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Abstract

The mechanisms driving transition to turbulence in pulsatile flows are not well understood. Prior studies
in this domain have noted the dynamics of this flow regime to depend on the mean Reynolds number,
pulsation frequency (i.e., Womersley number), and inflow pulsatile waveform shape. Conflicting
findings particularly regarding the role of Womersley number on critical Reynolds number and the
development of turbulence have been reported. The discord has primarily been observed for flows with
Womersley numbers ranging from 4 to 12. Hence, in this work, we use particle image velocimetry to
explore the effects of Womersley number within this 4 to 12 range on the dynamics of pulsatile transition.
Eighteen total test cases were captured using six mean Reynolds numbers (range 800-4200) and five
Womersley numbers. Turbulent kinetic energy (TKE), turbulence intensity (TI), and phase lag were
computed. Our results indicated critical Reynolds number was roughly independent of Womersley
number. At high Womersley numbers, the TI trend maintained lower pulsatility and the flow was
observed to mimic a steady transitional flow regime. A plateau of the TI-velocity and TI-acceleration
phase lag was observed at a Womersley number of 8, highlighting that this may be the critical value

where further increases to Womersley number do not alter the transition dynamics. Further, this suggests
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that phase lag may provide a universal indicator on the specific influence of Womersley number on
transition for a given flow. Overall, these findings elucidate critical details regarding the role of

Womersley number on transition to turbulence.

1 Introduction

Transitional and fluctuating flow behaviors in pulsatile (non-steady) flows have been observed to occur
across a variety of applications such as biomedical, environmental, thermodynamic devices, and internal
combustion flows. Transitional flows have been demonstrated to cause significant fluctuations in flow
parameters such as wall shear stress (WSS) and pressure.’-? For biomedical flows, this affects the life
cycle of aneurysms and the development of stenosis®>. Also, transition-induced instabilities can affect
the efficiency of heat exchange systems in research reactors and performance of fuel cells.”8 Moreover,
transitional flows can precipitate adversarial effects such as weakening materials to failure and causing
performance reduction’. Hence, in these applications, it is often important to quantify or estimate the role
and influence of transition-induced flow fluctuations to mitigate their highlighted adversarial effects.
However, the fundamental mechanisms driving transition to turbulence in pulsatile flows remain largely

unknown.

Pulsatile flow is defined as a constant mean flow component with a superimposed oscillating flow
component. Many studies have investigated pulsating turbulent flows such that the effects of pulsation
frequency on the development and dynamics of turbulent structures in turbulent flows has been well
documented. Specifically, at high Womersley numbers (Wo0>10), multiple studies have observed
‘frozen’ turbulent structures (as described by He and Jackson (2009)!9), i.e. the turbulent structures
resemble those observed in turbulent steady flow. This is due to insufficient time for structures to
relaminarize during the acceleration phase at such high Womersley numbers.!>!2 At high Womersley
numbers, turbulence and fluctuations are produced and confined near the wall region. %13 Scotti and

Piomelli (2001) proposed a parameter—turbulent stokes length—to measure the length of that near wall
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region. This parameter is proportional to the molecular and turbulent diffusivities and inversely
proportional to the frequency of pulsation.!! Hence, as Womersley number is decreased, these
fluctuations increasingly propagate from the wall to the core region. %% Womersley number has also
been noted to affect the shape of turbulent structures as well as the fluctuating velocity contours at
different phases of the cycle.!! At high Womersley numbers, very long and low speed streak-shaped
fluctuating velocity contours are present during the acceleration phase. During the deceleration phase,
these streaks persisted, although shorter. However, at low Womersley numbers, studies observed a very
small number of fluctuations at the start of acceleration phase, but by the second half of the acceleration
phase long streaks (similar to those observed at high Womersley number) had formed. However, these
structures destabilize with time and burst, spreading turbulence across the flow by the end of
acceleration.!! Thus, these studies highlight that Womersley number affects the fundamental turbulent

mechanics in pulsatile flows.

As opposed to the fully turbulent regime, only a small number of studies have investigated
transitional pulsatile flows. Among the studies that have been done, they have emphasized that the onset
and development of transition in pulsatile flows is affected by mean Reynolds number (Re).!> Womersley

.2,12,16-18

number, 19.20

pulsatile waveform shape,'*?° and the initial conditions.'® However, consensus regarding
the specific role of each parameter has not been reached. In particular, studies evaluating the effect of
Womersley number have produced significantly conflicting findings. In agreement with fully turbulent
flow findings, several studies noted that transitional flow behavior mimicked steady flow at high
Womersley numbers. For example, Xu and Avila (2018) reported the lifetime and propagation speed of
turbulent puffs were similar to that of steady flow for high Womersley numbers (Wo=17.7)!%. At low
Womersley numbers, turbulent puffs shrink during the acceleration phase of the cycle and grow during
the deceleration phase, suggesting a phase lag between turbulence intensity (TI) and velocity exists.'®

