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ABSTRACT

Human-robot collaboration (HRC) has become an integral
element of many industries, including manufacturing. A
fundamental requirement for safe HRC is to understand and
predict human intentions and trajectories, especially when
humans and robots operate in close proximity. However,
predicting both human intention and trajectory components
simultaneously remains a research gap. In this paper, we have
developed a multi-task learning (MTL) framework designed for
HRC, which processes motion data from both human and robot
trajectories. The first task predicts human trajectories, focusing
on reconstructing the motion sequences. The second task
employs supervised learning, specifically a Support Vector
Machine (SVM), to predict human intention based on the latent
representation. In addition, an unsupervised learning method,
Hidden Markov Model (HMM), is utilized for human intention
prediction that offers a different approach to decoding the latent
features. The proposed framework uses MTL to understand
human behavior in complex manufacturing environments. The
novelty of the work includes the use of a latent representation to
capture temporal dynamics in human motion sequences and a
comparative analysis of various encoder architectures. We
validate our framework through a case study focused on a HRC
disassembly desktop task. The findings confirm the system's
capability to accurately predict both human intentions and
trajectories.

Keywords: Human intent prediction, human trajectory
prediction, multi-task  learning (MTL), human-robot
collaboration (HRC)

1. INTRODUCTION

Human-robot collaboration (HRC) is a rapidly growing area
of research and application. It plays an important role in various
sectors including, but not limited to manufacturing.
Understanding and predicting human intentions is a critical
aspect of the successful implementation of HRC. It equips robots
with the ability to interpret and respond to their human
counterparts in a timely manner and promotes practical
collaboration. In environments where humans and robots work
in close proximity, predicting human trajectories improves
safety and productivity. A major challenge in implementing
HRC is the perception, prediction, and understanding of human
intentions and trajectories simultaneously.

Though significant progress has been made in the domains
of human intention and trajectory prediction, a gap remains in
the simultaneous prediction of both aspects [1,2]. Multi-task
learning (MTL), an approach where multiple related tasks are
learned at the same time, presents a promising solution. Through
learning to predict intentions and trajectories concurrently,
robots can better understand human actions and movements,
which leads to practical collaboration within the manufacturing
environments.
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Figure 1: The proposed framework for prediction of human intent and trajectory through multi-task learning.

The objective of this paper is to develop a framework for
multi-task learning and compare several encoder architectures
for HRC tasks. The proposed MTL framework is illustrated in
Fig. 1. This model processes motion data from both human and
robot trajectories. These inputs are directed into an encoder
module that analyzes the sequences to generate a latent
representation of the data. From the latent space, two separate
tasks are branched out. The first task employs a decoder to
predict human trajectories, focusing on reconstructing the
motion sequences. The second task uses supervised learning,
specifically a Support Vector Machine (SVM), to predict human
intention based on the latent representation. Moreover, an
unsupervised learning method, Hidden Markov Model (HMM),
is utilized for human intention prediction, which offers a
different approach to decoding the latent features. Each of these
tasks aims to decode a different aspect of the input sequences;
one for the movement trajectory, and the other for the intended
path.

The paper is structured as follows: Section 2 reviews
relevant literature. Section 3 outlines the methodology used to
create the framework. Section 4 presents a case study to evaluate
the framework in human-robot collaborative disassembly tasks.
Finally, section 5 concludes the paper.

2. RELATED WORK

In this section, we briefly summarize the relevant literature
on HRC with respect to methods for perceiving human intentions
and trajectories, the corresponding prediction methods, and the
need for predicting intentions and trajectories in multi-task
learning.

2.1 Human intention prediction
In human-robot teamwork, anticipating each other's actions
facilitates the coordination of actions among team members.

Humans possess this ability to exchange information, either
directly using gestures or words, or indirectly using facial
expressions or internal guesses. Equipping robots with a similar
capability to collaborate with humans remains a challenge, but
inferring human intentions offers a promise in addressing this
challenge. Efforts have been made by researchers to develop
robots capable of inferring human intentions [3]. To name
several examples, Fan et al. [4] suggested identifying human
intentions by preprocessing body postures and evaluating them
in an HRC disassembly scenario. Margrini et al. [5] introduced
the recognition of the operator's gestures to understand the
human intent and to control a robot for collaborative polishing
operations. In the manufacturing domain, robots should have a
semantic understanding of human intent specific to the task at
hand, unlike the general inference required in everyday
activities.

