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Characterizing the onset of transitional and turbulent flow regimes
in pipe flows using instantaneous time-frequency-based analysis

Nikhil Shirdade, Jibin Joy Kolliyil, Baha Al-Deen T. El-Khader, and Melissa C. Brindise*
Department of Mechanical Engineering,
The Pennsylvania State University,
University Park, PA 16802, USA

Accurately identifying the onset of transitional and turbulent flow within any pipe flow environ-
ment is of great interest. Most often, the critical Reynolds number (Re) is used to pinpoint the
onset of turbulence. However, the critical Re is known to be highly variable, depending on the
specifics of the flow system. Thus, for flows (e.g., blood flows), where only one realization (i.e.,
one mean Re) exists, the presence of transitional and turbulent flow behaviors cannot be accurately
determined. In this work, we aim to address this by evaluating the extent to which instantaneous
time-frequency (TF)-based analysis of the fluctuating velocity field can be used to evaluate the onset
of transitional and turbulent flow regimes. Because current TF analysis methods are not suitable
for this, we propose a novel 'wavelet-Hilbert time-frequency’ (WHTF) method which we validate
herein. Using the WHTF method, we analyzed the instantaneous dominant frequency of three
planar particle image velocimetry-captured pipe flows which included one steady and two pulsatile
with Womersley numbers of 4 and 12. For each case, data was captured at Re’s spanning 800-4500.
The instantaneous dominant frequency analysis of these flows revealed that the magnitude, size,
and coherence of two-dimensional spatial frequency structures were uniquely different across flow
regimes. Specifically, the transitional regime maintained the most coherent, but lowest magnitude
frequency structures, while the laminar regime had the highest magnitude, lowest coherence, and
smallest frequency structures. Overall, this study demonstrates the efficacy of TF-based metrics for
characterizing the progression of transition and turbulent flow development.

I. INTRODUCTION

Transition to turbulence in pipe flows is characterized by intermittency [1-6]. At the onset of transitional flow,
intermittent flow structures, or turbulent “puffs”, begin to form at locations of instabilities. As transition develops,
the puffs occur with increasing frequency until they form at such a high rate the individual puffs are no longer
discernible, at which point the flow is classified as fully turbulent [7]. Transitional flow induces significant fluctuations
in pressure and wall shear stress which negatively affect pipe wall strength, flow energy losses, etc. Thus, accurately
identifying the onset of this flow regime is of great interest.

Traditionally, the onset of transitional and fully turbulent flow is estimated using the non-dimensional Reynolds
number, Re(= pUD/u), where, U is the mean velocity (m/s) of the flow, p (kg/m?) is the density, D (m) is the
diameter of the pipe, and p (Pa—s) is the dynamic viscosity of the fluid [8]. Many prior studies utilizing steady-mean
and unsteady-mean (i.e. oscillating or pulsatile) pipe flows have ascertained the onset of transition to occur at a Re
of about 2200-2500 and the critical Re, Recritical, Wwhen flow becomes fully turbulent to be 2700-3000 [9, 10]. These
values are generally determined by evaluating the turbulence intensity (TT) of a flow across a range of Re values. This
TI-Re relationship is represented by an S-shaped curve where TT in the laminar and turbulent regimes is roughly
independent of Re.

Recriticar values are highly specific to specific flow environments; factors including pipe roughness, pump-induced
perturbations, geometry irregularities, pipe curvature, etc. are all known to alter the Recyiticqi- Hence, it is widely
accepted that significant variability from the consensus Re.,itica; values can occur. The variability of Rec itica; leads
to a significant fundamental challenge of how to determine if a specific flow is transitional in nature [11]. This is
particularly consequential in cases where only one representation of the flow (i.e., the flow at one mean Re) is known.
For example, in the biomedical domain, studies are increasingly asserting low Re flows to be transitional or fully
turbulent. In one such study, Saqr et al. [12] evaluated the physiologic blood flow and concluded that an aneurysmal
flow—which has significant cross-sectional variability—with a mean Re of about 300 was turbulent. Hence, this
highlights an increasingly pressing need for universal metrics or characteristics capable of estimating the level of
transitional flow behavior within any pipe flow environment.

Unfortunately, such a universal metric in pipe flows does not exist and methods to analyze transitional flows remain
limited. Reported techniques to study transition to turbulence have involved the use of linearized Orr-Sommerfeld
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eigenvalue stability equations or viewing the flow as a dynamical system and finding the onset of chaos using bifurcation
models [1]. However, these techniques are cumbersome and provide no visual information such that they cannot be
employed to universally pinpoint the onset of transition and eventual culmination of a 2D flow to a 3D turbulence.
Other studies have investigated the flow system as an excitable and bistable media because the localized puffs are
generated and split throughout transition [2]. The increasing time fraction in which these puffs appear radially in
the flow can also provide details regarding the onset of transition. This has been studied using Markov models as
probability distribution functions [3]. Overall, these approaches make use of a particular variable and hence do not
put forth a general trend in identifying a metric for the progression of transition.

Intermittency, by definition, suggests that transitional flow maintains characteristic frequencies [5, 13-15]. Thus,
time-frequency (TF) methods can provide quantitative insight on the development and progression of transitional
flow [16-21]. We previously demonstrated that TF analysis can be used to decompose the Kolmogorov spectrum in
transitional flow, and by using this technique flow structures across energy scales could be isolated and visualized.
Moreover, we showed that one instantaneous frequency (IF) appeared to primarily characterize the turbulent behavior
within a pulsatile transitional flow in Joy Kolliyil et al. [22],[23]. These findings suggest the possibility that TF
analysis can estimate the onset and progression of transition in a flow field. However, traditional TF approaches do
not maintain the required visual information in conjunction with flow parameters such as velocity and fail to portray
a complete analysis which puts forth a one-to-one mapping of frequency and flow parameters [24-26]. Some of the
other investigations which have studied time-dependent flows and turbulent mixing in the literature include instability
analysis such as Rayleigh-Taylor and Richtmyer—Meshkov instability.[27-29]

In this work, we aim to investigate the extent to which TF-based metrics can describe and identify the onset and
level of development of transitional and turbulent pipe flows.

Two experimental datasets were used for this study. First, we conducted a steady-mean, planar particle image
velocimetry (PIV) study with test cases spanning the Re, range of 500 to 4500 such that the traditional TI vs Re
S-curve could be established. Second, we utilized a pulsatile, transitional pipe flow dataset published in El-Khader
and Brindise [30]. The pulsatile dataset was captured using planar PIV and the same experimental setup as used for
the steady flow dataset. For both datasets, the instantaneous dominant frequency of the fluctuating velocity (u') field
at each spatial point was evaluated using a novel time-frequency analysis method we propose and validate herein.
We investigated how the TF representation of a flow differed in the laminar, transitional, and turbulent regimes.
Specifically, we assessed the extent to which TF-based metrics reflected the traditional TI vs. Re S-curve and the
extent to which the TF-metric values were ”universal” across the different datasets used for testing herein.

