
MULTI-TASK LEARNING FOR INTENTION AND TRAJECTORY PREDICTION IN 
HUMAN-ROBOT COLLABORATIVE DISASSEMBLY TASKS  

ABSTRACT 
Human-robot collaboration (HRC) has become an integral 

element of many industries, including manufacturing. A 
fundamental requirement for safe HRC is to understand and 
predict human intentions and trajectories, especially when 
humans and robots operate in close proximity. However, 
predicting both human intention and trajectory components 
simultaneously remains a research gap. In this paper, we have 
developed a multi-task learning (MTL) framework designed for 
HRC, which processes motion data from both human and robot 
trajectories. The first task predicts human trajectories, focusing 
on reconstructing the motion sequences. The second task 
employs supervised learning, specifically a Support Vector 
Machine (SVM), to predict human intention based on the latent 
representation. In addition, an unsupervised learning method, 
Hidden Markov Model (HMM), is utilized for human intention 
prediction that offers a different approach to decoding the latent 
features. The proposed framework uses MTL to understand 
human behavior in complex manufacturing environments. The 
novelty of the work includes the use of a latent representation to 
capture temporal dynamics in human motion sequences and a 
comparative analysis of various encoder architectures. We 
validate our framework through a case study focused on a HRC 
disassembly desktop task. The findings confirm the system's 
capability to accurately predict both human intentions and 
trajectories. 

Keywords: Human intent prediction, human trajectory 
prediction, multi-task learning (MTL), human-robot 
collaboration (HRC) 

1. INTRODUCTION
Human-robot collaboration (HRC) is a rapidly growing area

of research and application. It plays an important role in various 
sectors including, but not limited to manufacturing. 
Understanding and predicting human intentions is a critical 
aspect of the successful implementation of HRC. It equips robots 
with the ability to interpret and respond to their human 
counterparts in a timely manner and promotes practical 
collaboration. In environments where humans and robots work 
in close proximity, predicting human trajectories improves 
safety and productivity. A major challenge in implementing 
HRC is the perception, prediction, and understanding of human 
intentions and trajectories simultaneously.  

Though significant progress has been made in the domains 
of human intention and trajectory prediction, a gap remains in 
the simultaneous prediction of both aspects [1,2]. Multi-task 
learning (MTL), an approach where multiple related tasks are 
learned at the same time, presents a promising solution. Through 
learning to predict intentions and trajectories concurrently, 
robots can better understand human actions and movements, 
which leads to practical collaboration within the manufacturing 
environments. 
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Figure 1: The proposed framework for prediction of human intent and trajectory through multi-task learning. 
 

The objective of this paper is to develop a framework for 
multi-task learning and compare several encoder architectures 
for HRC tasks. The proposed MTL framework is illustrated in 
Fig. 1. This model processes motion data from both human and 
robot trajectories. These inputs are directed into an encoder 
module that analyzes the sequences to generate a latent 
representation of the data. From the latent space, two separate 
tasks are branched out. The first task employs a decoder to 
predict human trajectories, focusing on reconstructing the 
motion sequences. The second task uses supervised learning, 
specifically a Support Vector Machine (SVM), to predict human 
intention based on the latent representation. Moreover, an 
unsupervised learning method, Hidden Markov Model (HMM), 
is utilized for human intention prediction, which offers a 
different approach to decoding the latent features. Each of these 
tasks aims to decode a different aspect of the input sequences; 
one for the movement trajectory, and the other for the intended 
path. 

The paper is structured as follows: Section 2 reviews 
relevant literature. Section 3 outlines the methodology used to 
create the framework. Section 4 presents a case study to evaluate 
the framework in human-robot collaborative disassembly tasks. 
Finally, section 5 concludes the paper. 

 
2. RELATED WORK  

In this section, we briefly summarize the relevant literature 
on HRC with respect to methods for perceiving human intentions 
and trajectories, the corresponding prediction methods, and the 
need for predicting intentions and trajectories in multi-task 
learning. 

