

# Characterizing the onset of transitional and turbulent flow regimes in pipe flows using instantaneous time-frequency-based analysis

Nikhil Shirdade, Jibin Joy Kolliyil, Baha Al-Deen T. El-Khader, and Melissa C. Brindise\*

Department of Mechanical Engineering

*The Pennsylvania State University*

University Park, PA 16802, USA

Accurately identifying the onset of transitional and turbulent flow within any pipe flow environment is of great interest. Most often, the critical Reynolds number ( $Re$ ) is used to pinpoint the onset of turbulence. However, the critical  $Re$  is known to be highly variable, depending on the specifics of the flow system. Thus, for flows (e.g., blood flows), where only one realization (i.e., one mean  $Re$ ) exists, the presence of transitional and turbulent flow behaviors cannot be accurately determined. In this work, we aim to address this by evaluating the extent to which instantaneous time-frequency (TF)-based analysis of the fluctuating velocity field can be used to evaluate the onset of transitional and turbulent flow regimes. Because current TF analysis methods are not suitable for this, we propose a novel 'wavelet-Hilbert time-frequency' (WHTF) method which we validate herein. Using the WHTF method, we analyzed the instantaneous dominant frequency of three planar particle image velocimetry-captured pipe flows which included one steady and two pulsatile with Womersley numbers of 4 and 12. For each case, data was captured at  $Re$ 's spanning 800–4500. The instantaneous dominant frequency analysis of these flows revealed that the magnitude, size, and coherence of two-dimensional spatial frequency structures were uniquely different across flow regimes. Specifically, the transitional regime maintained the most coherent, but lowest magnitude frequency structures, while the laminar regime had the highest magnitude, lowest coherence, and smallest frequency structures. Overall, this study demonstrates the efficacy of TF-based metrics for characterizing the progression of transition and turbulent flow development.

## I. INTRODUCTION

Transition to turbulence in pipe flows is characterized by intermittency [1–6]. At the onset of transitional flow, intermittent flow structures, or turbulent “puffs”, begin to form at locations of instabilities. As transition develops, the puffs occur with increasing frequency until they form at such a high rate the individual puffs are no longer discernible, at which point the flow is classified as fully turbulent [7]. Transitional flow induces significant fluctuations in pressure and wall shear stress which negatively affect pipe wall strength, flow energy losses, etc. Thus, accurately identifying the onset of this flow regime is of great interest.

Traditionally, the onset of transitional and fully turbulent flow is estimated using the non-dimensional Reynolds number,  $Re(= \rho U D / \mu)$ , where,  $U$  is the mean velocity ( $m/s$ ) of the flow,  $\rho$  ( $kg/m^3$ ) is the density,  $D$  ( $m$ ) is the diameter of the pipe, and  $\mu$  ( $Pa \cdot s$ ) is the dynamic viscosity of the fluid [8]. Many prior studies utilizing steady-mean and unsteady-mean (i.e. oscillating or pulsatile) pipe flows have ascertained the onset of transition to occur at a  $Re$  of about 2200–2500 and the critical  $Re$ ,  $Re_{critical}$ , when flow becomes fully turbulent to be 2700–3000 [9, 10]. These values are generally determined by evaluating the turbulence intensity (TI) of a flow across a range of  $Re$  values. This TI–Re relationship is represented by an S-shaped curve where TI in the laminar and turbulent regimes is roughly independent of  $Re$ .

$Re_{critical}$  values are highly specific to specific flow environments; factors including pipe roughness, pump-induced perturbations, geometry irregularities, pipe curvature, etc. are all known to alter the  $Re_{critical}$ . Hence, it is widely accepted that significant variability from the consensus  $Re_{critical}$  values can occur. The variability of  $Re_{critical}$  leads to a significant fundamental challenge of how to determine if a specific flow is transitional in nature [11]. This is particularly consequential in cases where only one representation of the flow (i.e., the flow at one mean  $Re$ ) is known. For example, in the biomedical domain, studies are increasingly asserting low  $Re$  flows to be transitional or fully turbulent. In one such study, Saqr *et al.* [12] evaluated the physiologic blood flow and concluded that an aneurysmal flow—which has significant cross-sectional variability—with a mean  $Re$  of about 300 was turbulent. Hence, this highlights an increasingly pressing need for universal metrics or characteristics capable of estimating the level of transitional flow behavior within any pipe flow environment.

Unfortunately, such a universal metric in pipe flows does not exist and methods to analyze transitional flows remain limited. Reported techniques to study transition to turbulence have involved the use of linearized Orr-Sommerfeld

\* Corresponding Author: mcb5351@psu.edu

52 eigenvalue stability equations or viewing the flow as a dynamical system and finding the onset of chaos using bifurcation  
 53 models [1]. However, these techniques are cumbersome and provide no visual information such that they cannot be  
 54 employed to universally pinpoint the onset of transition and eventual culmination of a 2D flow to a 3D turbulence.  
 55 Other studies have investigated the flow system as an excitable and bistable media because the localized puffs are  
 56 generated and split throughout transition [2]. The increasing time fraction in which these puffs appear radially in  
 57 the flow can also provide details regarding the onset of transition. This has been studied using Markov models as  
 58 probability distribution functions [3]. Overall, these approaches make use of a particular variable and hence do not  
 59 put forth a general trend in identifying a metric for the progression of transition.

60 Intermittency, by definition, suggests that transitional flow maintains characteristic frequencies [5, 13–15]. Thus,  
 61 time-frequency (TF) methods can provide quantitative insight on the development and progression of transitional  
 62 flow [16–21]. We previously demonstrated that TF analysis can be used to decompose the Kolmogorov spectrum in  
 63 transitional flow, and by using this technique flow structures across energy scales could be isolated and visualized.  
 64 Moreover, we showed that one instantaneous frequency (IF) appeared to primarily characterize the turbulent behavior  
 65 within a pulsatile transitional flow in Joy Kolliyil *et al.* [22],[23]. These findings suggest the possibility that TF  
 66 analysis can estimate the onset and progression of transition in a flow field. However, traditional TF approaches do  
 67 not maintain the required visual information in conjunction with flow parameters such as velocity and fail to portray  
 68 a complete analysis which puts forth a one-to-one mapping of frequency and flow parameters [24–26]. Some of the  
 69 other investigations which have studied time-dependent flows and turbulent mixing in the literature include instability  
 70 analysis such as Rayleigh-Taylor and Richtmyer-Meshkov instability.[27–29]

71 In this work, we aim to investigate the extent to which TF-based metrics can describe and identify the onset and  
 72 level of development of transitional and turbulent pipe flows.

73 Two experimental datasets were used for this study. First, we conducted a steady-mean, planar particle image  
 74 velocimetry (PIV) study with test cases spanning the  $Re_s$  range of 500 to 4500 such that the traditional TI vs  $Re$   
 75 S-curve could be established. Second, we utilized a pulsatile, transitional pipe flow dataset published in El-Khader  
 76 and Brindise [30]. The pulsatile dataset was captured using planar PIV and the same experimental setup as used for  
 77 the steady flow dataset. For both datasets, the instantaneous dominant frequency of the fluctuating velocity ( $u'$ ) field  
 78 at each spatial point was evaluated using a novel time-frequency analysis method we propose and validate herein.  
 79 We investigated how the TF representation of a flow differed in the laminar, transitional, and turbulent regimes.  
 80 Specifically, we assessed the extent to which TF-based metrics reflected the traditional TI vs.  $Re$  S-curve and the  
 81 extent to which the TF-metric values were "universal" across the different datasets used for testing herein.

82 Overall, this work takes a first step towards addressing the critical need for a universal metric to identify the onset  
 83 and development of transitional and turbulent flow in pipe flows which can later be extended to any arbitrary flow  
 84 environment.

## 86 II. PROPOSED INSTANTANEOUS TIME-FREQUENCY EVALUATION METHOD

87 For this work, we developed a novel time-frequency analysis method, which utilizes the continuous wavelet transform  
 88 (CWT) [31–35] and Hilbert transform. We term this the Wavelet-Hilbert Time-Frequency (WHTF) method. The  
 89 WHTF method, schematically shown in Fig. 1, is a computationally-light algorithm that computes the instantaneous  
 90 dominant frequency at each point in space and time. The use of a computationally-light method herein ensures our  
 91 findings are adaptable to complex flow environments of any Reynolds number and large datasets. The WHTF method  
 92 iterates through each spatial point individually (Fig. 1(a)). The 1-D fluctuating velocity ( $u'$ ) vs time trend at the  
 93 particular spatial point is the input to the calculation. The Hilbert transform of the fluctuating velocity signal is  
 94 computed (Fig. 1(b)) and the CWT of this signal is evaluated (Fig. 1(c)). For the CWT computation, the Morlet  
 95 wavelet was chosen as the mother wavelet due to its various advantages such as analyzing temporal behavior of  
 96 non-stationary signals [36] and its shape function being similar to input pulsatile waveforms [37]. Additionally, using  
 97 analytical signals with ground-truth frequencies, we tested the efficacy of other mother wavelets (e.g., 'Mexican Hat',  
 98 'Symlet') and found the Morlet to provide optimal performance accuracy and robustness. The scales of the CWT are  
 99 uniformly defined from 0 to the Nyquist frequency for the given signal. The Hilbert Transform computes the analytical  
 100 signal, resulting in both real and imaginary components with a 90° phase shift. Hence, the CWT of the Hilbert  
 101 transform of a signal results in a smooth coefficient field. The CWT of the raw signal would yield an intermittent  
 102 dotted coefficient pattern even for constant frequency signals; this dotted pattern would be unsuitable for extracting  
 103 the instantaneous dominant frequency. The combination of the Hilbert transform and CWT is computationally similar  
 104 to a dual-tree wavelet transform. The evaluated CWT coefficient field is filtered using the discrete wavelet transform  
 105 (DWT). Specifically, the 'sym8' wavelet is employed to smoothen the coefficients as the raw CWT coefficients can  
 106 maintain noisy, high amplitude peaks in the frequency array. The 'sym8' was chosen as it has been shown to be  
 107 optimal for signal denoising [38–40]. No forced denoising was employed in the filtering process. The filtered wavelet  
 108 coefficient map is shown in Fig. 1(c) (Bottom). To evaluate the instantaneous dominant frequency, the largest peak