Overall, this work takes a first step towards addressing the critical need for a universal metric to identify the onset
and development of transitional and turbulent flow in pipe flows which can later be extended to any arbitrary flow
environment.

II. PROPOSED INSTANTANEOUS TIME-FREQUENCY EVALUATION METHOD

For this work, we developed a novel time-frequency analysis method, which utilizes the continuous wavelet transform
(CWT) [31-35] and Hilbert transform. We term this the Wavelet-Hilbert Time-Frequency (WHTF) method. The
WHTF method, schematically shown in Fig. 1, is a computationally-light algorithm that computes the instantaneous
dominant frequency at each point in space and time. The use of a computationally-light method herein ensures our
findings are adaptable to complex flow environments of any Reynolds number and large datasets. The WHTF method
iterates through each spatial point individually (Fig. 1(a)). The 1-D fluctuating velocity (u’) vs time trend at the
particular spatial point is the input to the calculation. The Hilbert transform of the fluctuating velocity signal is
computed (Fig. 1(b)) and the CWT of this signal is evaluated (Fig. 1(c)). For the CWT computation, the Morlet
wavelet was chosen as the mother wavelet due to its various advantages such as analyzing temporal behavior of
non-stationary signals [36] and its shape function being similar to input pulsatile waveforms [37]. Additionally, using
analytical signals with ground-truth frequencies, we tested the efficacy of other mother wavelets (e.g., ‘Mexican Hat’,
‘Symlet’) and found the Morlet to provide optimal performance accuracy and robustness. The scales of the CWT are
uniformly defined from 0 to the Nyquist frequency for the given signal. The Hilbert Transform computes the analytical
signal, resulting in both real and imaginary components with a 90° phase shift. Hence, the CWT of the Hilbert
transform of a signal results in a smooth coefficient field. The CWT of the raw signal would yield an intermittent
dotted coefficient pattern even for constant frequency signals; this dotted pattern would be unsuitable for extracting
the instantaneous dominant frequency. The combination of the Hilbert transform and CWT is computationally similar
to a dual-tree wavelet transform. The evaluated CWT coefficient field is filtered using the discrete wavelet transform
(DWT). Specifically, the ‘sym8’ wavelet is employed to smoothen the coefficients as the raw CWT coefficients can
maintain noisy, high amplitude peaks in the frequency array. The 'sym8’ was chosen as it has been shown to be
optimal for signal denoising [38—40]. No forced denoising was employed in the filtering process. The filtered wavelet
coefficient map is shown in Fig. 1(c) (Bottom). To evaluate the instantaneous dominant frequency, the largest peak
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FIG. 1. Overview of the WHTF method. (a) The fluctuating velocity, u’, array in time is extracted for a single spatial point. (b)
The Hilbert transform of the ”original” signal is computed and the (c) CWT coefficient map is evaluated (Top) and smoothed
(Bottom) for this signal. CWT coefficients at each time step are extracted (see white dashed line in (c¢) Bottom) and (d)
normalized to account for CWT peak differences across scales. (e) Peaks in the normalized coefficient array are identified and
Gaussian fits are used to further localize the peak and identify the the dominant IF for that spatiotemporal point. This peak
identification is repeated for all time steps. (f) The temporal variation of the dominant IF for the given spatial point. The
process shown in (a)-(f) is repeated for all spatial points. (g) 2D spatial frequency maps showing the dominant IFs through
space and time.

of the wavelet-coefficient field must be evaluated at each time step (i.e., each column of the wavelet coefficient map).
Thus, each column of the wavelet coefficient field is iteratively extracted and evaluated individually, as represented
by the dotted white line in Fig. 1(c) (Bottom).

Fig. 1(d) shows the extracted coefficient array at the time step of about 0.5s. The coefficient array is normalized
using an empirically-defined normalization function in order to account for the uneven distribution of energy across
scales inherent to the CWT. Specifically, an intrinsic drawback of the CWT is that low frequency components yield
larger coefficient magnitudes than high frequency components, even when the two frequency components maintain the
same amplitude. Fig. 2 explicitly demonstrates this, showing the CWT coefficient fields for one-frequency component
sine signals with frequencies of 1 Hz, 50 Hz, and 100 Hz. It is clearly observed that the 100 Hz signal results in lower
CWT coefficient magnitude than the 1 Hz or 50 Hz signals. Fig. 2(d) illustrates the peak CWT coefficient magnitude
as a function of the sine signal frequency. The consequence of this inherent CWT limitation is that it creates a bias
to select lower frequencies as dominant even in cases where a higher frequency has the same or even slightly higher
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FIG. 2. Defining the scale-varying CWT normalization function. The CWT coefficient maps for sine signals with single
frequencies of (a) 1 Hz, (b) 50Hz, (c) 100 Hz show the difference in CWT coefficient peak amplitude as a function of scale
(frequency). The sub-tile in (a) zooms in on the low frequency range. (d) The peak CWT coefficient magnitude for sine signals
with frequencies ranging from 1-100 Hz.
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amplitude. Hence, for our purposes it is important to correct this behavior. Thus, we utilize the signal shown in
Fig. 2(d) as the empirically-defined normalization function which is interpolated onto the CWT scales. Fig. 1(d)
shows the CWT coefficient array after normalization, where it can be observed that low frequency peaks are reduced
in magnitude and high frequency peaks are increased in magnitude.

Finally, the normalized coefficient array is smoothed using a moving average. The peaks of the normalized and
smoothed coefficient array are identified in Fig. 1(e). A 15-point window around each peak is extracted and a Gaussian
fit is evaluated on this window. The frequency corresponding to the peak of the Gaussian fit is computed. This
Gaussian fit is used to account for any remaining noise and any scale-resolution limitations. The 15-point window size
was chosen due as, through our testing, it showed high performance in aiding the selection of the best peak. However,
one limitation of this 15-point window size is that it can lead to fit errors for smaller, less prominent peaks. Because
here we are only extracting the most dominant peak, this limitation will not effect our results. However, the chosen
window size should be reconsidered if multiple frequency peaks are to be considered or if a lower scale (i.e., frequency)
resolution is used for the wavelet transform. Each evaluated frequency peak represents a frequency component in the
signal at that time step. The dominant frequency is evaluated using a peak selection metric criterion. Specifically,
peaks retained through the Gaussian fit are evaluated for peak prominence, peak height, and root mean square (RMS)
error. The metric is computed as a ratio of the product of peak height and peak prominence to the square root of the
RMS error. The peak with the maximum metric value is selected as the dominant peak. Iterating through each time
step (each column of Fig. 1(c)) results in the 1D dominant frequency vs time array for the particular spatial point,
as shown in Fig. 1(f). This entire process (steps (a)—(f)) is repeated for all spatial points in the flow field. Fig. 1(g)
depicts the instantaneous dominant frequency evaluated at each spatial point and time, which is the output of the
WHTF method.

