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Accurately identifying the onset of transitional and turbulent flow within any pipe flow environ-7

ment is of great interest. Most often, the critical Reynolds number (Re) is used to pinpoint the8

onset of turbulence. However, the critical Re is known to be highly variable, depending on the9

specifics of the flow system. Thus, for flows (e.g., blood flows), where only one realization (i.e.,10

one mean Re) exists, the presence of transitional and turbulent flow behaviors cannot be accurately11

determined. In this work, we aim to address this by evaluating the extent to which instantaneous12

time-frequency (TF)-based analysis of the fluctuating velocity field can be used to evaluate the onset13

of transitional and turbulent flow regimes. Because current TF analysis methods are not suitable14

for this, we propose a novel ’wavelet-Hilbert time-frequency’ (WHTF) method which we validate15

herein. Using the WHTF method, we analyzed the instantaneous dominant frequency of three16

planar particle image velocimetry-captured pipe flows which included one steady and two pulsatile17

with Womersley numbers of 4 and 12. For each case, data was captured at Re’s spanning 800–4500.18

The instantaneous dominant frequency analysis of these flows revealed that the magnitude, size,19

and coherence of two-dimensional spatial frequency structures were uniquely different across flow20

regimes. Specifically, the transitional regime maintained the most coherent, but lowest magnitude21

frequency structures, while the laminar regime had the highest magnitude, lowest coherence, and22

smallest frequency structures. Overall, this study demonstrates the efficacy of TF-based metrics for23

characterizing the progression of transition and turbulent flow development.24

I. INTRODUCTION25

Transition to turbulence in pipe flows is characterized by intermittency [1–6]. At the onset of transitional flow,26

intermittent flow structures, or turbulent “puffs”, begin to form at locations of instabilities. As transition develops,27

the puffs occur with increasing frequency until they form at such a high rate the individual puffs are no longer28

discernible, at which point the flow is classified as fully turbulent [7]. Transitional flow induces significant fluctuations29

in pressure and wall shear stress which negatively affect pipe wall strength, flow energy losses, etc. Thus, accurately30

identifying the onset of this flow regime is of great interest.31

Traditionally, the onset of transitional and fully turbulent flow is estimated using the non-dimensional Reynolds32

number, Re(= ρUD/µ), where, U is the mean velocity (m/s) of the flow, ρ (kg/m3) is the density, D (m) is the33

diameter of the pipe, and µ (Pa−s) is the dynamic viscosity of the fluid [8]. Many prior studies utilizing steady-mean34

and unsteady-mean (i.e. oscillating or pulsatile) pipe flows have ascertained the onset of transition to occur at a Re35

of about 2200–2500 and the critical Re, Recritical, when flow becomes fully turbulent to be 2700–3000 [9, 10]. These36

values are generally determined by evaluating the turbulence intensity (TI) of a flow across a range of Re values. This37

TI–Re relationship is represented by an S-shaped curve where TI in the laminar and turbulent regimes is roughly38

independent of Re.39

Recritical values are highly specific to specific flow environments; factors including pipe roughness, pump-induced40

perturbations, geometry irregularities, pipe curvature, etc. are all known to alter the Recritical. Hence, it is widely41

accepted that significant variability from the consensus Recritical values can occur. The variability of Recritical leads42

to a significant fundamental challenge of how to determine if a specific flow is transitional in nature [11]. This is43

particularly consequential in cases where only one representation of the flow (i.e., the flow at one mean Re) is known.44

For example, in the biomedical domain, studies are increasingly asserting low Re flows to be transitional or fully45

turbulent. In one such study, Saqr et al. [12] evaluated the physiologic blood flow and concluded that an aneurysmal46

flow—which has significant cross-sectional variability—with a mean Re of about 300 was turbulent. Hence, this47

highlights an increasingly pressing need for universal metrics or characteristics capable of estimating the level of48

transitional flow behavior within any pipe flow environment.49

Unfortunately, such a universal metric in pipe flows does not exist and methods to analyze transitional flows remain50

limited. Reported techniques to study transition to turbulence have involved the use of linearized Orr-Sommerfeld51
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eigenvalue stability equations or viewing the flow as a dynamical system and finding the onset of chaos using bifurcation52

models [1]. However, these techniques are cumbersome and provide no visual information such that they cannot be53

employed to universally pinpoint the onset of transition and eventual culmination of a 2D flow to a 3D turbulence.54

Other studies have investigated the flow system as an excitable and bistable media because the localized puffs are55

generated and split throughout transition [2]. The increasing time fraction in which these puffs appear radially in56

the flow can also provide details regarding the onset of transition. This has been studied using Markov models as57

probability distribution functions [3]. Overall, these approaches make use of a particular variable and hence do not58

put forth a general trend in identifying a metric for the progression of transition.59

Intermittency, by definition, suggests that transitional flow maintains characteristic frequencies [5, 13–15]. Thus,60

time-frequency (TF) methods can provide quantitative insight on the development and progression of transitional61

flow [16–21]. We previously demonstrated that TF analysis can be used to decompose the Kolmogorov spectrum in62

transitional flow, and by using this technique flow structures across energy scales could be isolated and visualized.63

Moreover, we showed that one instantaneous frequency (IF) appeared to primarily characterize the turbulent behavior64

within a pulsatile transitional flow in Joy Kolliyil et al. [22],[23]. These findings suggest the possibility that TF65

analysis can estimate the onset and progression of transition in a flow field. However, traditional TF approaches do66

not maintain the required visual information in conjunction with flow parameters such as velocity and fail to portray67

a complete analysis which puts forth a one-to-one mapping of frequency and flow parameters [24–26]. Some of the68

other investigations which have studied time-dependent flows and turbulent mixing in the literature include instability69

analysis such as Rayleigh-Taylor and Richtmyer–Meshkov instability.[27–29]70

In this work, we aim to investigate the extent to which TF-based metrics can describe and identify the onset and71

level of development of transitional and turbulent pipe flows.72

Two experimental datasets were used for this study. First, we conducted a steady-mean, planar particle image73

velocimetry (PIV) study with test cases spanning the Res range of 500 to 4500 such that the traditional TI vs Re74

S-curve could be established. Second, we utilized a pulsatile, transitional pipe flow dataset published in El-Khader75

and Brindise [30]. The pulsatile dataset was captured using planar PIV and the same experimental setup as used for76

the steady flow dataset. For both datasets, the instantaneous dominant frequency of the fluctuating velocity (u′) field77

at each spatial point was evaluated using a novel time-frequency analysis method we propose and validate herein.78

We investigated how the TF representation of a flow differed in the laminar, transitional, and turbulent regimes.79

Specifically, we assessed the extent to which TF-based metrics reflected the traditional TI vs. Re S-curve and the80

extent to which the TF-metric values were ”universal” across the different datasets used for testing herein.81

Overall, this work takes a first step towards addressing the critical need for a universal metric to identify the onset82

and development of transitional and turbulent flow in pipe flows which can later be extended to any arbitrary flow83

environment.8485

II. PROPOSED INSTANTANEOUS TIME-FREQUENCY EVALUATION METHOD86

For this work, we developed a novel time-frequency analysis method, which utilizes the continuous wavelet transform87