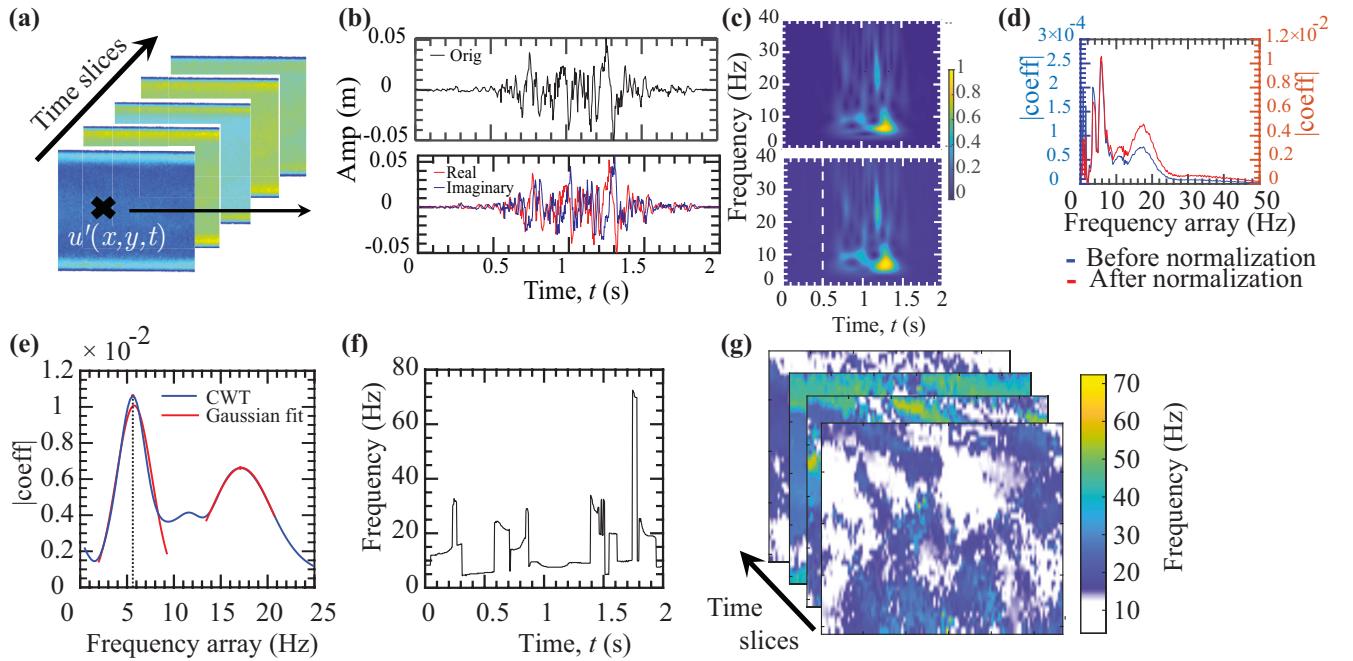


FIG. 1. Overview of the WHTF method. (a) The fluctuating velocity,  $u'$ , array in time is extracted for a single spatial point. (b) The Hilbert transform of the "original" signal is computed and the (c) CWT coefficient map is evaluated (Top) and smoothed (Bottom) for this signal. CWT coefficients at each time step are extracted (see white dashed line in (c) Bottom) and (d) normalized to account for CWT peak differences across scales. (e) Peaks in the normalized coefficient array are identified and Gaussian fits are used to further localize the peak and identify the the dominant IF for that spatiotemporal point. This peak identification is repeated for all time steps. (f) The temporal variation of the dominant IF for the given spatial point. The process shown in (a)-(f) is repeated for all spatial points. (g) 2D spatial frequency maps showing the dominant IFs through space and time.

of the wavelet-coefficient field must be evaluated at each time step (i.e., each column of the wavelet coefficient map). Thus, each column of the wavelet coefficient field is iteratively extracted and evaluated individually, as represented by the dotted white line in Fig. 1(c) (Bottom).

Fig. 1(d) shows the extracted coefficient array at the time step of about 0.5s. The coefficient array is normalized using an empirically-defined normalization function in order to account for the uneven distribution of energy across scales inherent to the CWT. Specifically, an intrinsic drawback of the CWT is that low frequency components yield larger coefficient magnitudes than high frequency components, even when the two frequency components maintain the same amplitude. Fig. 2 explicitly demonstrates this, showing the CWT coefficient fields for one-frequency component sine signals with frequencies of 1 Hz, 50 Hz, and 100 Hz. It is clearly observed that the 100 Hz signal results in lower CWT coefficient magnitude than the 1 Hz or 50 Hz signals. Fig. 2(d) illustrates the peak CWT coefficient magnitude as a function of the sine signal frequency. The consequence of this inherent CWT limitation is that it creates a bias to select lower frequencies as dominant even in cases where a higher frequency has the same or even slightly higher

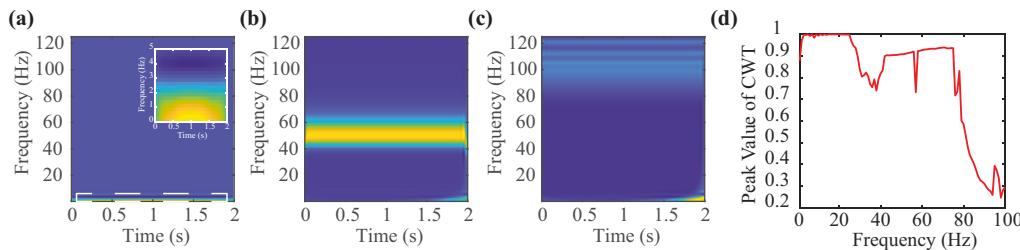


FIG. 2. Defining the scale-varying CWT normalization function. The CWT coefficient maps for sine signals with single frequencies of (a) 1 Hz, (b) 50Hz, (c) 100 Hz show the difference in CWT coefficient peak amplitude as a function of scale (frequency). The sub-tile in (a) zooms in on the low frequency range. (d) The peak CWT coefficient magnitude for sine signals with frequencies ranging from 1–100 Hz.

121 amplitude. Hence, for our purposes it is important to correct this behavior. Thus, we utilize the signal shown in  
 122 Fig. 2(d) as the empirically-defined normalization function which is interpolated onto the CWT scales. Fig. 1(d)  
 123 shows the CWT coefficient array after normalization, where it can be observed that low frequency peaks are reduced  
 124 in magnitude and high frequency peaks are increased in magnitude.

125 Finally, the normalized coefficient array is smoothed using a moving average. The peaks of the normalized and  
 126 smoothed coefficient array are identified in Fig. 1(e). A 15-point window around each peak is extracted and a Gaussian  
 127 fit is evaluated on this window. The frequency corresponding to the peak of the Gaussian fit is computed. This  
 128 Gaussian fit is used to account for any remaining noise and any scale-resolution limitations. The 15-point window size  
 129 was chosen due as, through our testing, it showed high performance in aiding the selection of the best peak. However,  
 130 one limitation of this 15-point window size is that it can lead to fit errors for smaller, less prominent peaks. Because  
 131 here we are only extracting the most dominant peak, this limitation will not effect our results. However, the chosen  
 132 window size should be reconsidered if multiple frequency peaks are to be considered or if a lower scale (i.e., frequency)  
 133 resolution is used for the wavelet transform. Each evaluated frequency peak represents a frequency component in the  
 134 signal at that time step. The dominant frequency is evaluated using a peak selection metric criterion. Specifically,  
 135 peaks retained through the Gaussian fit are evaluated for peak prominence, peak height, and root mean square (RMS)  
 136 error. The metric is computed as a ratio of the product of peak height and peak prominence to the square root of the  
 137 RMS error. The peak with the maximum metric value is selected as the dominant peak. Iterating through each time  
 138 step (each column of Fig. 1(c)) results in the 1D dominant frequency vs time array for the particular spatial point,  
 139 as shown in Fig. 1(f). This entire process (steps (a)–(f)) is repeated for all spatial points in the flow field. Fig. 1(g)  
 140 depicts the instantaneous dominant frequency evaluated at each spatial point and time, which is the output of the  
 141 WHTF method.

142 Overall, the novelty of the WHTF method is the unique coupling of the established transforms, the wavelet coef-  
 143 ficient normalization step, and the developed instantaneous peak detection. Using this approach, we overcome the  
 144 limitations of the wavelet transform to deliver smooth and accurate instantaneous frequencies. The WHTF method  
 145 was implemented in MATLAB®. Using a PC computer, and a typical experimental dataset of size  $199 \times 160$  vectors  
 146 with 1000 timesteps, the WHTF method calculates the dominant frequency for a single spatial point in approximately  
 147 1.5 seconds and takes about 13 hours for the entire dataset. While here we apply the WHTF method only to 2D  
 148 datasets, its implementation is agnostic to the data dimensionality and thus the WHTF method can readily be applied  
 149 as is to 3D data.

### 150 III. MATERIALS AND METHODS

#### 151 A. Analytical Test Signals

##### 152 1. Data generation

153 We first validated the accuracy of the WHTF method using 'single' and 'multi'-frequency analytical signals. Sine  
 154 signals were generated according to:  $A * \sin(\omega t)$ . Here,  $\omega = 2\pi f$ , where  $f$  is the ground-truth frequency and  $\omega$  is the  
 155 angular frequency of the signal. Amplitude,  $A$ , was kept at a constant value of 1. Each of these signals contained  
 156 499 data points and were defined for a duration of two seconds. The 'single'-frequency signals were defined such  
 157 that only one frequency component, with variable frequency, existed in the signal at any given time. Specifically,  
 158 each signal maintained one frequency from 0–1s and a different frequency from 1–2s. The signals were defined in  
 159 this manner as one goal of this initial validation was to test the accuracy of the WHTF method for detecting step  
 160 changes in frequencies. A total of 3 'single'-frequency signals were generated. For all signals, a frequency of 2Hz was  
 161 used from 0–1s. From 1–2s, the frequency was varied across signals including values of 5 Hz, 50 Hz, and 100 Hz.  
 162 'Multi'-frequency signals were defined as the summation of two single-frequency sine functions. Each frequency was  
 163 present through the entire signal. Three 'multi'-frequency signals were defined which used frequency pairs of 2 Hz  
 164 + 5 Hz, 2 Hz + 15 Hz, and 2 Hz + 25 Hz. These pairs were selected to test the utility of WHTF to identify low  
 165 frequency in addition to sensitivity of capturing another higher frequency above this low frequency.

##### 166 2. State-of-the-art TF Methods used for Comparison Testing

167 The WHTF method was compared with other traditional methods of frequency estimation in the literature, including  
 168 the short-time Fourier transform (STFT) and empirical mode decomposition-Hilbert Huang transform (EMD-HHT)  
 169 [25]. The STFT was computed using the built-in MATLAB® function 'spectrogram' with a sampling window of 50  
 170 points. The window overlap was kept at 75% of the STFT window size. The number of points used for the fast Fourier  
 171 transform (FFT) was kept at 500, (for signals with a sampling frequency of 250Hz). Through testing, these window  
 172 size and overlap settings were determined to provide the highest accuracy for the STFT method for the tested signals.

173 The EMD-HHT was computed in two steps. First, the EMD was computed using the built-in MATLAB® function.  
 174 The EMD output was used to compute the intrinsic mode functions (IMF) as described in Huang *et al.* [25]. The  
 175 dominant frequency was then extracted as the first column output of EMD-HHT.

176 *3. Error Analysis*

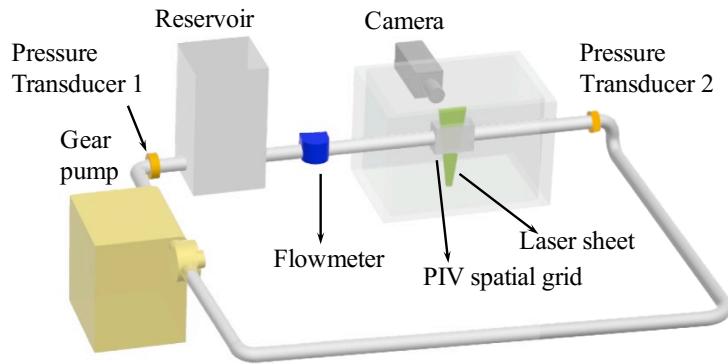
177 Error analysis for the analytical signal testing was conducted to assess the accuracy of each tested TF method for  
 178 estimating the ground-truth frequency. Here, the error was defined as the absolute error, i.e., the magnitude of the  
 179 difference between the ground-truth frequency value and the value of frequency computed using the methods.