 
2.1 Human intention prediction 

In human-robot teamwork, anticipating each other's actions 
facilitates the coordination of actions among team members. 

Humans possess this ability to exchange information, either 
directly using gestures or words, or indirectly using facial 
expressions or internal guesses. Equipping robots with a similar 
capability to collaborate with humans remains a challenge, but 
inferring human intentions offers a promise in addressing this 
challenge. Efforts have been made by researchers to develop 
robots capable of inferring human intentions [3]. To name 
several examples, Fan et al. [4] suggested identifying human 
intentions by preprocessing body postures and evaluating them 
in an HRC disassembly scenario. Margrini et al. [5] introduced 
the recognition of the operator's gestures to understand the 
human intent and to control a robot for collaborative polishing 
operations. In the manufacturing domain, robots should have a 
semantic understanding of human intent specific to the task at 
hand, unlike the general inference required in everyday 
activities.  

Beyond merely inferring intentions, robots as reliable 
teammates should have a keen and accurate ability to predict 
intent [6]. This helps humans working alongside robots 
experience a sense of reassurance, knowing that their robotic 
colleagues truly understand them and there is no fear involved. 
Some research on predicting human intent in HRC has been 
published recently. The Human Digital Twin framework, which 
uses LSTM modules for learning spatial-temporal features, 
achieved an accuracy of 98.54% for human action intention 
recognition [4]. Moreover, employing an LSTM network 
allowed for inference of the operator's intention with an accuracy 
of 86.49% [7]. Adding a self-attention layer after LSTM layers 
proved to have 91% accuracy [8]. Existing studies have 
demonstrated that the utilization of Recurrent Neural Networks 
(RNNs), such as LSTM, allows for the learning of human 
features to predict human intent. However, these approaches 
often overlook the incorporation of robot features, particularly 
for HRC scenarios.  
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2.2 Human trajectory prediction 
In manufacturing field environments where humans and 

robots work in proximity, predicting human trajectories has 
become a critical area of research. According to Xiao et al. [9], 
the analysis of disassembly trajectories helps obtain the optimal 
disassembly paths. This can be further extended to path planning 
and decision-making for robots. For example, in a shared 
workspace, if a robot can predict that a human worker is about 
to occupy a space, it can plan its path in advance to avoid that 
area rather than having to stop and reactively change its path. A 
considerable amount of research has contributed to this field [10, 
11]. In addition, due to the uncertainty of product design growth 
and factory flexibility expectations, understanding individual 
human movements can help robots adjust their actions to the 
preferred cooperative style and work habits of individual human 
operators. This can increase operator satisfaction and reduce 
fatigue or stress associated with working near robots. 

Multiple studies have demonstrated the importance of 
capturing human motion in existing HRC developments [12, 13]. 
Zhou et al. [14] conducted a study on attention mechanisms 
applied to human motion tracking and arm trajectory prediction. 
Their work was experimentally validated in an assembly task 
involving a collaborative robot. Incorporating the movements of 
the robot, Zhu et al. [15] employed a neural network approach to 
predict arm trajectories considering the distances between each 
link of the robot and each joint of the human. The integration of 
motion data was essential for providing safety. Hence, the use of 
deep learning models to predict an operator's trajectory becomes 
imperative. Incorporating the robot's motion into this prediction 
process demonstrates substantial improvements in terms of 
safety and predictability. 
 
2.3 Multi-task learning  

Upon reviewing the studies on human intention and 
trajectory prediction, it becomes evident that one specific 
limitation is an exclusive focus on individual aspects without 
simultaneous prediction. The simultaneous prediction of human 
intentions and trajectories improves the performance of HRC. 
Robots can comprehend what action a human is about to take as 
well as understand where human movement is likely to occur. To 
achieve this, MTL has emerged as an effective approach. MTL 
works on the principle that tasks learned simultaneously can 
positively influence each other and provide better generalization, 
which leads to improved performance compared to learning 
tasks alone [16]. The concept of MTL has been put into practice 
in HRC scenarios [17, 18]. Nonetheless, further exploration is 
needed to develop the prediction of human intentions and 
trajectories within the MTL framework, particularly in the 
manufacturing domain. 
 