Overall, the novelty of the WHTF method is the unique coupling of the established transforms, the wavelet coef-
ficient normalization step, and the developed instantaneous peak detection. Using this approach, we overcome the
limitations of the wavelet transform to deliver smooth and accurate instantaneous frequencies. The WHTF method
was implemented in MATLAB®. Using a PC computer, and a typical experimental dataset of size 199 x 160 vectors
with 1000 timesteps, the WHTF method calculates the dominant frequency for a single spatial point in approximately
1.5 seconds and takes about 13 hours for the entire dataset. While here we apply the WHTF method only to 2D
datasets, its implementation is agnostic to the data dimensionality and thus the WHTF method can readily be applied
as is to 3D data.

III. MATERIALS AND METHODS

A. Analytical Test Signals

1. Data generation

We first validated the accuracy of the WHTF method using ’single’ and ‘multi’-frequency analytical signals. Sine
signals were generated according to: A * sin(wt). Here, w = 27 f, where f is the ground-truth frequency and w is the
angular frequency of the signal. Amplitude, A, was kept at a constant value of 1. Each of these signals contained
499 data points and were defined for a duration of two seconds. The ‘single’-frequency signals were defined such
that only one frequency component, with variable frequency, existed in the signal at any given time. Specifically,
each signal maintained one frequency from 0-1s and a different frequency from 1-2s. The signals were defined in
this manner as one goal of this initial validation was to test the accuracy of the WHTF method for detecting step
changes in frequencies. A total of 3 ‘single’-frequency signals were generated. For all signals, a frequency of 2Hz was
used from 0-1s. From 1-2s, the frequency was varied across signals including values of 5 Hz, 50 Hz, and 100 Hz.
‘Multi’-frequency signals were defined as the summation of two single-frequency sine functions. Each frequency was
present through the entire signal. Three ‘multi’-frequency signals were defined which used frequency pairs of 2 Hz
+ 5 Hz, 2 Hz + 15 Hz, and 2 Hz + 25 Hz. These pairs were selected to test the utility of WHTF to identify low
frequency in addition to sensitivity of capturing another higher frequency above this low frequency.

2. State-of-the-art TF Methods used for Comparison Testing

The WHTF method was compared with other traditional methods of frequency estimation in the literature, including
the short-time Fourier transform (STFT) and empirical mode decomposition-Hilbert Huang transform (EMD-HHT)
[25]. The STFT was computed using the built-in MAT LAB® function ‘spectrogram’ with a sampling window of 50
points. The window overlap was kept at 75% of the STFT window size. The number of points used for the fast Fourier
transform (FFT) was kept at 500, (for signals with a sampling frequency of 250Hz). Through testing, these window
size and overlap settings were determined to provide the highest accuracy for the STFT method for the tested signals.
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The EMD-HHT was computed in two steps. First, the EMD was computed using the built-in MATLAB® function.
The EMD output was used to compute the intrinsic mode functions (IMF) as described in Huang et al. [25]. The
dominant frequency was then extracted as the first column output of EMD-HHT.

3. Error Analysis

Error analysis for the analytical signal testing was conducted to assess the accuracy of each tested TF method for
estimating the ground-truth frequency. Here, the error was defined as the absolute error, i.e., the magnitude of the
difference between the ground-truth frequency value and the value of frequency computed using the methods.

B. Experimental Datasets

Two experimental transitional pipe flow datasets, both captured using planar PIV were used for this study. One
dataset included a suite of steady-mean flow test cases, which was specifically captured for this study. This dataset
will be referred to as the "steady flow” dataset for the remainder of the manuscript. The second dataset included an
unsteady-mean pulsatile flow test cases which were captured as part of a prior study by El-Khader and Brindise [30].
This dataset will be referred to as the ”pulsatile flow” dataset for the remainder of the manuscript. Both datasets
utilized the same experimental test rig. The Reynolds number for each dataset was defined using the equation provided
in the Introduction. For the steady flow dataset, we refer to the Reynolds number as Reg, while for the pulsatile
flow dataset, we refer to it as Re,,. This distinction is made for completeness; however, Trip et al. [15] showed that
pulsatile flows defined using their mean velocity maintained analogous TI vs. Re trends to steady-mean flows. Thus,
Res and Re,, are expected to be effectively analogous such that side-by-side comparisons of the two datasets can
validly be made.

1. Steady Transitional Pipe Flow Dataset

A schematic of the experimental flow loop and PIV setup used is shown in Fig. 3. The test section consisted of
straight, rigid FEP (fluorinated ethylene propylene) tubing with an inner diameter, D, of 1/4”. The test fluid, water
(density, p = 997kg/m? and kinematic viscosity, v = 0.98 x 107m?/s), was pumped through the loop using a
computer-controlled gear pump. To monitor the flow loop, pressure transducers (Omega®) were placed upstream
and downstream of the test section and an ultrasonic flowmeter (Transonic Inc.®) was placed upstream of the test
section. The test section was preceded by a 150D+ length of uninterrupted tubing to ensure fully developed flow
was captured. In addition, the test section was submerged in the working fluid (water)—which maintains the same
refractive index (RI) as FEP—to reduce optical distortions in the PIV images. A total of 17 steady flow test cases

Reservoir Camera
Pressure Pressure
Transducer 1 Transducer 2

-y

Gear \ '

pump « =
I Laser sheet
Flowmeter . .
PIV spatial grid
e

FIG. 3. Experimental setup used for the planar PIV experiments for both steady and pulsatile flows.

were captured. The steady flow Reynolds number, Reg, for the measured cases ranged from 500-4500 to establish the
onset of transition in our flow system. The complete list of test cases is provided in Table I.

A single 4-megapixel high speed camera (Phantom VEO®) was used to capture planar PIV images. An Nd-
YLF(Neodymium-doped Yttrium Lithium Fluoride) laser (Photonic Industries®, A\ = 527 nm) was used to create
a laser sheet with a thickness <1 mm that was centered on the test section tube. The flow loop was seeded with
10 pm fluorescent particles. A double-pulsed PIV timing scheme was used. Image pairs (i.e., velocity fields) were
captured at a frequency of 500 Hz. The inter-frame time of the camera was adjusted between cases such that the
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TABLE I. POD parameters for steady flow test cases

Res Effective dt (us) Modes Energy retained (%)
500 225 1445 74.91
1000 113 1821 85.35
1500 75 1391 73.48
2000 56 1525 77.08
2100 54 3031 99.87
2200 51 1372 73.14
2300 49 1373 73.30
2400 47 3031 99.89
2500 45 3000 99.74
2600 43 3024 99.90
2700 41 141 62.73
2800 40 197 58.24
2900 39 197 49.85
3000 38 244 52.09
3200 35 240 49.91
3500 32 283 50.80
4500 25 422 56.04

maximum particle displacement per frame was around 8-12 pixels. Table I reports the inter-frame time for all cases.
The camera magnification was 4.15 pm/pixel. The image resolution was 2560x 1600 pixels and a total of 1000 images
were captured for each test case.

PIV images were processed using a publicly available software Prana. Processing was done using three passes of
an iterative image deformation algorithm, and robust phase correlation (RPC) [41-43]. A window size of 64 x64 with
a 50% Gaussian window was used for the final pass. This resulted in a 32x32 pixel effective window size which
mitigated spectral leakage. The PIV final pass used an 8 x8 pixel grid size. The velocity fields output from the final
PIV pass were of size 199x 160 vectors.