Previous studies investigated the TI-velocity phase lag and reported inconsistent values of phase lag at

different Womersley numbers. Trip et al (2012) reported a 180° phase lag (relative to bulk velocity) at
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Wo=15 and at Wo=20:" they reported phase lag to be independent of mean Reynolds number, oscillatory
Reynolds number, and Womersley number. On the other hand, Iguchi et al (1993) investigated pulsatile
pipe flow at Wo=4.85 and reported 0° phase lag near the wall region and moving away from the wall
they reported an increase in phase lag reaching a peak at the core region. Although Iguchi et al (1993)
didn’t test other Womersley numbers, they speculated that pulsation frequency will affect phase lag as
at higher frequencies there will be a smaller time window for turbulence to propagate from the wall to
the core region.’* Some minor discrepancies regarding the shape of turbulent puffs have been reported.!>-
1% Specifically, Stettler and Hussain (1986) reported phase locked inverted puffs at low Womersley
numbers.!® However, Trip et.al (2012) and Xu et.al observed phase locked upright puffs at similar
Womersley numbers.’>!7 Considerable inconsistencies regarding the relationship between Womersley
number and the critical Reynolds number have been reported. Peacock et al. (1998) reported that critical
Reynolds number monotonically increased with increasing Womersley number in the range of 4-20.22!
Stettler and Hussain (1986) as well as Sarpkaya (1966) reported that the peak critical Reynolds number
occurred at a Womersley number of 4-5 and critical Reynolds number decreased for Womersley numbers
in the range of 6-10 and increased for Womersley numbers in the range of 1-4.1322 Xu et al. (2017)
reported critical Reynolds number monotonically decreased in the Womersley number range of 3—10;
outside of this range, the two variables were independent. Trip et al. (2012) and Stettler and Hussain
(1986) also observed that critical Reynolds number was independent of Womersley number for
Womersley numbers in the range of 10-25."> Xu and Avila (2018) reported critical Reynolds number to
be nearly independent of Womersley number, except in the Womersley number range of 4—6 (full tested
range of 2—18). These wide discrepancies highlight that the underlying physics of pulsatile transitional
flows remain an ongoing and open investigation. Moreover, much of the discord is observed to center
around Womersley numbers in the range of 4-10.

In this work, we investigate the fundamental flow differences observed in pulsatile transitional flows
within this discrepant Womersley number range, with the goal of identifying key Womersley number
effects and changepoints. Specifically, we tested cases across five different Womersley numbers (range

4
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of 4-12) and six mean Reynolds numbers (range of 800—4200). Planar particle image velocimetry (PIV)
was used for this study. For each test case, we compared the flow structure by analyzing velocity profiles
and coherent structures. Transitional and turbulent flow development was characterized using turbulent
kinetic energy (TKE) and TI. Additionally, we investigated the phase lag between TI-inflow waveform

velocity and TI-inflow waveform acceleration.

2 Methods

Figure 1 shows a schematic of the flow loop and PIV setup used for this study. The test section
consisted of a straight and rigid tube (FEP - fluorinated ethylene propylene) with a 1/4”” inner diameter
and 1/8" wall thickness. To ensure the flow at the test section was fully developed, the flow loop
contained a 190-diameter length of the tubing upstream of the test section. A sinusoidal inflow waveform
was used for all test cases. A computer-controlled gear pump generated the desired flow. An ultrasonic
flowmeter (Transonic) was placed upstream of the test section, while pressure transducers (Omega,

PX309) were placed before and after the test section to monitor the flow loop properties. Water, with a

_ Flow Reservoir
Acrylic box meter
. 190D : | GearPump
Pressure Pressure
transducer B transducer

Camera

Figure 1. Flow loop and planar particle image velocimetry experimental schematic. The
test section was submerged in a box filled with working fluid, and the laser sheet vertically
pierced the center of the pipe. F and P denote the locations of the flowmeter probe and
pressure transducers, respectively.

density of 997 kg/m? and kinematic viscosity of 1.108 x 10 m?/s, was used as the working fluid. Water
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and FEP maintain the same index of refraction; hence, by using water as the working fluid and
submerging the test section in water, optical distortions in the PIV images were minimized.
A total of 18 test cases were measured; this included five Womersley numbers (Wo) (4, 6, 8, 10, and
12) and six mean Reynolds numbers, (800, 2300, 2500, 2700, 3200, and 4200), where Womersley
number (o) and mean Reynolds number (Rem) are defined by Eq. 1 and 2, respectively.
o = R/ 2nf /v )]

Rep = uyD/v (€]
where the velocity u is composed of a mean velocity component u,, and an oscillatory velocity

Table 1 Test matrix for all cases investigated in this experiment.

Wo= 4 Wo= 6 Wo=38 Wo= 10 Wo=12

Re,, = 800 v ; ) ] v
Re,, = 2300 v v v v v
Re,, = 2500 v - ] ] v
Re,, = 2700 v v v v v
Re,, = 3200 v - ; ] v
Re,, = 4200 v - ; ] v

component u,, D is the diameter of the pipe, v the kinematic viscosity, and f is the frequency of pulsation
for the input flow waveforms. The Womersley number and mean Reynolds number ranges were chosen
based on previous literature and experimental setup limitations. For Womersley number, multiple

1513 agreed that transition is independent of Womersley number and steady flow

previous studies
dynamics are recovered for Wo > 10. Additionally, much of the disagreement regarding the effect of

Womersley number on transition has been reported within the selected range for this study (4-12). For
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Reynolds number, the chosen values were inferred from the findings of Trip et al. (2012)"°, who reported
transition to occur within mean Reynolds numbers of 2300-2700 across many Womersley numbers.
Therefore, we included a case at a considerably lower mean Reynolds number (800) and a considerably
higher mean Reynolds number (4200) to span the laminar, transitional, and turbulent regimes. Moreover,
four mean Reynolds numbers were selected within the expected transitional regime® to enable an in-
depth investigation of transitional flow dynamics and trends. Hence, these selected ranges, we were able
to quantify and contrast the effect of Womersley number on pipe flow for different regimes. The test
matrix is given in Table 1. For all test cases, the oscillating Reynolds number, Re, = u,D /v, was set to
be 800 (i.e., a mean Reynolds number case of 800 would have an instantaneous Reynolds number range
of 0-1600 through the pulsatile cycle). Figure 2 shows the inflow waveforms, as measured by the
flowmeter, for the 800 mean Reynolds number, 4 and 12 Womersley number cases.

