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ABSTRACT

The intermittency characteristics in transitional and turbulent flows can provide critical information on the underlying
mechanisms and dynamics. While time-frequency (TF) analysis serves as a valuable tool for assessing intermittency,
existing methods suffer from resolution issues and interference artifacts in the TF representation. As a result, no
suitable or accepted methods currently exist for assessing intermittency. In this work, we address this gap by presenting
a novel TF method—a Fourier-decomposed wavelet-based transform—which yields improved spatial and temporal
resolution by leveraging the advantages of both integral transforms and data-driven mode decomposition-based TF
methods. Specifically, our method combines a Fourier-windowing component with wavelet-based transforms such as
the continuous wavelet transform (CWT) and superlet transform, a super-resolution version of the CWT. Using a
peak-detection algorithm, we extract the first, second, and third most dominant instantaneous frequency (IF)
components of a signal. We compared the accuracy of our method to traditional TF methods using analytical signals
as well as an experimental particle image velocimetry (PIV) dataset capturing transition to turbulence in pulsatile pipe
flows. Error analysis with the analytical signals demonstrated our method maintained superior resolution, accuracy
and, as a result, specificity of the instantaneous frequencies. Additionally, with the pulsatile flow dataset, we
demonstrate that IF components of the fluctuating velocities extracted by our method decompose energy cascade
components in the flow. Additional investigations into corresponding spatial frequency structures resulted in detailed

observations of the inherent scaling mechanisms of transition in pulsatile flows.
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1. Introduction

Transition to turbulence is characterized by the presence of isolated intermittent turbulent
structures known as turbulent puffs (Brindise and Vlachos, 2018; Frishman and Grafke, 2022).
This intermittency can induce various deleterious effects across a variety of flow domains, e.g.
cardiovascular (Poelma et al., 2015; Trip et al., 2012), nuclear reactor (Yuan et al., 2016; Zhuang
et al., 2016), and high-frequency ventilation systems (Einav and Sokolov, 1993). These adverse
effects include altering flow behavior (Freidoonimehr et al., 2020; Kefayati and Poepping, 2013;
Nerem et al., 1972; Poelma et al., 2015; Sherwin and Blackburn, 2005; Valen-Sendstad et al.,
2011), inducing fluctuations in wall shear stress (Peacock et al., 1998), as well as causing rapid
increases in friction factor and loss of energy (Yuan et al., 2016). Hence, accurate detection and
analysis of transitional flows is of great interest. Unfortunately, limited analysis methods exist that
are capable of assessing flows or signals with intermittency, resulting in a critical gap in the current
ability to evaluate transitional flows.

At the onset of the transitional regime, localized patches of turbulence are produced in the
flow, but are short-lived and rapidly decay. As flow develops through the transitional regime, the
turbulent puffs progressively become more frequent and stable to decays (Avila et al., 2011). The
localized and intermittent nature of turbulent puffs inherently suggest that they maintain
characteristic spatial and time scales. This highlights that time-frequency-based analysis methods
can provide the needed framework for evaluating transitional flows. However, while various time-

frequency and data mode decomposition methodologies exist for evaluating spectral information,
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none provide sufficient temporal and spectral resolution and localization for accurate intermittency
analysis.

The Short-Time Fourier Transform and continuous wavelet transform (CWT) are two of the
most common TF methods. The Short-Time Fourier Transform temporally windows the signal and
takes the Fourier transform of each signal segment. However, the Short-Time Fourier Transform
requires a user-inputted window size that induces time and frequency resolution limitations. The
CWT mitigates this limitation by incorporating scaling and shifting of a time-localized function,
known as the mother wavelet, for improved resolution of the time-frequency representation (TFR).
Numerous studies have explored the use of CWT for analyzing flow intermittency (Ruppert-Felsot
et al,, 2009) and turbulence (Farge, 1992). However, the low frequency resolution at high
frequencies inherent to the CWT results in interference artifacts and mode mixing between high-
frequency components. Recently, Barzan et al. (2021) and Moca et al. (2021) proposed a CWT-
based methodology known as the fractional adaptive superlet transform (FrASLT) to obtain a
super-resolution TFR. However, investigating the FrASLT revealed a critical trade-off associated
with frequency resolution. Namely, lower frequency resolution TFRs suffered from interference
artifacts, while higher frequency resolution TFRs maintained a reduced time resolution, rendering
the FrASLT not well suited for analyzing intermittent dynamics.

Data-driven mode decomposition methods provide an alternative approach for TF analysis.
These methodologies decompose a signal into its constituent orthogonal components, and the
instantaneous frequency (IF) of each component is subsequently calculated. A well-known
example of such approach is the empirical mode decomposition—Hilbert-Huang Transform
(EMD-HHT) (or simply HHT for brevity) (Huang et al., 1998). The HHT method has been

employed to study turbulent flows (Huang et al., 2008). Recently, Singh et al. (2017) proposed
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another approach—the Fourier decomposition method—which adaptively decomposes a signal in
the Fourier domain. However, both HHT and Fourier decomposition method suffer from mode
mixing, especially in the presence of close frequency components, and have been observed to fail
for signals with intermittency. Zhou et al. (2022) proposed the empirical Fourier decomposition
which decomposes a signal based on the minima in the Fourier domain. However, a major
limitation of empirical Fourier decomposition is the requirement of a predefined number of signal
components. In general, IFs extracted using decomposition-based methods are prone to erroneous
oscillations and in their generic forms are not sufficient for extracting intermittency mechanisms.
In this study, we propose a novel methodology that overcomes the limitations of current time-
frequency analysis methods by leveraging the advantages of both integral transforms and data-
driven decompositions. Our method is capable of 1) providing an accurate TFR with high spectral
and temporal resolution and localization, even in cases where similar frequency components exist
in a signal; and 2) extracting multiple dominant IFs within a signal. While our method was
designed for use with any type of flow, it is particularly beneficial in the presence of intermittency,
which is prevalent in transition flows. Furthermore, it requires no user inputs or a priori knowledge
of the signal such that it can be used to extract the frequency components of any arbitrary signal
(e.g., hydrophone data to measure pressure fluctuation frequencies, electrocardiogram data to
measure fluctuations in the electrical activity of heart, etc.). Our method decomposes a signal into
a set of Fourier mode signals and stitches together a single TFR from the wavelet-based transform
of each Fourier mode. An adaptive thresholding is used to extract the dominant frequency
components efficiently and consistently. We tested and validated our method using analytical
signals with known frequency components as well as experimental particle image velocimetry

(PIV) data of transitional pulsatile flow from Brindise and Vlachos (2018). To demonstrate the
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Fig. 1. Time-frequency representation (TFR) computed using (a) HHT (b) CWT (c¢) FrASLT for an
analytical sinusoidal signal with two frequency components: 25 Hz from 0.6-2.0s, 27 Hz from 0-1.6s.
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value of extracting the IF components of a flow, we evaluated the coherent nature of the dominant
frequency structures in the flow as well as the instantaneous turbulent energy cascade resolved

using our approach.