Beyond merely inferring intentions, robots as reliable
teammates should have a keen and accurate ability to predict
intent [6]. This helps humans working alongside robots
experience a sense of reassurance, knowing that their robotic
colleagues truly understand them and there is no fear involved.
Some research on predicting human intent in HRC has been
published recently. The Human Digital Twin framework, which
uses LSTM modules for learning spatial-temporal features,
achieved an accuracy of 98.54% for human action intention
recognition [4]. Moreover, employing an LSTM network
allowed for inference of the operator's intention with an accuracy
of 86.49% [7]. Adding a self-attention layer after LSTM layers
proved to have 91% accuracy [8]. Existing studies have
demonstrated that the utilization of Recurrent Neural Networks
(RNNs), such as LSTM, allows for the learning of human
features to predict human intent. However, these approaches
often overlook the incorporation of robot features, particularly
for HRC scenarios.
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2.2 Human trajectory prediction

In manufacturing field environments where humans and
robots work in proximity, predicting human trajectories has
become a critical area of research. According to Xiao et al. [9],
the analysis of disassembly trajectories helps obtain the optimal
disassembly paths. This can be further extended to path planning
and decision-making for robots. For example, in a shared
workspace, if a robot can predict that a human worker is about
to occupy a space, it can plan its path in advance to avoid that
area rather than having to stop and reactively change its path. A
considerable amount of research has contributed to this field [10,
11]. In addition, due to the uncertainty of product design growth
and factory flexibility expectations, understanding individual
human movements can help robots adjust their actions to the
preferred cooperative style and work habits of individual human
operators. This can increase operator satisfaction and reduce
fatigue or stress associated with working near robots.

Multiple studies have demonstrated the importance of
capturing human motion in existing HRC developments [12, 13].
Zhou et al. [14] conducted a study on attention mechanisms
applied to human motion tracking and arm trajectory prediction.
Their work was experimentally validated in an assembly task
involving a collaborative robot. Incorporating the movements of
the robot, Zhu et al. [15] employed a neural network approach to
predict arm trajectories considering the distances between each
link of the robot and each joint of the human. The integration of
motion data was essential for providing safety. Hence, the use of
deep learning models to predict an operator's trajectory becomes
imperative. Incorporating the robot's motion into this prediction
process demonstrates substantial improvements in terms of
safety and predictability.

2.3 Multi-task learning

Upon reviewing the studies on human intention and
trajectory prediction, it becomes evident that one specific
limitation is an exclusive focus on individual aspects without
simultaneous prediction. The simultaneous prediction of human
intentions and trajectories improves the performance of HRC.
Robots can comprehend what action a human is about to take as
well as understand where human movement is likely to occur. To
achieve this, MTL has emerged as an effective approach. MTL
works on the principle that tasks learned simultaneously can
positively influence each other and provide better generalization,
which leads to improved performance compared to learning
tasks alone [16]. The concept of MTL has been put into practice
in HRC scenarios [17, 18]. Nonetheless, further exploration is
needed to develop the prediction of human intentions and
trajectories within the MTL framework, particularly in the
manufacturing domain.

3. METHODOLOGY

This section introduces the general workflow for predicting
human intentions and trajectories. The process begins with
selecting a Bi-LSTM-based encoder-decoder architecture for
handling sequential data. Four different encoder designs are
evaluated for feature extraction. Also, the methods for intent

classification, both supervised and unsupervised, are discussed.
Finally, the objective function used for model training is
explained. The following subsections provide detailed
descriptions of each component.

3.1 Bi-LSTM encoder-decoder architecture

Sutskever et al. [19] first proposed the encoder-decoder
architecture and applied it for neural machine translation, which
was designed to convert sequences from one domain into
sequences in another domain. The encoder model encodes the
input sequence as a convex vector and aims to learn the
information in the input. After the encoder, the decoder takes the
convex vector and generates the output. The encoder or decoder
is usually designed as a recurrent neural network, such as an
LSTM or gated recursive unit.

The workflow of an encoder-decoder architecture consisting
of Bi-LSTM networks is shown in Fig. 2. The LSTM cell
comprises a current input vector x., the last memory cell state
Ct_1, and the last hidden state h,_;. The way each LSTM cell
operates is explained mathematically as,

fe = o(Wpxxe + wephe_y + Weche g + by) (1)

ip = o(WixXe + Wiphy_y + wiche 4 + b;) (2)

0r = 0(WoxXt + Wophe_1 + Woche_q + by) 3

¢ = €1 Oft + iiOtanh(wex; + wephey + be) 4)
h; = o,Otanh(c;) ®)]

where f;, i; and o, are namely the forget gate, input gate, and
output gate. w and b are linear transformation matrices and
biases.
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Figure 2: Architecture of the Bi-LSTM network.