PIV imaging was acquired using a high-speed camera (Phantom VEO440) and an Nd-YLF laser
(Photonic Industries, A = 527 nm). Images of size 1024 x 1024 pixels were captured using a double-
pulsed timing scheme. Image pairs were captured at a frequency of 750 Hz to ensure accurate temporal
gradients could be calculated. The effective time interval between each image pair (dt) was set for each
case to ensure a maximum particle displacement per frame of 8—12 pixels. Because Womersley number
directly modulates the overall pulsatile cycle time, a different number of cycles for each Womersley
number could be captured. This double-pulsed timing scheme ensured that at least 2 cycles were captured
for the 4 Womersley number cases. For the 12 Womersley number cases, about 40 cycles were captured.
The frame pair capture rate was not adjusted between test cases as this would alter the temporal resolution
across test cases and could create a bias in the subsequent analysis. A laser sheet with a thickness of Imm
was precisely aligned with the center of the tube to minimize out-of-plane effects. The working fluid was

seeded with 10 pm fluorescent particles, and the camera’s magnification was set at 6.67 um/pixel.
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Prana, a publicly-available software (https://github.com/aether-lab/prana), was used to process the
PIV images. Three passes of an image deformation algorithm were used?® with robust phase correlation
(RPC).2*% In the final PIV pass, an effective interrogation window size of 32 x 32 pixels with an 8 x 8-

pixel grid size was used. This resulted in velocity fields of size 127 x 127 vectors. For all PIV passes, a

0.5

Velocity (m/s)

0 0.5 1 15 2 25 3 3.5 4 4.5
Time (sec)
—Wo=4 - --Wo=12

Figure 2 Inflow waveform for mean Reynolds number cases of 800 at 4 and 12
Womersley number.

50% Gaussian window was employed *° to mitigate spectral leakage. For the first and second PIV passes,
validation was performed using three median-based universal outlier detection (UOD) passes with
window sizes of 7 x 7,5 x 5, and 3 x 3, and thresholds of 3, 2, and 2 for the first, second, and third pass,
respectively. 2’ No validation was performed for the final PIV pass.

The velocity fields were filtered using proper orthogonal decomposition (POD)*® with the
autonomous entropy line-fit (ELF) thresholding criterion. > POD is commonly used to smoothen PIV
velocity fields by decomposing the velocity into a set of eigenmodes and reconstructing a reduced-order
representation of the data which discards modes contributed primarily by noise. The ELF thresholding
criterion has been shown to provide excellent separability of physical vs. noisy modes even for modes

with similar energy contribution. Hence, using the ELF method as compared to traditional energy
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thresholding approaches yields a higher fidelity turbulence spectrum, which is particularly important for
the goals of this work.?® Table 2 provides the number of modes and corresponding percent energy
retained for each test case. It is important to note that per the ELF criterion, the retained modes are not
necessarily the N most energetic modes, but rather the N modes most likely to contain physical flow
information. While POD provides good smoothing, it can at times retain outlier vectors. Thus, two final
UOD passes were applied to the POD-filtered velocity fields, and the velocity fields were then phase-
averaged. For all cases, only two pulsatile cycles were used for phase-averaging. Even though some cases
captured additional cycles, utilizing a different number of cycles for the phase-averaging would generate
variable smoothing across cases which would introduce bias errors in the fluctuating velocity, TKE, and
TT calculations. The phase-averaged velocity fields were then temporally sub-sampled to the temporal
resolution of the 12 Womersley number (i.e., the Womersley number with the lowest snapshots per
pulsatile cycle). This ensured that all cases maintained the same number of temporal snapshots per
pulsatile cycle, thus mitigating resolution-based biases. The smoothed, phase-averaged, and sub-sampled
velocity fields (i.e., "filtered PIV velocity™) were used for all subsequent calculations.

The Reynolds decomposition was used to compute the fluctuating velocity components according

to:

u';(t) = Ui (t) — (U (D)) 3
where u’;(t) is the fluctuating velocity, U;(t) is the filtered PTV velocity, (U(t)) is the mean velocity,
and t is time. As done in Brindise and Vlachos (2018).%* the mean velocity was computed using the
discrete wavelet transform (DWT). Specifically, for each spatial point, the DWT of U; was computed
and (U) was defined as the reconstruction of the fifth-level approximate coefficients. Brindise and
Vlachos (2018) reported this approach provided as good or better accuracy than a traditional ensemble
averaging approach. Moreover, because only 2—40 cycles captured for each test case herein, a traditional

ensemble averaging was not possible.



Table 2. Number of POD modes (out of 11,851 snapshots) and the
corresponding energy retained for each test case.

Re,,/Wo Number of saved modes Corresponding energy
800Re,, 4Wo 1489 99.681
800Re,, 12Wo 1134 98.988
2300Re,, 4Wo 732 96.717
2300Re,, 6Wo 635 97.292
2300Re,, 8Wo 767 96.503
2300Re,, 10Wo 786 96.773
2300Re,, 12Wo 891 95.736
2500Re,, 4Wo 880 97.267
2500Re,, 12Wo 752 96.209
2700Re,, 4Wo 923 96.659
2700Re,, 6Wo 1195 97.161
2700Re,, 8Wo 1268 95.772
2700Re,, 10Wo 1298 96.221
2700Re,, 12Wo 1248 95.656
3200Re,, 4Wo 766 93.258
3200Re,, 12Wo 806 93.708
4200Re,, 4Wo 685 90.992
4200Re,, 12Wo 977 93.352

Equations (4) and (5) were used to calculate TKE and TI, respectively,

k(t) = 2 (' (£)% + v (D)?). @)
1 1
10 = 25 [fa @2+ v @), ©)

where K is the TKE (m? /s?), I is the TI (%). u. is the centerline velocity (m/s). As introduced by Trip et
al (2012)", and used in Brindise and Vlachos (2018), the effect of pump fluctuations on the TKE and TI
calculations was minimized by subtracting the axial line average fluctuating velocity from each u’;(t)
velocity field.