2. Proposed time-frequency analysis method

The intermittency inherent to transitional and turbulent regimes impose that, at any given time
instance, multiple structures with varying frequencies are expected to exist within any region of
interest. Thus, a TF method suitable for intermittent flow structure analysis must have sufficiently
high resolution in both time and frequency such that dominant signal frequency components close
in magnitude are separable. Fig. 1 illustrates the observable fringe patterns (i.e., patterned
coefficients) in the TFR that occur using (a) HHT, (b) CWT, and (c) FrASLT when multiple near-
frequency components exist in a signal (Fig. 1 uses an analytical sinusoidal signal with 25 and
27Hz components from 0.6 s to 2 s and 0 s to 1.6 s, respectively). These interference fringe patterns
in turn lead to inaccurate dominant frequency component extraction. Our proposed method
mitigates the effect of these interference artifacts by taking advantage of the fact that the Fourier

transform provides the highest frequency resolution and can decompose a signal into its mode
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Fig. 1. Proposed time-frequency analysis method. (a) The velocity field time stack. (b) Sample signal
representation (shown here as an analytical non-stationary sinusoidal signal with nine frequency
components). (c) Extracted peaks and resulting segmentation of Fourier spectrum of the mean-subtracted
signal. (d) The real valued mode functions to segments in Fourier spectrum (g) The resulting TFR for each
mode functions using wavelet-based transform. (h) The resultant modified TFR after combining TFR

corresponding to all mode functions
functions. Hence, combining Fourier-based mode functions with wavelet-based transforms

simultaneously removes interference artifacts while maintaining optimal spectral and temporal

resolutions. A schematic of our proposed method is provided in Fig. 2 and Fig. 3.

21. Decomposing the input signal into Fourier modes

While the input signal (Fig. 2b) could be any arbitrary signal, for our purposes herein where
intermittent flow analysis is of interest, the fluctuating velocity or turbulent kinetic energy (TKE)
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should be inputted. (We note that Fig. 2b shows the analytical non-stationary signal defined by
summing nine independent sinusoidal components that we use to demonstrate our method.) The
input signal is mean-subtracted, and its Fourier spectrum is subsequently calculated using the
standard fast Fourier transform (FFT) (Fig. 2c). All peaks of the Fourier spectrum are identified
using the built-in findpeaks function in MATLAB. This function identifies local peaks in a signal,
returning the magnitude, location, width, and prominence of each identified peaks. Noisy peaks—
which are expected to exist due to the non-stationary nature of the input signal—are filtered out
using a peak prominence thresholding. Specifically, a histogram of the peak prominence of all
peaks is computed based on the built-in histcounts function in MATLAB, which partitions the
input data into a histogram using an automated uniform binning. The resulting peak prominence
threshold () is obtained by (Yochum et al., 2016),

nb
_XiEia XN
- nb
i=1 Ni

(1)
where c; represent the peak prominence value corresponding to center of each histogram bin, N;
represent the number of peaks corresponding to each histogram bin and nb represent the total
number of histogram bins. All peaks with a prominence less than this threshold value are
considered as noisy and removed. The Fourier spectrum with the final, filtered peaks identified is
shown in Fig. 2c. The FFT is then windowed where the edges of each window are defined as the
frequency corresponding to the minimum FT magnitude between adjacent frequency peaks (Fig.
2¢). The Fourier spectrum slices for the first and last peak are closed using the respective negative
and positive Nyquist frequency. Hence, this represents an adaptive windowing scheme where the
entire spectrum is segmented such that prominent frequency components are expected to exist
within each spectral slice. Next, an ideal band pass filter was applied to each positive spectral slice

to generate time-domain representation of the mode function corresponding to each window and
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Fig. 2. Extraction of instantaneous dominant frequency packet. (a) The modified TFR using Fourier
decomposition (b) Instantaneous spectrum at specific time instant (c) Extracted dominant frequencies after
iterating through time

the Hilbert transform was used to obtain the analytical representation of the mode functions as

shown in Fig. 2d. As evident from Fig. 2d-1 and 2d-2, the mode functions exhibit similar forms of
nonstationary behavior as the original signal and contain notably different frequency magnitudes.
2.2. Calculating the time-frequency representation

A CWT-based transform is used to calculate the TFR of each Fourier mode. We employed the
FrASLT method since it provides an adaptive resolution in frequency as compared to the general
CWT. However, the CWT can also be used and herein we test both approaches. Fig. 2e shows the
TFR coefficient maps computed using the FrASLT for each Fourier mode from Fig. 2d. All TFR
coefficients outside of the corresponding frequency window of each Fourier mode are set to zero.
A single TFR coefficient map (Fig. 2f) for the input signal is generated by summing together the
TFR coefficient maps of all Fourier mode signals.

2.3. Extracting the instantaneous dominant frequency packet

Using the final TFR coefficient map (Fig. 3a), the dominant IFs are extracted through an iterative
process. Specifically, the peaks of each column of the resultant TFR coefficient map (i.e., each
individual time point) are identified using the built-in findpeaks function in MATLAB (Fig. 3a and
3b). To close the 1-D TFR coefficient columns prior to peak finding, the TFR coefficient values

at the boundaries (i.e., 0Hz and the Nyquist frequency) needed to be set manually. This closure of
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the TFR at the boundaries was done to extend the signal, so that any endpoint peaks could be
identified in the same manner as other peaks, i.e. using the prominence-based peak identification
and analysis. For O0Hz, the mean value of the input signal was used, while a symmetric behavior
of the TFR was assumed around the Nyquist frequency. The extracted peaks were sorted according
to their peak prominence. The frequency and TFR coefficient of the peaks with highest prominence
were identified. Finally, the resultant peaks were further sorted based on the TFR coefficients to
determine dominance levels. Fig. 3¢ illustrates the extracted 1%, 2", and 37 IFs of the input signal.
In its current form, our method extracts at most three dominant frequencies for a given time step.
However, our method can be readily expanded to extract additional frequency components, a
notion that will be explored in future work.

We termed our method as the Fourier-Decomposed Superlet Transform, or FDST, method. For
the implementation where the CWT was used in place of the FrASLT, we refer this as the Fourier-

Decomposed CWT, or FDCWT, method.