180 **B. Experimental Datasets**

181 Two experimental transitional pipe flow datasets, both captured using planar PIV were used for this study. One  
 182 dataset included a suite of steady-mean flow test cases, which was specifically captured for this study. This dataset  
 183 will be referred to as the "steady flow" dataset for the remainder of the manuscript. The second dataset included an  
 184 unsteady-mean pulsatile flow test cases which were captured as part of a prior study by El-Khader and Brindise [30].  
 185 This dataset will be referred to as the "pulsatile flow" dataset for the remainder of the manuscript. Both datasets  
 186 utilized the same experimental test rig. The Reynolds number for each dataset was defined using the equation provided  
 187 in the Introduction. For the steady flow dataset, we refer to the Reynolds number as  $Re_s$ , while for the pulsatile  
 188 flow dataset, we refer to it as  $Re_m$ . This distinction is made for completeness; however, Trip *et al.* [15] showed that  
 189 pulsatile flows defined using their mean velocity maintained analogous TI vs.  $Re$  trends to steady-mean flows. Thus,  
 190  $Re_s$  and  $Re_m$  are expected to be effectively analogous such that side-by-side comparisons of the two datasets can  
 191 validly be made.

192 *1. Steady Transitional Pipe Flow Dataset*

193 A schematic of the experimental flow loop and PIV setup used is shown in Fig. 3. The test section consisted of  
 194 straight, rigid FEP (fluorinated ethylene propylene) tubing with an inner diameter,  $D$ , of 1/4". The test fluid, water  
 195 (density,  $\rho = 997 \text{ kg/m}^3$  and kinematic viscosity,  $\nu = 0.98 \times 10^{-6} \text{ m}^2/\text{s}$ ), was pumped through the loop using a  
 196 computer-controlled gear pump. To monitor the flow loop, pressure transducers (Omega®) were placed upstream  
 197 and downstream of the test section and an ultrasonic flowmeter (Transonic Inc.®) was placed upstream of the test  
 198 section. The test section was preceded by a 150D+ length of uninterrupted tubing to ensure fully developed flow  
 199 was captured. In addition, the test section was submerged in the working fluid (water)—which maintains the same  
 200 refractive index (RI) as FEP—to reduce optical distortions in the PIV images. A total of 17 steady flow test cases



201 FIG. 3. Experimental setup used for the planar PIV experiments for both steady and pulsatile flows.

202 were captured. The steady flow Reynolds number,  $Re_s$ , for the measured cases ranged from 500-4500 to establish the  
 203 onset of transition in our flow system. The complete list of test cases is provided in Table I.

204 A single 4-megapixel high speed camera (Phantom VEO®) was used to capture planar PIV images. An Nd-  
 205 YLF(Neodymium-doped Yttrium Lithium Fluoride) laser (Photonic Industries®,  $\lambda = 527 \text{ nm}$ ) was used to create  
 206 a laser sheet with a thickness <1 mm that was centered on the test section tube. The flow loop was seeded with  
 207 10  $\mu\text{m}$  fluorescent particles. A double-pulsed PIV timing scheme was used. Image pairs (i.e., velocity fields) were  
 208 captured at a frequency of 500 Hz. The inter-frame time of the camera was adjusted between cases such that the

TABLE I. POD parameters for steady flow test cases

| $Re_s$ | Effective $dt$ ( $\mu$ s) | Modes | Energy retained (%) |
|--------|---------------------------|-------|---------------------|
| 500    | 225                       | 1445  | 74.91               |
| 1000   | 113                       | 1821  | 85.35               |
| 1500   | 75                        | 1391  | 73.48               |
| 2000   | 56                        | 1525  | 77.08               |
| 2100   | 54                        | 3031  | 99.87               |
| 2200   | 51                        | 1372  | 73.14               |
| 2300   | 49                        | 1373  | 73.30               |
| 2400   | 47                        | 3031  | 99.89               |
| 2500   | 45                        | 3000  | 99.74               |
| 2600   | 43                        | 3024  | 99.90               |
| 2700   | 41                        | 141   | 62.73               |
| 2800   | 40                        | 197   | 58.24               |
| 2900   | 39                        | 197   | 49.85               |
| 3000   | 38                        | 244   | 52.09               |
| 3200   | 35                        | 240   | 49.91               |
| 3500   | 32                        | 283   | 50.80               |
| 4500   | 25                        | 422   | 56.04               |

maximum particle displacement per frame was around 8-12 pixels. Table I reports the inter-frame time for all cases. The camera magnification was  $4.15 \mu\text{m}/\text{pixel}$ . The image resolution was  $2560 \times 1600$  pixels and a total of 1000 images were captured for each test case.

PIV images were processed using a publicly available software [Prana](#). Processing was done using three passes of an iterative image deformation algorithm, and robust phase correlation (RPC) [41–43]. A window size of  $64 \times 64$  with a 50% Gaussian window was used for the final pass. This resulted in a  $32 \times 32$  pixel effective window size which mitigated spectral leakage. The PIV final pass used an  $8 \times 8$  pixel grid size. The velocity fields output from the final PIV pass were of size  $199 \times 160$  vectors.

PIV velocity fields for the steady flow data were post-processed first using universal outlier detection (UOD) to remove spurious vectors [44]. Specifically, three-passes of a median-based UOD were used which included a window size of  $7 \times 7$  and threshold of 3, a window size of  $5 \times 5$  and threshold of 2, and a window size of  $3 \times 3$  and threshold of 2. Subsequently, proper orthogonal decomposition (POD) was applied to the velocity fields. POD decomposes the velocity fields into a set of eigenmodes; a subset of these modes are reconstructed to yield a reduced-order, smoothed version of the velocity field data. The number of modes retained for the reduced-order reconstruction were autonomously calculated using the entropy line fit (ELF) thresholding criterion, as shown in Brindise and Vlachos [45]. The resultant filtered velocity fields were used for all post-processing calculations. To confirm the accuracy of the PIV data, we compared the experimental velocity profile for the  $Re_s = 500$  case, which is well within the laminar regime, to the analytical Poiseuille flow profile. The error was found to 1.5%, highlighting that the PIV study was well-controlled and accurate.

## 2. Pulsatile Transitional Pipe Flow Dataset

The pulsatile transitional pipe flow dataset from El-Khader and Brindise [30] was used herein. We provide a brief description of this dataset, but the refer the reader to El-Khader and Brindise [30] for complete details.

A total of 12 test cases from the prior study were analyzed for this work. These included mean Reynolds number ( $Re_m$ ) values of 800, 2300, 2500, 2700, 3200 and 4200, each at two Womersley numbers of 4 and 12, defined by,  $\alpha$  ( $= R\sqrt{(2\pi f/\nu)}$ ), where  $R$  is the radius of the pipe and  $\nu$  is the kinematic viscosity. We note that 6 additional test cases were captured as part of the El-Khader and Brindise [30] study; these included Womersley numbers of 6, 8, and 10, each captured at  $Re_m$  of 2500 and 2700. However, these test cases were not included herein. The literature has shown that the flow behavior is altered for Womersley numbers  $\geq 10$ , as compared to Womersley numbers  $\leq 10$  [46, 47]. Thus, the Womersley number values of 4 and 12, alone, should sufficiently capture a broad range of pulsatile flow dynamics.

The flow loop design for the pulsatile flow dataset matched that of the steady flow dataset collected for this study. The same test section, camera, and laser sheet configuration were used. For this study, the camera magnification was set at  $6.67 \mu\text{m}/\text{pixel}$  and images of size  $1024 \times 1024$  pixels were captured. The PIV images were collected using a double-pulsed timing scheme. Image frame pairs were captured at 750 Hz, and the inter-frame time between images in the pair was adjusted between cases to ensure a maximum particle displacement of 8-12 pixels. The frame pair frequency was set to ensure at least two pulsatile cycles were captured for each test case. PIV images were processed

246 using the same protocol as used for the steady flow data. Velocity fields for the pulsatile flow cases were of size  
 247  $127 \times 127$  vectors.

248 The velocity fields for the pulsatile flow were post processed using POD first. ELF was again employed to determine  
 249 the modes to retain. After this, UOD analysis was done to remove any outliers in the data, which were particularly  
 250 possible around the edges of the spatial grid. The post-processed velocity fields for the pulsatile flow data for UOD  
 251 settings were similar to steady flow. Finally, the velocity fields were phase-averaged using 2 pulsatile cycles. The  
 252 smoothed and phase-averaged velocity fields were used for all subsequent calculations.

### 253 3. Post-processing

254 For both datasets, the fluctuating velocity components ( $u'$  and  $v'$ ) were first computed using the Reynolds decom-  
 255 position. For the steady flow data, the fluctuating velocity fields were obtained after subtracting the temporal mean  
 256 velocity from the post-processed velocity components. As, the steady flow is time independent, the mean velocity was  
 257 just computed as a simple averaging. For the pulsatile flow data, the fluctuating velocity components computed in  
 258 El-Khader and Brindise [30] were used as is. Briefly, the mean velocity calculation for this dataset needed to account  
 259 for the pulsatility and not enough pulsatile cycles were computed to utilize a traditional ensemble averaging. Thus,  
 260 as done in Brindise and Vlachos [48], the mean velocity components were calculated as a fifth-level DWT decom-  
 261 position of the one-dimensional temporal velocity field at each spatial point using a ‘sym8’ wavelet. This calculation  
 262 removes high-frequency components, leaving only the underlying low-frequency pulsatile waveform. This calculation  
 263 is repeated for each spatial point to compute the mean velocity components for the entire dataset.

264 Turbulent kinetic energy (TKE) and TI were subsequently computed according to Eqn. 1 and Eqn. 2, respectively,  
 265 where  $\bar{U}$  is the centerline velocity.

$$266 \quad \text{TKE} = \frac{1}{2}(u'^2 + v'^2), \quad (1)$$

$$267 \quad \text{TI} = \frac{1}{\bar{U}} \sqrt{\frac{1}{2}(u'^2 + v'^2)}, \quad (2)$$

268 Because the datasets are captured in a two-dimensional, two-velocity component (2D-2C) manner using planar PIV,  
 269 Eqn. 1 and Eqn. 2 do not include the third-dimensional  $w'$  component since it is not measured by this setup. The use  
 270 of a 2D data capture is an apparent limitation of this study. However, we note that for shear flows, employing Squire’s  
 271 theorem, it suffices to study the cause of a 2D flow being unstable since, if a 2D flow is unstable then consequently,  
 272 the 3D flow will be unstable.

### 273 4. Details on TF-based metric evaluations

274 The WHTF was evaluated for each test case. Using this output, dominant frequencies could be plotted as instantaneous  
 275 2D spatial contour maps (i.e., as shown in Fig. 1(g)). Using this mapping, so-called “coherent frequency structures”,  
 276 which are connected regions in the spatial grid having similar frequencies, were evaluated. To do this, the built-in  
 277 MATLAB® function *imbinarize* was first applied to the spatial frequency map contour to identify the connected  
 278 frequency regions. Adjacent spatial grid locations were considered connected if their frequency values were within 0.4  
 279 Hz. Using the frequency contours, the number of contours as well as mean frequency and area of each contour could  
 280 be directly computed.

281 The Shannon entropy of the discrete cosine transform (DCT) of the 2D spatial frequency maps were computed to  
 282 quantitatively estimate the overall coherence of the maps. The DCT-entropy metric was introduced by Brindise and  
 283 Vlachos [45] and shown to accurately estimate the coherence vs. speckled-nature of a 2D map. For this calculation,  
 284 the 2D DCT of the 2D spatial frequency maps were computed. The Shannon entropy of these DCT maps were  
 285 subsequently calculated.

