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ABSTRACT 11 

The intermittency characteristics in transitional and turbulent flows can provide critical information on the underlying 12 

mechanisms and dynamics. While time-frequency (TF) analysis serves as a valuable tool for assessing intermittency, 13 

existing methods suffer from resolution issues and interference artifacts in the TF representation. As a result, no 14 

suitable or accepted methods currently exist for assessing intermittency. In this work, we address this gap by presenting 15 

a novel TF method—a Fourier-decomposed wavelet-based transform—which yields improved spatial and temporal 16 

resolution by leveraging the advantages of both integral transforms and data-driven mode decomposition-based TF 17 

methods. Specifically, our method combines a Fourier-windowing component with wavelet-based transforms such as 18 

the continuous wavelet transform (CWT) and superlet transform, a super-resolution version of the CWT. Using a 19 

peak-detection algorithm, we extract the first, second, and third most dominant instantaneous frequency (IF) 20 

components of a signal. We compared the accuracy of our method to traditional TF methods using analytical signals 21 

as well as an experimental particle image velocimetry (PIV) dataset capturing transition to turbulence in pulsatile pipe 22 

flows. Error analysis with the analytical signals demonstrated our method maintained superior resolution, accuracy 23 

and, as a result, specificity of the instantaneous frequencies. Additionally, with the pulsatile flow dataset, we 24 

demonstrate that IF components of the fluctuating velocities extracted by our method decompose energy cascade 25 

components in the flow. Additional investigations into corresponding spatial frequency structures resulted in detailed 26 

observations of the inherent scaling mechanisms of transition in pulsatile flows. 27 
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 3 

1. Introduction 4 

Transition to turbulence is characterized by the presence of isolated intermittent turbulent 5 

structures known as turbulent puffs (Brindise and Vlachos, 2018; Frishman and Grafke, 2022). 6 

This intermittency can induce various deleterious effects across a variety of flow domains, e.g. 7 

cardiovascular (Poelma et al., 2015; Trip et al., 2012), nuclear reactor (Yuan et al., 2016; Zhuang 8 

et al., 2016), and high-frequency ventilation systems (Einav and Sokolov, 1993). These adverse 9 

effects include altering flow behavior (Freidoonimehr et al., 2020; Kefayati and Poepping, 2013; 10 

Nerem et al., 1972; Poelma et al., 2015; Sherwin and Blackburn, 2005; Valen-Sendstad et al., 11 

2011), inducing fluctuations in wall shear stress (Peacock et al., 1998), as well as causing rapid 12 

increases in friction factor and loss of energy (Yuan et al., 2016). Hence, accurate detection and 13 

analysis of transitional flows is of great interest. Unfortunately, limited analysis methods exist that 14 

are capable of assessing flows or signals with intermittency, resulting in a critical gap in the current 15 

ability to evaluate transitional flows. 16 

At the onset of the transitional regime, localized patches of turbulence are produced in the 17 

flow, but are short-lived and rapidly decay. As flow develops through the transitional regime, the 18 

turbulent puffs progressively become more frequent and stable to decays (Avila et al., 2011). The 19 

localized and intermittent nature of turbulent puffs inherently suggest that they maintain 20 

characteristic spatial and time scales. This highlights that time-frequency-based analysis methods 21 

can provide the needed framework for evaluating transitional flows. However, while various time-22 

frequency and data mode decomposition methodologies exist for evaluating spectral information, 23 
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none provide sufficient temporal and spectral resolution and localization for accurate intermittency 1 

analysis. 2 

The Short-Time Fourier Transform and continuous wavelet transform (CWT) are two of the 3 

most common TF methods. The Short-Time Fourier Transform temporally windows the signal and 4 

takes the Fourier transform of each signal segment. However, the Short-Time Fourier Transform 5 

requires a user-inputted window size that induces time and frequency resolution limitations. The 6 

CWT mitigates this limitation by incorporating scaling and shifting of a time-localized function, 7 

known as the mother wavelet, for improved resolution of the time-frequency representation (TFR). 8 

Numerous studies have explored the use of CWT for analyzing flow intermittency (Ruppert-Felsot 9 

et al., 2009) and turbulence (Farge, 1992). However, the low frequency resolution at high 10 

frequencies inherent to the CWT results in interference artifacts and mode mixing between high-11 

frequency components. Recently, Barzan et al. (2021) and Moca et al. (2021) proposed a CWT-12 

based methodology known as the fractional adaptive superlet transform (FrASLT) to obtain a 13 

super-resolution TFR. However, investigating the FrASLT revealed a critical trade-off associated 14 

with frequency resolution. Namely, lower frequency resolution TFRs suffered from interference 15 

artifacts, while higher frequency resolution TFRs maintained a reduced time resolution, rendering 16 

the FrASLT not well suited for analyzing intermittent dynamics. 17 

Data-driven mode decomposition methods provide an alternative approach for TF analysis. 18 

These methodologies decompose a signal into its constituent orthogonal components, and the 19 

instantaneous frequency (IF) of each component is subsequently calculated. A well-known 20 

example of such approach is the empirical mode decomposition—Hilbert-Huang Transform 21 

(EMD-HHT) (or simply HHT for brevity) (Huang et al., 1998). The HHT method has been 22 

employed to study turbulent flows (Huang et al., 2008). Recently, Singh et al. (2017) proposed 23 
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another approach—the Fourier decomposition method—which adaptively decomposes a signal in 1 

the Fourier domain. However, both HHT and Fourier decomposition method suffer from mode 2 

mixing, especially in the presence of close frequency components, and have been observed to fail 3 

for signals with intermittency. Zhou et al. (2022)  proposed the empirical Fourier decomposition 4 

which decomposes a signal based on the minima in the Fourier domain. However, a major 5 

limitation of empirical Fourier decomposition is the requirement of a predefined number of signal 6 

components. In general, IFs extracted using decomposition-based methods are prone to erroneous 7 

oscillations and in their generic forms are not sufficient for extracting intermittency mechanisms. 8 

In this study, we propose a novel methodology that overcomes the limitations of current time-9 

frequency analysis methods by leveraging the advantages of both integral transforms and data-10 

driven decompositions. Our method is capable of 1) providing an accurate TFR with high spectral 11 

and temporal resolution and localization, even in cases where similar frequency components exist 12 

in a signal; and 2) extracting multiple dominant IFs within a signal. While our method was 13 

designed for use with any type of flow, it is particularly beneficial in the presence of intermittency, 14 

which is prevalent in transition flows. Furthermore, it requires no user inputs or a priori knowledge 15 

of the signal such that it can be used to extract the frequency components of any arbitrary signal 16 

(e.g., hydrophone data to measure pressure fluctuation frequencies, electrocardiogram data to 17 

measure fluctuations in the electrical activity of heart, etc.). Our method decomposes a signal into 18 

a set of Fourier mode signals and stitches together a single TFR from the wavelet-based transform 19 

of each Fourier mode. An adaptive thresholding is used to extract the dominant frequency 20 

components efficiently and consistently. We tested and validated our method using analytical 21 

signals with known frequency components as well as experimental particle image velocimetry 22 