3. METHODOLOGY  

This section introduces the general workflow for predicting 
human intentions and trajectories. The process begins with 
selecting a Bi-LSTM-based encoder-decoder architecture for 
handling sequential data. Four different encoder designs are 
evaluated for feature extraction. Also, the methods for intent 

classification, both supervised and unsupervised, are discussed. 
Finally, the objective function used for model training is 
explained. The following subsections provide detailed 
descriptions of each component.   
 
3.1 Bi-LSTM encoder-decoder architecture 

Sutskever et al. [19] first proposed the encoder-decoder 
architecture and applied it for neural machine translation, which 
was designed to convert sequences from one domain into 
sequences in another domain. The encoder model encodes the 
input sequence as a convex vector and aims to learn the 
information in the input. After the encoder, the decoder takes the 
convex vector and generates the output. The encoder or decoder 
is usually designed as a recurrent neural network, such as an 
LSTM or gated recursive unit. 

The workflow of an encoder-decoder architecture consisting 
of Bi-LSTM networks is shown in Fig. 2. The LSTM cell 
comprises a current input vector 𝑥𝑡, the last memory cell state 
𝑐𝑡−1, and the last hidden state ℎ𝑡−1. The way each LSTM cell 
operates is explained mathematically as, 

 
𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑥𝑡 + 𝑤𝑓ℎℎ𝑡−1 + 𝑤𝑓𝑐ℎ𝑡−1 + 𝑏𝑓) (1) 
𝑖𝑡 = 𝜎(𝑤𝑖𝑥𝑥𝑡 + 𝑤𝑖ℎℎ𝑡−1 + 𝑤𝑖𝑐ℎ𝑡−1 + 𝑏𝑖) (2) 
𝑜𝑡 = 𝜎(𝑤𝑜𝑥𝑥𝑡 + 𝑤𝑜ℎℎ𝑡−1 + 𝑤𝑜𝑐ℎ𝑡−1 + 𝑏𝑜) (3) 

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑤𝑐𝑡𝑥𝑡 + 𝑤𝑐ℎℎ𝑡−1 + 𝑏𝑐) (4) 
ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) (5) 

 
where 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are namely the forget gate, input gate, and 
output gate. 𝑤  and 𝑏  are linear transformation matrices and 
biases. 
 

 
Figure 2: Architecture of the Bi-LSTM network.  

 
Different from the standard LSTM model that processes 

data in a sequence focusing on the current and past information, 
we select a Bi-LSTM model that considers both past and future 
data points. This enhancement is achieved by adding an extra 
layer to the LSTM network. In a Bi-LSTM, there are two key 
layers: the forward hidden layer ℎ𝑡

𝑓 and the backward hidden 
layer ℎ𝑡𝑏  [20]. The forward hidden layer processes the input in 
the natural order, that is, starting from the first element and 
moving forward. On the other hand, the backward hidden layer 
processes the input in reverse order, beginning from the last 
element and moving backward. The final output 𝐻𝑡  is produced 
by combining the outcomes from both the forward and backward 
hidden layers. The implementation of the Bi-LSTM model is 
based on the following equations:  
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ℎ𝑡
𝑓
= 𝑡𝑎𝑛ℎ(𝑤ℎ𝑥

𝑓
𝑥𝑡 + 𝑤ℎℎ

𝑓
ℎ𝑡−1
𝑓

+ 𝑏ℎ
𝑓
) (6) 

ℎ𝑡
𝑏 = 𝑡𝑎𝑛ℎ(𝑤ℎ𝑥

𝑏 𝑥𝑡 + 𝑤ℎℎ
𝑏 ℎ𝑡−1

𝑏 + 𝑏ℎ
𝑏) (7) 

𝐻𝑡 = 𝑤ℎ𝑦
𝑓
ℎ𝑡
𝑓
+𝑤ℎℎ

𝑏 ℎ𝑡
𝑏 + 𝑏𝑦  (8) 

  
3.2 Different encoder designs 

In the encoder-decoder architecture, the encoder converts 
the input sequence into a hidden representation, and then the 
decoder changes this representation back into an output 
sequence. A possible issue with this method is the risk of losing 
information during the process. To address this issue, we have 
added attention and pooling mechanisms to the encoder. Four 
different designs of the encoder are shown in Fig. 3. 
 

