS3; Bartoszek et al.'s (2023) Supplementary Material, Appendix SB)

et al. (2020) in the PCMBase (with its C++ backend, PCMBaseCpp) Ror by controlling (e.g., forcing to 0) individual entries of these matri-

package. PCMBase serves as a computational engine for calculating
the likelihood for (. models of evolution. From mvSLOUCH 2.0.0
the likelihood is calculated using PCMBase. The switch from the al-
gorithm requiring V explicitly, to Mitov et al.'s (2020) one opens com-
pletely new modelling and estimation possibilities for mvSLOUCH.
Much larger trees can be considered and complex simulation studies
undertaken. It is now possible to investigate the effects of measure-
ment error, effects of multiplying the data by a matrix (e.g., by an
orthogonal matrix, i.e., pre-rotation), the likelihood surface, or appli-
cability of various information criteria/model selection techniques.
mvSLOUCH and PCMFit (Mitov et al., 2019), handle the widest
class of OU- based models among all PCM software known to us
(Table S.2). Both packages, based on PCMBase, seamlessly handle
polytomies, missing data, and non- ultrametric phylogenies. Fossil
data can be incorporated by placing measurements on short, non-
contemporary tip branches in line with their hypothesized timing.
PCMFit is able, in principle, to handle every model that mvSLOUCH
handles. While PCMFit is able to handle multiple models on the phy-
logeny (e.g., mixing BM and OUs models) and estimate where mod-
els switched, mvSLOUCH is dedicated towards OU- type models. It
allows for direct constraining of parameters so that they correspond
to specific evolutionary hypotheses (potentially non- trivial to im-
plement in PCMFit) and returns summary statistics describing the
relationships between the traits from multiple, biologically relevant,
perspectives. In particular, mvSLOUCH returns half- lives in terms of
tree height, evolutionary and optimal regressions, and correlations
between all pairs of traits. Parametrizations of A based on its ei-
gendecomposition, and control over individual entries, are directly
offered by mvSLOUCH. This increase in mvSLOUCH's inference
capability provides new possibilities for users. Here, we describe
how to take advantage of this additional functionality by means
of an example analysis of functional traits in angiosperms using a
large phylogeny. We provide extensive details on the probabilistic
framework behind mvSLOUCH (Supplementary Material, especially
the multivariate OU process), describe newly implemented functions
(e.g., building blocks for a phylogenetic regression study, Appendix
SB3), present analytical estimation formulee for the BM case, discuss
initial seeds for numerical estimation procedures (Appendix SE), and
demonstrate the magnitude of the speed- up due to using PCMBase
(Appendix SG).

2 | NEW FEATURES OF mvSLOUCH

We present functionality that offers the user a sophisticated toolbox
for studying OU- based evolution. For technical details, exemplary

ces. Then, model selection can be performed on sets of competing
hypotheses. mvSLOUCH's estimate.evolutionary.model() function (de-
veloped by Xiao et al., 2018) can compare multiple models and re-
turn the best one (under Akaike's information criterion corrected for
sample size, AIC, (Hurvich & Tsai, 1989); in Bartoszek et al. (2023),
we also explored AIC 's model selection capabilities; however mvS-
LOUCH also returns other information criteria). This function pro-
vides an intuitive explanation concerning the best model. A function
to compute parametric bootstrap confidence intervals (Cls) was im-
plemented approximately 10years ago, but only now it is possible to
obtain appropriate sample sizes (see Section 3). The fast likelihood
evaluation method allows for efficient calculation of quadratic forms
with respect to V (Appendix SB3), allowing for the evaluation of phy-
logenetic regressions (Appendix SB4) and, consequently, analytical
generalized-least- squares estimators for BM models (Appendix SD).
mvSLOUCH now offers the possibility to perform custom phyloge-
netic regressions and to calculate the phylogenetic residual sum of
squares for an arbitrary vector (Appendix SB3). These give the user
the possibility to regress on arbitrary predictors, not necessarily
phylognetically related ones, and can be building blocks for meth-
ods based on quadratic forms. New features have been added to the
package, including the ability to estimate the root state under OU
models (previously—fixed at the primary optimum). For OU models,
estimation is carried out from multiple starting points, one derived
from analytical considerations (see Section Appendix SE). The user
can extend optimization from a good starting point from previous
analyses (see Section 4) and also has control over the number of it-
erations of the numerical optimizer, which can be adjusted to reduce
run- time. The package's output has been extended with various R 2
values (Appendix SB2).