(PIV) data of transitional pulsatile flow from Brindise and Vlachos (2018). To demonstrate the 23 
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value of extracting the IF components of a flow, we evaluated the coherent nature of the dominant 1 

frequency structures in the flow as well as the instantaneous turbulent energy cascade resolved 2 

using our approach.  3 

 4 

2. Proposed time-frequency analysis method 5 

The intermittency inherent to transitional and turbulent regimes impose that, at any given time 6 

instance, multiple structures with varying frequencies are expected to exist within any region of 7 

interest. Thus, a TF method suitable for intermittent flow structure analysis must have sufficiently 8 

high resolution in both time and frequency such that dominant signal frequency components close 9 

in magnitude are separable. Fig. 1 illustrates the observable fringe patterns (i.e., patterned 10 

coefficients) in the TFR that occur using (a) HHT, (b) CWT, and (c) FrASLT when multiple near-11 

frequency components exist in a signal (Fig. 1 uses an analytical sinusoidal signal with 25 and 12 

27Hz components from 0.6 s to 2 s and 0 s to 1.6 s, respectively). These interference fringe patterns 13 

in turn lead to inaccurate dominant frequency component extraction. Our proposed method 14 

mitigates the effect of these interference artifacts by taking advantage of the fact that the Fourier 15 

transform provides the highest frequency resolution and can decompose a signal into its mode 16 

Fig. 1. Time-frequency representation (TFR) computed using (a) HHT (b) CWT (c) FrASLT for an 
analytical sinusoidal signal with two frequency components: 25 Hz from 0.6-2.0s, 27 Hz from 0-1.6s. 
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functions. Hence, combining Fourier-based mode functions with wavelet-based transforms 1 

simultaneously removes interference artifacts while maintaining optimal spectral and temporal 2 

resolutions. A schematic of our proposed method is provided in Fig. 2 and Fig. 3.  3 

2.1. Decomposing the input signal into Fourier modes 4 

 While the input signal (Fig. 2b) could be any arbitrary signal, for our purposes herein where 5 

intermittent flow analysis is of interest, the fluctuating velocity or turbulent kinetic energy (TKE) 6 

Fig. 1. Proposed time-frequency analysis method. (a) The velocity field time stack. (b) Sample signal 
representation (shown here as an analytical non-stationary sinusoidal signal with nine frequency 
components). (c) Extracted peaks and resulting segmentation of Fourier spectrum of the mean-subtracted 
signal. (d) The real valued mode functions to segments in Fourier spectrum (g) The resulting TFR for each 
mode functions using wavelet-based transform. (h) The resultant modified TFR after combining TFR 
corresponding to all mode functions 



7 
 

should be inputted.  (We note that Fig. 2b shows the analytical non-stationary signal defined by 1 

summing nine independent sinusoidal components that we use to demonstrate our method.) The 2 

input signal is mean-subtracted, and its Fourier spectrum is subsequently calculated using the 3 

standard fast Fourier transform (FFT) (Fig. 2c). All peaks of the Fourier spectrum are identified 4 

using the built-in findpeaks function in MATLAB. This function identifies local peaks in a signal, 5 

returning the magnitude, location, width, and prominence of each identified peaks. Noisy peaks—6 

which are expected to exist due to the non-stationary nature of the input signal—are filtered out 7 

using a peak prominence thresholding. Specifically, a histogram of the peak prominence of all 8 

peaks is computed based on the built-in histcounts function in MATLAB, which partitions the 9 

input data into a histogram using an automated uniform binning. The resulting peak prominence 10 

threshold (τ) is obtained by (Yochum et al., 2016), 11 

τ =
∑ 𝑐𝑖 × 𝑁𝑖

𝑛𝑏
𝑖=1

∑ 𝑁𝑖
𝑛𝑏
𝑖=1

(1) 12 

where  𝑐𝑖 represent the peak prominence value corresponding to center of each histogram bin, 𝑁𝑖 13 

represent the number of peaks corresponding to each histogram bin and 𝑛𝑏 represent the total 14 

number of histogram bins. All peaks with a prominence less than this threshold value are 15 

considered as noisy and removed. The Fourier spectrum with the final, filtered peaks identified is 16 

shown in Fig. 2c. The FFT is then windowed where the edges of each window are defined as the 17 

frequency corresponding to the minimum FT magnitude between adjacent frequency peaks (Fig. 18 

2c). The Fourier spectrum slices for the first and last peak are closed using the respective negative 19 

and positive Nyquist frequency. Hence, this represents an adaptive windowing scheme where the 20 

entire spectrum is segmented such that prominent frequency components are expected to exist 21 

within each spectral slice. Next, an ideal band pass filter was applied to each positive spectral slice 22 

to generate time-domain representation of the mode function corresponding to each window and 23 
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the Hilbert transform was used to obtain the analytical representation of the mode functions as 1 

shown in Fig. 2d. As evident from Fig. 2d-1 and 2d-2, the mode functions exhibit similar forms of 2 

nonstationary behavior as the original signal and contain notably different frequency magnitudes. 3 

2.2. Calculating the time-frequency representation 4 

 A CWT-based transform is used to calculate the TFR of each Fourier mode. We employed the 5 

FrASLT method since it provides an adaptive resolution in frequency as compared to the general 6 

CWT. However, the CWT can also be used and herein we test both approaches. Fig. 2e shows the 7 

TFR coefficient maps computed using the FrASLT for each Fourier mode from Fig. 2d. All TFR 8 

coefficients outside of the corresponding frequency window of each Fourier mode are set to zero. 9 

A single TFR coefficient map (Fig. 2f) for the input signal is generated by summing together the 10 

TFR coefficient maps of all Fourier mode signals. 11 

2.3. Extracting the instantaneous dominant frequency packet 12 

Using the final TFR coefficient map (Fig. 3a), the dominant IFs are extracted through an iterative 13 

process. Specifically, the peaks of each column of the resultant TFR coefficient map (i.e., each 14 

individual time point) are identified using the built-in findpeaks function in MATLAB (Fig. 3a and 15 

3b). To close the 1-D TFR coefficient columns prior to peak finding, the TFR coefficient values 16 

at the boundaries (i.e., 0Hz and the Nyquist frequency) needed to be set manually. This closure of 17 

Fig. 2. Extraction of instantaneous dominant frequency packet. (a) The modified TFR using Fourier 
decomposition (b) Instantaneous spectrum at specific time instant (c) Extracted dominant frequencies after 
iterating through time 
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the TFR at the boundaries was done to extend the signal, so that any endpoint peaks could be 1 

identified in the same manner as other peaks, i.e. using the prominence-based peak identification 2 

and analysis. For 0Hz, the mean value of the input signal was used, while a symmetric behavior 3 

of the TFR was assumed around the Nyquist frequency. The extracted peaks were sorted according 4 

to their peak prominence. The frequency and TFR coefficient of the peaks with highest prominence 5 

were identified. Finally, the resultant peaks were further sorted based on the TFR coefficients to 6 

determine dominance levels. Fig. 3c illustrates the extracted 1st, 2nd, and 3rd IFs of the input signal. 7 

In its current form, our method extracts at most three dominant frequencies for a given time step. 8 

However, our method can be readily expanded to extract additional frequency components, a 9 

notion that will be explored in future work.  10 

We termed our method as the Fourier-Decomposed Superlet Transform, or FDST, method. For 11 

the implementation where the CWT was used in place of the FrASLT, we refer this as the Fourier-12 