PIV velocity fields for the steady flow data were post-processed first using universal outlier detection (UOD) to
remove spurious vectors [44]. Specifically, three-passes of a median-based UOD were used which included a window
size of Tx7 and threshold of 3, a window size of 5x5 and threshold of 2, and a window size of 3x3 and threshold
of 2. Subsequently, proper orthogonal decomposition (POD) was applied to the velocity fields. POD decomposes
the velocity fields into a set of eigenmodes; a subset of these modes are reconstructed to yield a reduced-order,
smoothed version of the velocity field data. The number of modes retained for the reduced-order reconstruction were
autonomously calculated using the entropy line fit (ELF) thresholding criterion, as shown in Brindise and Vlachos
[45]. The resultant filtered velocity fields were used for all post-processing calculations. To confirm the accuracy of
the PIV data, we compared the experimental velocity profile for the Res; = 500 case, which is well within the laminar
regime, to the analytical Poiseuille flow profile. The error was found to 1.5%, highlighting that the PIV study was
well-controlled and accurate.

2. Pulsatile Transitional Pipe Flow Dataset

The pulsatile transitional pipe flow dataset from El-Khader and Brindise [30] was used herein. We provide a brief
description of this dataset, but the refer the reader to El-Khader and Brindise [30] for complete details.

A total of 12 test cases from the prior study were analyzed for this work. These included mean Reynolds number
(Renm) values of 800, 2300, 2500, 2700, 3200 and 4200, each at two Womersley numbers of 4 and 12, defined by, «
(= R\/(2nf/v)), where R is the radius of the pipe and v is the kinematic viscosity. We note that 6 additional test
cases were captured as part of the El-Khader and Brindise [30] study; these included Womersley numbers of 6, 8,
and 10, each captured at Re,, of 2500 and 2700. However, these test cases were not included herein. The literature
has shown that the flow behavior is altered for Womersley numbers > 10, as compared to Womersley numbers [ 10
[46, 47]. Thus, the Womersley number values of 4 and 12, alone, should sufficiently capture a broad range of pulsatile
flow dynamics.

The flow loop design for the pulsatile flow dataset matched that of the steady flow dataset collected for this study.
The same test section, camera, and laser sheet configuration were used. For this study, the camera magnification
was set at 6.67um/pixel and images of size 1024 x 1024 pixels were captured. The PIV images were collected using a
double-pulsed timing scheme. Image frame pairs were captured at 750 Hz, and the inter-frame time between images
in the pair was adjusted between cases to ensure a maximum particle displacement of 8-12 pixels. The frame pair
frequency was set to ensure at least two pulsatile cycles were captured for each test case. PIV images were processed
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using the same protocol as used for the steady flow data. Velocity fields for the pulsatile flow cases were of size
127x127 vectors.

The velocity fields for the pulsatile flow were post processed using POD first. ELF was again employed to determine
the modes to retain. After this, UOD analysis was done to remove any outliers in the data, which were particularly
possible around the edges of the spatial grid. The post-processed velocity fields for the pulsatile flow data for UOD
settings were similar to steady flow. Finally, the velocity fields were phase-averaged using 2 pulsatile cycles. The
smoothed and phase-averaged velocity fields were used for all subsequent calculations.

3. Post-processing

For both datasets, the fluctuating velocity components (v’ and v') were first computed using the Reynolds decom-
position. For the steady flow data, the fluctuating velocity fields were obtained after subtracting the temporal mean
velocity from the post-processed velocity components. As, the steady flow is time independent, the mean velocity was
just computed as a simple averaging. For the pulsatile flow data, the fluctuating velocity components computed in
El-Khader and Brindise [30] were used as is. Briefly, the mean velocity calculation for this dataset needed to account
for the pulsatility and not enough pulsatile cycles were computed to utilize a traditional ensemble averaging. Thus,
as done in Brindise and Vlachos [48], the mean velocity components were calculated as a fifth-level DWT decompo-
sition of the one-dimensional temporal velocity field at each spatial point using a ‘sym8’ wavelet. This calculation
removes high-frequency components, leaving only the underlying low-frequency pulsatile waveform. This calculation
is repeated for each spatial point to compute the mean velocity components for the entire dataset.

Turbulent kinetic energy (TKE) and TI were subsequently computed according to Eqn. 1 and Eqn. 2, respectively,
where U is the centerline velocity.

TKE = = (u? + v?), (1)

N =

1
TI= = /52 +07) @

=

Because the datasets are captured in a two-dimensional, two-velocity component (2D-2C) manner using planar PIV,
Eqn. 1 and Eqn. 2 do not include the third-dimensional w’ component since it is not measured by this setup. The use
of a 2D data capture is an apparent limitation of this study. However, we note that for shear flows, employing Squire’s
theorem, it suffices to study the cause of a 2D flow being unstable since, if a 2D flow is unstable then consequently,
the 3D flow will be unstable.

4. Details on TF-based metric evaluations

The WHTF was evaluated for each test case. Using this output, dominant frequencies could be plotted as instantaneous
2D spatial contour maps (i.e., as shown in Fig. 1(g)). Using this mapping, so-called “coherent frequency structures”,
which are connected regions in the spatial grid having similar frequencies, were evaluated. To do this, the built-in
MATLAB® function imbinarize was first applied to the spatial frequency map contour to identify the connected
frequency regions. Adjacent spatial grid locations were considered connected if their frequency values were within 0.4
Hz. Using the frequency contours, the number of contours as well as mean frequency and area of each contour could
be directly computed.

The Shannon entropy of the discrete cosine transform (DCT) of the 2D spatial frequency maps were computed to
quantitatively estimate the overall coherence of the maps. The DCT-entropy metric was introduced by Brindise and
Vlachos [45] and shown to accurately estimate the coherence vs. speckled-nature of a 2D map. For this calculation,
the 2D DCT of the 2D spatial frequency maps were computed. The Shannon entropy of these DCT maps were
subsequently calculated.

Joy Kolliyil et al. [22] highlighted that evaluating the instantaneous frequency of the TKE could be used to de-
compose the Kolmogorov spectrum. Thus, herein, we evaluated how the instantaneous frequency spectrum changed
across different flow regimes. For this analysis, TKE histograms were computed at each time step at each scale. We
refer the reader to Joy Kolliyil et al. [22] for complete details on this calculation. Briefly, in the 2D spatial map, the
instantaneous frequency and TKE value pairs are considered. For each unique frequency value, the corresponding
TKE values for all spatiotemporal points with that frequency are summed (effectively a histogram). Hence, a total
TKE vs. frequency distribution is computed.
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IV. RESULTS AND DISCUSSION

A. TF method comparison using analytical signal suite

We first analyze the accuracy and rigor of the WHTF method as compared to traditional TF analysis methods
(STFT and EMD-HHT) using the analytical signal suite with known ground-truth frequencies. Fig. 4(a)—(c) shows
the frequencies estimated by each TF method for the three single-frequency analytical signals, while Fig. 4(d)—(f)
shows the corresponding error analysis.