Different from the standard LSTM model that processes
data in a sequence focusing on the current and past information,
we select a Bi-LSTM model that considers both past and future
data points. This enhancement is achieved by adding an extra
layer to the LSTM network. In a Bi-LSTM, there are two key
layers: the forward hidden layer h{ and the backward hidden
layer h? [20]. The forward hidden layer processes the input in
the natural order, that is, starting from the first element and
moving forward. On the other hand, the backward hidden layer
processes the input in reverse order, beginning from the last
element and moving backward. The final output H, is produced
by combining the outcomes from both the forward and backward
hidden layers. The implementation of the Bi-LSTM model is
based on the following equations:
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hl = tanh(w],x, + wi,h[_, + b]) ©)
h? = tanh(wp, x, + wh,h?_, + b2) )
H, =wj,hl +wb,h! +b, ®

3.2 Different encoder designs

In the encoder-decoder architecture, the encoder converts
the input sequence into a hidden representation, and then the
decoder changes this representation back into an output
sequence. A possible issue with this method is the risk of losing
information during the process. To address this issue, we have
added attention and pooling mechanisms to the encoder. Four
different designs of the encoder are shown in Fig. 3.
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Figure 3: Different encoder architectures sharing a common
decoder model.

The Interaction-attention encoder (shown in Fig. 3A)
processes robot and human sequences, directing their outputs to
an attention layer. An attention mechanism was introduced that
allows the network to focus on the most relevant information
[21]. The output sequences from the Bi-LSTM network are
denoted by H = [Hy,...,Hy] € R¥*T where N represents the
dimensionality of the output feature vector at each time step, and
T represents the number of time steps. An attention mechanism
processes these sequences to compute alignment scores,
indicated by ef. These scores quantify the relevance of each
input element to the current output element being considered.
Attention weights are then derived using a softmax function over
these scores,

B — exp(ey’ ©))
C X exp(el)

This formulation confirms that the attention weights sum to 1,
allowing the model to focus on different segments of the input

sequence for each output time step. After the calculation of
attention weights, the vectors are output by:

T
hate = Z E.H,
t=1

The Interaction-pooling encoder (shown in Fig. 3B)
processes sequences from both robot and human and directs the
outputs towards a layer specifically designed for pooling
operations. To focus on the most relevant information without
the need for complex attention weight calculations, the network
employs both average and max pooling strategies [22].

For average pooling, the operation is defined as taking the
mean within the specified dimensions of the sequence to
generalize the overall trend or average effect present in the
sequence. The equation for average pooling over the temporal
dimension is given by:

T
1
have = TZ He
t=1

This results in a vector hg,, that provides a summarized
representation by averaging the features in all time steps, thereby
condensing the temporal information into a single vector.

In contrast, max pooling is utilized to capture the most
dominant features in the sequence, by selecting the maximum
value within the specified dimension for each feature. The
operation is formalized through the following equation:

(10)

(11)

L (12)
Rinax = max(z Hy)
t=1

Here, h,,,, denotes the vector consisting of the largest feature
values identified in all time steps.

The Interaction-seq2seq encoder, illustrated in Fig. 3C,
processes both human and robot motion sequences. The output
vectors are directly derived from the Bi-LSTM without further
transformation:

hyr = H; (13)

This design indicates a direct mapping from input to output,
handling sequence data without additional processing layers or
functions.

To establish a baseline model, the Seq2seq encoder, shown
in Fig. 3D, exclusively processes human motion sequences. We
aim to compare whether including robot motions can enhance
the prediction of human motion, given the absence of any
specialized information extraction function:

hy = Hi_puman (14)
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This formulation also represents a direct mapping of human
motion from input to output.
3.3 Supervised and intention
classification

We employ SVM for supervised classification which is a
discriminative classifier. SVMs are discriminative classifiers
that, given labeled sequential data, identify the optimal
hyperplane to separate different classes.