Phase lag between the TI-inflow waveform velocity and TI-inflow waveform acceleration were

computed by first smoothing the TI, velocity, and acceleration waveforms. A sine wave was then fit to

10
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each smoothed waveforms. Phase lag was defined as the difference between the temporal position of the
TI peak and the velocity/acceleration peak in the fitted sine wave and was normalized by cycle length.
The sine wave fitting method prevented potential errors caused by spikes and intermittency in the TI
waveform. Additionally, because a sine wave was used as the input flow waveform, it provides an
appropriate fitting function.

Coherent structures were identified using the A.; criterion,*® which computes the relative vortex

strength as the maximum imaginary portion of the spatial velocity gradient eigenvalues.

3 Results and Discussion

A. Effect of Womersley number on turbulent structure development

We first evaluated the velocity profiles to confirm the experimental setup maintained sufficient
consistency across test cases. Additionally, the temporal and spatial development of the coherent
structures were investigated to explore how Womersley number affected the development of transitional
and turbulent flow.

Figure 3 illustrates the temporally and axially averaged velocity profiles for all Womersley
number cases at each mean Reynolds number. The analytical Poiseuille flow solution is also plotted for
reference with the 800 mean Reynolds number case. For each mean Reynolds number case, good
agreement is observed across Womersley numbers, confirming the consistent and fully developed flow
characteristics of the experimental setup. The median of the point-by-point difference between the
Poiseuille flow profile and the experimental flow profile of the 800 mean Reynolds number, 4 and 12
Womersley number cases was 5.6% and 3.1%, respectively. This suggests—as expected—that the flow
for these cases is laminar. For mean Re cases of 2300, 2500, and 2700, the core region shows an
increasingly uniform core region profile and higher wall gradients. This highlights that the flow is
transitional by a mean Re of 2300 and the development of turbulence is increasing as Reynolds number

increased to 2700. By a mean Re of 3200, the velocity profile strongly resembles a fully turbulent one.

11



Re_=2300
m

u/U

Re =2700
m

> ,’
.;
0"
Re =3200 Rem=4200
1 = e
."&'& ""ﬁ
¢ Yo
¥ H
- ] !
5 |
,-"
ol ;
R 0 O R
Radial position Radial position
""""""" Wo=4 —Wo=6 —Wo0=8

- == "Wo=10 - - - -Wo=12 ——analytical

Figure 3. Axially and temporally averaged velocity
profiles for all cases. for 800 mean Reynolds number
cases, the analytical Poiseuille solution is plotted.
1  Moreover, the mean Re cases of 3200 and 4200 maintained the same velocity profiles, suggesting that

2 both cases are fully turbulent.
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To explore the dynamics and formation of flow instabilities and turbulent structures with increasing
mean Reynolds number, Figure 4 shows the coherent structures at the cycle point corresponding to the
peak flow rate for all mean Reynolds number cases at 4 and 12 Womersley numbers. The generalized
behavior of the coherent structures was similar for both Womersley numbers. For the 2300, 2500, and
2700 mean Reynolds number cases, coherent structures were increasingly observed in the core flow
region. At mean Reynolds numbers of 3200 and 4200, turbulent structures with larger swirl strength were
present in the near wall region. Additionally, these cases maintained larger coherent structures in the core
flow than were observed in the lower mean Re cases. The lack of coherent structures in the core flow
region for the lower mean Re cases suggests that the turbulent structures developed in the near wall
regions were dissipated in that region. However, with increasing mean Re, the structures are formed
faster than they can be dissipated, and structures are swept into the core flow. This notion agrees with
the findings of Brindise and Vlachos (2018) and He and Jackson (2009) who both reported that when
turbulence production exceeds the rate of turbulence dissipation in the near wall region, pressure waves
transport turbulent structures to the core flow, increasing the overall turbulence of the flow.!%!°
Considering the role of Womersley number more closely, differences between the strength and shape of
the coherent structures were observed between the 4 and 12 Womersley number. Specifically, the 12
Womersley number case maintained on average 25.2% and 9.0% higher swirl strength than the 4
Womersley number case at mean Reynolds numbers of 3200 and 4200, respectively. Further, the
structures in the core flow for the 4200 mean Reynolds number case (e.g. structures within the orange
circles) were qualitatively larger in the 4 Womersley number case than the 12 Womersley number case.
However, the number of structures observed at peak flow rate for the 4 and 12 Womersley numbers was
similar. Together, these findings suggest that Womersley number affected the shape and size of the

turbulent structures, particularly in the core flow.