A significant ringing effect for the EMD-HHT is clearly observed. The oscillations worsened as the magnitude of the
analytical frequency jump occurring at 1s was increased. This behavior is analogous to the ringing effect often observed
with fast Fourier transforms (FFTs). The STFT exhibited no oscillatory behavior for high frequencies. However, for
low frequencies—the 2Hz frequency especially and less so the 5Hz frequency—oscillations at the estimated frequency
were observed. Here, this is a result of resolution limitations inherent to the STFT. Specifically, for lower frequencies,
the window size is too small to accurately detect the frequency. With the WHTF method, little to no oscillatory
behavior in the estimated frequency trend was observed. However, the WHTF did suffer from, at times, bias errors in
the predictions. For example, in Fig. 4(c), from 1-2s when the analytical frequency was 100 Hz, the WHTF predicted
the frequency to be 104 Hz, a 4% bias error. Because the WHTF utilizes the CWT, this error occurs as a result of
inherent limitations of the wavelet transform. Specifically, at high frequencies, the CWT maintains a low resolution
in frequency; this produces a broad CWT coefficient peak, leading to higher uncertainty in the predicted frequency
value. In Fig. 4(c), the WHTF also exhibited a time-delayed recognition of the frequency change at 1s. This occurs
because the previously discussed limitation that CWT favors low frequency peaks that results in a delay of when the
high frequency peak achieves a higher amplitude than the low-frequency peak.

Table IT summarizes the errors associated with each TF method for the single-frequency signals. For the 5 Hz and 50
Hz signals, the WHTF maintained on average a 63% and 45% improvement over the EMD-HHT and STFT methods,
respectively. For the 100 Hz signal case, the WHTF maintained a high mean error. However, this error decreases to
2.42 + 5.00 Hz when the delayed detection of the frequency change and edge effects are excluded. Nonetheless, the
STFT method maintained the best performance for this high-frequency case.

Fig. 5 considers the performance of each TF method when more than one frequency is present throughout the signal.
For this analysis, it is particularly of interest to evaluate which frequency is detected by each TF method and to what
extent the predicted frequency jumps between the two possible solutions. For all signal pairs, the STFT identified
only the larger of the two frequencies as the dominant frequency and did not detect the lower 2Hz component. This
can be attributed to window resolution limitations, which cause the STFT to favor larger frequencies. The EMD-
HHT method similarly identified the higher frequency for all signal pairs. However, the EMD-HHT again maintained
considerable oscillations throughout as well as large errors at the start and end of the signal. The WHTF method
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FIG. 4. Frequencies identified by the EMD-HHT, STFT, and WHTF methods for the single frequency signals with a 2 Hz
frequency from 0-1s and a frequency from 1-2s of (a) 5 Hz, (b) 50 Hz, and (c) 100 Hz. (d-f) show the error associated with
each time-frequency method for the 2 Hz to 5 Hz, 2 Hz to 50 Hz, and 2 Hz to 100 Hz signals, respectively.
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TABLE II. Comparison of WHTF, STFT and EMD-HHT for the three single frequency signals. The values are reported as
mean =+ standard deviation.

Cases WHTF STFT EMD-HHT

2 & 5 Hz 0.18 £ 9.14 1.03 £ 0.13 0.52 £+ 3.20
2 & 50 Hz 0.88 + 4.25 0.96 £+ 0.99 2.24 £ 4.38
2 & 100 Hz 11.12 £ 27.53 0.97 £ 0.98 6.27 £ 22.08

maintained the most varied selection of the dominant frequency component. In Fig. 5(a), for the 2 Hz + 5 Hz
frequency pair, the WHTF method only identified the 5 Hz signal. Conversely, for the highest frequency pair case
of 2 Hz + 100 Hz (Fig. 5(c)), the WHTF identifies the low-frequency as the dominant peak. The 100 Hz is only
selected as dominant for the very beginning and end of the signal. This can be attributed to resolution limitations
arising from edge effects of the CWT mapping. For the 2 Hz + 50 Hz case (Fig. 5(b)), the WHTF selects the lower
frequency as dominant in the middle of the signal (0.5s-1.5s), but the 50Hz component as dominant outside of this
window. The variable dominant frequency selection can be attributed to the peak selection on the basis of coefficient
magnitude coupled with the inherent limitation that CWT coefficient magnitude is frequency-dependent. In general,
this multi-frequency signal analysis demonstrates that the WHTF method is the only method capable of identifying
low-frequency components when high-frequency components are present. This, combined with its improved accuracy
for frequency detection, makes the WHTF method most suitable for analyzing instantaneous frequency components
in flow velocity fields.

Fig. 5(d)—(f) show the CWT coefficient maps for multi-frequency signals. It is clearly observed that both frequency
components are identified by the CWT, but because only one frequency is selected by the peak detection, one
frequency component is defacto missed by the WHTF method. While adding a second peak identification to the
WHTF method can resolve this issue, adding this capability is not desirable for the goals of this work. Specifically,
this is because Joy Kolliyil et al. [22] demonstrated that for noisy signals only the most dominant frequency can be
accurately identified, even when additional signal windowing modules are included to improve frequency identification.
Furthermore, Joy Kolliyil et al. [22] highlighted that the turbulent behavior of a flow is often contained within a single
IF, such that the WHTF should be capable of providing critical details regarding transition progression. Hence,
identifying a single dominant frequency is the first step towards arriving at a universal metric which can successfully
predict this transition. Nonetheless, expanding the WHTF method to extract multiple instantaneous frequencies
should be explored in future work. The primary challenge of this expansion is that it will increase the dimension of
the data analysis.

Dominant frequency comparison
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FIG. 5. Frequencies identified by the EMD-HHT, STFT, and WHTF methods for the two frequency (a) 2 Hz + 5 Hz, (b) 2
Hz + 50 Hz, and (c) 2 Hz + 100 Hz signals. (d)-(f) show the CWT coefficient field computed by the WHTF method for the 2
Hz + 5 Hz, 2 Hz + 50 Hz, and 2 Hz 4+ 100 Hz signals, respectively.
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FIG. 6. Turbulence intensity (TI) vs Reynolds number for (a) the steady flow dataset and (b) the pulsatile flow dataset
including Womersley numbers 4 and 12.

B. Characterizing transition for our experimental setup

Next, the onset of transition as well as the critical Reynolds number for the steady experimental dataset are charac-
terized. This information will serve as a ground-truth by which the efficacy of TF-based metrics to evaluate transition
progression.