In addition, we select an HMM model for unsupervised
recognition. An HMM consists of a set of discrete hidden states
and observation sequences. The Expectation-Maximization
(EM) algorithm is utilized to infer the hidden intention states and
refine the model parameters based on the observed motion
sequences. In the Expectation (E) step, the posterior distributions
are calculated using the forward-backward algorithm. In the
Maximization (M) step, parameters from the state transition
matrix and the emission matrix are updated. After the
convergence of the iterative process, the sequence of hidden
states predicted by the HMM can be interpreted as the sequence
of underlying intentions.

unsupervised

3.4 Objective function

In this model, Mean Squared Error (MSE) is used as the
objective function to compare predicted motion positions with
true labels. Cross-entropy is excluded due to the unsupervised
nature of intent classification. Therefore, the model only
considers trajectory prediction error to optimize the results.

4. EXPERIMENT AND RESULTS

This section presents a case study used for data collection
and model evaluation. We designed a human-robot collaboration
experiment focused on disassembling a desktop. In addition, we
compared the performance of various encoder architectures.

4.1 Experimental design and dataset

We designed a human-robot collaborative disassembly
experiment to gather data for testing the proposed framework. In
this setup, the human and the robot stand face-to-face to
disassemble an end-of-life desktop computer. The human
operator is tasked with removing two screws located on the left
and right sides of the desktop, while the robot is assigned to pick
up a disassembled CD drive near the right screw, as illustrated in
Fig. 4.

The experiment aimed to investigate the impact of the
collaborative robot on the human worker's decision-making and
corresponding movements. We tested two velocities for the
robot: fast and slow. For this experiment, the robot's end-effector
velocity was set to 0.5 m/s for the fast speed and 0.08 m/s for the
slow speed. Each time, the robot randomly selected to move at
either speed to pick up the CD drive.

When the robot moved fast, the human did not have
sufficient time or space to release the right screw safely. To avoid
collisions, the human operator would first remove the left screw
and wait for the robot to move away before releasing the right
screw. On the other hand, when the robot moved slowly, the

human worker felt confident to complete the screw disassembly
before the robot arrived. In the absence of safety concerns, the
human would remove the right-hand screw first, following the
preference of the right hand.

Fast speed Robot arrives first
Robot task

Human arrives first

Slow speed

Robot removes
CD drive

Left screw second Right screw first

Human task

Right screw second Left screw first

Figure 4: Experimental setup and disassembly task assignment.

We used the Vicon motion capture system to track the
movement of the human operator’s right arm. To determine the
positions of the rotating joints, we placed two markers on each
side of the shoulder, elbow, and wrist. The positions of the joints
are estimated by averaging the positions of the corresponding
markers. Data is recorded at a frequency of 50 Hz. We collected
an equal number of trials for each robot speed setting and divided
the data into training and test datasets in a 2:1 ratio.

4.2 Results on different test sets

We train the models using all collected training data under
two speed modes of the manipulator. We then test the models on
three different test sets: fast-speed, slow-speed, and overall.
Results are introduced and compared based on these test sets.
Given the limited data size, we use all motion trials from the
training set to obtain pre-trained models. Evaluating these pre-
trained models on diverse test sets helps us assess the
performance of different feature integration methods.

We select the Mean Squared Error (MSE) and the coefficient
of determination R? as criteria to evaluate the trajectory
prediction results. For classification results, we use accuracy as
the primary metric. To assess the generative performance of the
models, we ran them on five predetermined random seeds. The
results, presented as mean and standard deviation values, are
summarized in Table 1.

First, we compare the performance on trajectory prediction.
The Interaction-attention model consistently demonstrated the
best performance. This is attributable to the attention
mechanism's ability to capture important temporal relationships
in time series data. For the classification performance, different
models exhibit varying levels of prediction accuracy. This
variability is reasonable, as the classification task was not
incorporated into the loss function. Further, we observe that the
pooling function outperformed the attention mechanism.
Although the attention mechanism is robust for sequence
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prediction, its advantage may be reduced in
classification tasks due to the limited data available.

Second, we compare the performance between encoder
models. With the introduction of multiple feature integration
encoders, we conduct detailed model comparisons. Integrating
robot motions significantly improved the prediction of human
motions when comparing Seq2seq and Interaction-Seq2seq
models. This improvement is particularly valuable in human-
robot collaboration settings and shows the importance of
considering robot motion, even when the robot follows a
predefined path. Evaluating various pooling functions reveals
that max pooling is better suited to our scenario. Furthermore,
when comparing the max pooling model with the attention
model, we observe that the attention mechanism demonstrated
superior performance in trajectory prediction.

sequence

Table 1: Prediction results on distinct test sets.