13



10

11

12

13

14

15

Radial location

Radial location

Re =800 Re =2300 Re =2500 Re =2700 Re =3200 Re =4200
m m m m m m
S - 7 My . TR L W P o me e
v - o -y . L - L} ... 2, a B- '.'.— L
. 4 - + i : ¥ e “ . D¢=" I‘H’ PR - LI " iﬂ‘ 'y
. ., PR ) ) 4 . " i ‘. nf [} j} &
! [ i i S ALY }. sat ~ l b ¥ L.y
- " LS N . '-.‘J" » - . ok L
<o N S ) A woov
- N L . . Pl . et Moy - "a £ ey M-ﬂ' &
Viaiale e o x0T » ST AT I 5 TR T L A, s
ok 4L ] - r € Lo . e N r
R IR + w - . ) W vy g ¥ N “ L L
I S I SR PROAR s [ ARSI A ORIl P SV T
PIEE LR : ' 1 3z fas T P Lt e [ - e Lyl e
T [ = [l e o SAE
- s . a AN g Sy | - - . b S T o - L R
b ‘._':' = " : S s -n.u' - 1, " g ‘._Ld C e IR R e
. o -5 . S & * T y
. ® " CH peitnl AL L LR I » 4 "3'1,]{?%
o~ 4 MY e . . » efi \
- L I R Yo, LI . QN
. "._ . ,,4_.. _‘_ A - ' ..f .M... . -.‘, o
Tie ¥ ; S TR o I e VR RN ¢
. s . PONL TR ) s _,-ﬁﬁ‘.f.l'_'bq.! ’ e l'*.ni‘j’
A - 2 - e tia L§ ot et . L
» - 3 .=’ o Y oy e 1. TR E”“
1 - i ar P e Py A .
et O B BN et B A ot I LS L R apist

Axial location

Axial location

Axial location

Axial location

Axial location

Axial location

Figure 4. Coherent structures for all mean Reynolds numbers at Womersley numbers of 4 and 12. The
contours represent the A value, indicating the relative strength of the coherent structure.

Figure 5 explores the temporal development of turbulence through the pulsatile cycle. Specifically,

Figure 5 shows the coherent structures at mid-acceleration, peak flow rate, and mid-deceleration for the

800, 2700, and 4200 mean Reynolds number cases, each at 4 and 12 Womersley number. For the mean

Reynolds number of 800, significant differences in the coherent structures at mid-acceleration, peak flow

rate, and mid-deceleration were observed across Womersley numbers. At 4 Womersley number, no

coherent structures were present during the mid-acceleration and mid-deceleration time steps, while at

12 Womersley number, coherent structures primarily localized in the wall region were clearly observed.

The flow instabilities formed at peak systole in the near wall region are caused by the high shear gradients

at the wall (as compared to the core region).!*!! Coherent structures are increasingly observed in the core

flow region as the mean Reynolds number is increased to 2700 and 4200. At the 2700 mean Reynolds

number case, larger coherent structures were observed at mid-acceleration and mid-deceleration for the

4 Womersley number. Additionally, for the 4200 mean Reynolds number case at mid-acceleration, the

12 Womersley number maintained notably more structures in the core flow than the 4 Womersley

number. In the core flow at mid-deceleration, the 12 Womersley number is observed to maintain

structures with higher swirl strength, while the 4 Womersley number maintains larger sized structures.

14
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These findings suggest that the large coherent structures observed in low Womersley numbers are broken

down to smaller and higher swirl strength coherent structures at high Womersley numbers. At such high

Womersley number, there is insufficient time to allow structures travel to the core region, so more

coherent structures remain in the near wall region where high shear gradients lead to higher swirl strength

and eventually breaking down of structures. This notion aligns with the observation in Xu and Avila

(2018) that smaller turbulent structures analogous to steady flow structures occur in higher Womersley

number flows. Additionally, these results show that coherent structures at 12 Womersley number did not

change significantly throughout the pulsatile cycle. This highlights that at the 12 Womersley number the

development of coherent structures was largely independent of the pulsatility while at the 4 Womersley

number, the coherent structure formation was influenced by the unsteady flow waveform. This expands

on findings of Scotti and Piomelli (2001)"! and He and Jackson (1986)'° who reported that for turbulent

flows, high pulsation frequency yields insufficient response time for the flow to be affected by the
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Figure 5 Coherent structures for 800, 2700, and 4200 mean Reynolds numbers at Womersley
numbers of 4 and 12 during mid acceleration, peak, mid declaration. The contours represent the kci
value, indicating the relative strength of the coherent structure.
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pulsatility. Specifically, our results suggest that for laminar, transitional, and turbulent flows, the exists

a “critical Womersley number” beyond which the flow becomes independent of pulsatility.

B. Exploring the effect of Womersley number on TKE, TI, and critical Reynolds number
We next evaluated how Womersley number affected turbulence metrics and the observed critical
Reynolds number. Figure 6 shows the temporally and spatially averaged TKE for all mean Reynolds
number cases as a function of Womersley number. At 4 Womersley number, average TKE was 5.8e-6
m?/s, 1.5e-5 m?/s%, 2.9e-5 m?/s%, 4.2e-5 m*/s’, 1.6e-4 m?’/s’, and 2.0e-4 m*/s* for the mean Reynolds
number cases of 800, 2300, 2500, 2700, 3200, and 4200, respectively. Hence, between mean Reynolds
numbers of 800 to 2700, a gradual increase of average TKE was observed, followed by an exponential
upsurge in average TKE between the 2700 and 3200 mean Reynolds number and subsequently a
moderate increase going to the 4200 mean Reynolds number. These results indicate that flow remained
in the transitional regime for mean Reynolds number cases between 2300 and 2700 and was fully
turbulent by mean Reynolds number of 3200. This suggests that the bulk of the transitional phase for this
setup occurs in the Reynolds number range of 2700 and 3200. Meanwhile, average TKE at 12 Womersley
number was 8.9e-6 m%/s2, 2.0e-5 m?/s2, 1.3e-5 m?/s2, 4.7e-5 m?/s2, 1.8e-4 m?/s2, and 2.1e-4 m?/s? for the
mean Reynolds number cases of 800, 2300, 2500, 2700, 3200, and 4200, respectively. Hence, on average
TKE was about 11% higher at 12 Womersley number than at 4 Womersley number for each Reynolds
number case. Similar to the 4 Womersley number cases, for the 12 Womersley number case, average
TKE was observed to steadily increase with increasing mean Reynolds number, with transition again
expected to occur between 2700 and 3200. Moreover, the observed trend of increasing average TKE with
increasing Womersley number suggests that the overall fluctuating component in the flow was
proportional to Womersley number. Therefore, we find that at higher Womersley numbers disturbed
flow components are more dominant. This is consistent with the findings in Figure 5 where we observed