Decomposed CWT, or FDCWT, method. 13 

 14 

3. Implementation details for comparison methods (HHT, CWT, FrASLT) 15 

The complex Morlet wavelet with a standard deviation value of five for the Gaussian envelop was 16 

considered for all wavelet-based calculations. Since the time domain-based CWT calculation 17 

resulted in major artifacts near scales corresponding to the Nyquist frequency, the frequency 18 

domain-based CWT calculation was implemented. The resulting L1 norm CWT calculation 19 

(Addison, 2017; Lilly, 2017) is given by, 20 

𝑇𝑥(𝑎, 𝑏) =  ∫ 𝑋(𝑓)Ψ∗(𝑎𝑓)𝑒𝑖2𝜋𝑓𝑏𝑑𝑓

∞

−∞

(2) 21 
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where 𝑇 represents the CWT coefficients, 𝑥 represents the input signal, 𝑋 represents the Fourier 1 

transform of input signal, Ψ represents the Fourier transform of mother wavelet, 𝑎 represents the 2 

scale parameter, and 𝑏 represents the shift parameter. The CWT was numerically implemented 3 

using the FFT algorithm with appropriate zero padding in order to reduce wrap-around artifacts.  4 

For both the FrASLT and FDST, an initial cycle of three and order of 20 was chosen. Through 5 

testing, these values were found to optimally minimize computational time while reducing the loss 6 

of information. For consistency, the cycle parameter of the complex Morlet wavelet was also 7 

chosen as three for both the CWT and FDCWT calculations. The built-in MATLAB functions of 8 

emd and hht were utilized for extracting the mode functions and Hilbert spectrum of the HHT 9 

calculations.  10 

 11 

4. Analytical Signal Analysis 12 

4.1. Analytical test signals set 13 

4.1.1. Data generation 14 

Two sets of non-stationary sinusoidal test signals with two frequency components were created. 15 

To match typical experimental data resolution, a sampling frequency of 250 Hz and signal length 16 

of 500 datapoints were used, resulting in signals of 2 second (s) length.  17 

The first set of test signals contained frequency components with constant amplitude which 18 

are turned on and off at specific time instants. The first frequency component existed in the signal 19 

from 0.6s to 2s with an amplitude of 1.1 (referred to here as the major component or major 20 

frequency (Fm)), while the second frequency component existed from 0s to 1.6s with an amplitude 21 

of 1 (referred to here as the minor component or minor frequency (Fn)). A set of signals were 22 

generated where the major frequency was fixed as 50Hz and the minor frequency was varied across 23 
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signals with values of 10Hz, 46Hz, and 90Hz. Additional test signals were generated where both 1 

the major and minor frequencies varied from 0.5Hz to 125Hz (the Nyquist frequency). 2 

The second set of test signals contained frequency components with varying amplitudes as well 3 

as added noise. The frequency of the first component was fixed at 50Hz. Its amplitude varied 4 

linearly from 0 to 1 between 0s and 0.6s, and from 1 to 0 between 0.6s and 2s. The frequency of 5 

the second component was fixed at 46Hz and its amplitude varied linearly from 0 to 1 between 0s 6 

and 1.6s, and from 1 to 0 between 1.6s and 2s. The incorporation of ramped-on and ramped-off 7 

amplitude was expected to imitate the realistic behavior of turbulent intermittency. Zero-mean 8 

uniform white noise was added at noise percentages (defined as the ratio between the standard 9 

deviation of the white noise and that of the noiseless signal) of 10%, 100%, and 500%. A total of 10 

1000 instances of the signal set were created using the Mersenne Twister generator, with seed 11 

ranging from 1 to 1000 for each instance. 12 

4.1.2. Post-processing calculations 13 

Error analysis of the extracted IFs was conducted for all cases of analytical signals. For the constant 14 

amplitude test signal set, the major and minor frequencies of each signal were considered the 15 

ground-truth 1st and 2nd IFs, respectively. Since both frequency components were only present 16 

from 0.6s to 1.6s, error analysis was limited to this region. The root mean square error (RMSE) 17 

metric was used to quantify error between the extracted and true IFs. The RMSE calculations is 18 

given by: 19 

𝑅𝑀𝑆𝐸 = √
∑ (𝐼𝐹𝑒(𝑡) − 𝐼𝐹𝑔(𝑡))

2𝑡=1.6
𝑡=0.6

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝

(3) 20 

where 𝐼𝐹𝑒 and 𝐼𝐹𝑔 represent the extracted and ground truth IFs in the region with two frequency 21 

components while 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝  represents the number of time points with two frequencies present. 22 
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Any missing values in the extracted IFs was assumed to have an error equivalent to the Nyquist 1 

frequency as a penalty. Here, missing values in the extracted IFs refers to the case where a ground-2 

truth frequency existed but no corresponding IF was identified by the TF analysis method. 3 

For the varying amplitude test signal set, the ground truth 1st and 2nd IFs were determined as 4 

the frequency with the larger amplitude and smaller amplitude, respectively, at a given time instant. 5 

At 0s and 2s, where the amplitude of both components were zero, the ground truth for the 1st IF 6 

was assumed as the frequency which had higher amplitude immediately at the immediately 7 

adjacent time instant. The RMSE calculation was performed over full time length for these signals.  8 

4.2. Method comparison using analytical signals 9 

4.2.1. Constant amplitude test signals 10 

We first compared our methods (FDST and FDCWT) against the current state-of-the-art methods 11 

(HHT, CWT, FrASLT) using the set of analytical signals with constant-amplitude ground-truth 12 

IFs. Fig. 4 shows the TFRs from (a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT, and (e) FDST. 13 

Each row represents a different analytical signal with a major frequency of 50 Hz and a minor 14 

frequency of (-1) 10 Hz, (-2) 46 Hz, and (-3) 90 Hz. The red lines denote the ground-truth 15 

frequency.  Fig. 4 demonstrates the low frequency resolution inherent to the CWT at higher 16 

frequencies. Specifically, in Fig. 4b-1, the 50 Hz frequency is represented by a wide band in the 17 

coefficient map, whereas the 10 Hz frequency maintains a considerably thinner frequency band. 18 

The FrASLT—a super resolution wavelet transform—mitigates this variable frequency resolution 19 

by combining multiple wavelet transforms with increasing timescale resulting in high frequency 20 

resolution at high frequencies. The FDST method similarly maintained super resolution in 21 

frequency at high frequencies, while the FDCWT still exhibited the wide bands caused by the 22 

inherent variable frequency resolution issues of the CWT.  Fig. 4 also demonstrates that 23 
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insufficient frequency resolution causes mode mixing.  Mode mixing is exhibited by a distinct 1 

intermittent ‘dotted’ pattern in the coefficient field. Mode mixing is particularly observed in Fig. 2 

4b-2 and Fig. 4c-2, the case where the major and minor frequency components maintain only a 3 

4Hz difference. Overall, mode mixing was observed for the HHT, CWT, and FrASLT methods. 4 

Using our proposed FDST or FDCWT methods, no intermittent patterns are present. This shows 5 

the efficacy of our Fourier mode decomposition algorithm component at sufficiently addressing 6 

mode mixing by segmenting even close frequency components into individual modes.  7 