 
Figure 3: Different encoder architectures sharing a common 
decoder model.  
 

The Interaction-attention encoder (shown in Fig. 3A) 
processes robot and human sequences, directing their outputs to 
an attention layer. An attention mechanism was introduced that 
allows the network to focus on the most relevant information 
[21]. The output sequences from the Bi-LSTM network are 
denoted by 𝐻 = [𝐻1 , . . . , 𝐻𝑇] ∈ ℝ𝑁𝑥𝑇  , where N represents the 
dimensionality of the output feature vector at each time step, and 
T represents the number of time steps. An attention mechanism 
processes these sequences to compute alignment scores, 
indicated by 𝑒𝑘𝑡  . These scores quantify the relevance of each 
input element to the current output element being considered. 
Attention weights are then derived using a softmax function over 
these scores, 
 

ℎ𝑘
𝑡′ =

𝑒𝑥𝑝(𝑒𝑘
𝑡′)

∑ 𝑒𝑥𝑝(𝑒𝑘
𝑡′)𝑡+𝑚

𝑡′=𝑡+1

 
(9) 

 
This formulation confirms that the attention weights sum to 1, 
allowing the model to focus on different segments of the input 

sequence for each output time step. After the calculation of 
attention weights, the vectors are output by: 
 

ℎ𝑎𝑡𝑡 =∑𝐸𝑡𝐻𝑡

𝑇

𝑡=1

 
(10) 

 
The Interaction-pooling encoder (shown in Fig. 3B) 

processes sequences from both robot and human and directs the 
outputs towards a layer specifically designed for pooling 
operations. To focus on the most relevant information without 
the need for complex attention weight calculations, the network 
employs both average and max pooling strategies [22]. 

For average pooling, the operation is defined as taking the 
mean within the specified dimensions of the sequence to 
generalize the overall trend or average effect present in the 
sequence. The equation for average pooling over the temporal 
dimension is given by: 

 

ℎ𝑎𝑣𝑒 =
1

𝑇
∑𝐻𝑡

𝑇

𝑡=1

 
(11) 

 
This results in a vector ℎ𝑎𝑣𝑔  that provides a summarized 
representation by averaging the features in all time steps, thereby 
condensing the temporal information into a single vector. 

In contrast, max pooling is utilized to capture the most 
dominant features in the sequence, by selecting the maximum 
value within the specified dimension for each feature. The 
operation is formalized through the following equation: 

 

ℎ𝑚𝑎𝑥 = 𝑚𝑎𝑥(∑𝐻𝑡)

𝑇

𝑡=1

 
(12) 

 
Here, ℎ𝑚𝑎𝑥 denotes the vector consisting of the largest feature 
values identified in all time steps. 

The Interaction-seq2seq encoder, illustrated in Fig. 3C, 
processes both human and robot motion sequences. The output 
vectors are directly derived from the Bi-LSTM without further 
transformation: 
 

ℎ𝐻𝑅 = 𝐻𝑡  (13) 
 
This design indicates a direct mapping from input to output, 
handling sequence data without additional processing layers or 
functions. 

To establish a baseline model, the Seq2seq encoder, shown 
in Fig. 3D, exclusively processes human motion sequences. We 
aim to compare whether including robot motions can enhance 
the prediction of human motion, given the absence of any 
specialized information extraction function: 
 

ℎ𝐻 = 𝐻𝑡−ℎ𝑢𝑚𝑎𝑛  (14) 
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This formulation also represents a direct mapping of human 
motion from input to output. 
 
3.3 Supervised and unsupervised intention 
classification 

We employ SVM for supervised classification which is a 
discriminative classifier. SVMs are discriminative classifiers 
that, given labeled sequential data, identify the optimal 
hyperplane to separate different classes. 