3. Implementation details for comparison methods (HHT, CWT, FrASLT)

The complex Morlet wavelet with a standard deviation value of five for the Gaussian envelop was
considered for all wavelet-based calculations. Since the time domain-based CWT calculation
resulted in major artifacts near scales corresponding to the Nyquist frequency, the frequency
domain-based CWT calculation was implemented. The resulting L1 norm CWT calculation

(Addison, 2017; Lilly, 2017) is given by,

T.(a,b) = f X(HW* (af)e2 P df @

— 00
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where T represents the CWT coefficients, x represents the input signal, X represents the Fourier
transform of input signal, ¥ represents the Fourier transform of mother wavelet, a represents the
scale parameter, and b represents the shift parameter. The CWT was numerically implemented
using the FFT algorithm with appropriate zero padding in order to reduce wrap-around artifacts.
For both the FrASLT and FDST, an initial cycle of three and order of 20 was chosen. Through
testing, these values were found to optimally minimize computational time while reducing the loss
of information. For consistency, the cycle parameter of the complex Morlet wavelet was also
chosen as three for both the CWT and FDCWT calculations. The built-in MATLAB functions of
emd and hht were utilized for extracting the mode functions and Hilbert spectrum of the HHT

calculations.

4. Analytical Signal Analysis

4.1. Analytical test signals set

4.1.1. Data generation

Two sets of non-stationary sinusoidal test signals with two frequency components were created.
To match typical experimental data resolution, a sampling frequency of 250 Hz and signal length
of 500 datapoints were used, resulting in signals of 2 second (s) length.

The first set of test signals contained frequency components with constant amplitude which
are turned on and off at specific time instants. The first frequency component existed in the signal
from 0.6s to 2s with an amplitude of 1.1 (referred to here as the major component or major
frequency (Fm)), while the second frequency component existed from Os to 1.6s with an amplitude
of 1 (referred to here as the minor component or minor frequency (Fn)). A set of signals were

generated where the major frequency was fixed as 50Hz and the minor frequency was varied across
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signals with values of 10Hz, 46Hz, and 90Hz. Additional test signals were generated where both
the major and minor frequencies varied from 0.5Hz to 125Hz (the Nyquist frequency).

The second set of test signals contained frequency components with varying amplitudes as well
as added noise. The frequency of the first component was fixed at S0Hz. Its amplitude varied
linearly from 0 to 1 between 0Os and 0.6s, and from 1 to 0 between 0.6s and 2s. The frequency of
the second component was fixed at 46Hz and its amplitude varied linearly from 0 to 1 between Os
and 1.6s, and from 1 to 0 between 1.6s and 2s. The incorporation of ramped-on and ramped-off
amplitude was expected to imitate the realistic behavior of turbulent intermittency. Zero-mean
uniform white noise was added at noise percentages (defined as the ratio between the standard
deviation of the white noise and that of the noiseless signal) of 10%, 100%, and 500%. A total of
1000 instances of the signal set were created using the Mersenne Twister generator, with seed
ranging from 1 to 1000 for each instance.

4.1.2. Post-processing calculations

Error analysis of the extracted [Fs was conducted for all cases of analytical signals. For the constant
amplitude test signal set, the major and minor frequencies of each signal were considered the
ground-truth 1 and 2™ IFs, respectively. Since both frequency components were only present
from 0.6s to 1.6s, error analysis was limited to this region. The root mean square error (RMSE)
metric was used to quantify error between the extracted and true IFs. The RMSE calculations is

given by:

(3)

— 2
P = { A O R 1Q))
Noverlap

where [F, and IF,; represent the extracted and ground truth IFs in the region with two frequency

components while Ny eriqp represents the number of time points with two frequencies present.

11



10

11

12

13

14

15

16

17

18

19

20

21

22

23

Any missing values in the extracted IFs was assumed to have an error equivalent to the Nyquist
frequency as a penalty. Here, missing values in the extracted IFs refers to the case where a ground-
truth frequency existed but no corresponding IF was identified by the TF analysis method.

For the varying amplitude test signal set, the ground truth 1% and 2" IFs were determined as
the frequency with the larger amplitude and smaller amplitude, respectively, at a given time instant.
At Os and 2s, where the amplitude of both components were zero, the ground truth for the 15 IF
was assumed as the frequency which had higher amplitude immediately at the immediately
adjacent time instant. The RMSE calculation was performed over full time length for these signals.
4.2, Method comparison using analytical signals

4.21. Constant amplitude test signals

We first compared our methods (FDST and FDCWT) against the current state-of-the-art methods
(HHT, CWT, FrASLT) using the set of analytical signals with constant-amplitude ground-truth
IFs. Fig. 4 shows the TFRs from (a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT, and (e) FDST.
Each row represents a different analytical signal with a major frequency of 50 Hz and a minor
frequency of (-1) 10 Hz, (-2) 46 Hz, and (-3) 90 Hz. The red lines denote the ground-truth
frequency. Fig. 4 demonstrates the low frequency resolution inherent to the CWT at higher
frequencies. Specifically, in Fig. 4b-1, the 50 Hz frequency is represented by a wide band in the
coefficient map, whereas the 10 Hz frequency maintains a considerably thinner frequency band.
The FrASLT—a super resolution wavelet transform—mitigates this variable frequency resolution
by combining multiple wavelet transforms with increasing timescale resulting in high frequency
resolution at high frequencies. The FDST method similarly maintained super resolution in
frequency at high frequencies, while the FDCWT still exhibited the wide bands caused by the

inherent variable frequency resolution issues of the CWT. Fig. 4 also demonstrates that
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Fig. 4. Extracted TFR of the analytical signal with major components of 50Hz and minor component of (1)
10 Hz, (2) 46 Hz, (3) 90 Hz, using the (a) HHT (b) CWT (c¢) FrASLT (d) FDCWT and (e) FDST.

insufficient frequency resolution causes mode mixing. Mode mixing is exhibited by a distinct
intermittent ‘dotted’ pattern in the coefficient field. Mode mixing is particularly observed in Fig.
4b-2 and Fig. 4c-2, the case where the major and minor frequency components maintain only a
4Hz difference. Overall, mode mixing was observed for the HHT, CWT, and FrASLT methods.
Using our proposed FDST or FDCWT methods, no intermittent patterns are present. This shows
the efficacy of our Fourier mode decomposition algorithm component at sufficiently addressing

mode mixing by segmenting even close frequency components into individual modes.