(CWT) [31–35] and Hilbert transform. We term this the Wavelet-Hilbert Time-Frequency (WHTF) method. The88

WHTF method, schematically shown in Fig. 1, is a computationally-light algorithm that computes the instantaneous89

dominant frequency at each point in space and time. The use of a computationally-light method herein ensures our90

findings are adaptable to complex flow environments of any Reynolds number and large datasets. The WHTF method91

iterates through each spatial point individually (Fig. 1(a)). The 1-D fluctuating velocity (u′) vs time trend at the92

particular spatial point is the input to the calculation. The Hilbert transform of the fluctuating velocity signal is93

computed (Fig. 1(b)) and the CWT of this signal is evaluated (Fig. 1(c)). For the CWT computation, the Morlet94

wavelet was chosen as the mother wavelet due to its various advantages such as analyzing temporal behavior of95

non-stationary signals [36] and its shape function being similar to input pulsatile waveforms [37]. Additionally, using96

analytical signals with ground-truth frequencies, we tested the efficacy of other mother wavelets (e.g., ‘Mexican Hat’,97

‘Symlet’) and found the Morlet to provide optimal performance accuracy and robustness. The scales of the CWT are98

uniformly defined from 0 to the Nyquist frequency for the given signal. The Hilbert Transform computes the analytical99

signal, resulting in both real and imaginary components with a 90o phase shift. Hence, the CWT of the Hilbert100

transform of a signal results in a smooth coefficient field. The CWT of the raw signal would yield an intermittent101

dotted coefficient pattern even for constant frequency signals; this dotted pattern would be unsuitable for extracting102

the instantaneous dominant frequency. The combination of the Hilbert transform and CWT is computationally similar103

to a dual-tree wavelet transform. The evaluated CWT coefficient field is filtered using the discrete wavelet transform104

(DWT). Specifically, the ‘sym8’ wavelet is employed to smoothen the coefficients as the raw CWT coefficients can105

maintain noisy, high amplitude peaks in the frequency array. The ’sym8’ was chosen as it has been shown to be106

optimal for signal denoising [38–40]. No forced denoising was employed in the filtering process. The filtered wavelet107

coefficient map is shown in Fig. 1(c) (Bottom). To evaluate the instantaneous dominant frequency, the largest peak108
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FIG. 1. Overview of the WHTF method. (a) The fluctuating velocity, u’, array in time is extracted for a single spatial point. (b)
The Hilbert transform of the ”original” signal is computed and the (c) CWT coefficient map is evaluated (Top) and smoothed
(Bottom) for this signal. CWT coefficients at each time step are extracted (see white dashed line in (c) Bottom) and (d)
normalized to account for CWT peak differences across scales. (e) Peaks in the normalized coefficient array are identified and
Gaussian fits are used to further localize the peak and identify the the dominant IF for that spatiotemporal point. This peak
identification is repeated for all time steps. (f) The temporal variation of the dominant IF for the given spatial point. The
process shown in (a)-(f) is repeated for all spatial points. (g) 2D spatial frequency maps showing the dominant IFs through
space and time.

of the wavelet-coefficient field must be evaluated at each time step (i.e., each column of the wavelet coefficient map).109

Thus, each column of the wavelet coefficient field is iteratively extracted and evaluated individually, as represented110

by the dotted white line in Fig. 1(c) (Bottom).111

Fig. 1(d) shows the extracted coefficient array at the time step of about 0.5s. The coefficient array is normalized112

using an empirically-defined normalization function in order to account for the uneven distribution of energy across113

scales inherent to the CWT. Specifically, an intrinsic drawback of the CWT is that low frequency components yield114

larger coefficient magnitudes than high frequency components, even when the two frequency components maintain the115

same amplitude. Fig. 2 explicitly demonstrates this, showing the CWT coefficient fields for one-frequency component116

sine signals with frequencies of 1 Hz, 50 Hz, and 100 Hz. It is clearly observed that the 100 Hz signal results in lower117

CWT coefficient magnitude than the 1 Hz or 50 Hz signals. Fig. 2(d) illustrates the peak CWT coefficient magnitude118

as a function of the sine signal frequency. The consequence of this inherent CWT limitation is that it creates a bias119

to select lower frequencies as dominant even in cases where a higher frequency has the same or even slightly higher120
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FIG. 2. Defining the scale-varying CWT normalization function. The CWT coefficient maps for sine signals with single
frequencies of (a) 1 Hz, (b) 50Hz, (c) 100 Hz show the difference in CWT coefficient peak amplitude as a function of scale
(frequency). The sub-tile in (a) zooms in on the low frequency range. (d) The peak CWT coefficient magnitude for sine signals
with frequencies ranging from 1–100 Hz.
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amplitude. Hence, for our purposes it is important to correct this behavior. Thus, we utilize the signal shown in121

Fig. 2(d) as the empirically-defined normalization function which is interpolated onto the CWT scales. Fig. 1(d)122

shows the CWT coefficient array after normalization, where it can be observed that low frequency peaks are reduced123

in magnitude and high frequency peaks are increased in magnitude.124

Finally, the normalized coefficient array is smoothed using a moving average. The peaks of the normalized and125

smoothed coefficient array are identified in Fig. 1(e). A 15-point window around each peak is extracted and a Gaussian126

fit is evaluated on this window. The frequency corresponding to the peak of the Gaussian fit is computed. This127

Gaussian fit is used to account for any remaining noise and any scale-resolution limitations. The 15-point window size128

was chosen due as, through our testing, it showed high performance in aiding the selection of the best peak. However,129

one limitation of this 15-point window size is that it can lead to fit errors for smaller, less prominent peaks. Because130

here we are only extracting the most dominant peak, this limitation will not effect our results. However, the chosen131

window size should be reconsidered if multiple frequency peaks are to be considered or if a lower scale (i.e., frequency)132

resolution is used for the wavelet transform. Each evaluated frequency peak represents a frequency component in the133

signal at that time step. The dominant frequency is evaluated using a peak selection metric criterion. Specifically,134

peaks retained through the Gaussian fit are evaluated for peak prominence, peak height, and root mean square (RMS)135

error. The metric is computed as a ratio of the product of peak height and peak prominence to the square root of the136

RMS error. The peak with the maximum metric value is selected as the dominant peak. Iterating through each time137

step (each column of Fig. 1(c)) results in the 1D dominant frequency vs time array for the particular spatial point,138

as shown in Fig. 1(f). This entire process (steps (a)–(f)) is repeated for all spatial points in the flow field. Fig. 1(g)139

depicts the instantaneous dominant frequency evaluated at each spatial point and time, which is the output of the140

WHTF method.141

Overall, the novelty of the WHTF method is the unique coupling of the established transforms, the wavelet coef-142

ficient normalization step, and the developed instantaneous peak detection. Using this approach, we overcome the143

limitations of the wavelet transform to deliver smooth and accurate instantaneous frequencies. The WHTF method144

was implemented in MATLAB®. Using a PC computer, and a typical experimental dataset of size 199 × 160 vectors145

with 1000 timesteps, the WHTF method calculates the dominant frequency for a single spatial point in approximately146