3 | EXAMPLE ANALYSIS: EVOLUTION OF
FUNCTIONAL TRAITS IN A DATASET OF
1252 VASCULAR PLANTS

Size determines many morphological, anatomical, and physiological
characteristics of living organisms. However, the scaling of these
various traits with size (allometries) reveals considerable variation,
likely generated by natural selection in response to environmental
problems (Voje, 2016). Although the general allometric relationships
between plant size and their leaves, roots, fruits, and seeds have been
documented (Niklas, 1994), there are several interesting exceptions.
One of them is the relationship between seed mass and leaf area,
where a wide range of leaf area values coeccur with small seed mass
values. Yet, this leaf area variation narrows as seed mass increases,
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forming a triangle-shaped distribution (Cornelissen, 1999; Santini
et al., 2017). We intuitively expect a positive scaling relationship, be-
cause of the observed positive relationships between leaf area and

twig thickness as well as between leaf area and size of infructes-
cence. The absence of this correlation, at least in tested woody and
annual plants, was due to the occurrence of species having large

the nine ELLN categories to our phylogeny using parsimony with
(DELTRAN) using mvSLOUCH::fitch.mvsl()
(Table S.6; Figure S.6). There are 19 branches which required manual

delayed transitions
resolution, based on the fact that Ellenberg values are ordinal. The
assignment is visible in the supplementary material's code. It should
be pointed out that there are more sophisticated approaches, like

leaves and small seeds (Cornelissen, 1999; Santini et al., 2017). It stochastic character mapping (e.g., phytools::simmap(); Huelsenbeck

was hypothesized that differences among habitats in plant ecologi-
cal strategies play a critical role. For example, while stress- tolerant
and competitive strategists possess either small seeds and leaves or
large leaves and seeds respectively, there is a group of ruderal plants
with small seeds and large leaves occupying early successional habi-
tats (Cornelissen, 1999; Santini et al., 2017).

mvSLOUCH provides an opportunity to test these allometric hy-
potheses in a comparative framework consistent with the process
of natural selection. Especially important is the option to fit param-
eters of multivariate OU processes, Equation (1), (OUOU models—
some fraits are interpreted as predictors and others as responses).
This allows both independent and dependent continuous variables
to reflect adaptive evolution. A second advantage of mvSLOUCH is
that its multivariate nature allows for the construction of relatively
sophisticated evolutionary models, that can be interpreted in some
causal framework (Reitan et al., 2012).

We obtained measures of leaf mass, leaf area and seed mass for
1252 European angiosperm species from Carmona et al. (2021), who
curated these measures from the TRY database (Kattge et al., 2011).
To this, we added a fourth trait, plant height, which we curated from
TRY. We collected Ellenberg indicator values for nitrogen (ELN)
(from Chytry et al., 2018), which are divided into nine classes (1-9)
ranging from low (1) to high (9) productivity habitats. We mapped

et al., 2003; Nielsen, 2002; Revell, 2012), that we encourage users
to explore. In Appendix SC7, we provide a small example of how to
integrate phytools::simmap() output with mvSLOUCH. Furthermore,
using probabilistic approaches would provide estimates of uncer-
tainty for regime placements. The dated phylogeny is the supertree
of plants used by Carmona et al. (2021).

We tested several adaptive hypotheses concerning the effect of
habitat productivity on allometric relationships by altering A. The
A matrices were parametrized in six ways (visualized in Figure 2) as

follows:

1. Plant height is the driving factor of changes in leaf and seed
traits, which in turn affect each other's optima; plant height,
which is linked to the species' competitive ability, may be
affected by productivity, with taller plants selected in more
N- rich habitats.

2. This model differs from the previous one in that plant height does
not affect leaf and seed traits, which evolve independently; this
model assumes that the diversity of plant architectures (branch-
ing pattern, growth form, etc.) in angiosperms is very high, pre-
venting any simple allometric relationship between height, leaf
and seed traits. We expect a stronger effect of habitat regimes on
leaf and seed traits, yet less so on plant height.