Fig. 5 shows the extracted 1% and 2" IFs of the set of analytical signals from Fig. 4 using
each method. The IFs extracted by HHT had significant inaccurate oscillations, especially at higher
frequencies. For instance, for the case with a minor frequency of 46Hz (Fig. 5a-3), the extracted
I3 IF in the mono-frequency time-frame of 0 to 0.6s oscillated within the range of 44 to 48Hz. For

the case with a high minor frequency of 90Hz (Fig. 5a-5), a larger oscillation range of 80 to 98Hz
13



was observed for this mono-frequency time-frame. When two frequency components were present
from 0.6s to 1.6s, the 1* HHT IF showed significant oscillations within the range of 44 to 81Hz
(Fig. 5a-3), and 46 to 89Hz (Fig. 5a-5) for cases with minor frequencies of 46 Hz and 90 Hz,
respectively. Such behaviors in the extracted frequencies using HHT can be attributed to the
anomalous extraction of IMFs near the Nyquist frequency. Oscillations in the CWT-extracted 1%
IFs varied from 48 to 60Hz (Fig. 5b-3) and 49 to 87Hz (Fig. 5b-5) for the signals with minor

frequencies of 46Hz and 90Hz, respectively. For the CWT, the number of oscillatory peaks in the
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Fig. 5. The extracted both 1* and 2™ IF of the analytical signal with major frequency component (Fy,) of
50 Hz and minor frequency component (F,) of 10 Hz, 46 Hz and 90Hz using (a) HHT, (b) CWT, (¢) FrASLT,
(d) FDCWT and (e) FDST.
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extracted frequencies were observed to correlate with the number of intermittent dotted patterns in
the TFR (as evident from Fig. 5b-3 and Fig. 4b-2), implying an association with mode mixing. The
super-frequency resolution of the FrASLT method eliminated these oscillations at high frequencies
(e.g., Fig. 5¢-5 and 5¢-6). However, for the signal with close frequency components (Fig. 5¢-3 and
Fig. 5c-4) oscillatory behavior was still observed, highlighting that limitations in the super-
resolution frequency persist. Moreover, the improved frequency resolution is observed to come at
the cost of reduced time resolution, resulting in the delayed detection of the dominant frequency
change at 0.6s, as observed in all cases of Fig. 5c. IFs extracted using FrASLT identified the change
of dominant frequency at 0.68s, a 13% deviation from the ground truth. Both implementations of
our proposed method extracted IFs with significant reductions in oscillatory behavior, implying an
improved frequency resolution. The frequencies extracted using FDST exhibited the lowest degree

of oscillatory behavior while the only oscillatory behavior exhibited by FDCWT occurred at the

Table 1. The RMSE (in Hz) of 1% and 2" IF extraction with ground truth using HHT, CWT, FrASLT,
FDCWT and FDST

Method HHT CWT FrASLT FDCWT FDST
Freq.
IS'IF
10 & 50 Hz 9.44 5.65 11.57 5.05 11.57
46 & 50 Hz 6.15 3.11 1.46 0.63 1.43
90 & 50 Hz 23.11 22.89 11.57 5.93 11.57
2 IF
10 & 50 Hz 9.07 5.75 11.57 5.15 11.57
46 & 50 Hz 38.45 41.52 26.08 7.69 1.55
90 & 50 Hz 54.64 28.79 11.57 5.90 11.57
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0.6s and 1.6s time instances, corresponding to start and end of the minor frequency component.
Furthermore, the improved frequency resolution resulted in accurate 2™ IF extraction, suggesting
that both implementations of the proposed method were better than the other methods at
identifying the primary and secondary signal mechanisms at high frequencies, which is particularly
important when analyzing intermittency. However, the FDST method could not resolve the
inherent time-resolution limitation of the FrASLT. FDST identified the dominant frequency
change (which truly occurred at 0.6s) at 0.68s, 0.72s, and 0.68s in cases with minor frequencies of
10Hz, 46Hz and 90Hz, respectively.

To quantitatively summarize these notions, Table 1 provides the RMSE values, comparing
the extracted frequencies vs. the ground-truth frequencies for each method across the analytical
signals. The IFs extracted using HHT generally maintained the highest average RMSE across all
three signals of 12.90Hz and 34.05Hz for the 1% and 2" IFs, respectively. With CWT, the mode
mixing precipitated a fourfold and fivefold increase in the RMSE of the 1%t and 2™ IF, respectively,
when the minor frequency increased from 10Hz to 90Hz. At signals with higher frequencies, the
super resolution of the FrASLT method yielded a 49% RMSE improvement in the 1% IF as
compared to CWT. However, the delayed frequency changepoint detection induced a 51% RMSE
increase for the 1% IF with FrASLT as compared to CWT. For FDCWT, an RMSE improvement
of 11%, 80%, and 74% was observed in the 1% IF extraction as compared to CWT for signals with
minor frequency of 10Hz, 46 Hz, and 90 Hz, respectively. Similarly, for the 2" IF, an RMSE
improvement of 10%, 81%, and 80% for the 10Hz, 46Hz, and 90Hz signals, respectively, was
observed. For the 46Hz minor frequency signal, FDST provided a 2% and 94% RMSE

improvement over FrASLT for the 1t and 2" IF extraction, respectively. No significant RMSE
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differences were observed between FDST and FrASLT for the analytical signals with well
separated frequency components.

Fig. 6a and 6b extend the analysis by showing the RMSE for the 1% and 2" IF extractions,
respectively, as a function of all major and minor frequency combinations (from 0.5Hz to the
Nyquist frequency). The global mean RMSE of the 1% IF for all frequency ranges were 26.85Hz,
14.72Hz, 13.40Hz, 8.56Hz, and 13.66Hz for HHT, CWT, FrASLT, FDCWT, and FDST,
respectively. Fig. 6a-1 and 6a-2 demonstrate the noted anomalous behavior of the IMFs for HHT
and mode mixing for CWT were pervasive problems across the major and minor frequency
combinations. High RMSE regions were not observed with FrASLT, FDCWT, and FDST
implying a sufficient time-frequency resolution for all frequency ranges. Fig. 6¢ provides the mean
RMSE value as a function of major frequency. At major frequencies below 20Hz, both FDCWT
and CWT performed comparably, owing to the high frequency resolution of CWT at low
frequencies. However, as frequency increased above 20Hz, a significant increase in the mean
RMSE of CWT is observed suggesting 20Hz as the threshold above which mode mixing becomes
significant for the CWT method. However, both FDST and FrASLT performed inferiorly
compared to CWT at frequencies below 40Hz. This highlights that below 40 Hz, the reduced time
resolution of the FrASLT method is more consequential than the advantage of the increased
frequency resolution. It is important to note that the thresholds described in this analysis are
specific to the characteristics of the chosen signal and analysis parameters; for other signals or
analysis parameters, these threshold values should be re-evaluated. FDCWT maintained a 42%
improvement of global mean RMSE over CWT, as well as a 36% improvement over FrASLT, and
a 37% improvement over FDST. The superior performance of the FDCWT method demonstrates