1.5 seconds and takes about 13 hours for the entire dataset. While here we apply the WHTF method only to 2D147

datasets, its implementation is agnostic to the data dimensionality and thus the WHTF method can readily be applied148

as is to 3D data.149

III. MATERIALS AND METHODS150

A. Analytical Test Signals151

1. Data generation152

We first validated the accuracy of the WHTF method using ’single’ and ‘multi’-frequency analytical signals. Sine153

signals were generated according to: A ∗ sin(ωt). Here, ω = 2πf , where f is the ground-truth frequency and ω is the154

angular frequency of the signal. Amplitude, A, was kept at a constant value of 1. Each of these signals contained155

499 data points and were defined for a duration of two seconds. The ‘single’-frequency signals were defined such156

that only one frequency component, with variable frequency, existed in the signal at any given time. Specifically,157

each signal maintained one frequency from 0–1s and a different frequency from 1–2s. The signals were defined in158

this manner as one goal of this initial validation was to test the accuracy of the WHTF method for detecting step159

changes in frequencies. A total of 3 ‘single’-frequency signals were generated. For all signals, a frequency of 2Hz was160

used from 0–1s. From 1–2s, the frequency was varied across signals including values of 5 Hz, 50 Hz, and 100 Hz.161

‘Multi’-frequency signals were defined as the summation of two single-frequency sine functions. Each frequency was162

present through the entire signal. Three ‘multi’-frequency signals were defined which used frequency pairs of 2 Hz163

+ 5 Hz, 2 Hz + 15 Hz, and 2 Hz + 25 Hz. These pairs were selected to test the utility of WHTF to identify low164

frequency in addition to sensitivity of capturing another higher frequency above this low frequency.165

2. State-of-the-art TF Methods used for Comparison Testing166

The WHTF method was compared with other traditional methods of frequency estimation in the literature, including167

the short-time Fourier transform (STFT) and empirical mode decomposition-Hilbert Huang transform (EMD-HHT)168

[25]. The STFT was computed using the built-in MATLAB® function ‘spectrogram’ with a sampling window of 50169

points. The window overlap was kept at 75% of the STFT window size. The number of points used for the fast Fourier170

transform (FFT) was kept at 500, (for signals with a sampling frequency of 250Hz). Through testing, these window171

size and overlap settings were determined to provide the highest accuracy for the STFT method for the tested signals.172
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The EMD-HHT was computed in two steps. First, the EMD was computed using the built-in MATLAB® function.173

The EMD output was used to compute the intrinsic mode functions (IMF) as described in Huang et al. [25]. The174

dominant frequency was then extracted as the first column output of EMD-HHT.175

3. Error Analysis176

Error analysis for the analytical signal testing was conducted to assess the accuracy of each tested TF method for177

estimating the ground-truth frequency. Here, the error was defined as the absolute error, i.e., the magnitude of the178

difference between the ground-truth frequency value and the value of frequency computed using the methods.179

B. Experimental Datasets180

Two experimental transitional pipe flow datasets, both captured using planar PIV were used for this study. One181

dataset included a suite of steady-mean flow test cases, which was specifically captured for this study. This dataset182

will be referred to as the ”steady flow” dataset for the remainder of the manuscript. The second dataset included an183

unsteady-mean pulsatile flow test cases which were captured as part of a prior study by El-Khader and Brindise [30].184

This dataset will be referred to as the ”pulsatile flow” dataset for the remainder of the manuscript. Both datasets185

utilized the same experimental test rig. The Reynolds number for each dataset was defined using the equation provided186

in the Introduction. For the steady flow dataset, we refer to the Reynolds number as Res, while for the pulsatile187

flow dataset, we refer to it as Rem. This distinction is made for completeness; however, Trip et al. [15] showed that188

pulsatile flows defined using their mean velocity maintained analogous TI vs. Re trends to steady-mean flows. Thus,189

Res and Rem are expected to be effectively analogous such that side-by-side comparisons of the two datasets can190

validly be made.191

1. Steady Transitional Pipe Flow Dataset192

A schematic of the experimental flow loop and PIV setup used is shown in Fig. 3. The test section consisted of193

straight, rigid FEP (fluorinated ethylene propylene) tubing with an inner diameter, D, of 1/4”. The test fluid, water194

(density, ρ = 997kg/m3 and kinematic viscosity, ν = 0.98 × 10−6m2/s), was pumped through the loop using a195

computer-controlled gear pump. To monitor the flow loop, pressure transducers (Omega®) were placed upstream196

and downstream of the test section and an ultrasonic flowmeter (Transonic Inc.®) was placed upstream of the test197

section. The test section was preceded by a 150D+ length of uninterrupted tubing to ensure fully developed flow198

was captured. In addition, the test section was submerged in the working fluid (water)—which maintains the same199

refractive index (RI) as FEP—to reduce optical distortions in the PIV images. A total of 17 steady flow test cases200

Gear
pump

Reservoir Camera
Pressure
Transducer 2

Pressure
Transducer 1

Flowmeter
PIV spatial grid

Laser sheet

FIG. 3. Experimental setup used for the planar PIV experiments for both steady and pulsatile flows.
201

202

were captured. The steady flow Reynolds number, Res, for the measured cases ranged from 500-4500 to establish the203

onset of transition in our flow system. The complete list of test cases is provided in Table I.204

A single 4-megapixel high speed camera (Phantom VEO®) was used to capture planar PIV images. An Nd-205

YLF(Neodymium-doped Yttrium Lithium Fluoride) laser (Photonic Industries®, λ = 527 nm) was used to create206

a laser sheet with a thickness <1 mm that was centered on the test section tube. The flow loop was seeded with207

10 µm fluorescent particles. A double-pulsed PIV timing scheme was used. Image pairs (i.e., velocity fields) were208

captured at a frequency of 500 Hz. The inter-frame time of the camera was adjusted between cases such that the209
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TABLE I. POD parameters for steady flow test cases

Res Effective dt (µs) Modes Energy retained (%)
500 225 1445 74.91
1000 113 1821 85.35
1500 75 1391 73.48
2000 56 1525 77.08
2100 54 3031 99.87
2200 51 1372 73.14
2300 49 1373 73.30
2400 47 3031 99.89
2500 45 3000 99.74
2600 43 3024 99.90
2700 41 141 62.73
2800 40 197 58.24
2900 39 197 49.85
3000 38 244 52.09
3200 35 240 49.91
3500 32 283 50.80
4500 25 422 56.04

maximum particle displacement per frame was around 8-12 pixels. Table I reports the inter-frame time for all cases.210

The camera magnification was 4.15 µm/pixel. The image resolution was 2560×1600 pixels and a total of 1000 images211

were captured for each test case.212

PIV images were processed using a publicly available software Prana. Processing was done using three passes of213

an iterative image deformation algorithm, and robust phase correlation (RPC) [41–43]. A window size of 64×64 with214

a 50% Gaussian window was used for the final pass. This resulted in a 32×32 pixel effective window size which215

mitigated spectral leakage. The PIV final pass used an 8×8 pixel grid size. The velocity fields output from the final216