Model 1
Leaf area
Seed mass 2 Plant height MOdel A MOdel A
Leaf mass PH SM LA LM PH SM LA LM
Model 2 - - — -
Leaf area ~ PH + 0 0 O + 0 O O
Seed mass Plant height 1 SM 7 + ? ? 2 0 + 7 ?
Leaf mass
Model 3 LA ? 7 4+ 7 0 ? + ?
Leaf area
Seed mass = Plant height LM L ? ? 7 + 1 L 0 ? 7+ 1
Leaf mass r 7 r 7
W PH + 0 0 0 + 0 0 0
Leaf area ?
Seed mass Plant height 3 ML P+ 000 4 0+ 0 0
Leaf mass LA 0o o0 + 2 ? 0o + 7
Model 5
Leaf area LM L O 0 ? + . L ? O ? + m
Seed mass Plant height B T
eisee PH + 0 0 0 T T 7
Model 6 5 SM 0O + 0 O 6 T 7 7
Leaf area
Seed mass ~7 - Plant height LA 0 0 + 0 7 ? ? ?
Leaf mass LM 0 0 0 + 7 ? 7 7

FIGURE 2 Left: Graphical representation of models 1-6. Arrows indicate which trait affects which trait through A. Right: Classes of A
corresponding to each of the six models considered in the analyses of the vascular plants' functional traits data. 0 means the specific entry

is constrained to be 0 in the estimation procedure, and +, that it is constrained to be positive. Entries denoted by ? are free to vary over the
whole real line, they are not constrained to be all equal to each other in the matrix. These are, respectively, represented by 0, ‘+’ and NA
when calling mvSLOUCH. The order of the variables for the A matrices is plant height (PH), seed mass (SM), leaf area (LA), and leaf mass

(LM).
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3. We remove adaptive links between leaf and seed traits here; we

assume that taller plants and bigger seeds are advantageous in

nutrient- rich, competitive habitats.

4. Contrary to model 3, we assume independent evolution of seed
mass while considering adaptive links between plant height and
leaf size; nitrogen- rich habitats may select for tall competitive
plants with large leaf areas capturing more energy.

5. Here there are no adaptive links among studied traits; setting
A to a diagonal matrix means that all traits are independently
shaped by selection. This could be a plausible assumption given
angiosperms are hugely diverse and display a myriad of life history
strategies.

6. In this most parameter- rich model, we allow the A g4 1) matrix to
be fully parametrized, which we interpret as a trait-trait adaptive
co- evolution as expected from allometric theory.

These six models were contrasted with the BM model. We
point out that it is possible to run all of these analyses in a single
function call, mvSLOUCH::estimate.evolutionarymodel(). However,
given the tree's size and number of initial seeds, the running times
would be very large, risking the loss of all calculations in case of,
for example, a computer's crash. We conducted two sets of analy-
ses for each of these models, in order to explore differences in the
non- adaptive component of the trait evolution. In the first set, X,
was diagonal, implying no interactions between the traits in the
noise component of evolution. In the second set, %,, was upper-
triangular, indicating interacting evolution of the traits due to,
for example, developmental constraints or covariation with other
unmeasured trait under selection. To improve maximum likeli-
hood (ML) estimation, 500 runs of each model were conducted
from the same 500 starting seeds for the optimizer. Five hundred
unique starting points were used for each of the X, diagonal and
upper- triangular versions (see ‘Numerical optimization’ section
of mvSLOUCH's vignette for an analogous example). All anal-
yses were completed using the computing cluster FUN- K at the
Biological and Chemical Research Center, University of Warsaw
using one node with 48 threads. It took 6.3days to accomplish all

computations, including bootstrapping.