286 Joy Kolliyil *et al.* [22] highlighted that evaluating the instantaneous frequency of the TKE could be used to de-  
 287 compose the Kolmogorov spectrum. Thus, herein, we evaluated how the instantaneous frequency spectrum changed  
 288 across different flow regimes. For this analysis, TKE histograms were computed at each time step at each scale. We  
 289 refer the reader to Joy Kolliyil *et al.* [22] for complete details on this calculation. Briefly, in the 2D spatial map, the  
 290 instantaneous frequency and TKE value pairs are considered. For each unique frequency value, the corresponding  
 291 TKE values for all spatiotemporal points with that frequency are summed (effectively a histogram). Hence, a total  
 292 TKE vs. frequency distribution is computed.

293

## IV. RESULTS AND DISCUSSION

### 294 A. TF method comparison using analytical signal suite

295 We first analyze the accuracy and rigor of the WHTF method as compared to traditional TF analysis methods  
 296 (STFT and EMD-HHT) using the analytical signal suite with known ground-truth frequencies. Fig. 4(a)–(c) shows  
 297 the frequencies estimated by each TF method for the three single-frequency analytical signals, while Fig. 4(d)–(f)  
 298 shows the corresponding error analysis.

299 A significant ringing effect for the EMD-HHT is clearly observed. The oscillations worsened as the magnitude of the  
 300 analytical frequency jump occurring at 1s was increased. This behavior is analogous to the ringing effect often observed  
 301 with fast Fourier transforms (FFTs). The STFT exhibited no oscillatory behavior for high frequencies. However, for  
 302 low frequencies—the 2Hz frequency especially and less so the 5Hz frequency—oscillations at the estimated frequency  
 303 were observed. Here, this is a result of resolution limitations inherent to the STFT. Specifically, for lower frequencies,  
 304 the window size is too small to accurately detect the frequency. With the WHTF method, little to no oscillatory  
 305 behavior in the estimated frequency trend was observed. However, the WHTF did suffer from, at times, bias errors in  
 306 the predictions. For example, in Fig. 4(c), from 1–2s when the analytical frequency was 100 Hz, the WHTF predicted  
 307 the frequency to be 104 Hz, a 4% bias error. Because the WHTF utilizes the CWT, this error occurs as a result of  
 308 inherent limitations of the wavelet transform. Specifically, at high frequencies, the CWT maintains a low resolution  
 309 in frequency; this produces a broad CWT coefficient peak, leading to higher uncertainty in the predicted frequency  
 310 value. In Fig. 4(c), the WHTF also exhibited a time-delayed recognition of the frequency change at 1s. This occurs  
 311 because the previously discussed limitation that CWT favors low frequency peaks that results in a delay of when the  
 312 high frequency peak achieves a higher amplitude than the low-frequency peak.

313 Table II summarizes the errors associated with each TF method for the single-frequency signals. For the 5 Hz and 50  
 314 Hz signals, the WHTF maintained on average a 63% and 45% improvement over the EMD-HHT and STFT methods,  
 315 respectively. For the 100 Hz signal case, the WHTF maintained a high mean error. However, this error decreases to  
 316  $2.42 \pm 5.00$  Hz when the delayed detection of the frequency change and edge effects are excluded. Nonetheless, the  
 317 STFT method maintained the best performance for this high-frequency case.

318 Fig. 5 considers the performance of each TF method when more than one frequency is present throughout the signal.  
 319 For this analysis, it is particularly of interest to evaluate which frequency is detected by each TF method and to what  
 320 extent the predicted frequency jumps between the two possible solutions. For all signal pairs, the STFT identified  
 321 only the larger of the two frequencies as the dominant frequency and did not detect the lower 2Hz component. This  
 322 can be attributed to window resolution limitations, which cause the STFT to favor larger frequencies. The EMD-  
 323 HHT method similarly identified the higher frequency for all signal pairs. However, the EMD-HHT again maintained  
 324 considerable oscillations throughout as well as large errors at the start and end of the signal. The WHTF method

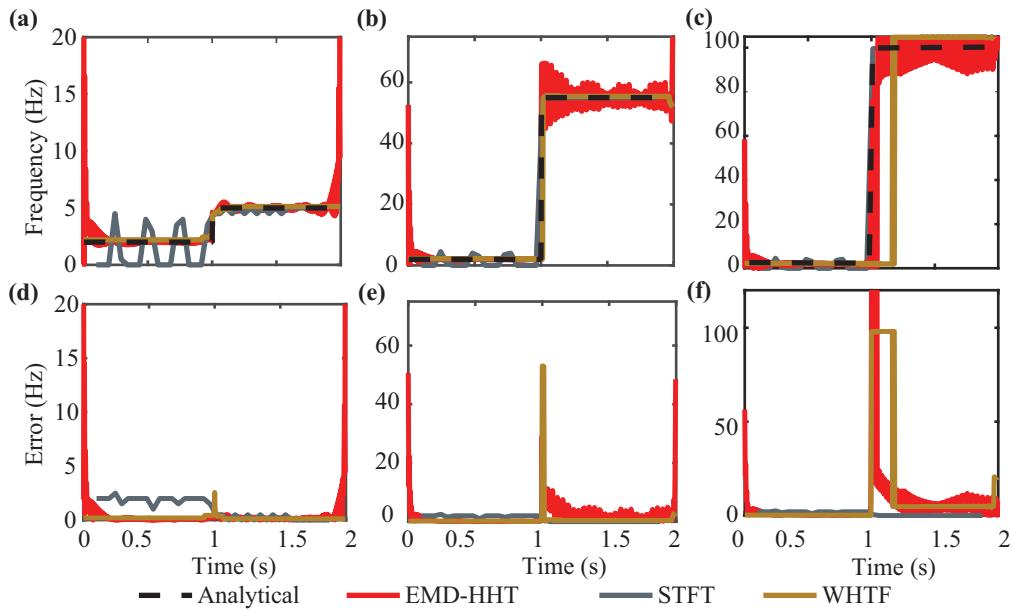


FIG. 4. Frequencies identified by the EMD-HHT, STFT, and WHTF methods for the single frequency signals with a 2 Hz frequency from 0–1s and a frequency from 1–2s of (a) 5 Hz, (b) 50 Hz, and (c) 100 Hz. (d-f) show the error associated with each time-frequency method for the 2 Hz to 5 Hz, 2 Hz to 50 Hz, and 2 Hz to 100 Hz signals, respectively.

TABLE II. Comparison of WHTF, STFT and EMD-HHT for the three single frequency signals. The values are reported as mean  $\pm$  standard deviation.

| Cases      | WHTF              | STFT            | EMD-HHT          |
|------------|-------------------|-----------------|------------------|
| 2 & 5 Hz   | $0.18 \pm 9.14$   | $1.03 \pm 0.13$ | $0.52 \pm 3.20$  |
| 2 & 50 Hz  | $0.88 \pm 4.25$   | $0.96 \pm 0.99$ | $2.24 \pm 4.38$  |
| 2 & 100 Hz | $11.12 \pm 27.53$ | $0.97 \pm 0.98$ | $6.27 \pm 22.08$ |

325 maintained the most varied selection of the dominant frequency component. In Fig. 5(a), for the 2 Hz + 5 Hz  
 326 frequency pair, the WHTF method only identified the 5 Hz signal. Conversely, for the highest frequency pair case  
 327 of 2 Hz + 100 Hz (Fig. 5(c)), the WHTF identifies the low-frequency as the dominant peak. The 100 Hz is only  
 328 selected as dominant for the very beginning and end of the signal. This can be attributed to resolution limitations  
 329 arising from edge effects of the CWT mapping. For the 2 Hz + 50 Hz case (Fig. 5(b)), the WHTF selects the lower  
 330 frequency as dominant in the middle of the signal (0.5s–1.5s), but the 50Hz component as dominant outside of this  
 331 window. The variable dominant frequency selection can be attributed to the peak selection on the basis of coefficient  
 332 magnitude coupled with the inherent limitation that CWT coefficient magnitude is frequency-dependent. In general,  
 333 this multi-frequency signal analysis demonstrates that the WHTF method is the only method capable of identifying  
 334 low-frequency components when high-frequency components are present. This, combined with its improved accuracy  
 335 for frequency detection, makes the WHTF method most suitable for analyzing instantaneous frequency components  
 336 in flow velocity fields.

337 Fig. 5(d)–(f) show the CWT coefficient maps for multi-frequency signals. It is clearly observed that both frequency  
 338 components are identified by the CWT, but because only one frequency is selected by the peak detection, one  
 339 frequency component is defacto missed by the WHTF method. While adding a second peak identification to the  
 340 WHTF method can resolve this issue, adding this capability is not desirable for the goals of this work. Specifically,  
 341 this is because Joy Kolliyil *et al.* [22] demonstrated that for noisy signals only the most dominant frequency can be  
 342 accurately identified, even when additional signal windowing modules are included to improve frequency identification.  
 343 Furthermore, Joy Kolliyil *et al.* [22] highlighted that the turbulent behavior of a flow is often contained within a single  
 344 IF, such that the WHTF should be capable of providing critical details regarding transition progression. Hence,  
 345 identifying a single dominant frequency is the first step towards arriving at a universal metric which can successfully  
 346 predict this transition. Nonetheless, expanding the WHTF method to extract multiple instantaneous frequencies  
 347 should be explored in future work. The primary challenge of this expansion is that it will increase the dimension of  
 348 the data analysis.

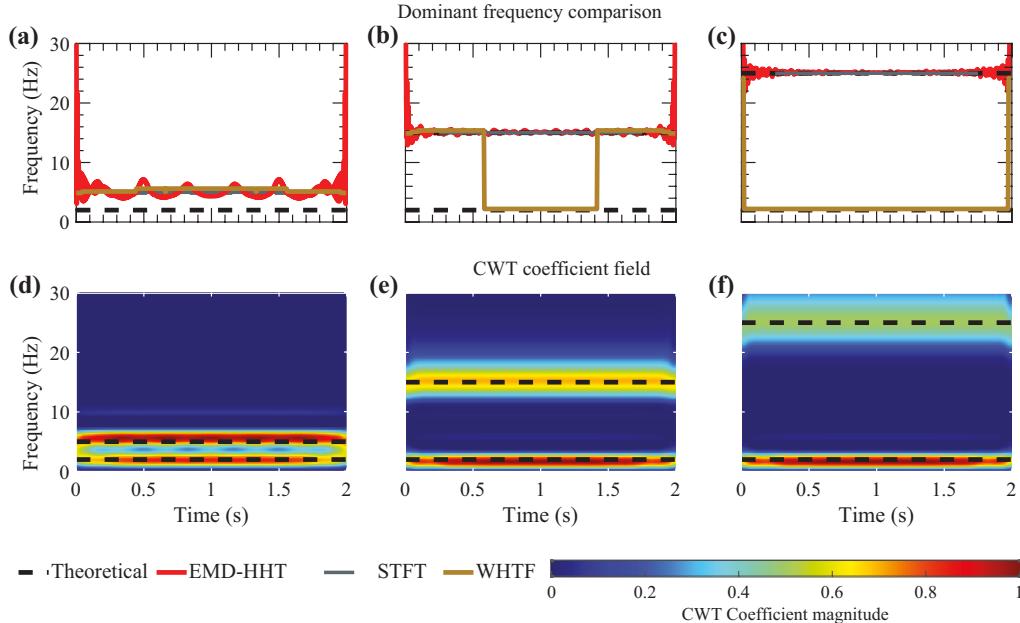


FIG. 5. Frequencies identified by the EMD-HHT, STFT, and WHTF methods for the two frequency (a) 2 Hz + 5 Hz, (b) 2 Hz + 50 Hz, and (c) 2 Hz + 100 Hz signals. (d)–(f) show the CWT coefficient field computed by the WHTF method for the 2 Hz + 5 Hz, 2 Hz + 50 Hz, and 2 Hz + 100 Hz signals, respectively.