it advantageously leverages the benefits of both the Fourier decomposition step and CWT time-
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resolution. The slight reduction in performance of FDST compared to FrASLT in terms of RMSE
occurred due to inconsistencies near the Nyquist frequency. Fig. 6d shows the average RMSE of
the 2" IF extraction as a function of the major frequency. A global mean RMSE of 41.64Hz,
38.82Hz, 17.55Hz, 13.94Hz, and 15.06Hz were observed for the HHT, CWT, FrASLT, FDCWT,
and FDST respectively. FDCWT and FDST provided a 64% and 14% improvement in the overall
RMSE of'the 2" IF as compared to the respective baseline cases (CWT and FrASLT, respectively).
This further reiterates that the 2" IF extraction was greatly influenced by the frequency resolution.

FDST was found to perform better for the 2" IF as compared to FDCWT at higher frequencies

HHT CWT FrASLT FDCWT FDST
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Fig. 6. RMSE as function of major and minor frequencies for (a) 1% and (b) 2" instantaneous frequencies
using the (1) HHT (2) CWT (3) FrASLT (4) FDCWT and (5) FDST. The mean RMSE as function of
major frequencies for (c) 1% and (b) 2" instantaneous frequencies.
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implying the suitability of FDST in the extraction of high frequency secondary dynamics. In
general, the superiority of FDCWT and FDST points to the importance of the Fourier
decomposition step when extracting the underlying secondary dynamics.

4.2.2. Varying amplitude test signals

Next, we evaluate the efficacy of our methods against current state of art methods, for signals with
varying frequency amplitudes and added noise. Fig. 7. illustrates the three raw signals used for
testing and the extracted 1% and 2" IFs using each method. With added noise, HHT maintained
large oscillations in the 1% IF, while at 100% and 500% noise the ground truth frequency trend was
no longer observable. CWT identified the 1% IF accurately, with oscillations ranging from 38Hz
to 55Hz for 10% noise (Fig. 7b-1) and 20Hz to 100Hz (Fig. 7b-3) for 100% noise. By 500% noise,
the ground truth frequency trend was lost (Fig. 7b-5). For all noise percentages, both HHT and
CWT failed to identify the 2" IF. FrASLT identified the 1% IF with oscillations of amplitude 1Hz
for 10% noise, 6Hz for the 100% noise, and up to 70Hz for 500% noise. FDCWT exhibited similar
performance to FrASLT, with two main differences of: 1) for 100% noise, low amplitude (48 — 54
Hz range) oscillations when the higher frequency component was dominant (Fig. 7d-3) and 2)
slightly less oscillations at 500% noise. The FDST maintained the lowest oscillatory behavior in
the 1% IF of all methods, exhibiting some large oscillations at the beginning and end of the signal.
For FrASLT, FDCWT, and FDST, in the 500% noise case, a delay in the detection of the dominant
frequency changepoint of about 18% was observed in the 15 IF. Both FrASLT and FDCWT largely
failed to identify the 2" IF. FDST successfully identified the 2"¢ IF with minimal oscillations for
the 10% case. For the 100% noise case, 2" IF oscillations at the beginning and end of the signal

were observed, while for the 500% noise case, the 2" IF was not resolved.
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Fig. 7. The extracted both 1st and 2nd IF of the analytical signal with noise level of 10%, 100% and 500%
using (a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT and (e) FDST.

Table 2 provides the mean and standard deviation of the RMSE values of the IFs , across
the 1000 instances (assessing the statistics for the added random error ) of the analytical test signal
set. Generally, HHT exhibited at least a 41% higher mean RMSE as compared to other methods.
The 1% IF extracted by CWT exhibited a minimum of 71%, 6%, and 27% higher mean RMSE
compared to FrASLT, FDCWT and FDST, respectively. The FDCWT demonstrated a mean
RMSE improvement of 42% (10% noise), 5% (100% noise), and 23% (500% noise) compared to
CWT. Both FrASLT and FDST in general exhibited highly accurate IF extraction owing to the
super resolution of the FrASLT. Additionally, incorporating the Fourier-decomposition into

FrASLT resulted in a 65% and 12% improvement for the 1% IF at 10% and 500% noise,
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Table 2. The mean and standard deviation of RMSE (in Hz) of 1% and 2" IF extraction with ground truth

considering 1000 instances of test signal using HHT, CWT, FrASLT, FDCWT and FDST

Method
HHT CWT FrASLT FDCWT FDST
Noise %
I$'IF
10% 518+0.77 | 2.31+0.79 | 0.51£0.02 1.35+0.92 0.18 £0.06
100% 1539+1.24 | 9.52+1.58 | 489+3.49 | 9.00=+2.67 5.08 £3.45
500% 30.63+1.49 | 21.67+£1.63 | 17.05+4.34 | 16.79+4.87 | 14.97 +£5.60
2M IF
10% 38.02+0.64 | 37.84+0.90 | 35.13+2.93 | 30.78 £1.48 | 691+3.71
100% 3596+1.39 | 36.78£0.94 | 39.11+3.10 | 38.66 +4.47 | 29.53+4.22
500% 32.33+1.32 | 3532+1.03 | 38.43+3.08 | 39.48+5.63 | 38.95+5.98

respectively, and a 4% decrease in performance at the 100% noise case. Similarly, the Fourier-
decomposition step resulted in an RMSE improvement of 24-80% for the 2" IF extraction at 10%-
100% noise. However, even FDST failed to extract the 2" IF with sufficient accuracy at 500%
noise, due to the significant mixing of noise with signal dynamics. In general, this analysis
emphasizes the superior performance of FDST at extracting the relevant dynamics, even in the
presence of significant noise, and establishes that for noisy signals (i.e., >100% noise), only the

primary dynamics (i.e., 15 IF) can be accurately extracted.