4 | RESULTS AND DISCUSSION

After fitting all six models, we found that the model with the low-
est AIC . was model 6 with X, diagonal. However, the alternative
model 6 (Z,, upper-triangular) had a lower log- likelihood value than
model 6 with X, diagonal. This cannot happen if the optimizer hit
the global optimum, as a diagonalX,, is a special case of al,,
upper-triangular. We therefore used the model 6 %, diagonal out-
put as a starting point for a new run of model 6 witk,, upper-
triangular (using ouchModel()'s start_point_for_optim argument), from
which we then obtained our lowest, among all models, AIC _ score.
This highlights that, after fitting several models to a dataset, it is

beneficial to take sub- models with good likelihood and AIC  scores,
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and use these as starting points for their generalizations. In fact,

we followed this procedure for all models, refining the best found
diagonal Z,, pointto Z,, upper- triangular. This refinement usually
found a point with a higher likelihood, than when started with a
random numerical seed. Interestingly, in a number of cases, the di-
agonal structure of X, was retained in the ML point, despite the
optimization algorithm being free to vary the off- diagonals. We
point out that many repetitions of the same model, using different
random seeds/starting points, are necessary to obtain the best pos-
sible estimates of model parameters. As the likelihood surface of
phylogenetic OU models is still not well understood, we cannot yet
guarantee a global optimum. To gain from using the output of one
estimation as the input for another, the parametrization of the latter
should be less restrictive ( Z,, upper- triangular is the most general
one). In addition, after many repetitions (computational constraints
allowing) it is advisable to check if the highest scoring subset results
in similar parameter estimates; in particular, the optima, and com-
pound statistics like regressions, covariances and correlations. The
estimates of Ay, andZ,, can be very variable but still lead to similar
covariance or regression estimates.

After the reanalysis, model 6 with  Z,, upper-triangular had the
lowest AIC _ value (16,381.058, Table 1). Because the second best
model (model 6 with X, diagonal) had AIC, greater by over 46 units
from the best one, there is little empirical support for any model but
model 6 with X, upper- triangular. Model 6 is superior to all other
models, as the next best model (Model 3) is over 1774 AIC
away, regardless of the form of Z,,.

¢ units

It is noteworthy that there is a high variation in the end values
of the likelihood function among different runs of the same model.
For the best model, these varied in the range —172, 526.72 to
—8127.739. Additional outputs for the lowest AIC _ fit for each of the
six main models are provided in the supplement, including values of
the estimated A (Table S.8) and&,, (Table S.9) matrices, and primary
optima vectors (Tables S.10-S.15).

The best model is consistent with an adaptive effect of habitat
productivity on all organ traits. We can observe a positive shift in
trait optima values as the ELL- N increases (Figure 3; Table S.15).
A possible explanation for this pattern is construction cost,
which can limit trait size in nutrient- poor habitats. This has been
demonstrated in many studies, especially for leaf size, which de-
creases at the inter- and intraspecific level (e.g. Givnish, 1987; Xu
et al., 2009). This agrees with our analyses as leaf size, represented
here by mass and area, showed the most substantial shift across
the gradient of habitat productivity. Because our model assumes
trait—trait co- evolution of all four studied characters, the primary
optimum for each trait is influenced not only by habitat productiv-
ity, but also by all other traits. The strength of this influence comes
from cross- trait effects in the primary optima, summarized by A, as
well as from non-adaptive interacting evolution summarized by X,,.
This influence is not identical in all cases as revealed by regression
coefficients (Table S.16).

Plant size, the leading contributor to competition for light and
propogule dispersal is most affected by leaf mass and weakly by
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. : TABLE 1 The best AIC; scores, from
I,y diagonal I,y uppertriangular

the 2001 fits per model, along with the

Model LogLik AIC, R2 df LogLik AIC, R2 df log-likelihood (LogLik), R? and degrees
of freedom (df) values for the six models

1 -10,598.94  21,305.04 0.062 53 -10,607.68 21,334.80 0.05 59 analysed with diagonal and upper-
2 -9968.793  20,038.615 0.076 50 -9747.051 19,607.392 0.054 56 triangular Z,,.

3 -9996.868  20,088.645 0.077 47 -9024.085 18,155.326 0.035 53

4 -10,373.82  20,844.58 0.082 48 -9918.165 19,945.529 0.105 54

5 -9995.955  20,080.709 0.088 44 -9533.795 19,168.618 0.040 50

6 -8156.907  16,427.104 0.088 56 -8127.739 16,381.058 0.094 62

BM — — — — -10,912.55 21,853.19 0.003 14

Note: The best model discussed is marked in bold.