more coherent structure with larger swirl strength across the cycle at the 12 Womersley number cases.
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To investigate the critical Reynolds number, Figure 7 illustrates the spatially and temporally averaged
TI plotted against the mean Reynolds number. It is important to note that our experimental setup was not
rigorously controlled enough to determine specific critical Reynolds number values. Thus, the results
presented here should be considered only for the trends across cases that they show. At a 4 Womersley
number, the average TI was 1.03%, 0.77%, 1.00%, 1.12%, 2.01%, and 1.89% for the mean Reynolds
number cases of 800, 2300, 2500, 2700, 3200, and 4200, respectively. Meanwhile, average TI at 12
Womersley number was 1.28%, 0.96%, 0.64%, 1.23%, 2.20%, 1.99% for the mean Reynolds number
cases of 800, 2300, 2500, 2700, 3200, and 4200, respectively. The 12 Womersley number cases on
average maintained a 15% higher average TI for all mean Reynolds number than the 4 Womersley
number cases. In general, the critical Reynolds number is observed to occur around a mean Reynolds
number of 3000 for both the 4 and 12 Womersley number cases. While for Womersley numbers of 6, 8,

and 10 only data for mean Reynolds numbers of 2500 and 2700 was available, these TT values closely
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Figure 6. Space and time averaged TKE for all test cases as a function of Womersley
number.
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follow the 4 and 12 Womersley number cases. Figures 6 and 7 suggest that critical Reynolds number
wasn’t significantly affected by Womersley number for the tested range of values. However, because our
study cannot exactly pinpoint the critical Reynolds number without employing an interpolating s-curve
fit, this should be explored further in future work. Nonetheless, our results show that although Womersley
number was shown to affect the dynamics and development of transition and turbulent structures, this
did not precipitate an appreciable change in critical Reynolds number. This finding agrees with previous
studies which reported critical Reynolds number is independent of Womersley number at ‘high’
Womersley numbers (Wo>10).">""® However, contradictions arise with other studies that found critical
Reynolds number to decrease as Womersley number increased through the ‘intermediate range’
(4<Wo0<10). 118 Additionally, at ‘low” Womersley numbers (Wo<4) both a decrease!® and a null effect
have been reported.'™!” We speculate that the reported inconsistencies could be caused in part by
differences in perturbation methods. For example, Stettler & Hussain (1986) and Trip et al. (2012) used
orifice plates,’>!® while Xu et al. (2017) and Xu and Avila (2018)!%17 used impulsive perturbations. No
active perturbations were introduced to the flow in this study. It is plausible that this added source of
turbulence may lower the Womersley number at which transition begins to mimic steady flow and
possibly explain, in part, the different effect of Womersley number on critical Reynolds number across
varying study designs. Moreover, Xu and Avila (2018) found pulsation amplitude to affect the critical
Reynolds number. They defined pulsation amplitude as A = U,/Us, where U, is the oscillatory component
of the speed and U is the mean speed. By this definition, the pulsation amplitude wasn’t constant in our
study, but rather decreased with increasing Reynolds number. Thus, according to their findings, our
critical Reynolds number should have increased with increasing amplitude of pulsation. However, due
to our study design, the decrease in pulsation amplitude was accompanied with an increase in mean
Reynolds number. Although this could have accelerated the occurrence of transition in our setup, this
wouldn’t change the observed trends regarding the effect of Womersley number. Therefore, the isolated
effect of pulsation amplitude should be explored in future work. Additionally, Peacock et.al (1998), who
reported a monotonic increase in critical Reynolds number across Womersley numbers ranging from 4—
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1 20.” employed large pulsation amplitudes and didn’t introduce active perturbation to the flow in their
2 experiment, similar to our study. The discrepancies reported in our study and in Peacock et al. (1998)
3 further suggest that pulsation amplitude and the used perturbation methods may both affect the critical

4 Reynolds number and the specific role of these factors should be further explored in future work.

5 Although critical Reynolds number was independent of Womersley number, the analysis of coherent
6 structures along the cycle in transitional flow has shown that the size, number, and swirl strength of
7 coherent structures are affected by Womersley number. Therefore, we next explore the temporal trends

8 of TKE/TT to provide further insight on the effect of Womersley number on development of transition

9 throughout the pulsatile cycle.
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Figure 7. Spatiotemporally averaged TI for all test cases as a function of mean
Reynolds number.
10 We next consider the temporal variation of the TKE and TT trends throughout the pulsatile cycle.