Fast d set Classification Trajectory
ast-speed se SVM__HMM __ MSE R?
Seq2seq 0.79 0.64 0.10 0.87
Interaction-seq2seq 0.81 0.70 0.07 0.92
Interaction-pooling g3 65 011 088
(Ave)
Interaction-pooling o7 o454 008 001
(Max)
Interaction-attention ~ 0.81 0.74 0.06 0.93
Classification Trajectory
Slow-speed set SVM__ HMM __ MSE R?
Seq2seq 0.85 0.74 0.09 0.88

Interaction-seq2seq 0.85 0.65 0.09 0.88
Interaction-pooling ¢ g6 064 010 086

(Ave)
Interaction-pooling 0.85 0.63 0.09 0.88
(Max)
Interaction-attention 0.85 0.66 0.07 0.91
Classification Trajectory
Overall set SVM__HMM__MSE ___R?
Seq2seq 0.77 0.51 0.09 0.88

Interaction-seq2seq 0.84 0.53 0.08 0.90
Interaction-pooling 0.85 052 0.10 0.87

(Ave)

Interaction-pooling ¢4 954 008 090
(Max)

Interaction-attention  0.82 0.51 0.06 0.92

4.3 Results of trajectory and classification plots

To visualize the trajectory results, we display the predicted
trajectories from the Interaction-attention model, which has the
best prediction performance. This model is trained on the past 50
time steps and predicts the future 50 time steps. Human
trajectories are projected onto 3D coordinates in meters, as
illustrated in Fig. 5.

B - 1.20
x 11 x 12 03 X 125025

Figure 5: Results of the Interaction-attention model for
visualizing human trajectories.

Fig. 6 illustrates the classification heatmaps of the
Interaction-Attention model, where the classification accuracy
for each intent classis listed.

o 1 2

[ 7 [ 1 2 5

HMM
Figure 6: Results of the Interaction-attention model for human
intents classification heat-maps.

SVM

4.4 Results of latent representations

Latent representations are important for evaluating whether
a model can capture essential features through its learning
process. By visualizing these latent spaces, we better observe the
model's ability to differentiate and understand the underlying
structure of the data. This is particularly important in HRC tasks
where precise understanding of human intentions and trajectories
is needed for safe and effective interaction. To display the latent
representations, we utilize Principal Component Analysis (PCA)
to reduce the original 64 latent dimensions to 3 dimensions. This
dimensionality reduction technique helps project the high-
dimensional data into a more interpretable form while preserving
as much variance as possible.

The attention-based latent representation shows well-
distributed classes and indicates that the model has successfully
captured the unique features of different classes, shown in Fig.
7. Moreover, the latent spaces for both training and testing data
display similar patterns, which suggests that the attention
mechanism generalizes well for different data subsets. This
consistency between train and test distributions validates the
robustness of the attention-based approach in feature extraction.
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Figure 7: Performance of attention mechanism in latent space.

On the other hand, the latent representations in Fig. 8
obtained through max pooling demonstrate differences between
the training and testing data. This difference indicates that max
pooling may not capture the essential features as effectively as
the attention mechanism. The observed variations highlight the
superior capability of the attention mechanism in maintaining the
integrity of feature representation in different data sets.

30 30
20 20
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0 0
-10 -10
. 30 30
20 20
10 10
=10 o 0 -10 0
10 -10 L -10
20 20
Train Test

Figure 8: Performance of max polling in latent space.

4.5 Results of human joint positions

Different from trajectory plots on Fig. 5, we illustrate plots
that specifically display the positions of a human's joints. This
detailed visualization shows the exact movements and angles of
various joints, which is essential for understanding and
predicting human motion in collaborative tasks. The trajectory
plots, Fig. 9 and Fig. 10, showcase both fast-speed and slow-
speed test sets on the Interaction-Action model. We can evaluate
the model's robustness and accuracy in predicting human joint
positions under different conditions by comparing these different
speed settings.

The predicted trajectories (red lines) closely follow the true
trajectories (blue lines) across all joint positions. The x-axis in
the plots represents time steps, and we have concatenated 8 test
trials together to provide a comprehensive view of the model's
performance over extended sequences. The predicted joint
positions closely aligning with the true positions indicates that
the Interaction-Action model effectively captures the dynamics
of human movement, regardless of the speed of the action.