5. Pulsatile experimental PIV data analysis

5.1. Pulsatile experimental PIV data
5.1.1. Data collection and processing
Experimental transitional pulsatile pipe flow data was used to test the efficacy of our proposed

method for evaluating intermittent flow structures and the instantaneous TKE spectrum. A sub-set
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of the two-dimensional-two velocity component (2D-2C) planar PIV data from Brindise and
Vlachos (2018) was used. We provide a brief description of the data here, but the reader should
refer to Brindise and Vlachos (2018) for complete details on the experimental setup and captured
data. Womersley number represents the ratio between inertial forces and viscous forces and is

computed by:
a=1 |22 )

where L is the characteristic length scale, w is the angular frequency of pulsation, p is the density
of the fluid, and u is the dynamic viscosity of the fluid. For these experiments, a Wormsley number
of 2.4 and tube diameter of 1/8’° was used. A symmetric (nearly sinusoidal) input pulsatile
waveform shape was tested at six mean Reynolds numbers (Re) of 500, 1000, 2000, 2500, 3000
and 4000. Fig. 8, adapted from Brindise and Vlachos (2018), provides the Re versus time trend for
each test case used here. The instantaneous Re ranged from zero to approximately twice the mean
Re for all cases; this resulted in transitional and turbulent flow being present even for low mean
Re cases.

All velocity fields and post-processed flow quantities used herein were those exactly computed
in Brindise and Vlachos (2018), without modification. Briefly, velocity fields were collected using

a double-pulsed (i.e., frame-straddling) image capture mode. The captured images were of size
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2560x1600 pixels with a magnification of 2.29 um/pixel. Image pairs were captured at 250 Hz
with varied inter-frame times to ensure a maximum particle displacement of 15 pixels between
frames. Resulting images were processed using three passes of an iterative image deformation
algorithm (Scarano, 2001) with robust phase correlation (Eckstein and Vlachos, 2009a, 2009b;
Eckstein et al., 2008) and a median-based universal outlier detection method (UOD) (Westerweel
and Scarano, 2005) to compute the velocity fields. The extracted PIV velocity fields were post-
processed using proper orthogonal decomposition (POD) (Sirovich, 1987) with the entropy line-
fit (ELF) thresholding method (Brindise and Vlachos, 2017); the velocity fields were subsequently
phase averaged. The mean velocity component was computed from the post-processed PIV
velocity by reconstructing the 5™ level approximate coefficient of the discrete wavelet transform
(DWT). The axial and radial fluctuating velocities (u’ and v’, respectively) were calculated by
subtracting the mean component from the post-processed PIV velocity. To compute turbulent
kinetic energy (TKE), the axial average of u’ was subtracted from u’ and v’ to minimize the effect
of pump fluctuations (Trip et al., 2012).

5.1.2. Post-processing calculations

Since ground truth time-frequency information is not available for experimental data, rigorous
error analysis across methods could not be performed. Instead, a pseudo-error analysis was
performed by comparing a histogram of the spatiotemporal distribution (i.e., across all space and
time) of the 1% dominant frequency of each TFR method (Fig. 9-1). The TFR histograms were
compared to the FFT-computed, spatially-averaged power spectral density (PSD) of u’ obtained
by averaging the PSD for all spatial points. The FFT-based PSD was considered as the ground
truth for the comparison. It is important to note that the FFT does not explicitly provide the
temporal localization of frequencies resulting from non-stationary behaviors. However, the

invertibility of the FFT implies that all frequency information is available within the FFT spectrum,
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and dominant IFs (even non-stationary ones) are expected to manifest as major peaks in the FFT
spectrum. The spatially-averaged FFT-based PSD and all spatiotemporal IF distributions were
normalized based on their maximum values to ensure consistent comparison across methods. The
peaks of the resulting normalized PSD and spatiotemporal IF distributions were then identified
using the findpeaks function in MATLAB and sorted in descending order based on peak height.
As the number of peaks obtained for the PSD and spatiotemporal distribution of each method is
expected to differ, the lowest number of peaks out of all distributions were considered as the
number of relevant peaks to ensure consistent comparison. Hence, relevant peaks of the PSD and
spatiotemporal distribution of each method were identified, and the peak height was used as the
measure of peak dominance. The frequencies corresponding to such peaks were extracted in the

order of dominance for PSD and spatiotemporal distribution of each method. The RMSE between
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Fig. 9. The post-processing of IFs using (1) axial fluctuating velocity with pump fluctuations and (2) TKE. (1a)
the spatial 1st IF stack across all time instant. (1b) calculation of spatiotemporal histogram by considering 1st
IF corresponding to all time instant and spatial points. (2a) spatial mapping between spatial 1st IF and TKE
snapshot for given frequency at a specific time instant. (2b) Calculation of instantaneous TKE spectrum by
summing TKE at spatial points corresponding to each frequency.
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the peak frequencies identified from the PSD and spatiotemporal distribution of each method was
computed and considered as the error of each method.

To evaluate the relevant flow-based information contained within the IFs, the instantaneous
TKE spectrum was computed using the 1%, 2", and 3 IFs of the TKE. Fig. 9-2 illustratively
describes the calculation of the instantaneous TKE spectrum for the 15 IF. For this calculation, the
2D spatial frequency maps of each IF and corresponding 2D TKE spatial maps at each time instant
were considered. For each unique frequency, the TKE values for all spatial points which
maintained that unique frequency were extracted (Fig 9-2a). These extracted TKE values were
summed, resulting in the total TKE associated with the corresponding frequency at a given time
instant (Fig 9-2b). This calculation was repeated for all frequencies, resulting in the instantaneous
TKE spectrum at a particular time instant (Fig 9-2b). The instantaneous TKE spectrum was plotted
on a logarithmic scale, and the trend was smoothed using a moving average filter with a window
size of 10% of number of frequency scales used. The line corresponding to Kolmogorov scaling
(slope of -5/3) was fitted to the smoothed instantaneous TKE spectrum. For each IF, the frequency
range where the instantaneous TKE spectrum matched the Kolmogorov spectrum was identified.
Coherent 2D spatial frequency structures as well as their area as a function of frequency were also
evaluated. For this, a 2D median filter with window size of 3x3 pixels were used to smooth the
spatial maps. Coherent frequency structures were identified using a standard connected component
analysis. Spatial structure area was computed as the number of pixels in each identified connected

component.

5.2 Pseudo-error analysis of TFR methods

The analytical signal analysis demonstrated that both FDCWT and FDST provided marked

improvement in accurately extracting the IFs of ideal sinusoidal signals. Next, we compared the
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Fig. 10. The IF extraction using axial fluctuating velocity with pump fluctuations (u’.). (a) the snapshot of

w’,p at a given time instant. (b) temporal variation of u’,, at specific spatial location. (c) The extracted 1s

IF using FDST.
efficacy of the TFR methods using the experimental PIV data, which contains complex non-linear
mechanisms and noise.