In addition, we select an HMM model for unsupervised 
recognition. An HMM consists of a set of discrete hidden states 
and observation sequences. The Expectation-Maximization 
(EM) algorithm is utilized to infer the hidden intention states and 
refine the model parameters based on the observed motion 
sequences. In the Expectation (E) step, the posterior distributions 
are calculated using the forward-backward algorithm. In the 
Maximization (M) step, parameters from the state transition 
matrix and the emission matrix are updated. After the 
convergence of the iterative process, the sequence of hidden 
states predicted by the HMM can be interpreted as the sequence 
of underlying intentions. 
 
3.4 Objective function 
    In this model, Mean Squared Error (MSE) is used as the 
objective function to compare predicted motion positions with 
true labels. Cross-entropy is excluded due to the unsupervised 
nature of intent classification. Therefore, the model only 
considers trajectory prediction error to optimize the results. 
 
4. EXPERIMENT AND RESULTS 

This section presents a case study used for data collection 
and model evaluation. We designed a human-robot collaboration 
experiment focused on disassembling a desktop. In addition, we 
compared the performance of various encoder architectures. 

 
4.1 Experimental design and dataset 

We designed a human-robot collaborative disassembly 
experiment to gather data for testing the proposed framework. In 
this setup, the human and the robot stand face-to-face to 
disassemble an end-of-life desktop computer. The human 
operator is tasked with removing two screws located on the left 
and right sides of the desktop, while the robot is assigned to pick 
up a disassembled CD drive near the right screw, as illustrated in 
Fig. 4.   

The experiment aimed to investigate the impact of the 
collaborative robot on the human worker's decision-making and 
corresponding movements. We tested two velocities for the 
robot: fast and slow. For this experiment, the robot's end-effector 
velocity was set to 0.5 m/s for the fast speed and 0.08 m/s for the 
slow speed. Each time, the robot randomly selected to move at 
either speed to pick up the CD drive. 

When the robot moved fast, the human did not have 
sufficient time or space to release the right screw safely. To avoid 
collisions, the human operator would first remove the left screw 
and wait for the robot to move away before releasing the right 
screw. On the other hand, when the robot moved slowly, the 

human worker felt confident to complete the screw disassembly 
before the robot arrived. In the absence of safety concerns, the 
human would remove the right-hand screw first, following the 
preference of the right hand. 

 

 
Figure 4: Experimental setup and disassembly task assignment. 
 

We used the Vicon motion capture system to track the 
movement of the human operator’s right arm. To determine the 
positions of the rotating joints, we placed two markers on each 
side of the shoulder, elbow, and wrist. The positions of the joints 
are estimated by averaging the positions of the corresponding 
markers. Data is recorded at a frequency of 50 Hz. We collected 
an equal number of trials for each robot speed setting and divided 
the data into training and test datasets in a 2:1 ratio. 
 
4.2 Results on different test sets 

We train the models using all collected training data under 
two speed modes of the manipulator. We then test the models on 
three different test sets: fast-speed, slow-speed, and overall. 
Results are introduced and compared based on these test sets. 
Given the limited data size, we use all motion trials from the 
training set to obtain pre-trained models. Evaluating these pre-
trained models on diverse test sets helps us assess the 
performance of different feature integration methods. 

We select the Mean Squared Error (MSE) and the coefficient 
of determination 𝑅2  as criteria to evaluate the trajectory 
prediction results. For classification results, we use accuracy as 
the primary metric. To assess the generative performance of the 
models, we ran them on five predetermined random seeds. The 
results, presented as mean and standard deviation values, are 
summarized in Table 1. 

First, we compare the performance on trajectory prediction. 
The Interaction-attention model consistently demonstrated the 
best performance. This is attributable to the attention 
mechanism's ability to capture important temporal relationships 
in time series data. For the classification performance, different 
models exhibit varying levels of prediction accuracy. This 
variability is reasonable, as the classification task was not 
incorporated into the loss function. Further, we observe that the 
pooling function outperformed the attention mechanism. 
Although the attention mechanism is robust for sequence 
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prediction, its advantage may be reduced in sequence 
classification tasks due to the limited data available. 