 Fig. 5 shows the extracted 1st and 2nd IFs of the set of analytical signals from Fig. 4 using 8 

each method. The IFs extracted by HHT had significant inaccurate oscillations, especially at higher 9 

frequencies. For instance, for the case with a minor frequency of 46Hz (Fig. 5a-3), the extracted 10 

1st IF in the mono-frequency time-frame of 0 to 0.6s oscillated within the range of 44 to 48Hz. For 11 

the case with a high minor frequency of 90Hz (Fig. 5a-5), a larger oscillation range of 80 to 98Hz 12 

Fig. 4. Extracted TFR of the analytical signal with major components of 50Hz and minor component of (1) 
10 Hz, (2) 46 Hz, (3) 90 Hz, using the (a) HHT (b) CWT (c) FrASLT (d) FDCWT and (e) FDST. 
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was observed for this mono-frequency time-frame. When two frequency components were present 1 

from 0.6s to 1.6s, the 1st HHT IF showed significant oscillations within the range of 44 to 81Hz 2 

(Fig. 5a-3), and 46 to 89Hz (Fig. 5a-5) for cases with minor frequencies of 46 Hz and 90 Hz, 3 

respectively. Such behaviors in the extracted frequencies using HHT can be attributed to the 4 

anomalous extraction of IMFs near the Nyquist frequency.  Oscillations in the CWT-extracted 1st 5 

IFs varied from 48 to 60Hz (Fig. 5b-3) and 49 to 87Hz (Fig. 5b-5) for the signals with minor 6 

frequencies of 46Hz and 90Hz, respectively. For the CWT, the number of oscillatory peaks in the 7 

Fig. 5. The extracted both 1st and 2nd IF of the analytical signal with major frequency component (Fm) of 
50 Hz and minor frequency component (Fn) of 10 Hz, 46 Hz and 90Hz using (a) HHT, (b) CWT, (c) FrASLT, 
(d) FDCWT and (e) FDST.  
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extracted frequencies were observed to correlate with the number of intermittent dotted patterns in 1 

the TFR (as evident from Fig. 5b-3 and Fig. 4b-2), implying an association with mode mixing. The 2 

super-frequency resolution of the FrASLT method eliminated these oscillations at high frequencies 3 

(e.g., Fig. 5c-5 and 5c-6). However, for the signal with close frequency components (Fig. 5c-3 and 4 

Fig. 5c-4) oscillatory behavior was still observed, highlighting that limitations in the super-5 

resolution frequency persist. Moreover, the improved frequency resolution is observed to come at 6 

the cost of reduced time resolution, resulting in the delayed detection of the dominant frequency 7 

change at 0.6s, as observed in all cases of Fig. 5c. IFs extracted using FrASLT identified the change 8 

of dominant frequency at 0.68s, a 13% deviation from the ground truth. Both implementations of 9 

our proposed method extracted IFs with significant reductions in oscillatory behavior, implying an 10 

improved frequency resolution. The frequencies extracted using FDST exhibited the lowest degree 11 

of oscillatory behavior while the only oscillatory behavior exhibited by FDCWT occurred at the  12 

Table 1. The RMSE (in Hz) of 1st and 2nd IF extraction with ground truth using HHT, CWT, FrASLT, 
FDCWT and FDST 

Method 

Freq. 

HHT CWT FrASLT FDCWT FDST 

1st IF 

10 & 50 Hz 9.44 5.65 11.57 5.05 11.57 

46 & 50 Hz 6.15 3.11 1.46 0.63 1.43 

90 & 50 Hz 23.11 22.89 11.57 5.93 11.57 

2nd IF 

10 & 50 Hz 9.07 5.75 11.57 5.15 11.57 

46 & 50 Hz 38.45 41.52 26.08 7.69 1.55 

90 & 50 Hz 54.64 28.79 11.57 5.90  11.57 
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0.6s and 1.6s time instances, corresponding to start and end of the minor frequency component. 1 

Furthermore, the improved frequency resolution resulted in accurate 2nd IF extraction, suggesting 2 

that both implementations of the proposed method were better than the other methods at 3 

identifying the primary and secondary signal mechanisms at high frequencies, which is particularly 4 

important when analyzing intermittency. However, the FDST method could not resolve the 5 

inherent time-resolution limitation of the FrASLT. FDST identified the dominant frequency 6 

change (which truly occurred at 0.6s) at 0.68s, 0.72s, and 0.68s in cases with minor frequencies of 7 

10Hz, 46Hz and 90Hz, respectively.  8 

 To quantitatively summarize these notions, Table 1 provides the RMSE values, comparing 9 

the extracted frequencies vs. the ground-truth frequencies for each method across the analytical 10 

signals. The IFs extracted using HHT generally maintained the highest average RMSE across all 11 

three signals of 12.90Hz and 34.05Hz for the 1st and 2nd IFs, respectively. With CWT, the mode 12 

mixing precipitated a fourfold and fivefold increase in the RMSE of the 1st and 2nd IF, respectively, 13 

when the minor frequency increased from 10Hz to 90Hz. At signals with higher frequencies, the 14 

super resolution of the FrASLT method yielded a 49% RMSE improvement in the 1st IF as 15 

compared to CWT. However, the delayed frequency changepoint detection induced a 51% RMSE 16 

increase for the 1st IF with FrASLT as compared to CWT. For FDCWT, an RMSE improvement 17 

of 11%, 80%, and 74% was observed in the 1st IF extraction as compared to CWT for signals with 18 

minor frequency of 10Hz, 46 Hz, and 90 Hz, respectively. Similarly, for the 2nd IF, an RMSE 19 

improvement of 10%, 81%, and 80% for the 10Hz, 46Hz, and 90Hz signals, respectively, was 20 

observed. For the 46Hz minor frequency signal, FDST provided a 2% and 94% RMSE 21 

improvement over FrASLT for the 1st and 2nd IF extraction, respectively. No significant RMSE 22 
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differences were observed between FDST and FrASLT for the analytical signals with well 1 

separated frequency components.  2 

Fig. 6a and 6b extend the analysis by showing the RMSE for the 1st and 2nd IF extractions, 3 

respectively, as a function of all major and minor frequency combinations (from 0.5Hz to the 4 

Nyquist frequency). The global mean RMSE of the 1st IF for all frequency ranges were 26.85Hz, 5 

14.72Hz, 13.40Hz, 8.56Hz, and 13.66Hz for HHT, CWT, FrASLT, FDCWT, and FDST, 6 

respectively. Fig. 6a-1 and 6a-2 demonstrate the noted anomalous behavior of the IMFs for HHT 7 

and mode mixing for CWT were pervasive problems across the major and minor frequency 8 

combinations. High RMSE regions were not observed with FrASLT, FDCWT, and FDST 9 

implying a sufficient time-frequency resolution for all frequency ranges. Fig. 6c provides the mean 10 

RMSE value as a function of major frequency. At major frequencies below 20Hz, both FDCWT 11 

and CWT performed comparably, owing to the high frequency resolution of CWT at low 12 

frequencies. However, as frequency increased above 20Hz, a significant increase in the mean 13 