N FIGURE 3 The deterministic optimum
E values for four morphological traits ( L 27
8 (3 from the best- fitting model). These values
7] 3 display a general trend of increasing
[} (] character values with habitat productivity
6 [ represented here by ELL- N. The plotted
51 points indicate the estimated values
g E and the whiskers represent the 95%
s 4 regression- based confidence intervals
£ 3 Cls (whiskers). See Table S.15 for the
-§ numerical values with Cls.
Qo 2
o
k=]
o 4 E E E
01 E E [}
-14 E
_2.
_3.
1 2 3 4 5 6 7 8 9

Ellenberg values
Plant height (m) -®- Seed mass (mg) -® Leaf area (mm?) Leaf mass (mg)

TABLE 2 Phylogenetic half-lives with 95% parametric bootstrap (500 bootstrap replicates) Cl reported here as percentage of tree height
in the eigenvector directions for the best model 6.

Directions (eigenvectors)

Model 6 e, e, ey e,

PH 0.007 0.015 —0.686 0.184

SM —0.046 0.351 —0.353 0.863

LA 0.122 —0.668 -0.367 0.351

LM 0.991 —0.656 -0.52 0.313

Half-life 0.0002 % 0.033% 0.407% 2.028%

(Cl no seed) (0.107%, 72.392%) (7.416%, 80.331%) (26.214%, 192.568% ) (66.732%, 1630.682%)
(Cl seed) (0.00015%, 0.00033%) (0.0262%, 0.065%) (0.333%, 1.111%) (0.489%, 2.613%)

Note: The abbreviations relate to measured plant height (PH), seed mass (SM), leaf area (LA), and leaf mass (LM). As bootstrapping involves running
500 simulations, followed by re- estimation (see Appendix SC6), there is no guarantee that Cls will encapsulate the estimated parameter values

from the best model. The first row of the Cls corresponds to the situation where no numerical seed is provided for the likelihood optimization for

the bootstrap replicates; the second row when the same numerical seed, as in the case of the best found estimate, is provided for the likelihood
optimization. The Cls in the first row do not cover the true values, illustrating the known difficulties of estimating the A scalar parameter in the one
dimensional case (Cressler et al., 2015).
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other traits (Table S.17). This underscores leaf mass as the dominant
factor driving the evolution of plant height. Seed mass was posi-
tively affected by both leaf area and plant height, but negatively by

leaf mass. The unexpected negative relationship between seed and
leaf mass (but notice that the Cls cover 0), might stem from the trait
distribution on the phylogeny or from a preponderance of plants in

the dataset that have heavy leaves and small seeds, such as pioneer
species (Cornelissen, 1999). The positive correlation of seed mass
with plant height can perhaps be attributed to the basic fact that
small plants can bear only small seeds while larger plants can sup-

port much larger ones. Again, the bootstrap Cls cover 0 (when the
numerical seed is not fixed). Interestingly, our results revealed that
seed mass only has a marginal affect on other traits (regression co-
efficient in all cases does not exceed 0.11) in spite of being used
as a predictor in other studies, such as those analysing leaf traits
(Hodgson et al., 2017). This might suggest that directional selec-
tion can change seed mass without a strong effect on other traits.
However, seed mass is significantly influenced by shifts in the values

of other characters.

The last two studied traits, leaf mass, and leaf area, have a strong
mutual effect on each other, as evidenced by the estimated regres-
sion coefficients of 0.910 and 0.846, respectively. The bootstrap Cls
for these coefficients do not include 0 (Table S.16). The influence of
other traits on leaf mass and leaf area is much weaker (Table S.17).
Leaf area and mass have been shown to be strongly correlated with
many physiological processes in plants, such as maximum photosyn-
thetic rate, leaf life span or relative growth rate (Moles, 2018), and
both are certainly optimized by selection to adjust a plant's physiol-
ogy to a particular environment.