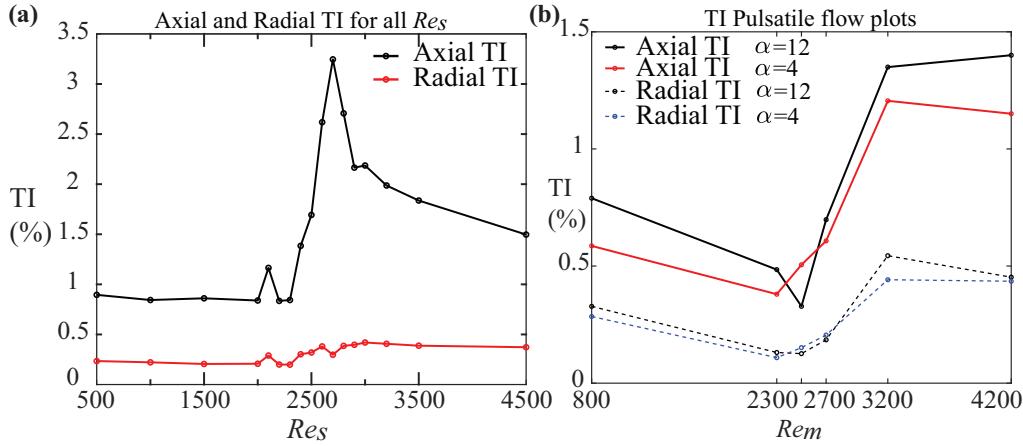


FIG. 6. Turbulence intensity (TI) vs Reynolds number for (a) the steady flow dataset and (b) the pulsatile flow dataset including Womersley numbers 4 and 12.

349

### B. Characterizing transition for our experimental setup

350 Next, the onset of transition as well as the critical Reynolds number for the steady experimental dataset are char-  
 351 acterized. This information will serve as a ground-truth by which the efficacy of TF-based metrics to evaluate transition  
 352 progression.

353 To evaluate the onset of transitional and fully turbulent flow, the traditional TI vs  $Re$  (S-shaped) curve was used.  
 354 Fig. 6(a) shows the axial and radial TIs vs  $Re_s$  for the steady flow dataset. The observed curves closely matches those  
 355 reported by Trip et al. [15], albeit with a slight shift of the  $Re_{critical}$  value. For our setup, the onset of transition  
 356 is seen at a  $Re_s$  of 2400, which is the point where the axial TI begins to rapidly increase. The  $Re_{critical}$  is typically  
 357 marked as the point where the axial TI begins to level off and/or where the radial TI S-curve plateaus. For our  
 358 setup, this occurs at an  $Re_s = 3000$ . As the flow regime becomes fully turbulent, the axial TI decreases slightly with  
 359 increasing  $Re_s$ , while the radial TI is plateaued and remains at a constant value. The peaks and valleys correspond  
 360 to sub-critical transition as the flow in the laminar regime is largely 2D and gets disturbed to evolve to transition and  
 361 eventual turbulence. The momentary fluctuation seen at  $Re_s = 2100$  in Fig. 6(a) is most likely the effect of ancillary  
 362 experimental disturbances which subsequently get relaminarized locally.

363 For the pulsatile flow data, the exact critical  $Re_m$  could not be ascertained as the data did not maintain a high enough  
 364 resolution for tested  $Re_m$  values within the transitional regime. Nonetheless, estimates for the onset of transitional  
 365 and fully turbulent flow can be observed in Fig. 6(b). Specifically, for both Womersley numbers, transition begins  
 366 around a  $Re_m$  of 2300 and full turbulence is achieved by a mean  $Re_m$  of 3200. This aligns with the findings of  
 367 Trip et al. [15] who found that steady flow and pulsatile flows with Womersley numbers greater than 10 maintained  
 368 negligible differences in the critical  $Re_m$  values. The axial and radial TI behavior was consistent across both values of  
 369  $\alpha$ . Specifically, a gradual decrease in both axial and radial TI occurred in the laminar regime until the  $Re_m$  reaches  
 370 the onset of transition. Beyond this point, the TI trends increased with increasing mean  $Re$ , until turbulence was  
 371 achieved, at which point the trends roughly plateau. Hence, despite the similarity of critical  $Re$ 's across the steady  
 372 and pulsatile datasets used here, notable differences in the behavior of the axial and radial TI trends were observed.  
 373 For example, the axial and radial TI trends were largely similar for the pulsatile flow data, a finding inconsistent  
 374 with the steady flow data. The different TI trends in pulsatile flow as compared to steady flow suggests underlying  
 375 differences in the flow dynamics exist [49]. Hence, this finding implies that the unsteady component in the pulsatile  
 376 flow effects the development of transitional and turbulent flow, but does not alter the critical  $Re$ . Ultimately, this  
 377 demonstrates that the two datasets (steady and pulsatile) provide a robust set for our evaluation of TF-based metrics  
 378 to assess transition progression in flow environments with varying turbulence development dynamics.

379

### C. Evaluating TF-based metrics capable of characterizing transition progression

380 With the onset of transition and turbulent flow identified for our two test datasets, we next evaluated how the  
 381 instantaneous frequency structures changed through the laminar, transitional, and turbulent regimes in order to  
 382 determine the extent to which these features can be used to characterize transition progression. Fig. 7 plots the  
 383 temporally-averaged spatial frequency map for the steady flow dataset at  $Re_s$  values ranging from 2200 to 3500.  
 384 Here, the temporal averaging was done by averaging the instantaneous (i.e., at one time point) 2D spatial frequency  
 385 maps through the entire time span of the data.

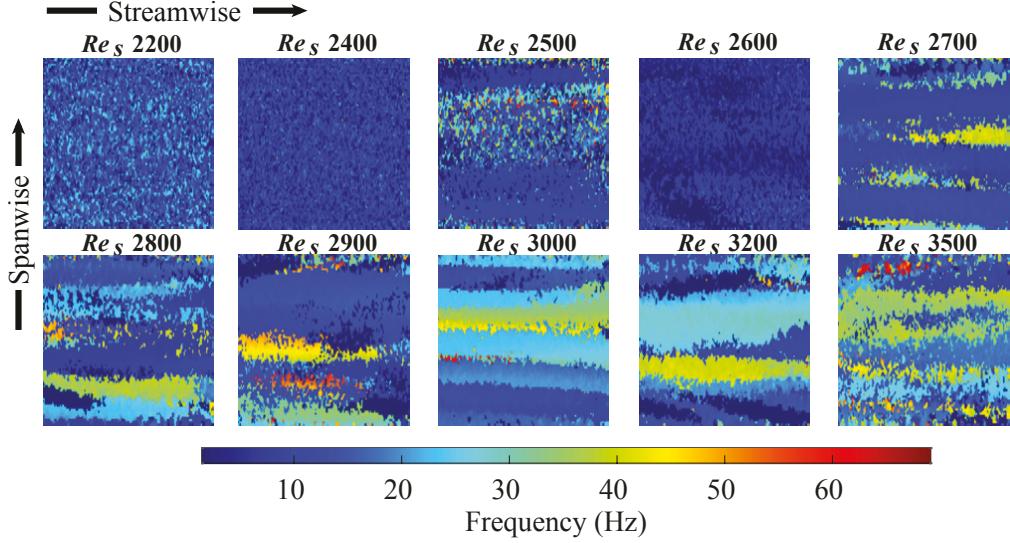


FIG. 7. Montage of frequency spatial structures within the pipe for varying  $Re_s$  values ranging from 2200–3500.

Hence, for each tile shown in Fig. 7, the streamwise (i.e., axial) direction varies from left to right and the spanwise (i.e., radial) direction varies from top to bottom. In the laminar regime ( $Re_s$  values of 2200 and 2400), fine frequency structures with an average frequency of 28 Hz are present throughout the pipe, which are present with no general coherence. As the  $Re_s$  increases through the transitional regime (2500 to 2900), frequency structures with increasing coherence are observed. The frequency structures are primarily narrow-banded, axial in nature, and maintain a frequency of 25–45 Hz. Outside of these coherent frequencies, the remainder of the pipe generally maintains a baseline frequency of about 15 Hz. Once the flow achieves full turbulence at an  $Re_s$  of 3000, the coherent frequency structures primarily span the pipe cross-section, with minimal area maintaining a background frequency value. In the well established laminar regime, the fluid motion is dictated by movements of fluid layers which translate on top of each other [50]. This likely results in the frequency of the flow to be similar across the pipe cross section for laminar flow. However, as the flow starts evolving to the transitional regime, these layers are disturbed due to various factors such as increased friction and as a result the frequency composition changes in the radial (spanwise) direction. This causes locations in the pipe to have higher and lower frequencies based on relative motion. While the individual contribution of pressure and inertial forces on the frequency computation cannot be explicitly determined herein, it is of interest to evaluate in order to decompose the transition dynamics more explicitly. Thus, further studies which can correlate the velocity and pressure gradients with frequency gradients in 3D should be explored.

Fig. 7 confirms that the dominant instantaneous frequency does change based on flow regime. Several specific, notable differences in the frequency structures were observed in the laminar, transitional, and turbulent regimes. In particular, the background frequency value, the area of the frequency structures, and the coherence of the frequency structures were markedly different for each flow regime. Thus, each of these represent possible metrics capable of characterizing the progression of transition.

Fig. 8 plots the 1D spatial averaged frequency across the centerline of the pipe, which explores the background frequency notion. For the steady flow data, in Fig. 8(a), the centerline frequency was constant in the laminar regime, with a frequency value of about 29 Hz. As the flow becomes transitional (shown in gray), the centerline frequency plummets to a frequency of about 17 Hz at  $Re_s = 2600$ . This low centerline frequency can be observed in Fig. 7 as well, where the  $Re_s = 2600$  case maintained very low frequency values throughout the pipe. For the later-stage transitional regime and early turbulent regime ( $Re_s$  between 2600 and 3500), the centerline frequency recovers to about 27 Hz, before decreasing to about 23 Hz by an  $Re_s = 4500$ . A somewhat similar behavior was observed for the centerline frequency trend in the pulsatile flow datasets, as shown in Fig. 8(b). For this case, the frequency was around 40 Hz for  $\alpha = 4$  and around 42 Hz for  $\alpha = 12$  in the laminar regime. In the transitional regime, the lowest frequency was around 30 Hz, beyond which the frequency behavior differed for each value of  $\alpha$ . For  $\alpha = 4$ , the frequency recovered in the turbulent regime to 36 Hz. However, for  $\alpha = 12$ , the frequency dropped further to 28 Hz. This likely occurs as a result of the fact that changes in flow dynamics occur for flows with  $\alpha > 10$ . Specifically, prior studies have highlighted that for  $\alpha > 10$ , transition dynamics mimic steady flow whereas for flow with  $\alpha < 10$ , the transition dynamics are influenced by the pulsatile phase [30]. Overall, for pulsatile flow, the drop of centerline frequency magnitude as the flow became transitional was not as significant as compared to that of steady flow. Specifically, a 16 Hz drop occurred in the steady flow, while only a 10 Hz drop occurred in the pulsatile flow. Additionally, the pulsatile cases maintained