PIV pass were of size 199×160 vectors.217

PIV velocity fields for the steady flow data were post-processed first using universal outlier detection (UOD) to218

remove spurious vectors [44]. Specifically, three-passes of a median-based UOD were used which included a window219

size of 7×7 and threshold of 3, a window size of 5×5 and threshold of 2, and a window size of 3×3 and threshold220

of 2. Subsequently, proper orthogonal decomposition (POD) was applied to the velocity fields. POD decomposes221

the velocity fields into a set of eigenmodes; a subset of these modes are reconstructed to yield a reduced-order,222

smoothed version of the velocity field data. The number of modes retained for the reduced-order reconstruction were223

autonomously calculated using the entropy line fit (ELF) thresholding criterion, as shown in Brindise and Vlachos224

[45]. The resultant filtered velocity fields were used for all post-processing calculations. To confirm the accuracy of225

the PIV data, we compared the experimental velocity profile for the Res = 500 case, which is well within the laminar226

regime, to the analytical Poiseuille flow profile. The error was found to 1.5%, highlighting that the PIV study was227

well-controlled and accurate.228

2. Pulsatile Transitional Pipe Flow Dataset229

The pulsatile transitional pipe flow dataset from El-Khader and Brindise [30] was used herein. We provide a brief230

description of this dataset, but the refer the reader to El-Khader and Brindise [30] for complete details.231

A total of 12 test cases from the prior study were analyzed for this work. These included mean Reynolds number232

(Rem) values of 800, 2300, 2500, 2700, 3200 and 4200, each at two Womersley numbers of 4 and 12, defined by, α233

(= R
√

(2πf/ν)), where R is the radius of the pipe and ν is the kinematic viscosity. We note that 6 additional test234

cases were captured as part of the El-Khader and Brindise [30] study; these included Womersley numbers of 6, 8,235

and 10, each captured at Rem of 2500 and 2700. However, these test cases were not included herein. The literature236

has shown that the flow behavior is altered for Womersley numbers ≥ 10, as compared to Womersley numbers l 10237

[46, 47]. Thus, the Womersley number values of 4 and 12, alone, should sufficiently capture a broad range of pulsatile238

flow dynamics.239

The flow loop design for the pulsatile flow dataset matched that of the steady flow dataset collected for this study.240

The same test section, camera, and laser sheet configuration were used. For this study, the camera magnification241

was set at 6.67µm/pixel and images of size 1024×1024 pixels were captured. The PIV images were collected using a242

double-pulsed timing scheme. Image frame pairs were captured at 750 Hz, and the inter-frame time between images243

in the pair was adjusted between cases to ensure a maximum particle displacement of 8-12 pixels. The frame pair244

frequency was set to ensure at least two pulsatile cycles were captured for each test case. PIV images were processed245

https://github.com/aether-lab/prana
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using the same protocol as used for the steady flow data. Velocity fields for the pulsatile flow cases were of size246

127×127 vectors.247

The velocity fields for the pulsatile flow were post processed using POD first. ELF was again employed to determine248

the modes to retain. After this, UOD analysis was done to remove any outliers in the data, which were particularly249

possible around the edges of the spatial grid. The post-processed velocity fields for the pulsatile flow data for UOD250

settings were similar to steady flow. Finally, the velocity fields were phase-averaged using 2 pulsatile cycles. The251

smoothed and phase-averaged velocity fields were used for all subsequent calculations.252

3. Post-processing253

For both datasets, the fluctuating velocity components (u ′ and v ′) were first computed using the Reynolds decom-254

position. For the steady flow data, the fluctuating velocity fields were obtained after subtracting the temporal mean255

velocity from the post-processed velocity components. As, the steady flow is time independent, the mean velocity was256

just computed as a simple averaging. For the pulsatile flow data, the fluctuating velocity components computed in257

El-Khader and Brindise [30] were used as is. Briefly, the mean velocity calculation for this dataset needed to account258

for the pulsatility and not enough pulsatile cycles were computed to utilize a traditional ensemble averaging. Thus,259

as done in Brindise and Vlachos [48], the mean velocity components were calculated as a fifth-level DWT decompo-260

sition of the one-dimensional temporal velocity field at each spatial point using a ‘sym8’ wavelet. This calculation261

removes high-frequency components, leaving only the underlying low-frequency pulsatile waveform. This calculation262

is repeated for each spatial point to compute the mean velocity components for the entire dataset.263

Turbulent kinetic energy (TKE) and TI were subsequently computed according to Eqn. 1 and Eqn. 2, respectively,264

where U is the centerline velocity.265

TKE =
1

2
(u′2 + v′2), (1)266

TI =
1

U

√
1

2
(u′2 + v′2), (2)267

Because the datasets are captured in a two-dimensional, two-velocity component (2D-2C) manner using planar PIV,268

Eqn. 1 and Eqn. 2 do not include the third-dimensional w ′ component since it is not measured by this setup. The use269

of a 2D data capture is an apparent limitation of this study. However, we note that for shear flows, employing Squire’s270

theorem, it suffices to study the cause of a 2D flow being unstable since, if a 2D flow is unstable then consequently,271

the 3D flow will be unstable.272

4. Details on TF-based metric evaluations273

TheWHTF was evaluated for each test case. Using this output, dominant frequencies could be plotted as instantaneous274

2D spatial contour maps (i.e., as shown in Fig. 1(g)). Using this mapping, so-called “coherent frequency structures”,275

which are connected regions in the spatial grid having similar frequencies, were evaluated. To do this, the built-in276

MATLAB® function imbinarize was first applied to the spatial frequency map contour to identify the connected277

frequency regions. Adjacent spatial grid locations were considered connected if their frequency values were within 0.4278

Hz. Using the frequency contours, the number of contours as well as mean frequency and area of each contour could279

be directly computed.280

The Shannon entropy of the discrete cosine transform (DCT) of the 2D spatial frequency maps were computed to281

quantitatively estimate the overall coherence of the maps. The DCT-entropy metric was introduced by Brindise and282

Vlachos [45] and shown to accurately estimate the coherence vs. speckled-nature of a 2D map. For this calculation,283

the 2D DCT of the 2D spatial frequency maps were computed. The Shannon entropy of these DCT maps were284

subsequently calculated.285

Joy Kolliyil et al. [22] highlighted that evaluating the instantaneous frequency of the TKE could be used to de-286

compose the Kolmogorov spectrum. Thus, herein, we evaluated how the instantaneous frequency spectrum changed287

across different flow regimes. For this analysis, TKE histograms were computed at each time step at each scale. We288

refer the reader to Joy Kolliyil et al. [22] for complete details on this calculation. Briefly, in the 2D spatial map, the289

instantaneous frequency and TKE value pairs are considered. For each unique frequency value, the corresponding290

TKE values for all spatiotemporal points with that frequency are summed (effectively a histogram). Hence, a total291