11 Figure 8 shows the spatially averaged TI and TKE vs. time trends. TKE was normalized by the mean
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TKE for each case. For the 800 mean Reynolds number cases, TI was not defined at the beginning and
end of the cycle because the velocity waveform (and therefore centerline velocity) went to zero. For the
4 Womersley number case, a spike in TKE and TI is observed at t/T of about 0.82 for the 2300 mean
Reynolds number which suggests the burst of a turbulent puff’! during the deceleration portion of the
cycle. As the mean Reynolds number is increased to 2500, intermittent spikes in both TKE and TT are
observed during the deceleration phase starting at a t/T of about 0.62 which suggests the beginning of
the transitional regime. By 2700 mean Reynolds number, intermittent spikes in TKE and TT are observed
at the start of the cycle but dissipate as the flow accelerates. Intermittency and spikes appear again during
the deceleration phase. The dynamics observed during the acceleration and deceleration phases agree
with previous studies that reported turbulence relaminarizes during the acceleration period and is largely
produced during the deceleration phase which maintains an adverse pressure gradient.*!>!® The 3200
and 4200 mean Reynolds numbers maintained consistent fluctuations throughout the pulsatile cycle,
highlighting that the flow was fully turbulent by this point. The 12 Womersley number maintained
significant differences in the dynamics. Specifically, the intermittent TKE and TT spikes were smaller in
magnitude and distributed throughout the pulsatile cycle rather than being localized in the deceleration
phase. These findings—consistent with Figure 5—suggest that the 12 Womersley number case yielded
smaller turbulent puff structures that were agnostic to the underlying pulsatile flow dynamics (i.e.,
transition is no longer phase dependent). This also suggests that a high frequency of pulsation minimizes
the effect of parameters like waveform shape on the development and occurrence of transition. This

notion should be explored in future work.

To explore this notion that the flow became independent of the pulsatile phase further, in Figure 9
the interquartile range (IQR) of the normalized spatially-averaged temporal TKE trends (i.e., the lines
plotted in Figure 8) is plotted as a function of mean Reynolds number. The IQR provides a relative
measure of the pulsatility observed in the TKE trend such that a high IQR indicates the TKE trend

maintained a pulsatile trend, while a low IQR indicates the TKE trend was more constant throughout the

20



pulsatile cycle. For the 4 Womersley number, the IQR was high for the 800 mean Reynolds number and
generally decreased with increasing mean Reynolds number. For example, at a mean Reynolds number
of 800, the 12 Womersley number case maintained a 67% lower TKE IQR than the 4 Womersley number.
By a mean Reynolds number of 4200, the TKE IQR of the two Womersley numbers was significantly
closer. Specifically, while the two Womersley numbers maintained opposite trends with increasing mean

Reynolds number, they appeared to generally converge to a similar IQR value. These findings highlight
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Figure 8. Spatially averaged TKE(A) and TI(B) through time for all
mean Reynolds number cases at 4 and 12 Womersley number.
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that for the 12 Womersley number case the TKE trend was largely unaffected by the pulsatility at any
mean Reynolds number and the increase in IQR range is attributed solely by the increase in turbulent
energy. This confirms that the 12 Womersley number case resembled steady flow dynamics.
Additionally, these findings indicate that the magnitude of fluctuations induced by fully turbulent flow
seem to be independent of Womersley number. For the Womersley numbers of 6 and 8, the TKE IQR is
observed to decrease with increasing Reynolds number, similar to the 4 Womersley number. Meanwhile,
the 10 Womersley number TKE IQR increased with increasing mean Reynolds number. This suggests
that the Womersley number where the transitional flow begins to mimic steady flow occurs in the 8—10
Womersley number range. However, because only two mean Reynolds numbers were tested for the 6, 8,

and 10 Womersley numbers, this observation should be interpreted with caution.
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Figure 9. Interquartile range of spatially averaged TKE through time for all cases
as a function of mean Reynolds number
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C. Investigating the TI-input waveform phase lag as a function of Womersley number
Figure 8 demonstrates that a phase lag between the TI and inflow velocity waveform existed.
Specifically, for several cases, it is clearly observed that the minimum TI occurs at about a t/T of 0.5,
when the velocity waveform is at peak flow rate. Moreover, the loss of influence of the pulsatility on
TKE trends as shown in Figure 9 suggests that the TI-velocity phase lag may change as the flow dynamics
change with increasing Womersley number. In such a case, it is plausible that the TI-velocity phase lag
may capture underlying dynamics of pulsatile transition. Therefore, in Figure 10, the phase lag of TI-
velocity and TI-acceleration was plotted as a function of the mean Reynolds number. Due to the
aforementioned challenges for calculating TI for the 800 mean Reynolds number cases, phase lag for
these cases couldn’t be reliably computed and wasn’t included in this analysis. For the 4 Womersley
number, phase lag steadily decreased with increasing mean Reynolds number, a trend matching that
observed with the TKE IQR range. The total decrease of phase lag from 2300 to 4200 mean Reynolds
number was 83.7% and 35.2% for TI-velocity and TI-acceleration, respectively. For the 12 Womersley
number cases, phase lag increased with increasing mean Reynolds number by a total of 33% and 22%
for TI-velocity and TI-acceleration, respectively. In general, the TI-velocity and TI-acceleration
waveforms closely matched each other for all Womersley numbers. In this study a sinusoidal waveform
was used such that the acceleration and deceleration gradients mirrored each other; it would be of interest
to explore in future work if the TI-velocity and TI-acceleration phase lags differ for cases were the inflow

waveforms maintained varying average acceleration-to-deceleration gradient ratios.

Figure 10 highlights that each Womersley number maintained its own unique phase lag trend. Thus,
in Figure 11 the phase lag averaged across all mean Reynolds numbers for each Womersley number is
plotted as a function of Womersley number. Results from previous studies (Trip et al. (2012) and Brindise
and Vlachos (2018)) were plotted as well.’>!° (For Brindise and Vlachos (2018), only the Symmetric
waveform data was used since this closely matches a sinusoidal waveform.) Averaged TI-vel phase lag

was -43° (Brindise and Vlachos, 2018), -107° + -25°, -146° + -3.1°, -175° + -16.5°, -165° £ -27°, -168° +
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Figure 10. Phase lag of TI-velocity and TI-acceleration vs Reynolds number.