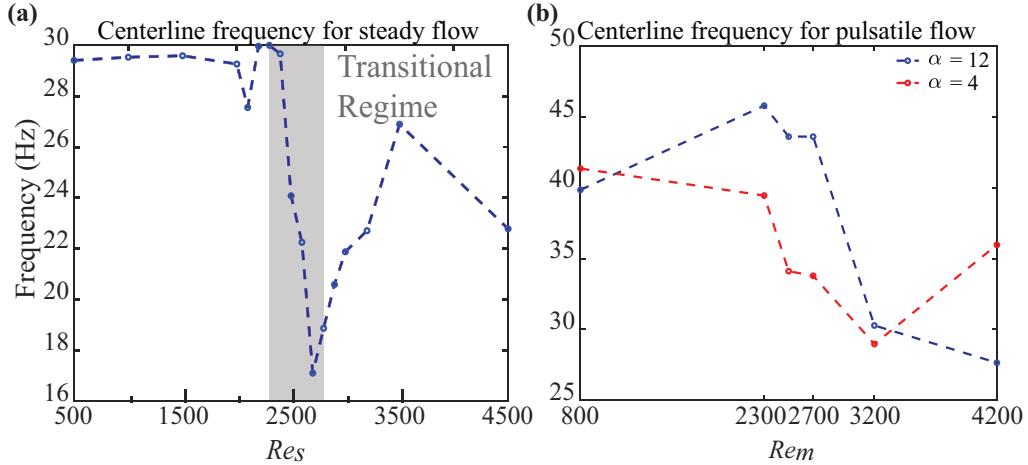


FIG. 8. Centerline frequency vs Reynolds number for the (a) steady flow dataset (where the transitional flow regime is shown in gray) and (b) pulsatile flow datasets.

about a 10 Hz higher frequency magnitude across all  $Re_m$  values as compared to the steady flow data. The laminar to turbulent peak frequency difference for steady flow was about 6 Hz as opposed to 3 Hz and 10 Hz for the pulsatile cases corresponding to  $\alpha = 4$  and  $\alpha = 12$ , respectively. These results highlight that the centerline frequency does demonstrate a trend that notably differentiates the laminar, transitional, and turbulent regimes for both datasets. However, because of the frequency magnitude value differences, the metric—in its current, dimensional form—does not provide a means to determine the level of transitional or turbulent flow given a single representation (i.e., one  $Re$  value) of a specific flow. It is plausible that an appropriate non-dimensionalization of the centerline frequency could provide a universal metric to this end. Evaluating this notion would require additional standalone datasets and hence this should be explored in future work.

Fig. 9(a) plots the average area of the frequency spatial structures as a function of  $Re_s$  for the steady flow dataset. The mean size of the area structures were about  $0.005 \text{ mm}^2$  for the laminar regime. As the flow evolved to the transitional regime, the mean area jumped to  $0.012 \text{ mm}^2$  at  $Re_s = 2800$ , and stabilized at a mean area of about  $0.01 \text{ mm}^2$  at the  $Re_{critical}$  of 3000. In the turbulent regime, the mean area structures decreased to about  $0.008 \text{ mm}^2$ . Fig. 9(b) shows the mean area structures for the pulsatile flow datasets. Similar to the steady flow dataset, the area magnitudes remained constant in the laminar regime for both Womersley numbers. However, the behavior in transitional and turbulent regimes differed. For  $\alpha = 4$ , the mean area increased steadily throughout the transitional and turbulent regimes. Conversely, for  $\alpha = 12$ , the mean area jumped to about  $0.022 \text{ mm}^2$  between the mean  $Re$  values of 2700 and 3200, and remained plateaued at this value through the turbulent regime. Together, Fig. 9(a) and 9(b) suggest that the development of transition occurs faster in the steady and steady-mimicking  $\alpha = 12$  flows, and more gradually in the  $\alpha = 4$  flow. Overall, the mean area of frequency structures was universally observed to increase from the laminar to the turbulent regime.

Fig. 9(c) and 9(d) show the area fraction ( $\phi_s$  and  $\phi_m$ ) as a function of  $Re$  for the steady and pulsatile flows, respectively. Area fraction is a dimensionless quantity computed as the ratio of the total area within coherent frequency spatial structures to the total area of the pipe section. The 'total area within coherent frequency spatial structures' is defined using two thresholds. First, only areas whose frequency value is greater than the mean frequency of the flow are included. This threshold enables the extraction of features having higher frequency makeup capable of influencing the flow dynamics. Second, an area size threshold is applied to include only areas of 20 sq. pixels or greater. This value is chosen anywhere below the median values so that any variations beyond such a small magnitude is insignificant. For both the steady and pulsatile flows, the area fraction increased slightly through the laminar regime within the range of 0.38–0.43. For the steady flow dataset, area fraction began decreasing at an  $Re_s$  of 2000. This decrease occurred throughout the transitional regime, before leveling off at an area fraction of about 0.35 in the turbulent regime. For the  $\alpha = 4$  case, area fraction began decreasing at an  $Re_m$  of 2400, bottoming out at 0.35 at an  $Re_m$  of 3200, and then finally increasing to about 0.37 in the turbulent regime. For the  $\alpha = 12$  case, area fraction decreased sharply from an  $Re_m$  of 2700 to 3200 (dropping from 0.40 to 0.36), and then recovered to about 0.385 at an  $Re_m$  of 4200. Thus, for all flow the turbulent regime area fraction recovered to roughly that of the laminar regime, while the area fraction dropped in the transitional regime. However, Fig. 9(a) and 9(b) highlighted that the overall size of the areas in the flow increased in transition. Hence, the area fraction analysis suggests that the slugs and puffs forming in the transitional regime maintained low frequencies, below the mean flow frequency. Overall, the area and area fraction do demonstrate a relationship with turbulence progression, but similar to the centerline frequency

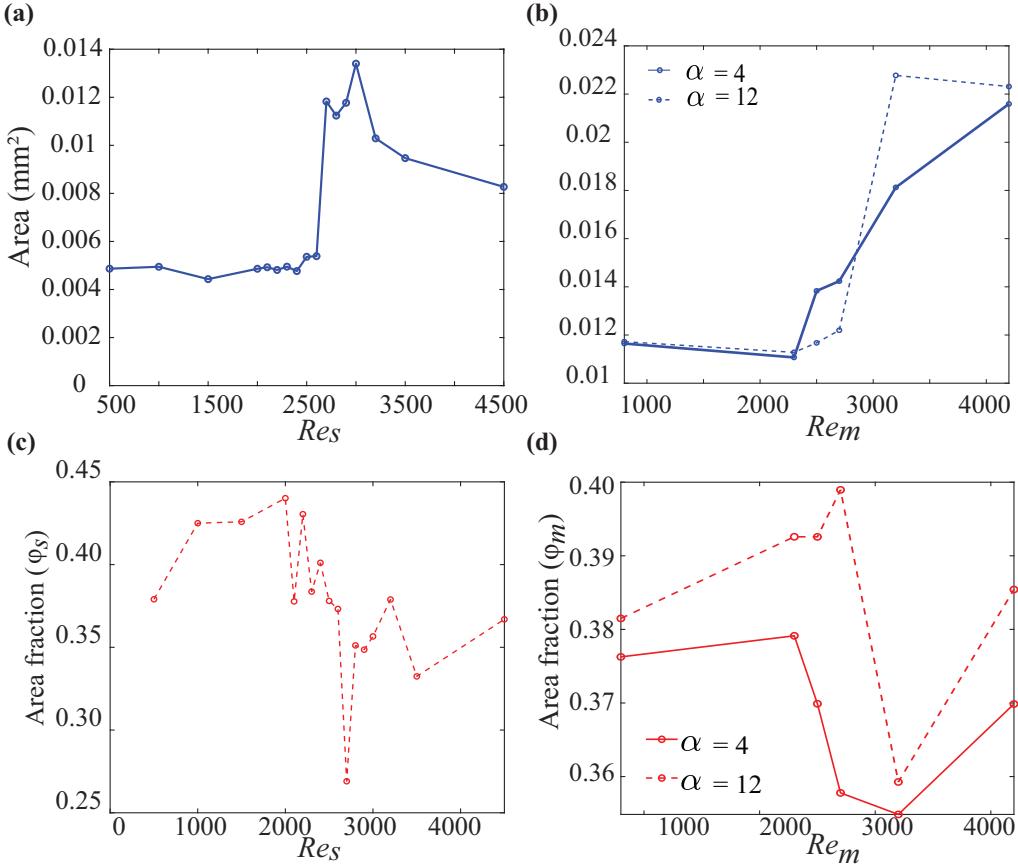


FIG. 9. Mean area (in  $mm^2$ ) of spatial frequency structures for (a) steady flow and (b) pulsatile flow datasets. Area fraction ( $\phi_s$ ) as a function of Reynolds number for (c) steady flow and (d) pulsatile flow datasets.

463 analysis, a scaling or bias difference between the steady and pulsatile values existed.

464 Fig. 10 shows the histograms for laminar, transitional, and turbulent regime Re values for the steady and pulsatile  
 465 datasets. For the steady flow (Fig. 10(a)), the most prevalent area size for the laminar regime was approximately  
 466  $0.0005\ mm^2$ . This increased to  $0.008\ mm^2$  as the flow became turbulent. Fig. 10(b) and 10(c) show the histograms  
 467 for the pulsatile flow dataset of  $\alpha = 4$  and  $\alpha = 12$ , respectively. The most prevalent area size for the laminar regime  
 468 was about  $0.0005\ mm^2$  and  $0.0001\ mm^2$  for the 4 and 12 Womersley number cases, respectively. In the turbulent  
 469 regime, these values increased to  $0.001\ mm^2$  for  $\alpha = 4$  and  $0.002\ mm^2$  for  $\alpha = 12$ . A notable difference in the  
 470 total number of structures was observed, where the  $\alpha = 4$  case maintained about 4 times more structures than the  
 471 steady flow case and about 5 times more structures than the  $\alpha = 12$  case. This difference likely indicates that for  
 472 the  $\alpha = 4$  case, where pulsatility-induced structures have sufficient time to develop, leads to a significant increase in  
 473 frequency structures. Despite the change in the number of spatial structures, the distribution of spatial structures  
 474 appears to be unimodal and generally consistent for all cases. As the Reynolds number increased, an increase in the  
 475 number of large area structures is clearly observed for all flows. Furthermore, in the turbulent regime, the decrease  
 476 in the number of area structures becomes more gradual. Both of these findings indicate that the coherent frequency  
 477 structures generated by turbulent flow are larger in spatial area than for laminar flow. Hence, this suggests that this  
 478 characteristic of peak area magnitude does reflect the progression of transitional and turbulent flow development.  
 479 However, further analysis is required to comment and classify this distribution as a type of log normal. Additionally,  
 480 future studies should aim to correlate the skewness of such a distribution to the effect of Womersley number on the  
 481 peak of these area structures.