Fig. 10 illustrates the extraction of the 1% IF of u’ for the spatial point denoted with a red

‘X’. We selected u’ as the input signal for this error analysis since the frequencies of the pump
fluctuations are expected to precipitate stationary and non-stationary dynamics, which, in addition
the flow dynamics, ensures the presence of secondary frequency mechanisms. Fig. 11a to 11e
illustrate the representative distribution of the spatially-averaged PSD and spatiotemporal IFs for
(a) HHT, (b) CWT, (c) FrASLT, (d) FDCWT, and (e) FDST, using the mean Re of 3000 test case.
The spatially averaged PSD for this test case contained two dominant peaks at 4.5Hz and 15Hz
along with additional minor peaks including ones at 6Hz and 10Hz. The RMSE comparing the
spatially averaged PSD and the spatiotemporal IFs were 34.32Hz, 47.04Hz, 24.96Hz, 19.51Hz and
12.38Hz for HHT, CWT, FrASLT, FDCWT and FDST, respectively. The smoothness of the
spatiotemporal IF trendlines for HHT and CWT (Fig. 11a and 11b) highlight that these methods
smeared out physical dynamics of the flow. Practically, this demonstrates that HHT and CWT can
only accurately identify 1-2 frequency components within a flow, making them ineffective for
intermittency analysis. With FrASLT (Fig. 11c¢), this smearing occurred to a much lesser extent.

However, FrASLT still failed to distinguish the minor peak at 6Hz from the dominant peak at

4.5Hz. Conversely, both of our proposed methods accurately identified the dominant frequency
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Fig. 11. Normalized spatial averaged PSD and the spatiotemporal 15 IF distribution for test case with mean
Re of 3000 using (a) HHT (b) CWT (c) FrASLT (d) FDCWT and (e) FDST for axial fluctuation velocity
with pump fluctuations. (f) RMSE between the frequencies correspond to the predominant peaks in both
spatially averaged PSD and the spatiotemporal 1% IF distribution for all cases.

peaks as well as several (more than 7) tertiary peaks. This emphasizes that for flow analysis the
Fourier mode decomposition step dramatically increases the accuracy and depth of the signal
dynamics that can be extracted. Fig. 11f shows the RMSE for all experimental test cases. The
average RMSE across all cases was 31.68Hz for HHT, 38.34Hz for CWT, 17.88Hz for FrASLT,
19.11Hz for FDCWT, and 13.88Hz for FDST. The adaptive Fourier windowing resulted in an
average RMSE improvement of 50% for FDCWT over CWT and 22% for FDST over FrASLT.
Moreover, FDST provided a 27% improvement of RMSE over FDCWT. This suggests that for
extracting flow dynamics from real, noisy signals, a high frequency resolution is more important
than the slight loss of temporal resolution.

5.3. Investigation of intermittency and scaling mechanism

Next, we evaluate the physical information and dynamics the IFs can describe within a flow. For
this analysis, we only provide results using the FDST method since this was shown to provide the
best performance for noisy signals and in Fig. 11. Fig. 12 shows the typical instantaneous energy

cascade of the IFs in order to investigate the intermittency and resulting scaling mechanisms
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present in pulsatile flows. For Fig. 12, a representative instantaneous TKE spectrum computed
using the (a) 1%, (b) 2", and (c) 3" IFs of the 4000 mean Re test case. For the time step shown,
the instantaneous Re is approximately 7500. The dashed blue line represents the -5/3 Kolmogorov
scaling and the window denoted by the two black vertical lines denote the frequency range where
the instantaneous TKE spectrum follows the Kolmogorov scaling to within a TKE tolerance of 0.2
in log scale. In general, the instantaneous TKE spectrum corresponding to the 1%, 2", and 3™ IFs
was found to exhibit similar behavior to the traditionally obtained Kolmogorov energy spectrum.
Specifically, a power-law behavior (linear behavior in logarithmic scale) was observed in certain
regions of the instantaneous TKE spectrum, implying a scale free nature of the energy transfer at
these frequencies. However, unlike the traditional energy spectrum, which is stationary in nature,
the instantaneous TKE spectrum represents flow behavior at a particular time instant. Thus, the
instantaneous TKE spectrum is particularly beneficial for studying dissipation mechanisms in non-
uniform flows such as pulsatile flows where flow dynamics are not constant in time. The Fig. 12
reiterates these notions. In Fig. 12, the instantaneous TKE spectrum matched the Kolmogorov
scaling for the frequency ranges of 19.5 to 49.6Hz for the 1 IF, 29.1 to 54.6Hz for the 2" IF, and
44.6 to 112.2Hz for the 3™ IF. This suggests that each IF component extracted using our proposed

method describes partially independent scaling mechanisms inherent in the pulsatile flows.
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Moreover, because the windows of each IF cascade to larger frequencies (i.e., the 1 IF had a lower
frequency window than the 29, etc.), it is expected that the IFs decompose and, to an extent, reveal
the cascade of turbulent structures in the flow. Given that the turbulent cascade represents the
breakdown of turbulent structures into increasingly smaller eddies, this notion implies that the first
IF should describe the largest structures, while the 3™ describes the smallest structures (of the three
IFs analyzed). Moreover, because the IFs are evaluated at each spatiotemporal point in the flow
field, it advantageously enables frequency structures to be evaluated from a spatiotemporal
perspective.

Fig. 13a, 13b, and 13c show the spatial frequency distribution of each IF, limited to only the
frequencies within the Kolmogorov spectrum matching window (all other frequencies are shown

in white). Spatial maps for the three mean Re cases at the max TKE time instant are shown. Fig.
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Fig. 13. The spatial distribution of IFs associated with energy cascade regarding a) 1%, (b) 2" and (c) 3" IF
components and (d) area of each spatial structures for test cases with mean Re of (1) 1000 (2) 2500 and (3)
4000.
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13d shows the area of each individual structure vs. the mean frequency of the structure. The area
of the spatial IF structures generally decreased in size with increasing mean Re as well as
increasing IF level. At the low mean Re’s of 1000 (Fig. 13a), the structures were primarily large,
axially oriented patterns. As the mean Re increased, finer and finer frequency structures began to
emerge for all IF components. At high mean Re’s, the 15 IF spatial structures retained some axial
orientation, especially at the near wall regions. Prior studies have noted theoretical predictions of
the presence of these types of structures in pulsatile flows as a consequence of helical and
axisymmetric disturbances (Xu et al., 2021). However, for the 2"¢ and 3™ IFs, no axial pattern of
the spatial frequency structures was discernible. This suggests that the IF spatial structures, at least
in part, describe the dissipation of axial structures within transition to turbulence in pulsatile flows.
Fig. 13d illustrates that for the transitional and turbulent mean Re cases (Fig. 13d-2 and 13d-3),
the area of the structures decreased roughly exponentially with increasing frequency components.