RMSE of CWT is observed suggesting 20Hz as the threshold above which mode mixing becomes 14 

significant for the CWT method. However, both FDST and FrASLT performed inferiorly 15 

compared to CWT at frequencies below 40Hz. This highlights that below 40 Hz, the reduced time 16 

resolution of the FrASLT method is more consequential than the advantage of the increased 17 

frequency resolution. It is important to note that the thresholds described in this analysis are 18 

specific to the characteristics of the chosen signal and analysis parameters; for other signals or 19 

analysis parameters, these threshold values should be re-evaluated. FDCWT maintained a 42% 20 

improvement of global mean RMSE over CWT, as well as a 36% improvement over FrASLT, and 21 

a 37% improvement over FDST. The superior performance of the FDCWT method demonstrates 22 

it advantageously leverages the benefits of both the Fourier decomposition step and CWT time-23 



18 
 

resolution. The slight reduction in performance of FDST compared to FrASLT in terms of RMSE 1 

occurred due to inconsistencies near the Nyquist frequency. Fig. 6d shows the average RMSE of 2 

the 2nd IF extraction as a function of the major frequency. A global mean RMSE of 41.64Hz, 3 

38.82Hz, 17.55Hz, 13.94Hz, and 15.06Hz were observed for the HHT, CWT, FrASLT, FDCWT, 4 

and FDST respectively. FDCWT and FDST provided a 64% and 14% improvement in the overall 5 

RMSE of the 2nd IF as compared to the respective baseline cases (CWT and FrASLT, respectively). 6 

This further reiterates that the 2nd IF extraction was greatly influenced by the frequency resolution. 7 

FDST was found to perform better for the 2nd IF as compared to FDCWT at higher frequencies 8 

Fig. 6. RMSE as function of major and minor frequencies for (a) 1st and (b) 2nd instantaneous frequencies 
using the (1) HHT (2) CWT (3) FrASLT (4) FDCWT and (5) FDST. The mean RMSE as function of 
major frequencies for (c) 1st and (b) 2nd instantaneous frequencies. 
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implying the suitability of FDST in the extraction of high frequency secondary dynamics. In 1 

general, the superiority of FDCWT and FDST points to the importance of the Fourier 2 

decomposition step when extracting the underlying secondary dynamics.  3 

4.2.2. Varying amplitude test signals 4 

Next, we evaluate the efficacy of our methods against current state of art methods, for signals with 5 

varying frequency amplitudes and added noise. Fig. 7. illustrates the three raw signals used for 6 

testing and the extracted 1st and 2nd IFs using each method. With added noise, HHT maintained 7 

large oscillations in the 1st IF, while at 100% and 500% noise the ground truth frequency trend was 8 

no longer observable. CWT identified the 1st IF accurately, with oscillations ranging from 38Hz 9 

to 55Hz for 10% noise (Fig. 7b-1) and 20Hz to 100Hz (Fig. 7b-3) for 100% noise. By 500% noise, 10 

the ground truth frequency trend was lost (Fig. 7b-5). For all noise percentages, both HHT and 11 

CWT failed to identify the 2nd IF.  FrASLT identified the 1st IF with oscillations of amplitude 1Hz 12 

for 10% noise, 6Hz for the 100% noise, and up to 70Hz for 500% noise. FDCWT exhibited similar 13 

performance to FrASLT, with two main differences of: 1) for 100% noise, low amplitude (48 – 54 14 

Hz range) oscillations when the higher frequency component was dominant (Fig. 7d-3) and 2) 15 

slightly less oscillations at 500% noise.  The FDST maintained the lowest oscillatory behavior in 16 

the 1st IF of all methods, exhibiting some large oscillations at the beginning and end of the signal. 17 

For FrASLT, FDCWT, and FDST, in the 500% noise case, a delay in the detection of the dominant 18 

frequency changepoint of about 18% was observed in the 1st IF. Both FrASLT and FDCWT largely 19 

failed to identify the 2nd IF. FDST successfully identified the 2nd IF with minimal oscillations for 20 

the 10% case. For the 100% noise case, 2nd IF oscillations at the beginning and end of the signal 21 

were observed, while for the 500% noise case, the 2nd IF was not resolved.  22 
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Table 2 provides the mean and standard deviation of the RMSE values of the IFs , across 1 

the 1000 instances (assessing the statistics for the added random error ) of the analytical test signal 2 

set. Generally, HHT exhibited at least a 41% higher mean RMSE as compared to other methods. 3 

The 1st IF extracted by CWT exhibited a minimum of 71%, 6%, and 27% higher mean RMSE 4 

compared to FrASLT, FDCWT and FDST, respectively. The FDCWT demonstrated a mean 5 

RMSE improvement of 42% (10% noise), 5% (100% noise), and 23% (500% noise) compared to 6 

CWT. Both FrASLT and FDST in general exhibited highly accurate IF extraction owing to the 7 

super resolution of the FrASLT. Additionally, incorporating the Fourier-decomposition into 8 

FrASLT resulted in a 65% and 12% improvement for the 1st IF at 10% and 500% noise,  9 

Fig. 7. The extracted both 1st and 2nd IF of the analytical signal with noise level of 10%, 100% and 500% 
using (a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT and (e) FDST. 
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respectively, and a 4% decrease in performance at the 100% noise case. Similarly, the Fourier-1 

decomposition step resulted in an RMSE improvement of 24-80% for the 2nd IF extraction at 10%-2 

100% noise. However, even FDST failed to extract the 2nd IF with sufficient accuracy at 500% 3 

noise, due to the significant mixing of noise with signal dynamics. In general, this analysis 4 

emphasizes the superior performance of FDST at extracting the relevant dynamics, even in the 5 

presence of significant noise, and establishes that for noisy signals (i.e., >100% noise), only the 6 

primary dynamics (i.e., 1st IF) can be accurately extracted. 7 

 8 

5. Pulsatile experimental PIV data analysis 9 
5.1. Pulsatile experimental PIV data 10 

5.1.1. Data collection and processing 11 

Experimental transitional pulsatile pipe flow data was used to test the efficacy of our proposed 12 

method for evaluating intermittent flow structures and the instantaneous TKE spectrum. A sub-set 13 

Table 2. The mean and standard deviation of RMSE (in Hz) of 1st and 2nd IF extraction with ground truth 
considering 1000 instances of test signal using HHT, CWT, FrASLT, FDCWT and FDST 

Method 

Noise % 
HHT CWT FrASLT FDCWT FDST 

1st IF 

10% 5.18 ± 0.77 2.31 ± 0.79 0.51 ± 0.02 1.35 ± 0.92 0.18 ± 0.06 

100% 15.39 ± 1.24 9.52 ± 1.58 4.89 ± 3.49 9.00 ± 2.67 5.08 ± 3.45 

500% 30.63 ± 1.49 21.67 ± 1.63 17.05 ± 4.34 16.79 ± 4.87 14.97 ± 5.60 

2nd IF 

10% 38.02 ± 0.64 37.84 ± 0.90 35.13 ± 2.93 30.78 ± 1.48 6.91 ± 3.71 

100% 35.96 ± 1.39 36.78 ± 0.94 39.11 ± 3.10 38.66 ± 4.47 29.53 ± 4.22 

500% 32.33 ± 1.32 35.32 ± 1.03 38.43 ± 3.08 39.48 ± 5.63 38.95 ± 5.98 
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of the two-dimensional-two velocity component (2D-2C) planar PIV data from Brindise and 1 