482 Fig. 11 evaluates the coherence of the frequency structures through the laminar, turbulent, and transitional regimes.  
 483 Specifically, the DCT-entropy of the 2D spatial frequency maps shown in Fig. 11 are evaluated; DCT-entropy has  
 484 been shown to provide a representative estimate of the organization of structures in a given flow field (or 2D map in  
 485 general) [45]. Here, a higher DCT-entropy is expected to correlate with increased coherence of frequency structures.  
 486 S-curve-type trends of the DCT-entropy are observed for both the steady and pulsatile datasets. In the laminar  
 487 regime, the steady flow case, maintained an average DCT-entropy of 0.10, while the pulsatile flow with  $\alpha = 4$  and  $\alpha$   
 488 = 12 had DCT-entropy values of about 0.08 and 0.30, respectively. The DCT-entropy increased significantly in the

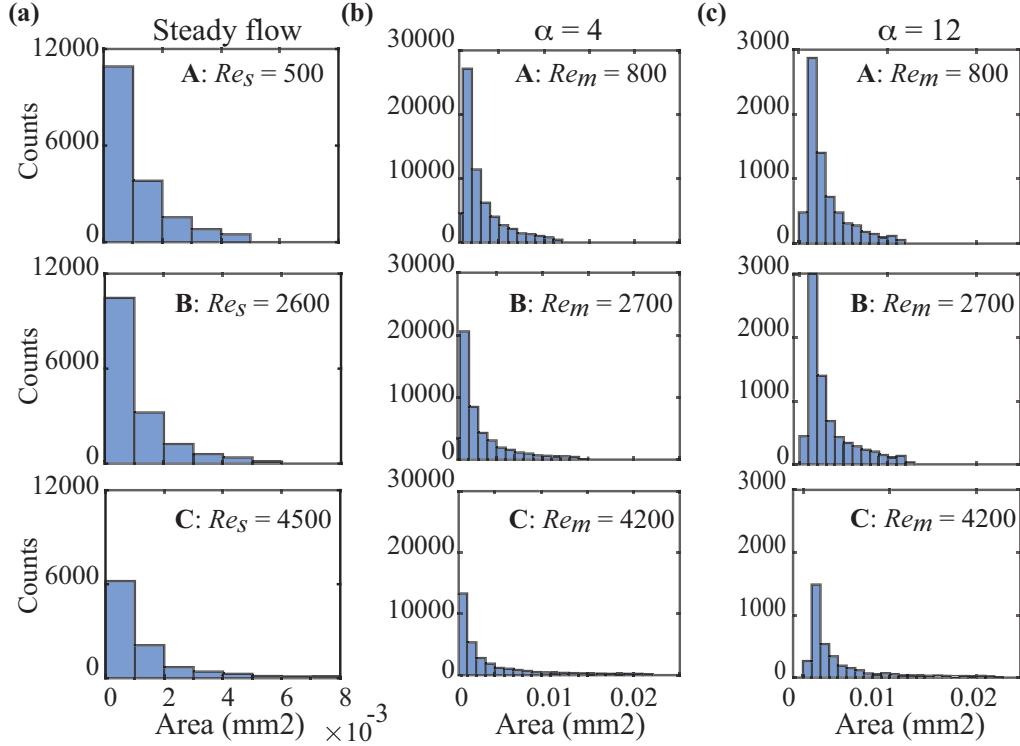


FIG. 10. Distribution of area histograms for one laminar, one transitional, and one turbulent regime case in (a) steady flow, (b)-(c) pulsatile flow for  $\alpha = 4$  and  $\alpha = 12$ , respectively. The bin width is kept constant across all cases at  $0.001 \text{ mm}^2$ .

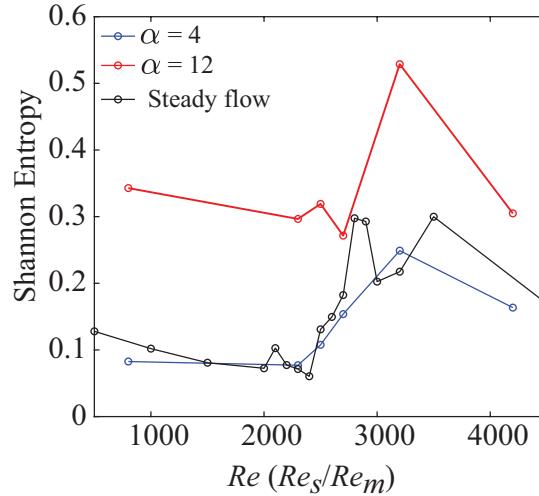


FIG. 11. DCT-entropy for steady flow and pulsatile flow datasets including both the 4 and 12 Womersley numbers ( $\alpha$ ).

transitional regime, peaking at 0.30 for the steady flow data, 0.27 for the pulsatile flow data with  $\alpha = 4$ , and 0.55 for the pulsatile flow data with  $\alpha = 12$ . In the turbulent regime, the DCT-entropy decreases somewhat to about 0.18 for both the steady flow and pulsatile  $\alpha = 4$  cases and to 0.30 for the pulsatile  $\alpha = 12$  case. In general, the DCT-entropy trends for the steady and pulsatile flow,  $\alpha = 4$ , are strikingly similar both in terms of trend and magnitude, while for the  $\alpha = 12$  case, the trend is similar, but magnitude is higher. This finding is of particular interest given that the  $\alpha = 12$  case is expected to be steady-mimicking, yet the DCT-entropy trend suggests the opposite behavior. One possible explanation for this finding is that the high-frequency pulsation associated with the 12 Womersley number flow does serve to increase the overall energy in the flow, leading to a higher entropy. Considering Fig. 11 and Fig. 7, our findings suggest that in laminar flow, where no flow scales are expected, no frequency components truly exist within the flow. Hence, the lower values of DCT entropy in the laminar regime most likely reflect the pump fluctuations

499 and other experimental artifacts which are captured by the frequency algorithm. In the transitional regime, however,  
500 DCT entropy values peak. This likely occurs as a result of the rapid generation and dissipation of identifiable slugs  
501 and puffs which disturb the flow and generate clear and frequency components in the flow. In turbulent flow, the slugs  
502 and puffs are produced at higher rate than in transitional flow such that they are no longer individually discernible  
503 and maintain an "interference" with one another. This would be expected to reduce the coherence of the frequency  
504 structures and provide an explanation for the reduced DCT-entropy in the turbulent regime.

505 Fig. 12(a) shows the total TKE vs. frequency line and demonstrates the fitted  $-5/3$  slope Kolmogorov spectrum  
506 line on a log-log scale for the steady flow at  $Re_s = 4500$  case. The upper and lower frequency bounds between which  
507 the total TKE line matches the Kolmogorov spectrum were identified. This was done by extracting the abscissa value  
508 at the ends of this line segment.

509 Fig. 12(b) and 12(c) show the time-averaged upper and lower TKE spectral bounds for all the steady flow and  
510 pulsatile flow cases, respectively. For the steady flow, laminar regime ( $Re_s < 2000$ ), the total TKE-frequency trend  
511 matched the Kolmogorov spectrum for frequencies of about 30–50 Hz. By the transitional regime, this frequency  
512 range expands to about 10–70 Hz and in the turbulent regime, the frequency range reduces to about 10–40 Hz.  
513 Hence, this suggests that the laminar regime maintains a higher frequency range, the turbulent regime corresponds  
514 to a lower frequency regime, while the transitional regime envelopes both the laminar and turbulent frequency ranges.  
515 For the pulsatile flow at both Womersley numbers, the total TKE-frequency line matches the Kolmogorov spectrum  
516 for frequencies in the range of 35–100 Hz for the laminar regime and 35–80 Hz for the transitional regime. In the  
517 turbulent regime, frequency ranges of 35–85 Hz for the  $\alpha = 4$  case and 20–95 Hz for the  $\alpha = 12$  case are observed.  
518 Hence, for the  $\alpha = 4$  case, where the flow is noted to be highly influenced by the pulsatile cycle, the lower frequency  
519 bound did not change across the regimes.

520 For the steady flow case and the  $\alpha = 12$  case—which was reported to mimic steady flow—a drop of the lower  
521 frequency bound is observed at the critical Reynolds number (from about 35Hz to 10Hz in the steady case; from  
522 about 35Hz to 18Hz in the  $\alpha = 12$  case). This suggests that for low Womersley numbers, the unsteady term in  
523 the pulsatile flow influences the low-Hz instantaneous frequencies to a greater extent than turbulent flow structures.  
524 Conversely, for steady and high Womersley number flows, the presence of turbulent flow structures drives the lower  
525 frequency bound and any pulsatility-induced unsteadiness is secondary. The dynamics of the upper frequency bound  
526 were different for each case. Specifically, for the  $\alpha = 12$  case, the upper frequency bound decreased in transition  
527 and then recovered to its laminar value in turbulence. This finding implies that the pulsatility-induced unsteady flow  
528 behaviors for high Womersley number flows influence the high-frequency flow dynamics. Only in the transitional flow  
529 regime, are the turbulent flow behaviors strong enough to influence this effect. For the  $\alpha = 4$  case, the upper frequency  
530 bound similarly decreases in transition, and then does not significantly change in the turbulent regime. Hence, this  
531 indicates a scaling-type effect, where the flow scales derived from the unsteadiness are primarily low-frequency (about  
532 35Hz), while for high Womersley flows they are high-frequency (about 90Hz). Moreover, because transitional and  
533 turbulent flow structures maintain frequencies in the range of about 10–30Hz, this finding may provide an explanation  
534 for why low Womersley number flows have been noted to maintain differing transitional flow dynamics as compared  
535 to steady flow while high Womersley number flows are steady-mimicking. For the steady case, the upper frequency  
536 bound increased to its highest value in transition, then decreased to below the laminar value in the turbulent regime.  
537 Hence, for steady flow, the largest frequency range was observed in transition, while for both unsteady cases, the  
538 smallest frequency range was observed in transition. This suggests that, to some extent, the unsteady flow behaviors  
539 potentially maintain a destructive interference with the developing transitional puffs and slugs. This finding and the

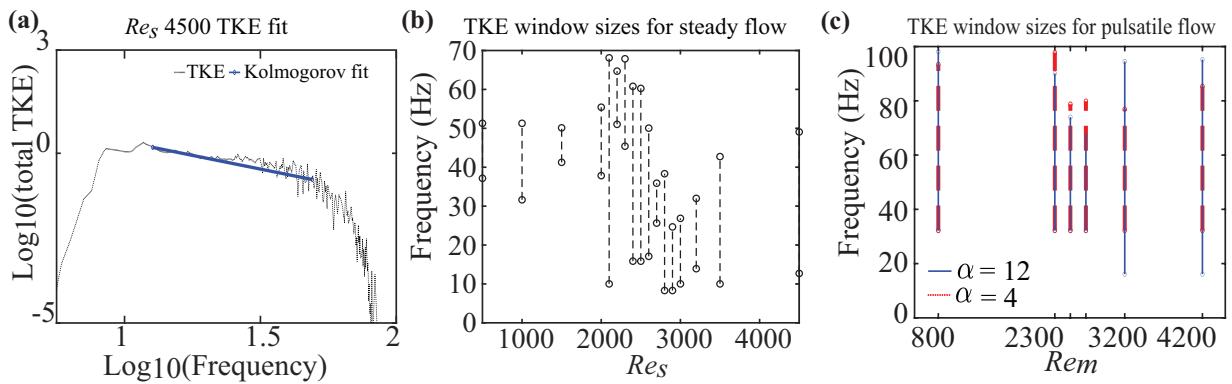


FIG. 12. (a) Demonstration of the Kolmogorov spectrum fit to the total TKE vs. frequency array for steady flow,  $Re_s = 4500$  case. Minimum and maximum frequency ranges for which the total TKE arrays match the Kolmogorov spectrum for the (b) steady flow dataset and (c) pulsatile flow datasets.

540 possible interaction of the two distinct flow structure types should be explored further in future work.