TKE vs. frequency distribution is computed.292
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IV. RESULTS AND DISCUSSION293

A. TF method comparison using analytical signal suite294

We first analyze the accuracy and rigor of the WHTF method as compared to traditional TF analysis methods295

(STFT and EMD-HHT) using the analytical signal suite with known ground-truth frequencies. Fig. 4(a)–(c) shows296

the frequencies estimated by each TF method for the three single-frequency analytical signals, while Fig. 4(d)–(f)297

shows the corresponding error analysis.298

A significant ringing effect for the EMD-HHT is clearly observed. The oscillations worsened as the magnitude of the299

analytical frequency jump occurring at 1s was increased. This behavior is analogous to the ringing effect often observed300

with fast Fourier transforms (FFTs). The STFT exhibited no oscillatory behavior for high frequencies. However, for301

low frequencies—the 2Hz frequency especially and less so the 5Hz frequency—oscillations at the estimated frequency302

were observed. Here, this is a result of resolution limitations inherent to the STFT. Specifically, for lower frequencies,303

the window size is too small to accurately detect the frequency. With the WHTF method, little to no oscillatory304

behavior in the estimated frequency trend was observed. However, the WHTF did suffer from, at times, bias errors in305

the predictions. For example, in Fig. 4(c), from 1–2s when the analytical frequency was 100 Hz, the WHTF predicted306

the frequency to be 104 Hz, a 4% bias error. Because the WHTF utilizes the CWT, this error occurs as a result of307

inherent limitations of the wavelet transform. Specifically, at high frequencies, the CWT maintains a low resolution308

in frequency; this produces a broad CWT coefficient peak, leading to higher uncertainty in the predicted frequency309

value. In Fig. 4(c), the WHTF also exhibited a time-delayed recognition of the frequency change at 1s. This occurs310

because the previously discussed limitation that CWT favors low frequency peaks that results in a delay of when the311

high frequency peak achieves a higher amplitude than the low-frequency peak.312

Table II summarizes the errors associated with each TF method for the single-frequency signals. For the 5 Hz and 50313

Hz signals, the WHTF maintained on average a 63% and 45% improvement over the EMD-HHT and STFT methods,314

respectively. For the 100 Hz signal case, the WHTF maintained a high mean error. However, this error decreases to315

2.42 ± 5.00 Hz when the delayed detection of the frequency change and edge effects are excluded. Nonetheless, the316

STFT method maintained the best performance for this high-frequency case.317

Fig. 5 considers the performance of each TF method when more than one frequency is present throughout the signal.318

For this analysis, it is particularly of interest to evaluate which frequency is detected by each TF method and to what319

extent the predicted frequency jumps between the two possible solutions. For all signal pairs, the STFT identified320

only the larger of the two frequencies as the dominant frequency and did not detect the lower 2Hz component. This321

can be attributed to window resolution limitations, which cause the STFT to favor larger frequencies. The EMD-322

HHT method similarly identified the higher frequency for all signal pairs. However, the EMD-HHT again maintained323

considerable oscillations throughout as well as large errors at the start and end of the signal. The WHTF method324
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FIG. 4. Frequencies identified by the EMD-HHT, STFT, and WHTF methods for the single frequency signals with a 2 Hz
frequency from 0–1s and a frequency from 1–2s of (a) 5 Hz, (b) 50 Hz, and (c) 100 Hz. (d-f) show the error associated with
each time-frequency method for the 2 Hz to 5 Hz, 2 Hz to 50 Hz, and 2 Hz to 100 Hz signals, respectively.
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TABLE II. Comparison of WHTF, STFT and EMD-HHT for the three single frequency signals. The values are reported as
mean ± standard deviation.

Cases WHTF STFT EMD-HHT
2 & 5 Hz 0.18 ± 9.14 1.03 ± 0.13 0.52 ± 3.20
2 & 50 Hz 0.88 ± 4.25 0.96 ± 0.99 2.24 ± 4.38
2 & 100 Hz 11.12 ± 27.53 0.97 ± 0.98 6.27 ± 22.08

maintained the most varied selection of the dominant frequency component. In Fig. 5(a), for the 2 Hz + 5 Hz325

frequency pair, the WHTF method only identified the 5 Hz signal. Conversely, for the highest frequency pair case326

of 2 Hz + 100 Hz (Fig. 5(c)), the WHTF identifies the low-frequency as the dominant peak. The 100 Hz is only327

selected as dominant for the very beginning and end of the signal. This can be attributed to resolution limitations328

arising from edge effects of the CWT mapping. For the 2 Hz + 50 Hz case (Fig. 5(b)), the WHTF selects the lower329

frequency as dominant in the middle of the signal (0.5s–1.5s), but the 50Hz component as dominant outside of this330

window. The variable dominant frequency selection can be attributed to the peak selection on the basis of coefficient331

magnitude coupled with the inherent limitation that CWT coefficient magnitude is frequency-dependent. In general,332

this multi-frequency signal analysis demonstrates that the WHTF method is the only method capable of identifying333

low-frequency components when high-frequency components are present. This, combined with its improved accuracy334

for frequency detection, makes the WHTF method most suitable for analyzing instantaneous frequency components335

in flow velocity fields.336

Fig. 5(d)–(f) show the CWT coefficient maps for multi-frequency signals. It is clearly observed that both frequency337

components are identified by the CWT, but because only one frequency is selected by the peak detection, one338

frequency component is defacto missed by the WHTF method. While adding a second peak identification to the339

WHTF method can resolve this issue, adding this capability is not desirable for the goals of this work. Specifically,340

this is because Joy Kolliyil et al. [22] demonstrated that for noisy signals only the most dominant frequency can be341

accurately identified, even when additional signal windowing modules are included to improve frequency identification.342

Furthermore, Joy Kolliyil et al. [22] highlighted that the turbulent behavior of a flow is often contained within a single343

IF, such that the WHTF should be capable of providing critical details regarding transition progression. Hence,344

identifying a single dominant frequency is the first step towards arriving at a universal metric which can successfully345

predict this transition. Nonetheless, expanding the WHTF method to extract multiple instantaneous frequencies346

should be explored in future work. The primary challenge of this expansion is that it will increase the dimension of347

the data analysis.348
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FIG. 6. Turbulence intensity (TI) vs Reynolds number for (a) the steady flow dataset and (b) the pulsatile flow dataset
including Womersley numbers 4 and 12.