To evaluate the onset of transitional and fully turbulent flow, the traditional TT vs Re (S-shaped) curve was used.
Fig. 6(a) shows the axial and radial TIs vs Re, for the steady flow dataset. The observed curves closely matches those
reported by Trip et al. [15], albeit with a slight shift of the Recriticai value. For our setup, the onset of transition
is seen at a Reg of 2400, which is the point where the axial TI begins to rapidly increase. The Repiticqr is typically
marked as the point where the axial TT begins to level off and/or where the radial TI S-curve plateaus. For our
setup, this occurs at an Re;, = 3000. As the flow regime becomes fully turbulent, the axial TT decreases slightly with
increasing Reg, while the radial TT is plateaued and remains at a constant value. The peaks and valleys correspond
to sub-critical transition as the flow in the laminar regime is largely 2D and gets disturbed to evolve to transition and
eventual turbulence. The momentary fluctuation seen at Res = 2100 in Fig. 6(a) is most likely the effect of ancillary
experimental disturbances which subsequently get relaminarized locally.

For the pulsatile flow data, the exact critical Re,, could not be ascertained as the data did not maintain a high enough
resolution for tested Re,, values within the transitional regime. Nonetheless, estimates for the onset of transitional
and fully turbulent flow can be observed in Fig. 6(b). Specifically, for both Womersley numbers, transition begins
around a Re,, of 2300 and full turbulence is achieved by a mean Re,, of 3200. This aligns with the findings of
Trip et al. [15] who found that steady flow and pulsatile flows with Womersley numbers greater than 10 maintained
negligible differences in the critical Re,, values. The axial and radial TT behavior was consistent across both values of
«. Specifically, a gradual decrease in both axial and radial TT occurred in the laminar regime until the Re,, reaches
the onset of transition. Beyond this point, the TT trends increased with increasing mean Re, until turbulence was
achieved, at which point the trends roughly plateau. Hence, despite the similarity of critical Re’s across the steady
and pulsatile datasets used here, notable differences in the behavior of the axial and radial TI trends were observed.
For example, the axial and radial TI trends were largely similar for the pulsatile flow data, a finding inconsistent
with the steady flow data. The different TT trends in pulsatile flow as compared to steady flow suggests underlying
differences in the flow dynamics exist [49]. Hence, this finding implies that the unsteady component in the pulsatile
flow effects the development of transitional and turbulent flow, but does not alter the critical Re. Ultimately, this
demonstrates that the two datasets (steady and pulsatile) provide a robust set for our evaluation of TF-based metrics
to assess transition progression in flow environments with varying turbulence development dynamics.

C. Evaluating TF-based metrics capable of characterizing transition progression

With the onset of transition and turbulent flow identified for our two test datasets, we next evaluated how the
instantaneous frequency structures changed through the laminar, transitional, and turbulent regimes in order to
determine the extent to which these features can be used to characterize transition progression. Fig. 7 plots the
temporally-averaged spatial frequency map for the steady flow dataset at Reg values ranging from 2200 to 3500.
Here, the temporal averaging was done by averaging the instantaneous (i.e., at one time point) 2D spatial frequency
maps through the entire time span of the data.
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FIG. 7. Montage of frequency spatial structures within the pipe for varying Res values ranging from 2200-3500.

Hence, for each tile shown in Fig. 7, the streamwise (i.e., axial) direction varies from left to right and the spanwise
(i.e., radial) direction varies from top to bottom. In the laminar regime (Re; values of 2200 and 2400), fine frequency
structures with an average frequency of 28 Hz are present throughout the pipe, which present with no general
coherence. As the Re, increases through the transitional regime (2500 to 2900), frequency structures with increasing
coherence are observed. The frequency structures are primarily narrow-banded, axial in nature, and maintain a
frequency of 25-45 Hz. Outside of these coherent frequencies, the remainder of the pipe generally maintains a
baseline frequency of about 15 Hz. Once the flow achieves full turbulence at an Re, of 3000, the coherent frequency
structures primarily span the pipe cross-section, with minimal area maintaining a background frequency value. In the
well established laminar regime, the fluid motion is dictated by movements of fluid layers which translate on top of
each other [50]. This likely results in the frequency of the flow to be similar across the pipe cross section for laminar
flow. However, as the flow starts evolving to the transitional regime, these layers are disturbed due to various factors
such as increased friction and as a result the frequency composition changes in the radial (spanwise) direction. This
causes locations in the pipe to have higher and lower frequencies based on relative motion. While the individual
contribution of pressure and inertial forces on the frequency computation cannot be explicitly determined herein, it
is of interest to evaluate in order to decompose the transition dynamics more explicitly. Thus, further studies which
can correlate the velocity and pressure gradients with frequency gradients in 3D should be explored.

Fig. 7 confirms that the dominant instantaneous frequency does change based on flow regime. Several specific,
notable differences in the frequency structures were observed in the laminar, transitional, and turbulent regimes. In
particular, the background frequency value, the area of the frequency structures, and the coherence of the frequency
structures were markedly different for each flow regime. Thus, each of these represent possible metrics capable of
characterizing the progression of transition.

Fig. 8 plots the 1D spatial averaged frequency across the centerline of the pipe, which explores the background
frequency notion. For the steady flow data, in Fig. 8(a), the centerline frequency was constant in the laminar regime,
with a frequency value of about 29 Hz. As the flow becomes transitional (shown in gray), the centerline frequency
plummets to a frequency of about 17 Hz at Re; = 2600. This low centerline frequency can be observed in Fig. 7 as well,
where the Re; = 2600 case maintained very low frequency values throughout the pipe. For the later-stage transitional
regime and early turbulent regime (Res between 2600 and 3500), the centerline frequency recovers to about 27 Hz,
before decreasing to about 23 Hz by an Re; = 4500. A somewhat similar behavior was observed for the centerline
frequency trend in the pulsatile flow datasets, as shown in Fig. 8(b). For this case, the frequency was around 40 Hz
for @« = 4 and around 42 Hz for @ = 12 in the laminar regime. In the transitional regime, the lowest frequency was
around 30 Hz, beyond which the frequency behavior differed for each value of a. For a = 4, the frequency recovered in
the turbulent regime to 36 Hz. However, for a = 12, the frequency dropped further to 28 Hz. This likely occurs as a
result of the fact that changes in flow dynamics occur for flows with o >10. Specifically, prior studies have highlighted
that for o > 10, transition dynamics mimic steady flow whereas for flow with a < 10, the transition dynamics are
influenced by the pulsatile phase [30]. Overall, for pulsatile flow, the drop of centerline frequency magnitude as the
flow became transitional was not as significant as compared to that of steady flow. Specifically, a 16 Hz drop occurred
in the steady flow, while only a 10 Hz drop occurred in the pulsatile low. Additionally, the pulsatile cases maintained



423

425

426

427

428

429

430

432

433

434

435

436

437

438

439

440

441

442

443

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

12

. b . .
@) 30 _ Centerline frequency for steady flow ( )50 Centerline frequency for pulsatile flow
F=~" """ ==  Transitional ~-a=12
28] oy . ] ~- =4
_ ‘B Regl,me 45| RN
N 26 \\ ] -7 - > -]
E—-:./ || ,I N | _-7 \
N S~ _ \
3\24- : I, M 40¢ TTe-e M
5 \ 1 A \ \
g by Y V3 N \ \
o r 1 ¢ 1 35 L ‘\ \ ]
8 1 ! o~ o ' ’ e
= 20| VY ] L
4 30| AR
18] N ] T~e L
3
16 . 1 . I . 1 25 . . .
500 1500 2500 3500 4500 800 23002700 3200 4200
Res Rem