## 541 V. CONCLUSION

542 In this work, we explore the efficacy of using the instantaneous frequency of the fluctuating velocity field to characterize  
 543 the onset and development of transitional flow in pipes. Two experimental datasets including both steady-mean and  
 544 pulsatile (unsteady-mean) pipe flow were used. Instantaneous dominant frequency of the fluctuating velocities of  
 545 these datasets were evaluated using a novel Wavelet Hilbert Time Frequency (WHTF) analysis method presented  
 546 herein. We demonstrated the accuracy of our WHTF method using analytical signals and highlighted its suitability  
 547 for evaluating the TF representation of transitional and turbulent flows. The frequency analysis of the two flow  
 548 datasets demonstrated clear differences in the instantaneous frequency structures across the laminar, transitional,  
 549 and turbulent flow regimes. Specifically, we found that turbulent puffs and slugs generated during the transitional  
 550 flow regime are low-frequency structures. Thus, this causes the centerline frequency of the pipe to drop significantly  
 551 in the transitional regime. Additionally, the area of the frequency structures were observed to increase as the flow  
 552 became transitional and turbulent. The transitional regime maintained the highest coherence of frequency structures,  
 553 while the laminar regime maintained the lowest. Finally, we observed that the frequency range for which the total  
 554 TKE spectrum matches the Kolmogorov spectrum is lower in frequency magnitude for turbulent flow as compared  
 555 to laminar flow. Hence, these results revealed various characteristics of transitional and turbulent flow development  
 556 as well as metrics that quantify this progression. Future work should aim to more specifically assess the behavior of  
 557 these TF-metrics within specific stages of transition (e.g., sub-critical transition from 2D to 3D state, super-critical  
 558 transition from 3D transition to 3D turbulence). Overall, this work takes a first step towards developing a universal  
 559 metric capable of estimating transitional flow development for a pipe flow environment. Future work should focus on  
 560 non-dimensionalizing the characteristic metrics identified herein to improve their universality.

## 561 VI. ACKNOWLEDGEMENTS

562 The authors gratefully acknowledge the funding for this project from the American Heart Association (AHA) grant  
 563 # 940354 as well as the National Science Foundation grant # 2335760.

## 564 VII. AUTHOR DECLARATIONS

565 The authors state no conflict of interest.

## 566 VIII. DATA AVAILABILITY

567 The data that supports the findings of this study are available from the corresponding author upon reasonable request.

---

568 [1] M. Avila, D. Barkley, and B. Hof, Transition to turbulence in pipe flow, *Annual Review of Fluid Mechanics* **55**, 575 (2023).  
 569 [2] D. Barkley, Simplifying the complexity of pipe flow, *Physical Review E* **84**, 016309 (2011).  
 570 [3] T. M. Schneider, B. Eckhardt, and J. Vollmer, Statistical analysis of coherent structures in transitional pipe flow, *Physical*  
 571 *Review E* **75**, 066313 (2007).  
 572 [4] T. M. Schneider and B. Eckhardt, Lifetime statistics in transitional pipe flow, *Physical Review E* **78**, 046310 (2008).  
 573 [5] R. T. Cerbus, Prandtl-tietjens intermittency in transitional pipe flows, *Physical Review Fluids* **7**, L011901 (2022).  
 574 [6] K. Haddad, Ö. Ertunç, M. Mishra, and A. Delgado, Pulsating laminar fully developed channel and pipe flows, *Physical*  
 575 *Review E* **81**, 016303 (2010).  
 576 [7] J. Rolland, Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows, *Physical*  
 577 *Review E* **97**, 023109 (2018).  
 578 [8] G. K. Batchelor, *An introduction to fluid dynamics* (Cambridge university press, 1967).  
 579 [9] W.-J. Wang, S. Li, W. Huang, Z. Han, and W.-H. Wang, A unified friction factor formulation: Bridging laminar and  
 580 turbulent friction factor with critical points analysis, *Physics of Fluids* **36** (2024).  
 581 [10] D. Morón and M. Avila, Turbulent puffs in transitional pulsatile pipe flow at moderate pulsation amplitudes, *Physical*  
 582 *Review Fluids* **9**, 024601 (2024).  
 583 [11] M. R. Roach, S. Scott, and G. G. Ferguson, The hemodynamic importance of the geometry of bifurcations in the circle of  
 584 willis (glass model studies), *Stroke* **3**, 255 (1972).  
 585 [12] K. M. Saqr, S. Tupin, S. Rashad, T. Endo, K. Niizuma, T. Tominaga, and M. Ohta, Physiologic blood flow is turbulent,  
 586 *Scientific reports* **10**, 15492 (2020).

[587] [13] D. Han, Y. Guo, P. Jiao, Y. Yuan, Y.-T. Lin, and Z. He, Coherent structures, turbulence intermittency, and anisotropy of gravity currents propagating on a rough and porous bed, *Physics of Fluids* **35** (2023).

[588] [14] S. Mukherjee, R. K. Singh, M. James, and S. S. Ray, Intermittency, fluctuations and maximal chaos in an emergent universal state of active turbulence, *Nature Physics* , **1** (2023).

[589] [15] R. Trip, D. Kuik, J. Westerweel, and C. Poelma, An experimental study of transitional pulsatile pipe flow, *Physics of Fluids* **24** (2012).

[590] [16] A. Ciccone, W. S. Li, and H. Zhou, New theoretical insights in the decomposition and time-frequency representation of nonstationary signals: the imfogram algorithm, *Applied and Computational Harmonic Analysis* **71**, 101634 (2024).

[591] [17] M. R. Mangan, H. J. Oldroyd, K. T. Paw U, J. Clay, S. A. Drake, J. Kelley, and K. Suvočarev, Integrated quadrant analysis: A new method for analyzing turbulent coherent structures, *Boundary-Layer Meteorology* **184**, 45 (2022).

[592] [18] S. Morales and M. E. Bowers, Time-frequency analysis methods and their application in developmental eeg data, *Developmental cognitive neuroscience* **54**, 101067 (2022).

[593] [19] M. Pal, P. Manimaran, and P. K. Panigrahi, A multi scale time-frequency analysis on electroencephalogram signals, *Physica A: Statistical Mechanics and its Applications* **586**, 126516 (2022).

[594] [20] J. R. Torres-Castillo, C. O. Lopez-Lopez, and M. A. Padilla-Castaneda, Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular emg signals using hilbert-huang transform, *Biomedical Signal Processing and Control* **71**, 103037 (2022).

[595] [21] N. Shirdade, J. Joy Kolliyil, B. A.-d. El-khader, and M. Brindise, Developing a universal metric to assess the progression of transition to turbulence in pulsatile pipe flow, *Bulletin of the American Physical Society* (2023).

[596] [22] J. Joy Kolliyil, N. Shirdade, and M. C. Brindise, Investigating intermittent behaviors in transitional flows using a novel time-frequency-based method, *Experiments in fluids* **65** (2024).

[597] [23] J. Joy Kolliyil, N. Shirdade, and M. Brindise, A multi-wavelet frequency sift analysis method for analyzing intermittency in transitional flow, *Bulletin of the American Physical Society* **67** (2022).

[598] [24] N. E. Huang, Z. Shen, and S. R. Long, A new view of nonlinear water waves: the hilbert spectrum, *Annual review of fluid mechanics* **31**, 417 (1999).

[599] [25] N. E. Huang, M.-L. C. Wu, S. R. Long, S. S. Shen, W. Qu, P. Gloersen, and K. L. Fan, A confidence limit for the empirical mode decomposition and hilbert spectral analysis, *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* **459**, 2317 (2003).

[600] [26] K. V. Bulusu and M. W. Plesniak, Shannon entropy-based wavelet transform method for autonomous coherent structure identification in fluid flow field data, *Entropy* **17**, 6617 (2015).

[601] [27] Y. Zhou, *Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing* (Cambridge University Press, 2024).

[602] [28] Y. Zhou, Rayleigh–taylor and richtmyer–meshkov instability induced flow, turbulence, and mixing. I, *Physics Reports* **720-722**, **1** (2017), Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I.

[603] [29] Y. Zhou, Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations, *Physics of Plasmas* **14** (2007).

[604] [30] B. A.-D. T. El-Khader and M. C. Brindise, Effect of the womersley number on transition to turbulence in pipe flow: An experimental study, *Physics of Fluids* **36** (2024).

[605] [31] R. Camussi and S. Meloni, On the application of wavelet transform in jet aeroacoustics, *Fluids* **6**, 299 (2021).

[606] [32] T. Elperin and M. Klochko, Flow regime identification in a two-phase flow using wavelet transform, *Experiments in fluids* **32**, 674 (2002).

[607] [33] M. Farge, Wavelet transforms and their applications to turbulence, *Annual review of fluid mechanics* **24**, 395 (1992).

[608] [34] W.-Z. Yue, G. Tao, and Z.-W. Liu, Identifying reservoir fluids by wavelet transform of well logs, *SPE Reservoir Evaluation & Engineering* **9**, 574 (2006).

[609] [35] L. Zou, L. Jing, and V. Cvetkovic, Roughness decomposition and nonlinear fluid flow in a single rock fracture, *International Journal of Rock Mechanics and Mining Sciences* **75**, 102 (2015).

[610] [36] H. H. Bafroui and A. Ohadi, Application of wavelet energy and shannon entropy for feature extraction in gearbox fault detection under varying speed conditions, *Neurocomputing* **133**, 437 (2014).

[611] [37] H. Zheng, Z. Li, and X. Chen, Gear fault diagnosis based on continuous wavelet transform, *Mechanical systems and signal processing* **16**, 447 (2002).

[612] [38] H. Wang, C. Zhang, and X. Nie, Research on extraction and application of weak signals based on wavelet transform, *Journal of Computers* **28**, 288 (2017).

[613] [39] N. Deng and C.-s. Jiang, Selection of optimal wavelet basis for signal denoising, in *2012 9th International Conference on Fuzzy Systems and Knowledge Discovery* (IEEE, 2012) pp. 1939–1943.

[614] [40] S. Haque and T. Takara, Optimal wavelet for bangla vowel synthesis, *International Journal of Scientific and Engineering Research* **2** (2011).

[615] [41] F. Scarano, Iterative image deformation methods in PIV, *Measurement science and technology* **13**, R1 (2001).

[616] [42] A. C. Eckstein, J. Charonko, and P. Vlachos, Phase correlation processing for DPIV measurements, *Experiments in Fluids* **45**, 485 (2008).

[617] [43] A. Eckstein and P. P. Vlachos, Digital particle image velocimetry (DPIV) robust phase correlation, *Measurement Science and Technology* **20**, 055401 (2009).

[618] [44] J. Westerweel and F. Scarano, Universal outlier detection for piv data, *Experiments in fluids* **39**, 1096 (2005).

[619] [45] M. C. Brindise and P. P. Vlachos, Proper orthogonal decomposition truncation method for data denoising and order reduction, *Experiments in Fluids* **58**, 1 (2017).

651 [46] S. He and J. Jackson, An experimental study of pulsating turbulent flow in a pipe, European Journal of Mechanics-B/Fluids  
652 **28**, 309 (2009).

653 [47] J. Stettler and A. F. Hussain, On transition of the pulsatile pipe flow, Journal of fluid mechanics **170**, 169 (1986).

654 [48] M. C. Brindise and P. P. Vlachos, Pulsatile pipe flow transition: Flow waveform effects, *Physics of Fluids* **30** (2018).

655 [49] M. Ö. Çarpinlioğlu, An overview on pulsatile flow dynamics, *Journal of Thermal Engineering* **1**, 496 (2015).

656 [50] G. K. Batchelor, On steady laminar flow with closed streamlines at large reynolds number, *Journal of Fluid Mechanics* **1**,  
657 **177** (1956).