25°, and -180° (Trip et al., 2012) at Womersley numbers of 2.4, 4, 6, 9, 10, 12, and 15, respectively.
Averaged TI-acceleration phase lag was -144° (Brindise and Vlachos, 2018), -205° &+ 25°, -247°+ 3.1°, -
271°+£16.5°, -265°+ 27°, -265° £ 25°, -270° (Trip et al., 2012) at Womersley numbers of 2.4, 4, 6, 9, 10,
12, and 15, respectively. As Womersley number increased from 4 to 8, the average phase lag dropped by
321% and 89% for TI-velocity and TI-acceleration, respectively. However, as Womersley number
increased from 8 to 15, phase lag only varied by about 7% and 3% for TI-velocity and TI-acceleration,
respectively. Therefore, a trend is observed in which TI-velocity and TI-acceleration phase lags decrease
then plateau at Wo=S8. It is observed that the included prior studies of Trip et al. (2012) and Brindise and
Vlachos (2018) both agreed with and extended the trend established by our data (including the plateau
phase lag value). This is particularly of interest given that these two studies used notably different
amplitudes of oscillation as compared to our study. Hence, this provides evidence suggesting that phase
lag may provide a universal indication of the influence of Womersley number on the transitional flow.
Moreover, this plateau may indicate that the Womersley number of 8 is the changepoint above which
transition becomes largely independent of Womersley number and steady flow dynamics are recovered.
By extension, this would suggest that—for our setup—a Womersley number of 8 represents the point

where flow has insufficient response time for dissipation as a result of the high frequency of pulsation
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(and low cycle time), as detailed by Scotti and Piomelli (2001). (It would be of interest to consider in
future work if this “critical” Womersley number is altered if active perturbations are added to our setup
which may induce an insufficient response time at a lower Womersley number.) Given this, it is plausible
that the phase-lag evaluation may indirectly characterize the relationship between turbulence dissipation
and production. This is a notion that should be explored in future work which explicitly evaluates the
TKE budget.
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Figure 11. Phase lag of TI-velocity and TI-acceleration vs. Womersley number. Phase lag at Wo=3
reported by Brindise and Vlachos !°, phase lag at Wo=15 reported by trip et.al®®

D. Limitations

Several limitations of our study existed. The computer-controlled gear pump used in this setup
introduced fluctuations into the flow. This made it challenging to produce a clean well controlled
sinusoidal input waveform with a Womersley number larger than 12. These fluctuations can be mitigated
by implementing a flow straightener into the flow loop which should be considered in future studies.
Moreover, limitations to the PIV camera’s onboard RAM memory limited the data capture to only two
cycles for the 4 Womersley number cases. Thus, this limited the phase averaging for all cases with higher
Womersley numbers to using only two cycles as well in order to have comparable results. Additionally,

steady state cases weren’t tested in this study such that comparisons between steady flow dynamics and
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dynamics at high Womersley number cases (Wo=12) could not be explicitly confirmed for our setup.
For our setup, the critical Reynolds number was slightly higher than expected. This is because critical
Reynolds number is highly dependent on initial conditions and specifications of experimental setup. As
a result, the exact critical Reynolds number couldn’t be precisely pinpointed as it occurred outside the
range of our detailed Reynolds number capture (2300-2700). However, the trends in TKE/TI vs Re were
clear and we were able to observe flow develop from laminar to transitional to turbulent throughout the
selected range. Thus, despite this limitation, we were able to sufficiently explore the trends and dynamics
of transitional flow. Furthermore, because mean Reynolds numbers of 2300 and 2700 fall within the
transitional Reynolds number range of interest, Womersley numbers of 6, 8, and 10 were only tested for
these two cases. However, testing a finer range of Womersley numbers across more mean Reynolds

numbers cases could provide informative details on the trends observed in this study.

4 Conclusions

In this study we investigated the effects of Womersley number on transition to turbulence in pulsatile
pipe flow. In particular, we focused on evaluating the Womersley number range of 4—12 within which
considerable contradictory findings have been reported among prior studies. We observed that higher
Womersley number flows produced turbulent puffs with smaller spatial size and larger swirl strength as
compared to lower Womersley number flows. Additionally, turbulent structures were to a greater extent
observed throughout the pulsatile cycle for the high Womersley number, whereas for the low Womersley
number the deceleration phase largely drove the formation of turbulent puffs. The temporal trends of
spatially-averaged TKE and TI further supported this finding. This suggests that intermittency and,
subsequently, transition occur independently of inflow waveform phase at high Womersley numbers.
Analysis of average TKE and TI showed that critical Reynolds was relatively unaffected by Womersley
number. We speculate that inconsistencies regarding critical Reynolds number within literature are due
to differences in pulsation amplitude and the used perturbation method across experiments. Given the

noted differences observed in the influence of pulsatility on TKE and TI trends as a function of
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Womersley number, we evaluated the phase lag between TI-input velocity waveform and TI-input
velocity acceleration. The phase lag was observed to decrease with increasing Womersley number, until
a Womersley number of 8 at which point the trend plateaued. This suggests that a Womersley number
of 8 may serve as a “critical” Womersley number beyond which steady flow dynamics are recovered.
Moreover, data from two prior studies were included in our phase lag analysis which importantly
suggested that phase lag may provide a universal indicator of the extent to which Womersley number

affects transition for a given flow. Future work should explore this significant finding further.
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