B. Characterizing transition for our experimental setup349

Next, the onset of transition as well as the critical Reynolds number for the steady experimental dataset are charac-350

terized. This information will serve as a ground-truth by which the efficacy of TF-based metrics to evaluate transition351

progression.352

To evaluate the onset of transitional and fully turbulent flow, the traditional TI vs Re (S-shaped) curve was used.353

Fig. 6(a) shows the axial and radial TIs vs Res for the steady flow dataset. The observed curves closely matches those354

reported by Trip et al. [15], albeit with a slight shift of the Recritical value. For our setup, the onset of transition355

is seen at a Res of 2400, which is the point where the axial TI begins to rapidly increase. The Recritical is typically356

marked as the point where the axial TI begins to level off and/or where the radial TI S-curve plateaus. For our357

setup, this occurs at an Res = 3000. As the flow regime becomes fully turbulent, the axial TI decreases slightly with358

increasing Res, while the radial TI is plateaued and remains at a constant value. The peaks and valleys correspond359

to sub-critical transition as the flow in the laminar regime is largely 2D and gets disturbed to evolve to transition and360

eventual turbulence. The momentary fluctuation seen at Res = 2100 in Fig. 6(a) is most likely the effect of ancillary361

experimental disturbances which subsequently get relaminarized locally.362

For the pulsatile flow data, the exact critical Rem could not be ascertained as the data did not maintain a high enough363

resolution for tested Rem values within the transitional regime. Nonetheless, estimates for the onset of transitional364

and fully turbulent flow can be observed in Fig. 6(b). Specifically, for both Womersley numbers, transition begins365

around a Rem of 2300 and full turbulence is achieved by a mean Rem of 3200. This aligns with the findings of366

Trip et al. [15] who found that steady flow and pulsatile flows with Womersley numbers greater than 10 maintained367

negligible differences in the critical Rem values. The axial and radial TI behavior was consistent across both values of368

α. Specifically, a gradual decrease in both axial and radial TI occurred in the laminar regime until the Rem reaches369

the onset of transition. Beyond this point, the TI trends increased with increasing mean Re, until turbulence was370

achieved, at which point the trends roughly plateau. Hence, despite the similarity of critical Re′s across the steady371

and pulsatile datasets used here, notable differences in the behavior of the axial and radial TI trends were observed.372

For example, the axial and radial TI trends were largely similar for the pulsatile flow data, a finding inconsistent373

with the steady flow data. The different TI trends in pulsatile flow as compared to steady flow suggests underlying374

differences in the flow dynamics exist [49]. Hence, this finding implies that the unsteady component in the pulsatile375

flow effects the development of transitional and turbulent flow, but does not alter the critical Re. Ultimately, this376

demonstrates that the two datasets (steady and pulsatile) provide a robust set for our evaluation of TF-based metrics377

to assess transition progression in flow environments with varying turbulence development dynamics.378

C. Evaluating TF-based metrics capable of characterizing transition progression379

With the onset of transition and turbulent flow identified for our two test datasets, we next evaluated how the380

instantaneous frequency structures changed through the laminar, transitional, and turbulent regimes in order to381

determine the extent to which these features can be used to characterize transition progression. Fig. 7 plots the382

temporally-averaged spatial frequency map for the steady flow dataset at Res values ranging from 2200 to 3500.383

Here, the temporal averaging was done by averaging the instantaneous (i.e., at one time point) 2D spatial frequency384

maps through the entire time span of the data.385
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FIG. 7. Montage of frequency spatial structures within the pipe for varying Res values ranging from 2200–3500.

Hence, for each tile shown in Fig. 7, the streamwise (i.e., axial) direction varies from left to right and the spanwise386

(i.e., radial) direction varies from top to bottom. In the laminar regime (Res values of 2200 and 2400), fine frequency387

structures with an average frequency of 28 Hz are present throughout the pipe, which present with no general388

coherence. As the Res increases through the transitional regime (2500 to 2900), frequency structures with increasing389

coherence are observed. The frequency structures are primarily narrow-banded, axial in nature, and maintain a390

frequency of 25–45 Hz. Outside of these coherent frequencies, the remainder of the pipe generally maintains a391

baseline frequency of about 15 Hz. Once the flow achieves full turbulence at an Res of 3000, the coherent frequency392

structures primarily span the pipe cross-section, with minimal area maintaining a background frequency value. In the393

well established laminar regime, the fluid motion is dictated by movements of fluid layers which translate on top of394

each other [50]. This likely results in the frequency of the flow to be similar across the pipe cross section for laminar395

flow. However, as the flow starts evolving to the transitional regime, these layers are disturbed due to various factors396

such as increased friction and as a result the frequency composition changes in the radial (spanwise) direction. This397

causes locations in the pipe to have higher and lower frequencies based on relative motion. While the individual398

contribution of pressure and inertial forces on the frequency computation cannot be explicitly determined herein, it399

is of interest to evaluate in order to decompose the transition dynamics more explicitly. Thus, further studies which400

can correlate the velocity and pressure gradients with frequency gradients in 3D should be explored.401

Fig. 7 confirms that the dominant instantaneous frequency does change based on flow regime. Several specific,402

notable differences in the frequency structures were observed in the laminar, transitional, and turbulent regimes. In403

particular, the background frequency value, the area of the frequency structures, and the coherence of the frequency404

structures were markedly different for each flow regime. Thus, each of these represent possible metrics capable of405

characterizing the progression of transition.406

Fig. 8 plots the 1D spatial averaged frequency across the centerline of the pipe, which explores the background407

frequency notion. For the steady flow data, in Fig. 8(a), the centerline frequency was constant in the laminar regime,408

with a frequency value of about 29 Hz. As the flow becomes transitional (shown in gray), the centerline frequency409

plummets to a frequency of about 17 Hz at Res = 2600. This low centerline frequency can be observed in Fig. 7 as well,410

where the Res = 2600 case maintained very low frequency values throughout the pipe. For the later-stage transitional411

regime and early turbulent regime (Res between 2600 and 3500), the centerline frequency recovers to about 27 Hz,412

before decreasing to about 23 Hz by an Res = 4500. A somewhat similar behavior was observed for the centerline413

frequency trend in the pulsatile flow datasets, as shown in Fig. 8(b). For this case, the frequency was around 40 Hz414

for α = 4 and around 42 Hz for α = 12 in the laminar regime. In the transitional regime, the lowest frequency was415

around 30 Hz, beyond which the frequency behavior differed for each value of α. For α = 4, the frequency recovered in416

the turbulent regime to 36 Hz. However, for α = 12, the frequency dropped further to 28 Hz. This likely occurs as a417

result of the fact that changes in flow dynamics occur for flows with α >10. Specifically, prior studies have highlighted418

that for α > 10, transition dynamics mimic steady flow whereas for flow with α < 10, the transition dynamics are419

influenced by the pulsatile phase [30]. Overall, for pulsatile flow, the drop of centerline frequency magnitude as the420

flow became transitional was not as significant as compared to that of steady flow. Specifically, a 16 Hz drop occurred421

in the steady flow, while only a 10 Hz drop occurred in the pulsatile flow. Additionally, the pulsatile cases maintained422
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FIG. 8. Centerline frequency vs Reynolds number for the (a) steady flow dataset (where the transitional flow regime is shown
in gray) and (b) pulsatile flow datasets.

about a 10 Hz higher frequency magnitude across all Rem values as compared to the steady flow data. The laminar423

to turbulent peak frequency difference for steady flow was about 6 Hz as opposed to 3 Hz and 10 Hz for the pulsatile424

cases corresponding to α = 4 and α = 12, respectively. These results highlight that the centerline frequency does425

demonstrate a trend that notably differentiates the laminar, transitional, and turbulent regimes for both datasets.426