Table 3 quantitatively explores this, providing the average area of the spatial frequency
structures associated with each IF. The mean area of the spatial frequency structures across all
three [Fs were 58 pixels, 28 pixels, 18 pixels, 17 pixels, 14 pixels, and 13 pixels for test cases with
mean Re's of 500, 1000, 2000, 2500, 3000, and 4000, respectively. This confirms the rapid decline

and then plateau of structure size as the Re increases from the laminar to transitional and turbulent

Table 3. Mean area (in pixels) of all spatial frequency structures as a function of IF (1%, 2", and 3*%) and
mean Re of the test case

Mean Re 500 1000 2000 2500 3000 4000
Frequencies
1% inst. frequency 74 30 27 24 18 18
27 inst. frequency 54 24 14 18 14 13
3rd inst. frequency 45 31 11 10 10 9
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Fig. 14. Temporal variation of instantaneous energy cascade scales of all test cases with symmetric
waveforms and mean Re of (a) 500 (b) 1000 (c) 2000 (d) 2500 (e) 3000 and (f) 4000.

regimes. Overall, this further suggests that the spatial frequency structures reveal turbulent
structures across the Kolmogorov scale.

Fig. 14 illustrates the temporal variation of the energy cascade scaling range window for
all mean Re test cases (where the max flowrate occurs at t/T of about 0.5), considering all spatial
points. Specifically, the lower and upper bound of the black, red, and blue shaded regions represent
the starting and ending frequency of the energy cascade scaling window for the 1%, 2", and 3™ IF
components, respectively. At the low mean Re’s of 500 and 1000, the energy cascade of all three
dominant frequency components behaved similarly with scaling ranges between 5 and 65Hz for
nearly all-time instants. Interestingly, the energy cascade windows of the 1% and 2" IFs remained
largely the same across all mean Re cases. This suggests that these IFs primarily represent
instabilities and unsteadiness associated with the pulsatile flow. Conversely, the energy cascade
window of the 3™ IF differed significantly across mean Re cases. For the mean Re cases from
2000-4000 (Fig. 14c-14f), the upper frequency bound of the energy cascade window increased

rapidly and plateaued for a length of time before decreasing rapidly. Specifically, for the mean Re
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2000 case, the upper bound of the 3™ IF increased from t/T of 0.35 to 0.70, with an average
frequency of 84Hz. Meanwhile, for the 2500, 3000, and 4000 mean Re cases, this upper bound
increased from t/T of 0.30 to 0.71 (avg. freq. of 89Hz), 0.27 to 0.78 (avg. freq. of 79Hz), and 0.28
to 0.77 (avg. freq. of 88Hz), respectively. This suggests that the 3™ IF primarily describes
structures associated with transition and turbulence and can provide valuable physical details of
the flow. For example, the involvement of finer scales implies the dominance of viscous
dissipation at higher instantaneous Re. Additionally, Fig.14 demonstrates that the scaling range
windows of the instantaneous energy cascade may be able to inform a flow’s progression of
transition and turbulence in pulsatile flows. Specifically, by identifying the length and frequency
of the plateau in the temporal variation of the energy cascade window range, transition from
laminar to turbulent regimes in pulsatile flow may be able to be more precisely pinpointed. This
notion, as well as its universality, should be explored in future work. Overall, this analysis
highlights that our proposed FDST method is able to accurately decompose the flow into energy
cascade structures and provide insight on the development of transitional and turbulent flow

regimes.

6. Limitations

Several limitations of our method and this study exist. Since our method utilized CWT and
FrASLT as the wavelet-based transforms to obtain the TFR modes, shortcomings of both CWT
and FrASLT, such as the high computation cost of FrASLT, similarly impact our method.
Furthermore, frequency and time resolution of FrASLT depends on the number of cycles and order
of the superlet. Thus, the result obtained from the proposed FDST method heavily depends on the
choice of these parameters. Our analysis suggested our choice of these parameters was optimal for

this application, but alternative settings may be preferred for other applications. Since FrASLT
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uses a combination of CWTs, inverting the superlet transform to obtain the original signal is
difficult, as the amplitude and phase information from each CWT calculation gets lost in
combination. Thus, the FDST is not invertible. Furthermore, the Fourier-based decomposition was
based on the major peaks in the Fourier spectrum. Hence, our method heavily depends upon the
accurate detection and separation of relevant and noisy peaks from the Fourier spectrum.
Additionally, we restricted the TFR of the Fourier decomposition modes to the corresponding
frequency band as shown in Fig. 2d and 2e, possibly resulting in loss of some information due to
the removal of the energy content outside the frequency band. The experimental data used for this
study was collected with planar PIV such that three-dimensional dynamics could not be resolved.
Additionally, the axial field of view of the pipe was not large enough to resolve turbulent puffs,
such that the IFs of these transitional structures could not be explored. The ability of our method
to decompose spatial scales of the turbulent energy cascade would be limited by the resolution of
the flow data being evaluated, a notion which should be explored in future work. Furthermore,
because we tested the method using only pulsatile data, the pulsatile mechanisms described by the
IFs could not be concretely and explicitly resolved. Future work should aim to apply our method

to steady and pulsatile flows to explore this.

7. Conclusion

In this work, we present a novel TF method, the Fourier-decomposed wavelet-based transform, to
evaluate intermittency in transitional and turbulent flows. The proposed method aims to enhance
the TFR of a signal by addressing the interference artifacts arising from low resolution in TFR.
This is achieved by decomposing the signal of interest into a set of Fourier modes and combining

the TFR of each mode function into a single accurate TFR. Using analytical test signals, we
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demonstrated that our method accurately extracted the primary and secondary instantaneous
dynamics of the underlying system, and yielded improved results as compared to current TF
methods. Furthermore, our investigation using a pulsatile, transitional experimental PIV dataset
revealed that each IF component, as extracted by FDST, decomposed the Kolmogorov energy
cascade inherent in the flow. Moreover, we demonstrated that analyzing the spatial frequencies
associated with IFs can provide valuable insights into the scaling mechanisms and the progression
of turbulence in pulsatile flows. Overall, the result of this study demonstrated the importance of
addressing the interference artifacts in TFR calculations, and underscored the advantage of
investigating spatial IF structures for understanding the mechanisms related to transition and
turbulence flows. Future work should focus on comparing such IF structures to other commonly
computed ones such as coherent structures, as well as compare our method to other spectral and
decomposition methods such as POD, spectral POD (sPOD), and dynamic mode decomposition

(DMD).
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