FIG. 8. Centerline frequency vs Reynolds number for the (a) steady flow dataset (where the transitional flow regime is shown
in gray) and (b) pulsatile flow datasets.

about a 10 Hz higher frequency magnitude across all Re,, values as compared to the steady flow data. The laminar
to turbulent peak frequency difference for steady flow was about 6 Hz as opposed to 3 Hz and 10 Hz for the pulsatile
cases corresponding to a = 4 and o = 12, respectively. These results highlight that the centerline frequency does
demonstrate a trend that notably differentiates the laminar, transitional, and turbulent regimes for both datasets.
However, because of the frequency magnitude value differences, the metric—in its current, dimensional form—does
not provide a means to determine the level of transitional or turbulent flow given a single representation (i.e., one Re
value) of a specific flow. It is plausible that an appropriate non-dimensionalization of the centerline frequency could
provide a universal metric to this end. Evaluating this notion would require additional standalone datasets and hence
this should be explored in future work.

Fig. 9(a) plots the average area of the frequency spatial structures as a function of Rey for the steady flow dataset.
The mean size of the area structures were about 0.005 mm? for the laminar regime. As the flow evolved to the
transitional regime, the mean area jumped to 0.012 mm? at Re, = 2800, and stabilized at a mean area of about 0.01
mm? at the Recriticar of 3000. In the turbulent regime, the mean area structures decreased to about 0.008 mm?2.
Fig. 9(b) shows the mean area structures for the pulsatile flow datasets. Similar to the steady flow dataset, the
area magnitudes remained constant in the laminar regime for both Womersley numbers. However, the behavior in
transitional and turbulent regimes differed. For o = 4, the mean area increased steadily throughout the transitional
and turbulent regimes. Conversely, for & = 12, the mean area jumped to about 0.022 mm? between the mean Re
values of 2700 and 3200, and remained plateaued at this value through the turbulent regime. Together, Fig. 9(a) and
9(b) suggest that the development of transition occurs faster in the steady and steady-mimicking o = 12 flows, and
more gradually in the o = 4 flow. Overall, the mean area of frequency structures was universally observed to increase
from the laminar to the turbulent regime.

Fig. 9(c) and 9(d) show the area fraction (¢s and ¢,,) as a function of Re for the steady and pulsatile flows,
respectively. Area fraction is a dimensionless quantity computed as the ratio of the total area within coherent
frequency spatial structures to the total area of the pipe section. The ’total area within coherent frequency spatial
structures’ is defined using two thresholds. First, only areas whose frequency value is greater than the mean frequency
of the flow are included. This threshold enables the extraction of features having higher frequency makeup capable
of influencing the flow dynamics. Second, an area size threshold is applied to include only areas of 20 sq. pixels or
greater. This value is chosen anywhere below the median values so that any variations beyond such a small magnitude
is insignificant. For both the steady and pulsatile flows, the area fraction increased slightly through the laminar regime
within the range of 0.38-0.43. For the steady flow dataset, area fraction began decreasing at an Res of 2000. This
decrease occurred throughout the transitional regime, before leveling off at an area fraction of about 0.35 in the
turbulent regime. For the o = 4 case, area fraction began decreasing at an Re,, of 2400, bottoming out at 0.35 at
an Re,, of 3200, and then finally increasing to about 0.37 in the turbulent regime. For the o = 12 case, area fraction
decreased sharply from an Re,, of 2700 to 3200 (dropping from 0.40 to 0.36), and then recovered to about 0.385 at
an Re,, of 4200. Thus, for all flow the turbulent regime area fraction recovered to roughly that of the laminar regime,
while the area fraction dropped in the transitional regime. However, Fig. 9(a) and 9(b) highlighted that the overall
size of the areas in the flow increased in transition. Hence, the area fraction analysis suggests that the slugs and
puffs forming in the transitional regime maintained low frequencies, below the mean flow frequency. Overall, the area
and area fraction do demonstrate a relationship with turbulence progression, but similar to the centerline frequency
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(¢s) as a function of Reynolds number for (c¢) steady flow and (d) pulsatile flow datasets.

analysis, a scaling or bias difference between the steady and pulsatile values existed.

Fig. 10 shows the histograms for laminar, transitional, and turbulent regime Re values for the steady and pulsatile
datasets. For the steady flow (Fig. 10(a)), the most prevalent area size for the laminar regime was approximately
0.0005 mm?. This increased to 0.008 mm? as the flow became turbulent. Fig. 10(b) and 10(c) show the histograms
for the pulsatile flow dataset of & = 4 and a = 12, respectively. The most prevalent area size for the laminar regime
was about 0.0005 mm? and 0.0001 mm? for the 4 and 12 Womersley number cases, respectively. In the turbulent
regime, these values increased to 0.001 mm? for a = 4 and 0.002 mm? for o = 12. A notable difference in the
total number of structures was observed, where the o = 4 case maintained about 4 times more structures than the
steady flow case and about 5 times more structures than the ao = 12 case. This difference likely indicates that for
the a = 4 case, where pulsatility-induced structures have sufficient time to develop, leads to a significant increase in
frequency structures. Despite the change in the number of spatial structures, the distribution of spatial structures
appears to be unimodal and generally consistent for all cases. As the Reynolds number increased, an increase in the
number of large area structures is clearly observed for all flows. Furthermore, in the turbulent regime, the decrease
in the number of area structures becomes more gradual. Both of these findings indicate that the coherent frequency
structures generated by turbulent flow are larger in spatial area than for laminar flow. Hence, this suggests that this
characteristic of peak area magnitude does reflect the progression of transitional and turbulent flow development.
However, further analysis is required to comment and classify this distribution as a type of log normal. Additionally,
future studies should aim to correlate the skewness of such a distribution to the effect of Womersley number on the
peak of these area structures.

Fig. 11 evaluates the coherence of the frequency structures through the laminar, turbulent, and transitional regimes.
Specifically, the DCT-entropy of the 2D spatial frequency maps shown in Fig. 11 are evaluated; DCT-entropy has
been shown to provide a representative estimate of the organization of structures in a given flow field (or 2D map in
general) [45]. Here, a higher DCT-entropy is expected to correlate with increased coherence of frequency structures.
S-curve-type trends of the DCT-entropy are observed for both the steady and pulsatile datasets. In the laminar
regime, the steady flow case, maintained an average DCT-entropy of 0.10, while the pulsatile flow with o = 4 and «
= 12 had DCT-entropy values of about 0.08 and 0.30, respectively. The DCT-entropy increased significantly in the
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FIG. 11. DCT-entropy for steady flow and pulsatile flow datasets including both the 4 and 12 Womersley numbers («).