Fast-speed prediction trials
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prog yaxisprod  —— zweis pred

e TAR

J ol

Lu |

JUN

© s00 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 O 500 100D 1500 2000 2500 3000 3500
s £ wh

Figure 9: Trajectories of joint positions on fast-speed test set.
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Figure 10: Trajectories of joint positions on slow-speed test set.

4.6 Results of model inference performance

This section analyzes model inference performance which
assists in understanding the trade-offs between model
complexity and inference speed, and helps users select the most
appropriate model.

The number of parameters in each encoder module reflects
the model's size and complexity. A higher number of parameters
generally indicates a more complex model that may capture more
complex patterns in the data. For example, the Interaction-
seq2seq model in Table 2 has the highest parameter count at
651.858k.

Table 2: Prediction results on distinct test sets.

Encoder modules Parameters Inference time
(k) (ms/batch)
Seq2seq 384.02 0.52
Interaction-seq2seq 651.86 0.83
Interaction-pooling (Ave) 417.43 0.85
Interaction-pooling (Max) 417.43 0.85
Interaction-attention 532.44 0.92

The inference time, measured in milliseconds per batch,
indicates how quickly each model can predict outcomes based
on new data. Lower inference times are needed for real-time
applications, where speed is essential. The Seq2Seq model in
Table 2 demonstrates the fastest inference time with a mean of
0.52 ms/batch and a standard deviation of 0.007 ms. On the other
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hand, the Interaction-attention model, while having a
considerable number of parameters (532.443k), shows a slower
inference time with a mean of 0.92 ms/batch. This is because
attention calculation does not require additional parameters but
includes computationally intensive operations to calculate
attention weights.

5. CONCLUSIONS

In this study, we aim to accurately predict both human
intentions and movement paths in HRC settings. This becomes
important for safety and productivity when humans and robots
share workspaces. We developed a multi-task learning
framework that can simultaneously predict a person's intentions
and their movement trajectory. Four different encoder
architectures are tested within this framework, and we explore
both supervised and unsupervised methods for analyzing
movement data, with a special focus on capturing the timing of
these movements.

We conducted experiments where humans and robots
collaboratively disassemble components to collect data and
evaluate the performance of the proposed framework. The results
demonstrate that the system performs well in predicting both
intentions and movements. The latent representations to evaluate
how well the models capture important features have been shown
and detailed plots of specific human joint positions under
different speed settings have been provided. In addition, we
compare the inference times of different encoder designs to
assess their efficiency.

The scope of the work can be extended. Specifically, the
proposed framework can be applied to multi-robot collaboration
scenarios, where accurate predictive trajectories among robots
are necessary. Also, the proposed framework could be extended
for different applications and more complex human-robot
collaborative settings. Further, instead of using a Bi-LSTM
based auto-encoder architecture, the evaluation can include
applying different sequential methods in the encoder and
decoder.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation—USA under grants # 2026276, and 2026533.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Jahanmahin, R., Masoud, S., Rickli, J., and Djuric, A.,
2022, “Human-robot interactions in manufacturing: A
survey of human behavior modeling,” Robotics and
Computer-Integrated Manufacturing, 78, p. 102404.

2] Long, Y., jiang Du, Z., dong Wang, W., and Dong, W.,
2018, “Human motion intent learning based motion
assistance control for a wearable exoskeleton,” Robotics
and Computer-Integrated Manufacturing, 49, pp. 317—
327.

[3]

[3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[14]

Bi, Z., Luo, C., Miao, Z., Zhang, B., Zhang, W., and
Wang, L., 2021, “Safety assurance mechanisms of
collaborative robotic systems in manufacturing,”

Robotics and Computer-Integrated Manufacturing, 67, p.

102022.

Fan, J., Zheng, P., and Lee, C. K., 2023, “A Vision-based
Human Digital Twin Modelling Approach for Adaptive
Human-Robot Collaboration,” Journal of Manufacturing
Science and Engineering, pp. 1-11.

Magrini, E., Ferraguti, F., Ronga, A. J., Pini, F., De Luca,

A., and Leali, F., 2020, “Human-robot coexistence and
interaction in open industrial cells,” Robotics and
Computer-Integrated Manufacturing, 61, p. 101846.

Nahavandi, S., 2019, “Industry 5.0—A Human-Centric
Solution,” Sustainability, 11(16).