However, because of the frequency magnitude value differences, the metric—in its current, dimensional form—does427

not provide a means to determine the level of transitional or turbulent flow given a single representation (i.e., one Re428

value) of a specific flow. It is plausible that an appropriate non-dimensionalization of the centerline frequency could429

provide a universal metric to this end. Evaluating this notion would require additional standalone datasets and hence430

this should be explored in future work.431432

Fig. 9(a) plots the average area of the frequency spatial structures as a function of Res for the steady flow dataset.433

The mean size of the area structures were about 0.005 mm2 for the laminar regime. As the flow evolved to the434

transitional regime, the mean area jumped to 0.012 mm2 at Res = 2800, and stabilized at a mean area of about 0.01435

mm2 at the Recritical of 3000. In the turbulent regime, the mean area structures decreased to about 0.008 mm2.436

Fig. 9(b) shows the mean area structures for the pulsatile flow datasets. Similar to the steady flow dataset, the437

area magnitudes remained constant in the laminar regime for both Womersley numbers. However, the behavior in438

transitional and turbulent regimes differed. For α = 4, the mean area increased steadily throughout the transitional439

and turbulent regimes. Conversely, for α = 12, the mean area jumped to about 0.022 mm2 between the mean Re440

values of 2700 and 3200, and remained plateaued at this value through the turbulent regime. Together, Fig. 9(a) and441

9(b) suggest that the development of transition occurs faster in the steady and steady-mimicking α = 12 flows, and442

more gradually in the α = 4 flow. Overall, the mean area of frequency structures was universally observed to increase443

from the laminar to the turbulent regime.444

Fig. 9(c) and 9(d) show the area fraction (ϕs and ϕm) as a function of Re for the steady and pulsatile flows,445

respectively. Area fraction is a dimensionless quantity computed as the ratio of the total area within coherent446

frequency spatial structures to the total area of the pipe section. The ’total area within coherent frequency spatial447

structures’ is defined using two thresholds. First, only areas whose frequency value is greater than the mean frequency448

of the flow are included. This threshold enables the extraction of features having higher frequency makeup capable449

of influencing the flow dynamics. Second, an area size threshold is applied to include only areas of 20 sq. pixels or450

greater. This value is chosen anywhere below the median values so that any variations beyond such a small magnitude451

is insignificant. For both the steady and pulsatile flows, the area fraction increased slightly through the laminar regime452

within the range of 0.38–0.43. For the steady flow dataset, area fraction began decreasing at an Res of 2000. This453

decrease occurred throughout the transitional regime, before leveling off at an area fraction of about 0.35 in the454

turbulent regime. For the α = 4 case, area fraction began decreasing at an Rem of 2400, bottoming out at 0.35 at455

an Rem of 3200, and then finally increasing to about 0.37 in the turbulent regime. For the α = 12 case, area fraction456

decreased sharply from an Rem of 2700 to 3200 (dropping from 0.40 to 0.36), and then recovered to about 0.385 at457

an Rem of 4200. Thus, for all flow the turbulent regime area fraction recovered to roughly that of the laminar regime,458

while the area fraction dropped in the transitional regime. However, Fig. 9(a) and 9(b) highlighted that the overall459

size of the areas in the flow increased in transition. Hence, the area fraction analysis suggests that the slugs and460

puffs forming in the transitional regime maintained low frequencies, below the mean flow frequency. Overall, the area461

and area fraction do demonstrate a relationship with turbulence progression, but similar to the centerline frequency462
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(ϕs) as a function of Reynolds number for (c) steady flow and (d) pulsatile flow datasets.

analysis, a scaling or bias difference between the steady and pulsatile values existed.463

Fig. 10 shows the histograms for laminar, transitional, and turbulent regime Re values for the steady and pulsatile464

datasets. For the steady flow (Fig. 10(a)), the most prevalent area size for the laminar regime was approximately465

0.0005 mm2. This increased to 0.008 mm2 as the flow became turbulent. Fig. 10(b) and 10(c) show the histograms466

for the pulsatile flow dataset of α = 4 and α = 12, respectively. The most prevalent area size for the laminar regime467

was about 0.0005 mm2 and 0.0001 mm2 for the 4 and 12 Womersley number cases, respectively. In the turbulent468

regime, these values increased to 0.001 mm2 for α = 4 and 0.002 mm2 for α = 12. A notable difference in the469

total number of structures was observed, where the α = 4 case maintained about 4 times more structures than the470

steady flow case and about 5 times more structures than the α = 12 case. This difference likely indicates that for471

the α = 4 case, where pulsatility-induced structures have sufficient time to develop, leads to a significant increase in472

frequency structures. Despite the change in the number of spatial structures, the distribution of spatial structures473

appears to be unimodal and generally consistent for all cases. As the Reynolds number increased, an increase in the474

number of large area structures is clearly observed for all flows. Furthermore, in the turbulent regime, the decrease475

in the number of area structures becomes more gradual. Both of these findings indicate that the coherent frequency476

structures generated by turbulent flow are larger in spatial area than for laminar flow. Hence, this suggests that this477

characteristic of peak area magnitude does reflect the progression of transitional and turbulent flow development.478

However, further analysis is required to comment and classify this distribution as a type of log normal. Additionally,479

future studies should aim to correlate the skewness of such a distribution to the effect of Womersley number on the480

peak of these area structures.481

Fig. 11 evaluates the coherence of the frequency structures through the laminar, turbulent, and transitional regimes.482

Specifically, the DCT-entropy of the 2D spatial frequency maps shown in Fig. 11 are evaluated; DCT-entropy has483

been shown to provide a representative estimate of the organization of structures in a given flow field (or 2D map in484

general) [45]. Here, a higher DCT-entropy is expected to correlate with increased coherence of frequency structures.485

S-curve-type trends of the DCT-entropy are observed for both the steady and pulsatile datasets. In the laminar486

regime, the steady flow case, maintained an average DCT-entropy of 0.10, while the pulsatile flow with α = 4 and α487

= 12 had DCT-entropy values of about 0.08 and 0.30, respectively. The DCT-entropy increased significantly in the488
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FIG. 11. DCT-entropy for steady flow and pulsatile flow datasets including both the 4 and 12 Womersley numbers (α).

transitional regime, peaking at 0.30 for the steady flow data, 0.27 for the pulsatile flow data with α = 4, and 0.55 for489

the pulsatile flow data with α = 12. In the turbulent regime, the DCT-entropy decreases somewhat to about 0.18 for490

both the steady flow and pulsatile α = 4 cases and to 0.30 for the pulsatile α = 12 case. In general, the DCT-entropy491

trends for the steady and pulsatile flow, α = 4, are strikingly similar both in terms of trend and magnitude, while for492

the α = 12 case, the trend is similar, but magnitude is higher. This finding is of particular interest given that the α =493