Our model also provides information about the tempo of adap-
tation, measured as a halflife (Bartoszek et al., 2012; Hansen, 1997).
Here, unlike in univariate models, the phylogenetic half- lives can
be interpreted as rates of adaptation towards the primary optimum
along the directions in the trait space described by the correspond-
ing eigenvectors. All four eigenvectors and eigenvalues in our model
indicated adaptation to changing primary optima, ranging from
0.0002%to 2.028% of tree height, translating to ca. 300a-2.82Ma
(Table 2). It is important to emphasize that these half- lives refer to
the adaptation of a group of complex developmental traits, not just
one ftrait as in univariate analyses. Given this, the rate of adapta-
tion can be considered very rapid—a pace expected for ecologically
relevant traits. For example, the first eigenvector, associated with
the lowest half- life of 300a, is dominated by leaf mass (entry for
0.122).
Although this half- life might be underestimated, it aligns well with

this traitis 0.991, compared to the second largest entry of

empirical studies. Leaf traits have been demonstrated to frequently
experience strong selective pressure and possess high evolvability
(Donovan et al., 2011). In consequence, they evolve rapidly within
species or between closely related taxa inhabiting contrasting envi-
ronments (Donovan et al., 2011).
Our mvSLOUCH analyses provided several interesting additions

to existing studies. Our best model showed that habitat productiv-

ity positively influences the adaptive optima of all studied traits. In
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addition to habitat quality, all traits co- evolve adaptively. However,

the strength of the effect of each trait on the optimum of the other
traits is not identical: plant height is influenced mainly by leaf mass,
seed mass by all traits approximately equally, while leaf area and
mass affect each other's optima with weaker influence of other
traits. All adaptive changes are rapid on macroevolutionary time
scales, taking no more than 2.82Ma. A key motivation of the above
example was to demonstrate the feasibility of mvSLOUCH exploring
several competing hypotheses of adaptation and evolution for large,
multivariate datasets. Such a study was made possible due to the
immensely reduced running times (Appendix SG) that allowed for
thousands of estimation reruns under different setups and starting
points. This is also facilitated by simplicity of coding of the differ-

ent biological hypotheses—the user just needs to write a matrix with
entries NA (anything), ‘+’ (positive), ‘=’ (negative) or ‘0’ (equals 0, any
other numerical values can be provided here).

Two drawbacks of our analyses have to be acknowledged. Firstly,
we did not have measurement error estimates—only the mean value
for each species. It has to be reminded that measurement error
can have profound effects, resulting in biased estimates (Hansen
& Bartoszek, 2012) or masking of adaptive effects (Bartoszek
et al.,, 2023). Secondly, in order to focus on the possibilities of
mvSLOUCH itself, we mapped the regimes using mvSLOUCH's in-
built Fitch algorithm (Fitch, 1971), using the simplest handling of am-
biguous mapping, with additional post-hoc manual assignment of the
remaining 19 unresolved branches. There are more advanced regime
placement methods that we would encourage users to explore.

Lastly, the user needs to be aware of some limitations of
mvSLOUCH. Running times can be still long for higjmensional
models and large trees. As observed in our study, the variability of
the returned likelihood value is very high—and hence, also of the
parameters' estimates. This can be mitigated, at the moment, only
by considering multiple starting points for the optimizer. Finally,
model identification capabilities are not entirely clear (Bartoszek
et al., 2023) and some parameters are more difficult to estimate
than others, especially A, under very general parameterizations
(mvSLOUCH will warn if a known unreliable parameterization is cho-
sen). However, these seem to be reservations common to all con-
temporary multivariate PCM software.

On the other hand, the improved likelihood calculation algo-
rithms and, in turn, reduced running times, will allow for investi-
gating these issues. We are able to design now large simulations
studies (e.g. Bartoszek et al., 2023; Bartoszek, Fuentes- Gonzalez,
et al., 2024) that can aim to identify which model pairs (biological hy-
potheses) are distinguishable, which parameters can be consistently
estimated, what tree sizes (under a given tree model) are required,
and what are the effects of, for example, measurement error or miss-
ing data. Multivariate models are more complicated to fit to empirical
data and require substantially more computational power than their
univariate counterparts. However, the upside is the ability of these
models to reveal more realistic knowledge of adaptation and evolu-
tion among suites of traits. Simpler models should not be preferred
if the question at hand demands complex multivariate approaches.
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