Cacace, J., Caccavale, R., Finzi, A., and Grieco, R., 2022,
“Combining human guidance and structured task
execution during physical human—robot collaboration,”
Journal of Intelligent Manufacturing, pp. 1-15.

Zhang, R., Lv,J., Li, J., Bao, J., Zheng, P., and Peng, T.,
2022, “A graph-based reinforcement learning-enabled
approach for adaptive human-robot collaborative
assembly operations,” Journal of Manufacturing
Systems, 63, pp. 491-503.

Xiao, J., Gao, J., Anwer, N., and Eynard, B., 2023,
“Multi-agent Reinforcement Learning Method for
Disassembly Sequential Task Optimization Based on
Human-Robot Collaborative Disassembly in Electric
Vehicle Battery Recycling,” Journal of Manufacturing
Science and Engineering, pp. 1-36.

Nicora, M. L., Ambrosetti, R., Wiens, G. J., and Fassi, I.,
2020, “Human-Robot Collaboration in Smart
Manufacturing: Robot Reactive Behavior Intelligence,”
Journal of Manufacturing Science and Engineering,
143(3), 031009.

Zhang, J., Liu, H., Chang, Q., Wang, L., and Gao, R. X.,
2020, “Recurrent neural network for motion trajectory
prediction in human-robot collaborative assembly,”
CIRP Annals, 69(1), pp. 9-12.

Li, S., Wang, R., Zheng, P., and Wang, L., 2021,
“Towards proactive human—robot collaboration: A
foreseeable cognitive manufacturing paradigm,” Journal
of Manufacturing Systems, 60, pp. 547-552.

Simdes, A. C., Pinto, A., Santos, J., Pinheiro, S., and
Romero, D., 2022, “Designing human-robot
collaboration (HRC) workspaces in industrial settings: A
systematic literature review,” Journal of Manufacturing
Systems, 62, pp. 28—43.

Zhou, H., Yang, G., Wang, B., Li, X., Wang, R., Huang,
X., Wu, H., and Wang, X. V., 2023, “An attention-based

Copyright © 2024 by ASME

G20z Arenuer | uo Jasn Aysioaun N 8 v sexa L Aq Jpd €5/ ey L-y20Zo19P-650Z01eZ0M LG L2072 /650VZ0LYZON/9YE88/+202310-013al/pd-sbuipassoid/319-013a1/610 swse uonos|j0dje}Bipawse//:djpy wol papeojumoq



[16]

[17]

[18]

[19]

[20]

[21]

[22]

deep learning approach for inertial motion recognition
and estimation in human-robot collaboration,” Journal of
Manufacturing Systems, 67, pp. 97-110.

Zhu, Y., Chen, S., Zhang, C., Piao, Z., and Yang, G.,
2023, “Development of adaptive safety constraint by
predicting trajectories of closest points between human
and co-robot,” Journal of Intelligent Manufacturing, pp.
1-10.

Caruana, R., 1997, “Multitask Learning,” Machine
Learning, pp. 41-75.

Fan, J., Zheng, P., and Lee, C. K., 2022, “A Multi-
Granularity Scene Segmentation Network for Human-
Robot Collaboration Environment Perception,” 2022
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2105-2110, doi:
10.1109/IROS47612.2022.9981684.

Abuduweili, A., Li, S., and Liu, C., 2019, “Adaptable
Human Intention and Trajectory Prediction for Human-
Robot Collaboration,” CoRR, abs/1909.05089.

Sutskever, I., Vinyals, O., & Le, Q. V., 2014, “Sequence
to sequence learning with neural networks,” Advances in
neural information processing systems, 27.

Yousaf, K., & Nawaz, T., 2022, “A deep learning-based
approach for inappropriate content detection and
classification of youtube videos,” IEEE Access, 10, pp.
16283-16298.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., ... & Polosukhin, 1., 2017,
“Attention is all you need,” Advances in neural
information processing systems, 30.

Kao, C. C., Sun, M., Wang, W., & Wang, C., 2020, “A
comparison of pooling methods on LSTM models for
rare acoustic event classification,” In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 316-320.

Copyright © 2024 by ASME

G20z Arenuer | uo Jasn Aysioaun N 8 v sexa L Aq Jpd €5/ ey L-y20Zo19P-650Z01eZ0M LG L2072 /650VZ0LYZON/9YE88/+202310-013al/pd-sbuipassoid/319-013a1/610 swse uonos|j0dje}Bipawse//:djpy wol papeojumoq