Second, we compare the performance between encoder 
models. With the introduction of multiple feature integration 
encoders, we conduct detailed model comparisons. Integrating 
robot motions significantly improved the prediction of human 
motions when comparing Seq2seq and Interaction-Seq2seq 
models. This improvement is particularly valuable in human-
robot collaboration settings and shows the importance of 
considering robot motion, even when the robot follows a 
predefined path. Evaluating various pooling functions reveals 
that max pooling is better suited to our scenario. Furthermore, 
when comparing the max pooling model with the attention 
model, we observe that the attention mechanism demonstrated 
superior performance in trajectory prediction. 
 
Table 1: Prediction results on distinct test sets. 

Fast-speed set Classification Trajectory 
SVM HMM MSE 𝑅2 

Seq2seq 0.79 0.64 0.10 0.87 
Interaction-seq2seq 0.81 0.70 0.07 0.92 
Interaction-pooling 

(Ave) 0.83 0.65 0.11 0.88 

Interaction-pooling 
(Max) 0.82 0.64 0.08 0.91 

Interaction-attention 0.81 0.74 0.06 0.93 

Slow-speed set Classification Trajectory 
SVM HMM MSE 𝑅2 

Seq2seq 0.85 0.74 0.09 0.88 
Interaction-seq2seq 0.85 0.65 0.09 0.88 
Interaction-pooling 

(Ave) 0.86 0.64 0.10 0.86 

Interaction-pooling 
(Max) 0.85 0.63 0.09 0.88 

Interaction-attention 0.85 0.66 0.07 0.91 

Overall set Classification Trajectory 
SVM HMM MSE 𝑅2 

Seq2seq 0.77 0.51 0.09 0.88 
Interaction-seq2seq 0.84 0.53 0.08 0.90 
Interaction-pooling 

(Ave) 0.85 0.52 0.10 0.87 

Interaction-pooling 
(Max) 0.84 0.54 0.08 0.90 

Interaction-attention 0.82 0.51 0.06 0.92 
 
4.3 Results of trajectory and classification plots 

To visualize the trajectory results, we display the predicted 
trajectories from the Interaction-attention model, which has the 
best prediction performance. This model is trained on the past 50 
time steps and predicts the future 50 time steps. Human 
trajectories are projected onto 3D coordinates in meters, as 
illustrated in Fig. 5. 

 

 
Figure 5: Results of the Interaction-attention model for 
visualizing human trajectories. 
 

Fig. 6 illustrates the classification heatmaps of the 
Interaction-Attention model, where the classification accuracy 
for each intent classis listed. 
 

 
Figure 6: Results of the Interaction-attention model for human 
intents classification heat-maps. 
 
4.4 Results of latent representations  

Latent representations are important for evaluating whether 
a model can capture essential features through its learning 
process. By visualizing these latent spaces, we better observe the 
model's ability to differentiate and understand the underlying 
structure of the data. This is particularly important in HRC tasks 
where precise understanding of human intentions and trajectories 
is needed for safe and effective interaction. To display the latent 
representations, we utilize Principal Component Analysis (PCA) 
to reduce the original 64 latent dimensions to 3 dimensions. This 
dimensionality reduction technique helps project the high-
dimensional data into a more interpretable form while preserving 
as much variance as possible. 

The attention-based latent representation shows well-
distributed classes and indicates that the model has successfully 
captured the unique features of different classes, shown in Fig. 
7. Moreover, the latent spaces for both training and testing data 
display similar patterns, which suggests that the attention 
mechanism generalizes well for different data subsets. This 
consistency between train and test distributions validates the 
robustness of the attention-based approach in feature extraction. 
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Figure 7: Performance of attention mechanism in latent space. 
 