Vlachos (2018) was used. We provide a brief description of the data here, but the reader should 2 

refer to Brindise and Vlachos (2018) for complete details on the experimental setup and captured 3 

data. Womersley number represents the ratio between inertial forces and viscous forces and is 4 

computed by: 5 

𝛼 = 𝐿√
𝜔𝜌

𝜇
(4) 6 

where 𝐿 is the characteristic length scale, 𝜔 is the angular frequency of pulsation, 𝜌 is the density 7 

of the fluid, and 𝜇 is the dynamic viscosity of the fluid. For these experiments, a Wormsley number 8 

of 2.4 and tube diameter of 1/8’’ was used.  A symmetric (nearly sinusoidal) input pulsatile 9 

waveform shape was tested at six mean Reynolds numbers (Re) of 500, 1000, 2000, 2500, 3000 10 

and 4000. Fig. 8, adapted from Brindise and Vlachos (2018), provides the Re versus time trend for 11 

each test case used here. The instantaneous Re ranged from zero to approximately twice the mean 12 

Re for all cases; this resulted in transitional and turbulent flow being present even for low mean 13 

Re cases.  14 

All velocity fields and post-processed flow quantities used herein were those exactly computed 15 

in Brindise and Vlachos (2018), without modification. Briefly, velocity fields were collected using 16 

a double-pulsed (i.e., frame-straddling) image capture mode. The captured images were of size 17 

Fig. 8. The instantaneous Re for cases with mean Re of 500, 1000, 2000, 2500, 3000 and 4000 



23 
 

2560×1600 pixels with a magnification of 2.29 μm/pixel. Image pairs were captured at 250 Hz 1 

with varied inter-frame times to ensure a maximum particle displacement of 15 pixels between 2 

frames. Resulting images were processed using three passes of an iterative image deformation 3 

algorithm (Scarano, 2001) with robust phase correlation (Eckstein and Vlachos, 2009a, 2009b; 4 

Eckstein et al., 2008) and a median-based universal outlier detection method (UOD) (Westerweel 5 

and Scarano, 2005) to compute the velocity fields. The extracted PIV velocity fields were post-6 

processed using proper orthogonal decomposition (POD) (Sirovich, 1987) with the entropy line-7 

fit (ELF) thresholding method (Brindise and Vlachos, 2017); the velocity fields were subsequently 8 

phase averaged. The mean velocity component was computed from the post-processed PIV 9 

velocity by reconstructing the 5th level approximate coefficient of the discrete wavelet transform 10 

(DWT). The axial and radial fluctuating velocities (u’ and v’, respectively) were calculated by 11 

subtracting the mean component from the post-processed PIV velocity. To compute turbulent 12 

kinetic energy (TKE), the axial average of u’ was subtracted from u’ and v’ to minimize the effect 13 

of pump fluctuations (Trip et al., 2012). 14 

5.1.2. Post-processing calculations 15 

Since ground truth time-frequency information is not available for experimental data, rigorous 16 

error analysis across methods could not be performed. Instead, a pseudo-error analysis was 17 

performed by comparing a histogram of the spatiotemporal distribution (i.e., across all space and 18 

time) of the 1st dominant frequency of each TFR method (Fig. 9-1).  The TFR histograms were 19 

compared to the FFT-computed, spatially-averaged power spectral density (PSD) of u’ obtained 20 

by averaging the PSD for all spatial points. The FFT-based PSD was considered as the ground 21 

truth for the comparison. It is important to note that the FFT does not explicitly provide the 22 

temporal localization of frequencies resulting from non-stationary behaviors. However, the 23 

invertibility of the FFT implies that all frequency information is available within the FFT spectrum, 24 
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and dominant IFs (even non-stationary ones) are expected to manifest as major peaks in the FFT 1 

spectrum. The spatially-averaged FFT-based PSD and all spatiotemporal IF distributions were 2 

normalized based on their maximum values to ensure consistent comparison across methods. The 3 

peaks of the resulting normalized PSD and spatiotemporal IF distributions were then identified 4 

using the findpeaks function in MATLAB and sorted in descending order based on peak height. 5 

As the number of peaks obtained for the PSD and spatiotemporal distribution of each method is 6 

expected to differ, the lowest number of peaks out of all distributions were considered as the 7 

number of relevant peaks to ensure consistent comparison. Hence, relevant peaks of the PSD and 8 

spatiotemporal distribution of each method were identified, and the peak height was used as the 9 

measure of peak dominance. The frequencies corresponding to such peaks were extracted in the 10 

order of dominance for PSD and spatiotemporal distribution of each method. The RMSE between 11 

Fig. 9. The post-processing of IFs using (1) axial fluctuating velocity with pump fluctuations and (2) TKE. (1a) 
the spatial 1st IF stack across all time instant. (1b) calculation of spatiotemporal histogram by considering 1st 
IF corresponding to all time instant and spatial points. (2a) spatial mapping between spatial 1st IF and TKE 
snapshot for given frequency at a specific time instant. (2b) Calculation of instantaneous TKE spectrum by 
summing TKE at spatial points corresponding to each frequency. 
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the peak frequencies identified from the PSD and spatiotemporal distribution of each method was 1 

computed and considered as the error of each method. 2 

To evaluate the relevant flow-based information contained within the IFs, the instantaneous 3 

TKE spectrum was computed using the 1st, 2nd, and 3rd IFs of the TKE. Fig. 9-2 illustratively 4 

describes the calculation of the instantaneous TKE spectrum for the 1st IF. For this calculation, the 5 

2D spatial frequency maps of each IF and corresponding 2D TKE spatial maps at each time instant 6 

were considered. For each unique frequency, the TKE values for all spatial points which 7 

maintained that unique frequency were extracted (Fig 9-2a). These extracted TKE values were 8 

summed, resulting in the total TKE associated with the corresponding frequency at a given time 9 

instant (Fig 9-2b). This calculation was repeated for all frequencies, resulting in the instantaneous 10 

TKE spectrum at a particular time instant (Fig 9-2b). The instantaneous TKE spectrum was plotted 11 

on a logarithmic scale, and the trend was smoothed using a moving average filter with a window 12 

size of 10% of number of frequency scales used. The line corresponding to Kolmogorov scaling 13 

(slope of -5/3) was fitted to the smoothed instantaneous TKE spectrum. For each IF, the frequency 14 

range where the instantaneous TKE spectrum matched the Kolmogorov spectrum was identified. 15 

Coherent 2D spatial frequency structures as well as their area as a function of frequency were also 16 

evaluated. For this, a 2D median filter with window size of 3×3 pixels were used to smooth the 17 

spatial maps. Coherent frequency structures were identified using a standard connected component 18 

analysis. Spatial structure area was computed as the number of pixels in each identified connected 19 

component. 20 

 21 
5.2. Pseudo-error analysis of TFR methods 22 

The analytical signal analysis demonstrated that both FDCWT and FDST provided marked 23 

improvement in accurately extracting the IFs of ideal sinusoidal signals. Next, we compared the 24 
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efficacy of the TFR methods using the experimental PIV data, which contains complex non-linear 1 

mechanisms and noise.  2 

  Fig. 10 illustrates the extraction of the 1st IF of u’ for the spatial point denoted with a red 3 