transitional regime, peaking at 0.30 for the steady flow data, 0.27 for the pulsatile flow data with « = 4, and 0.55 for
the pulsatile flow data with & = 12. In the turbulent regime, the DCT-entropy decreases somewhat to about 0.18 for
both the steady flow and pulsatile o = 4 cases and to 0.30 for the pulsatile & = 12 case. In general, the DCT-entropy
trends for the steady and pulsatile flow, o = 4, are strikingly similar both in terms of trend and magnitude, while for
the oo = 12 case, the trend is similar, but magnitude is higher. This finding is of particular interest given that the o =
12 case is expected to be steady-mimicking, yet the DCT-entropy trend suggests the opposite behavior. One possible
explanation for this finding is that the high-frequency pulsation associated with the 12 Womersley number flow does
serve to increase the overall energy in the flow, leading to a higher entropy. Considering Fig. 11 and Fig. 7, our
findings suggest that in laminar flow, where no flow scales are expected, no frequency components truly exist within
the flow. Hence, the lower values of DCT entropy in the laminar regime most likely reflect the pump fluctuations
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and other experimental artifacts which are captured by the frequency algorithm. In the transitional regime, however,
DCT entropy values peak. This likely occurs as a result of the rapid generation and dissipation of identifiable slugs
and puffs which disturb the flow and generate clear and frequency components in the flow. In turbulent flow, the slugs
and puffs are produced at higher rate than in transitional flow such that they are no longer individually discernible
and maintain an ”interference” with one another. This would be expected to reduce the coherence of the frequency
structures and provide an explanation for the reduced DCT-entropy in the turbulent regime.

Fig. 12(a) shows the total TKE vs. frequency line and demonstrates the fitted -5/3 slope Kolmogorov spectrum
line on a log-log scale for the steady flow at Res; = 4500 case. The upper and lower frequency bounds between which
the total TKE line matches the Kolmogorov spectrum were identified. This was done by extracting the abscissa value
at the ends of this line segment.

Fig. 12(b) and 12(c) show the time-averaged upper and lower TKE spectral bounds for all the steady flow and
pulsatile flow cases, respectively. For the steady flow, laminar regime (Res < 2000), the total TKE-frequency trend
matched the Kolmogorov spectrum for frequencies of about 30-50 Hz. By the transitional regime, this frequency
range expands to about 10-70 Hz and in the turbulent regime, the frequency range reduces to about 10-40 Hz.
Hence, this suggests that the laminar regime maintains a higher frequency range, the turbulent regime corresponds
to a lower frequency regime, while the transitional regime envelops both the laminar and turbulent frequency ranges.
For the pulsatile flow at both Womersley numbers, the total TKE-frequency line matches the Kolmogorov spectrum
for frequencies in the range of 35-100 Hz for the laminar regime and 35-80 Hz for the transitional regime. In the
turbulent regime, frequency ranges of 35-85 Hz for the o = 4 case and 20-95Hz for the @ = 12 case are observed.
Hence, for the @ = 4 case, where the flow is noted to be highly influenced by the pulsatile cycle, the lower frequency
bound did not change across the regimes.

For the steady flow case and the @ = 12 case—which was reported to mimic steady flow—a drop of the lower
frequency bound is observed at the critical Reynolds number (from about 35Hz to 10Hz in the steady case; from
about 35Hz to 18Hz in the o = 12 case). This suggests that for low Womersley numbers, the unsteady term in
the pulsatile flow influences the low-Hz instantaneous frequencies to a greater extent than turbulent flow structures.
Conversely, for steady and high Womersley number flows, the presence of turbulent flow structures drives the lower
frequency bound and any pulsatility-induced unsteadiness is secondary. The dynamics of the upper frequency bound
were different for each case. Specifically, for the o = 12 case, the upper frequency bound decreased in transition
and then recovered to its laminar value in turbulence. This finding implies that the pulsatility-induced unsteady flow
behaviors for high Womersley number flows influence the high-frequency flow dynamics. Only in the transitional flow
regime, are the turbulent flow behaviors strong enough to influence this effect. For the a = 4 case, the upper frequency
bound similarly decreases in transition, and then does not significantly change in the turbulent regime. Hence, this
indicates a scaling-type effect, where the flow scales derived from the unsteadiness are primarily low-frequency (about
35Hz), while for high Womersley flows they are high-frequency (about 90Hz). Moreover, because transitional and
turbulent flow structures maintain frequencies in the range of about 10-30Hz, this finding may provide an explanation
for why low Womersley number flows have been noted to maintain differing transitional flow dynamics as compared
to steady flow while high Womersley number flows are steady-mimicking. For the steady case, the upper frequency
bound increased to its highest value in transition, then decreased to below the laminar value in the turbulent regime.
Hence, for steady flow, the largest frequency range was observed in transition, while for both unsteady cases, the
smallest frequency range was observed in transition. This suggests that, to some extent, the unsteady flow behaviors
potentially maintain a destructive interference with the developing transitional puffs and slugs. This finding and the

(3)3 Res 4500 TKE fit (b)  TKE window sizes for steady flow (c) TKE window sizes for pulsatile flow
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FIG. 12. (a) Demonstration of the Kolmogorov spectrum fit to the total TKE vs. frequency array for steady flow, Res = 4500
case. Minimum and maximum frequency ranges for which the total TKE arrays match the Kolmogorov spectrum for the (b)
steady flow dataset and (c) pulsatile flow datasets.
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possible interaction of the two distinct flow structure types should be explored further in future work.

V. CONCLUSION

In this work, we explore the efficacy of using the instantaneous frequency of the fluctuating velocity field to characterize
the onset and development of transitional flow in pipes. Two experimental datasets including both steady-mean and
pulsatile (unsteady-mean) pipe flow were used. Instantaneous dominant frequency of the fluctuating velocities of
these datasets were evaluated using a novel Wavelet Hilbert Time Frequency (WHTF) analysis method presented
herein. We demonstrated the accuracy of our WHTF method using analytical signals and highlighted its suitability
for evaluating the TF representation of transitional and turbulent flows. The frequency analysis of the two flow
datasets demonstrated clear differences in the instantaneous frequency structures across the laminar, transitional,
and turbulent flow regimes. Specifically, we found that turbulent puffs and slugs generated during the transitional
flow regime are low-frequency structures. Thus, this causes the centerline frequency of the pipe to drop significantly
in the transitional regime. Additionally, the area of the frequency structures were observed to increase as the flow
became transitional and turbulent. The transitional regime maintained the highest coherence of frequency structures,
while the laminar regime maintained the lowest. Finally, we observed that the frequency range for which the total
TKE spectrum matches the Kolmogorov spectrum is lower in frequency magnitude for turbulent flow as compared
to laminar flow. Hence, these results revealed various characteristics of transitional and turbulent flow development
as well as metrics that quantify this progression. Future work should aim to more specifically assess the behavior of
these TF-metrics within specific stages of transition (e.g., sub-critical transition from 2D to 3D state, super-critical
transition from 3D transition to 3D turbulence). Overall, this work takes a first step towards developing a universal
metric capable of estimating transitional flow development for a pipe flow environment. Future work should focus on
non-dimensionalizing the characteristic metrics identified herein to improve their universality.
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