12 case is expected to be steady-mimicking, yet the DCT-entropy trend suggests the opposite behavior. One possible494

explanation for this finding is that the high-frequency pulsation associated with the 12 Womersley number flow does495

serve to increase the overall energy in the flow, leading to a higher entropy. Considering Fig. 11 and Fig. 7, our496

findings suggest that in laminar flow, where no flow scales are expected, no frequency components truly exist within497

the flow. Hence, the lower values of DCT entropy in the laminar regime most likely reflect the pump fluctuations498
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and other experimental artifacts which are captured by the frequency algorithm. In the transitional regime, however,499

DCT entropy values peak. This likely occurs as a result of the rapid generation and dissipation of identifiable slugs500

and puffs which disturb the flow and generate clear and frequency components in the flow. In turbulent flow, the slugs501

and puffs are produced at higher rate than in transitional flow such that they are no longer individually discernible502

and maintain an ”interference” with one another. This would be expected to reduce the coherence of the frequency503

structures and provide an explanation for the reduced DCT-entropy in the turbulent regime.504

Fig. 12(a) shows the total TKE vs. frequency line and demonstrates the fitted -5/3 slope Kolmogorov spectrum505

line on a log-log scale for the steady flow at Res = 4500 case. The upper and lower frequency bounds between which506

the total TKE line matches the Kolmogorov spectrum were identified. This was done by extracting the abscissa value507

at the ends of this line segment.508

Fig. 12(b) and 12(c) show the time-averaged upper and lower TKE spectral bounds for all the steady flow and509

pulsatile flow cases, respectively. For the steady flow, laminar regime (Res < 2000), the total TKE-frequency trend510

matched the Kolmogorov spectrum for frequencies of about 30–50 Hz. By the transitional regime, this frequency511

range expands to about 10–70 Hz and in the turbulent regime, the frequency range reduces to about 10–40 Hz.512

Hence, this suggests that the laminar regime maintains a higher frequency range, the turbulent regime corresponds513

to a lower frequency regime, while the transitional regime envelops both the laminar and turbulent frequency ranges.514

For the pulsatile flow at both Womersley numbers, the total TKE-frequency line matches the Kolmogorov spectrum515

for frequencies in the range of 35–100 Hz for the laminar regime and 35–80 Hz for the transitional regime. In the516

turbulent regime, frequency ranges of 35–85 Hz for the α = 4 case and 20–95Hz for the α = 12 case are observed.517

Hence, for the α = 4 case, where the flow is noted to be highly influenced by the pulsatile cycle, the lower frequency518

bound did not change across the regimes.519

For the steady flow case and the α = 12 case—which was reported to mimic steady flow—a drop of the lower520

frequency bound is observed at the critical Reynolds number (from about 35Hz to 10Hz in the steady case; from521

about 35Hz to 18Hz in the α = 12 case). This suggests that for low Womersley numbers, the unsteady term in522

the pulsatile flow influences the low-Hz instantaneous frequencies to a greater extent than turbulent flow structures.523

Conversely, for steady and high Womersley number flows, the presence of turbulent flow structures drives the lower524

frequency bound and any pulsatility-induced unsteadiness is secondary. The dynamics of the upper frequency bound525

were different for each case. Specifically, for the α = 12 case, the upper frequency bound decreased in transition526

and then recovered to its laminar value in turbulence. This finding implies that the pulsatility-induced unsteady flow527

behaviors for high Womersley number flows influence the high-frequency flow dynamics. Only in the transitional flow528

regime, are the turbulent flow behaviors strong enough to influence this effect. For the α = 4 case, the upper frequency529

bound similarly decreases in transition, and then does not significantly change in the turbulent regime. Hence, this530

indicates a scaling-type effect, where the flow scales derived from the unsteadiness are primarily low-frequency (about531

35Hz), while for high Womersley flows they are high-frequency (about 90Hz). Moreover, because transitional and532

turbulent flow structures maintain frequencies in the range of about 10–30Hz, this finding may provide an explanation533

for why low Womersley number flows have been noted to maintain differing transitional flow dynamics as compared534

to steady flow while high Womersley number flows are steady-mimicking. For the steady case, the upper frequency535

bound increased to its highest value in transition, then decreased to below the laminar value in the turbulent regime.536

Hence, for steady flow, the largest frequency range was observed in transition, while for both unsteady cases, the537

smallest frequency range was observed in transition. This suggests that, to some extent, the unsteady flow behaviors538

potentially maintain a destructive interference with the developing transitional puffs and slugs. This finding and the539

TKE Kolmogorov fit

1 1.5 2
Log10(Frequency)

-5

0

3

L
o

g
1
0

(t
o
ta

l 
T

K
E

)

Res 4500 TKE fit(a) (b)

1000 2000 3000 4000
Res

0

10

20

30

40

50

60

70

F
re

q
u

en
cy

 (
H

z)

TKE window sizes for steady flow (c)

800 2300 3200 4200
Rem

0

20

40

60

80

100

F
re

q
u
en

cy
 (

H
z)

TKE window sizes for pulsatile flow

 = 12
 = 4

FIG. 12. (a) Demonstration of the Kolmogorov spectrum fit to the total TKE vs. frequency array for steady flow, Res = 4500
case. Minimum and maximum frequency ranges for which the total TKE arrays match the Kolmogorov spectrum for the (b)
steady flow dataset and (c) pulsatile flow datasets.
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possible interaction of the two distinct flow structure types should be explored further in future work.540

V. CONCLUSION541

In this work, we explore the efficacy of using the instantaneous frequency of the fluctuating velocity field to characterize542

the onset and development of transitional flow in pipes. Two experimental datasets including both steady-mean and543

pulsatile (unsteady-mean) pipe flow were used. Instantaneous dominant frequency of the fluctuating velocities of544

these datasets were evaluated using a novel Wavelet Hilbert Time Frequency (WHTF) analysis method presented545

herein. We demonstrated the accuracy of our WHTF method using analytical signals and highlighted its suitability546

for evaluating the TF representation of transitional and turbulent flows. The frequency analysis of the two flow547

datasets demonstrated clear differences in the instantaneous frequency structures across the laminar, transitional,548

and turbulent flow regimes. Specifically, we found that turbulent puffs and slugs generated during the transitional549

flow regime are low-frequency structures. Thus, this causes the centerline frequency of the pipe to drop significantly550

in the transitional regime. Additionally, the area of the frequency structures were observed to increase as the flow551

became transitional and turbulent. The transitional regime maintained the highest coherence of frequency structures,552

while the laminar regime maintained the lowest. Finally, we observed that the frequency range for which the total553

TKE spectrum matches the Kolmogorov spectrum is lower in frequency magnitude for turbulent flow as compared554

to laminar flow. Hence, these results revealed various characteristics of transitional and turbulent flow development555

as well as metrics that quantify this progression. Future work should aim to more specifically assess the behavior of556

these TF-metrics within specific stages of transition (e.g., sub-critical transition from 2D to 3D state, super-critical557

transition from 3D transition to 3D turbulence). Overall, this work takes a first step towards developing a universal558

metric capable of estimating transitional flow development for a pipe flow environment. Future work should focus on559

non-dimensionalizing the characteristic metrics identified herein to improve their universality.560
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