On the other hand, the latent representations in Fig. 8 
obtained through max pooling demonstrate differences between 
the training and testing data. This difference indicates that max 
pooling may not capture the essential features as effectively as 
the attention mechanism. The observed variations highlight the 
superior capability of the attention mechanism in maintaining the 
integrity of feature representation in different data sets. 
 

 
Figure 8: Performance of max polling in latent space. 
 
4.5 Results of human joint positions 

Different from trajectory plots on Fig. 5, we illustrate plots 
that specifically display the positions of a human's joints. This 
detailed visualization shows the exact movements and angles of 
various joints, which is essential for understanding and 
predicting human motion in collaborative tasks. The trajectory 
plots, Fig. 9 and Fig. 10, showcase both fast-speed and slow-
speed test sets on the Interaction-Action model. We can evaluate 
the model's robustness and accuracy in predicting human joint 
positions under different conditions by comparing these different 
speed settings. 

The predicted trajectories (red lines) closely follow the true 
trajectories (blue lines) across all joint positions. The x-axis in 
the plots represents time steps, and we have concatenated 8 test 
trials together to provide a comprehensive view of the model's 
performance over extended sequences. The predicted joint 
positions closely aligning with the true positions indicates that 
the Interaction-Action model effectively captures the dynamics 
of human movement, regardless of the speed of the action. 

 

 
Figure 9: Trajectories of joint positions on fast-speed test set. 
 

 
Figure 10: Trajectories of joint positions on slow-speed test set. 
 
4.6 Results of model inference performance 

This section analyzes model inference performance which 
assists in understanding the trade-offs between model 
complexity and inference speed, and helps users select the most 
appropriate model.  

The number of parameters in each encoder module reflects 
the model's size and complexity. A higher number of parameters 
generally indicates a more complex model that may capture more 
complex patterns in the data. For example, the Interaction-
seq2seq model in Table 2 has the highest parameter count at 
651.858k.  
 
Table 2: Prediction results on distinct test sets.  

Encoder modules Parameters 
(k) 

Inference time 
(ms/batch) 

Seq2seq 384.02 0.52 
Interaction-seq2seq 651.86 0.83 

Interaction-pooling (Ave) 417.43 0.85 
Interaction-pooling (Max) 417.43 0.85 

Interaction-attention 532.44 0.92 
  

The inference time, measured in milliseconds per batch, 
indicates how quickly each model can predict outcomes based 
on new data. Lower inference times are needed for real-time 
applications, where speed is essential. The Seq2Seq model in 
Table 2 demonstrates the fastest inference time with a mean of 
0.52 ms/batch and a standard deviation of 0.007 ms. On the other 
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hand, the Interaction-attention model, while having a 
considerable number of parameters (532.443k), shows a slower 
inference time with a mean of 0.92 ms/batch. This is because 
attention calculation does not require additional parameters but 
includes computationally intensive operations to calculate 
attention weights. 
 
5. CONCLUSIONS 

In this study, we aim to accurately predict both human 
intentions and movement paths in HRC settings. This becomes 
important for safety and productivity when humans and robots 
share workspaces. We developed a multi-task learning 
framework that can simultaneously predict a person's intentions 
and their movement trajectory. Four different encoder 
architectures are tested within this framework, and we explore 
both supervised and unsupervised methods for analyzing 
movement data, with a special focus on capturing the timing of 
these movements. 

We conducted experiments where humans and robots 
collaboratively disassemble components to collect data and 
evaluate the performance of the proposed framework. The results 
demonstrate that the system performs well in predicting both 
intentions and movements. The latent representations to evaluate 
how well the models capture important features have been shown 
and detailed plots of specific human joint positions under 
different speed settings have been provided. In addition, we 
compare the inference times of different encoder designs to 
assess their efficiency. 

The scope of the work can be extended. Specifically, the 
proposed framework can be applied to multi-robot collaboration 
scenarios, where accurate predictive trajectories among robots 
are necessary. Also, the proposed framework could be extended 
for different applications and more complex human-robot 
collaborative settings. Further, instead of using a Bi-LSTM 
based auto-encoder architecture, the evaluation can include 
applying different sequential methods in the encoder and 
decoder. 
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