‘X’. We selected u’ as the input signal for this error analysis since the frequencies of the pump 4 

fluctuations are expected to precipitate stationary and non-stationary dynamics, which, in addition 5 

the flow dynamics, ensures the presence of secondary frequency mechanisms. Fig. 11a to 11e 6 

illustrate the representative distribution of the spatially-averaged PSD and spatiotemporal IFs for 7 

(a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT, and (e) FDST, using the mean Re of 3000 test case. 8 

The spatially averaged PSD for this test case contained two dominant peaks at 4.5Hz and 15Hz 9 

along with additional minor peaks including ones at 6Hz and 10Hz. The RMSE comparing the 10 

spatially averaged PSD and the spatiotemporal IFs were 34.32Hz, 47.04Hz, 24.96Hz, 19.51Hz and 11 

12.38Hz for HHT, CWT, FrASLT, FDCWT and FDST, respectively. The smoothness of the 12 

spatiotemporal IF trendlines for HHT and CWT (Fig. 11a and 11b) highlight that these methods 13 

smeared out physical dynamics of the flow. Practically, this demonstrates that HHT and CWT can 14 

only accurately identify 1-2 frequency components within a flow, making them ineffective for 15 

intermittency analysis. With FrASLT (Fig. 11c), this smearing occurred to a much lesser extent. 16 

However, FrASLT still failed to distinguish the minor peak at 6Hz from the dominant peak at 17 

4.5Hz. Conversely, both of our proposed methods accurately identified the dominant frequency 18 

Fig. 10. The IF extraction using axial fluctuating velocity with pump fluctuations (u’wp). (a) the snapshot of 
u’wp at a given time instant. (b) temporal variation of u’wp at specific spatial location. (c) The extracted 1st 
IF using FDST. 
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peaks as well as several (more than 7) tertiary peaks. This emphasizes that for flow analysis the 1 

Fourier mode decomposition step dramatically increases the accuracy and depth of the signal 2 

dynamics that can be extracted. Fig. 11f shows the RMSE for all experimental test cases. The 3 

average RMSE across all cases was 31.68Hz for HHT, 38.34Hz for CWT, 17.88Hz for FrASLT, 4 

19.11Hz for FDCWT, and 13.88Hz for FDST. The adaptive Fourier windowing resulted in an 5 

average RMSE improvement of 50% for FDCWT over CWT and 22% for FDST over FrASLT. 6 

Moreover, FDST provided a 27% improvement of RMSE over FDCWT. This suggests that for 7 

extracting flow dynamics from real, noisy signals, a high frequency resolution is more important 8 

than the slight loss of temporal resolution. 9 

5.3. Investigation of intermittency and scaling mechanism  10 

Next, we evaluate the physical information and dynamics the IFs can describe within a flow. For 11 

this analysis, we only provide results using the FDST method since this was shown to provide the 12 

best performance for noisy signals and in Fig. 11. Fig. 12 shows the typical instantaneous energy 13 

cascade of the IFs in order to investigate the intermittency and resulting scaling mechanisms 14 

Fig. 11. Normalized spatial averaged PSD and the spatiotemporal 1st IF distribution for test case with mean 
Re of 3000 using (a) HHT (b) CWT (c) FrASLT (d) FDCWT and (e) FDST for axial fluctuation velocity 
with pump fluctuations.  (f) RMSE between the frequencies correspond to the predominant peaks in both 
spatially averaged PSD and the spatiotemporal 1st IF distribution for all cases. 
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present in pulsatile flows. For Fig. 12, a representative instantaneous TKE spectrum computed 1 

using the (a) 1st, (b) 2nd, and (c) 3rd IFs of the 4000 mean Re test case.  For the time step shown, 2 

the instantaneous Re is approximately 7500. The dashed blue line represents the -5/3 Kolmogorov 3 

scaling and the window denoted by the two black vertical lines denote the frequency range where 4 

the instantaneous TKE spectrum follows the Kolmogorov scaling to within a TKE tolerance of 0.2 5 

in log scale. In general, the instantaneous TKE spectrum corresponding to the 1st, 2nd, and 3rd IFs 6 

was found to exhibit similar behavior to the traditionally obtained Kolmogorov energy spectrum. 7 

Specifically, a power-law behavior (linear behavior in logarithmic scale) was observed in certain 8 

regions of the instantaneous TKE spectrum, implying a scale free nature of the energy transfer at 9 

these frequencies. However, unlike the traditional energy spectrum, which is stationary in nature, 10 

the instantaneous TKE spectrum represents flow behavior at a particular time instant. Thus, the 11 

instantaneous TKE spectrum is particularly beneficial for studying dissipation mechanisms in non-12 

uniform flows such as pulsatile flows where flow dynamics are not constant in time. The Fig. 12 13 

reiterates these notions.  In Fig. 12, the instantaneous TKE spectrum matched the Kolmogorov 14 

scaling for the frequency ranges of 19.5 to 49.6Hz for the 1st IF, 29.1 to 54.6Hz for the 2nd IF, and 15 

44.6 to 112.2Hz for the 3rd IF. This suggests that each IF component extracted using our proposed 16 

method describes partially independent scaling mechanisms inherent in the pulsatile flows. 17 

Fig. 12. Typical instantaneous TKE spectrum regarding (a) 1st, (b) 2nd and (c) 3rd IFs. 
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Moreover, because the windows of each IF cascade to larger frequencies (i.e., the 1st IF had a lower 1 

frequency window than the 2nd, etc.), it is expected that the IFs decompose and, to an extent, reveal 2 

the cascade of turbulent structures in the flow. Given that the turbulent cascade represents the 3 

breakdown of turbulent structures into increasingly smaller eddies, this notion implies that the first 4 

IF should describe the largest structures, while the 3rd describes the smallest structures (of the three 5 

IFs analyzed). Moreover, because the IFs are evaluated at each spatiotemporal point in the flow 6 

field,  it advantageously enables frequency structures to be evaluated from a spatiotemporal 7 

perspective.   8 

Fig. 13a, 13b, and 13c show the spatial frequency distribution of each IF, limited to only the 9 

frequencies within the Kolmogorov spectrum matching window (all other frequencies are shown 10 

in white). Spatial maps for the three mean Re cases at the max TKE time instant are shown. Fig. 11 

Fig. 13. The spatial distribution of IFs associated with energy cascade regarding a) 1st, (b) 2nd and (c) 3rd IF 
components and (d) area of each spatial structures for test cases with mean Re of (1) 1000 (2) 2500 and (3) 
4000. 
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13d shows the area of each individual structure vs. the mean frequency of the structure. The area 1 

of the spatial IF structures generally decreased in size with increasing mean Re as well as 2 

increasing IF level. At the low mean Re’s of 1000 (Fig. 13a), the structures were primarily large, 3 

axially oriented patterns. As the mean Re increased, finer and finer frequency structures began to 4 

emerge for all IF components. At high mean Re’s, the 1st IF spatial structures retained some axial 5 

orientation, especially at the near wall regions. Prior studies have noted theoretical predictions of 6 

the presence of these types of structures in pulsatile flows as a consequence of helical and 7 

axisymmetric disturbances (Xu et al., 2021). However, for the 2nd and 3rd IFs, no axial pattern of 8 

the spatial frequency structures was discernible. This suggests that the IF spatial structures, at least 9 

in part, describe the dissipation of axial structures within transition to turbulence in pulsatile flows. 10 

Fig. 13d illustrates that for the transitional and turbulent mean Re cases (Fig. 13d-2 and 13d-3), 11 

the area of the structures decreased roughly exponentially with increasing frequency components.  12 

Table 3 quantitatively explores this, providing the average area of the spatial frequency 13 

structures associated with each IF. The mean area of the spatial frequency structures across all 14 

three IFs were 58 pixels, 28 pixels, 18 pixels, 17 pixels, 14 pixels, and 13 pixels for test cases with 15 

mean Re's of 500, 1000, 2000, 2500, 3000, and 4000, respectively. This confirms the rapid decline 16 

and then plateau of structure size as the Re increases from the laminar to transitional and turbulent 17 

Table 3.  Mean area (in pixels) of all spatial frequency structures as a function of IF (1st, 2nd, and 3rd) and 
mean Re of the test case 

Mean Re 

Frequencies 

500 1000 2000 2500 3000 4000 

1st inst. frequency 74 30 27 24 18 18 

2nd inst. frequency 54 24 14 18 14 13 

3rd inst. frequency 45 31 11 10 10 9 
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regimes. Overall, this further suggests that the spatial frequency structures reveal turbulent 1 

structures across the Kolmogorov scale. 2 

Fig. 14 illustrates the temporal variation of the energy cascade scaling range window for 3 

all mean Re test cases (where the max flowrate occurs at t/T of about 0.5), considering all spatial 4 

points. Specifically, the lower and upper bound of the black, red, and blue shaded regions represent 5 

the starting and ending frequency of the energy cascade scaling window for the 1st, 2nd, and 3rd IF 6 

components, respectively. At the low mean Re’s of 500 and 1000, the energy cascade of all three 7 

dominant frequency components behaved similarly with scaling ranges between 5 and 65Hz for 8 

nearly all-time instants. Interestingly, the energy cascade windows of the 1st and 2nd IFs remained 9 

largely the same across all mean Re cases. This suggests that these IFs primarily represent 10 

instabilities and unsteadiness associated with the pulsatile flow. Conversely, the energy cascade 11 

window of the 3rd IF differed significantly across mean Re cases.  For the mean Re cases from 12 

2000-4000 (Fig. 14c-14f), the upper frequency bound of the energy cascade window increased 13 

rapidly and plateaued for a length of time before decreasing rapidly. Specifically, for the mean Re 14 

Fig. 14. Temporal variation of instantaneous energy cascade scales of all test cases with symmetric 
waveforms and mean Re of (a) 500 (b) 1000 (c) 2000 (d) 2500 (e) 3000 and (f) 4000.  
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2000 case, the upper bound of the 3rd IF increased from t/T of 0.35 to 0.70, with an average 1 

frequency of 84Hz. Meanwhile, for the 2500, 3000, and 4000 mean Re cases, this upper bound 2 

increased from t/T of 0.30 to 0.71 (avg. freq. of 89Hz), 0.27 to 0.78 (avg. freq. of 79Hz), and 0.28 3 

to 0.77 (avg. freq. of 88Hz), respectively. This suggests that the 3rd IF primarily describes 4 

structures associated with transition and turbulence and can provide valuable physical details of 5 

the flow. For example, the involvement of finer scales implies the dominance of viscous 6 

dissipation at higher instantaneous Re. Additionally, Fig.14 demonstrates that the scaling range 7 

windows of the instantaneous energy cascade may be able to inform a flow’s progression of 8 

transition and turbulence in pulsatile flows. Specifically, by identifying the length and frequency 9 

of the plateau in the temporal variation of the energy cascade window range, transition from 10 

laminar to turbulent regimes in pulsatile flow may be able to be more precisely pinpointed. This 11 

notion, as well as its universality, should be explored in future work. Overall, this analysis 12 

highlights that our proposed FDST method is able to accurately decompose the flow into energy 13 

cascade structures and provide insight on the development of transitional and turbulent flow 14 

regimes. 15 

 16 

6. Limitations 17 

Several limitations of our method and this study exist. Since our method utilized CWT and 18 

FrASLT as the wavelet-based transforms to obtain the TFR modes, shortcomings of both CWT 19 

and FrASLT, such as the high computation cost of FrASLT, similarly impact our method. 20 

Furthermore, frequency and time resolution of FrASLT depends on the number of cycles and order 21 

of the superlet. Thus, the result obtained from the proposed FDST method heavily depends on the 22 

choice of these parameters. Our analysis suggested our choice of these parameters was optimal for 23 

this application, but alternative settings may be preferred for other applications. Since FrASLT 24 



33 
 

uses a combination of CWTs, inverting the superlet transform to obtain the original signal is 1 

difficult, as the amplitude and phase information from each CWT calculation gets lost in 2 

combination. Thus, the FDST is not invertible. Furthermore, the Fourier-based decomposition was 3 

based on the major peaks in the Fourier spectrum. Hence, our method heavily depends upon the 4 

accurate detection and separation of relevant and noisy peaks from the Fourier spectrum. 5 

Additionally, we restricted the TFR of the Fourier decomposition modes to the corresponding 6 

frequency band as shown in Fig. 2d and 2e, possibly resulting in loss of some information due to 7 

the removal of the energy content outside the frequency band. The experimental data used for this 8 

study was collected with planar PIV such that three-dimensional dynamics could not be resolved. 9 

Additionally, the axial field of view of the pipe was not large enough to resolve turbulent puffs, 10 

such that the IFs of these transitional structures could not be explored. The ability of our method 11 

to decompose spatial scales of the turbulent energy cascade would be limited by the resolution of 12 

the flow data being evaluated, a notion which should be explored in future work. Furthermore, 13 

because we tested the method using only pulsatile data, the pulsatile mechanisms described by the 14 

IFs could not be concretely and explicitly resolved. Future work should aim to apply our method 15 

to steady and pulsatile flows to explore this.  16 

 17 

7. Conclusion 18 

In this work, we present a novel TF method, the Fourier-decomposed wavelet-based transform, to 19 

evaluate intermittency in transitional and turbulent flows. The proposed method aims to enhance 20 

the TFR of a signal by addressing the interference artifacts arising from low resolution in TFR. 21 

This is achieved by decomposing the signal of interest into a set of Fourier modes and combining 22 

the TFR of each mode function into a single accurate TFR. Using analytical test signals, we 23 
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demonstrated that our method accurately extracted the primary and secondary instantaneous 1 

dynamics of the underlying system, and yielded improved results as compared to current TF 2 

methods. Furthermore, our investigation using a pulsatile, transitional experimental PIV dataset 3 

revealed that each IF component, as extracted by FDST, decomposed the Kolmogorov energy 4 

cascade inherent in the flow. Moreover, we demonstrated that analyzing the spatial frequencies 5 

associated with IFs can provide valuable insights into the scaling mechanisms and the progression 6 

of turbulence in pulsatile flows. Overall, the result of this study demonstrated the importance of 7 

addressing the interference artifacts in TFR calculations, and underscored the advantage of 8 

investigating spatial IF structures for understanding the mechanisms related to transition and 9 

turbulence flows.  Future work should focus on comparing such IF structures to other commonly 10 

computed ones such as coherent structures, as well as compare our method to other spectral and 11 

decomposition methods such as POD, spectral POD (sPOD), and dynamic mode decomposition 12 

(DMD). 13 
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