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Abstract—In this work, we consider the sparsity-constrained
community-based group testing problem, where the population
follows a community structure. In particular, the community
consists of F' families, each with // members. A number ks out
of the F' families are infected, and a family is said to be infected
if k., out of its M/ members are infected. Furthermore, the
sparsity constraint allows at most pr individuals to be grouped
in each test. For this sparsity-constrained community model, we
propose a probabilistic group testing algorithm that can identify
the infected population with a vanishing probability of error
and we provide an upper-bound on the number of tests. When
km = ©(M) and M = w(log(FM)), our bound outperforms
the existing sparsity-constrained group testing results trivially
applied to the community model. If the sparsity constraint is
relaxed, our achievable bound reduces to existing bounds for
community-based group testing. Moreover, our scheme can also
be applied to the classical dilution model, where it outperforms
existing noise-level-independent schemes in the literature.

I. INTRODUCTION

Group testing (GT), first introduced in 1943 in [1], is an
umbrella term for the methods used to identify k defective
items among n items, with as few tests as possible. The
main idea consists of performing tests on pools/groups of
items rather than testing each item individually. GT has many
applications, ranging from medicine [2] to engineering [3], and
is broadly classified into combinatorial GT and probabilistic
GT. In combinatorial GT, the goal is to identify the defective
items with a zero error probability [4]. In probabilistic GT,
instead, it suffices that the error probability goes to zero
asymptotically, as n — oo; moreover, for finite n, the error
probability can be made arbitrarily small by appropriately
scaling the number of tests [5]-[11]. GT can be noiseless or
noisy [5], [10], [11]. In noiseless GT, each test is error free (no
false positives or false negatives); whereas, in noisy GT, the
test results may be erroneous [5], [9]-[13]. Examples of noise
models include the binary symmetric noise [5], the dilution
noise [9], [10], [13], and the threshold noise [11].

Most GT problems assume a combinatorial prior on the set
of defective items. This means that the k defective items are
equally likely to be any of the (Z) items. In this case, the
counting bound [5] states that the number of tests required to
identify the k defective items is at least © (klog(%)). When k
follows a sparse regime, that is, k = © (n"k) for some constant
dr € [0,1), this is significantly less than individual testing,
which requires ©(n) tests. For sparse k, the counting bound
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indeed becomes O(klog(n)). Several GT schemes achieve
the counting bound for noiseless GT with a combinatorial
prior and hence, are order optimal [14]. Recent works have
considered variants of GT with additional information on the
set of defective items [15]—[18]. In [16], the authors introduced
one such model, referred to as the community model, and ana-
lyzed the symmetric and general variants of it. The symmetric
community model considers a community of F' families, each
with M members. A number k; out of the F' families are
infected. If a family is healthy, none of its members are
infected; if a family is infected, k,, out of its M members
are infected. Ignoring the community structure, this model
reduces to identifying ks k,, infected members out of n = F.M
members, which in the sparse regime requires O (k sk, log(n))
tests. However, it was observed that leveraging the community
structure can greatly reduce the number of tests [16], [18].
Note that the community-based GT exhibits similarities to
other problems, such as GT with blocks of positives [19] and
one-bit group-sparse signal reconstruction [20].

In this work, we consider the symmetric community model
of [16], but we additionally impose a sparsity constraint. This
constraint allows at most pr individuals to be pooled in each
test. This model has practical significance. Many infections,
such as COVID-19, are indeed governed by community spread,
and a community model is suitable to capture such scenarios.
This model can be helpful also in bio-security applications,
e.g., to test consignments of seeds/flowers [21]. Moreover, in
many real world applications, there is often a constraint on the
number of items that can be pooled in each test. This constraint
may depend on several factors, e.g., test equipment capacity
and test efficacy. For example, in swab pooling methods for
COVID-19 testing, it is recommended to pool up to 16 swabs
in each test [22]; and some HIV testing schemes allow 80
individual samples per test [23], [24].

For the sparsity-constrained community model, we pro-
pose a probabilistic GT scheme to identify the infected
population with a probability greater than 1 — n~=*, for
any constant A > 0, and show that the number of tests re-

quired is at most G)(F}O(%")), where p = min{PT, {%J}

PrT
and f(p)=p(1— (1— %) 2P). For k,, = ©(M) and
M = w(log(FM)), our scheme requires much fewer tests than
applying existing sparsity-constrained GT schemes [24], [25]

to the community model. Moreover, without the sparsity con-
straint, our bound reduces to existing bounds in community-
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TABLE I: Quantities of interest used throughout the paper.

[ Quantity || Definition |
F Number of families
M Number of members in each family
n Total number of members, that is, n = F'M
D Set of infected families
kg Number of infected families
By Set of infected members in family f € [F]
km Number of infected members in an infected family
T Maximum number of members allowed in each test
T Number of tests performed by a GT scheme

based GT [16]. Our scheme can also be applied to the classical
dilution model [9], [11], [13], [26], [27], where there is no
community structure or sparsity constraint. For this model,
our scheme requires © (M%g(”)
noise parameter. This bound provides a factor of o improve-
ment over the best achievable bound [28] of © kk;%%(")
among noise-level-independent (NLI) schemes [9] (i.e., when
the test design is independent of «).

Notation. For any k € N, we define [k] := {1,2,...,k}. For
a set X, |X| denotes its cardinality. For a matrix M, we
use M;. and M. ; to represent its ith row and jth column,
respectively. An empty set is denoted by &. For a vector x,
we let supp(x) := {i : ©; # 0}. Finally, A and V represent the
Boolean AND and OR operations, respectively.

tests, where « is the dilution

II. SYSTEM MODEL

We consider F' families, denoted by [F], where each
family consists of M members (this is the symmetric
model in [16]). The total number of members is, therefore,
n:= FM. The members of family f € [F] are referred
to as My := {m(s_1j4; : ¢ € [M]}. An unknown subset
D C [F], consisting of k; families (that is, |D| = ky), is
infected. We assume a combinatorial prior on this subset of
infected families, that is, the defective set is chosen uniformly
at random among all the ( Iff ) sets of this size k. If a family f
is not infected, none of its members are infected; whereas, if f
is infected, an unknown subset By C M of the M members
of that family are infected. Again, for the symmetric model
considered here, we assume that |B;| = k,, for all f € D.
Moreover, we assume that B is chosen uniformly at random
among all the (,i\i ) subsets of size k,,. Table I summarizes
the quantities used for problem formulation.

Our goal is to design a GT scheme, which uses as few tests
as possible, to identify the infected population with a vanishing
error probability, i.e., a probability of error that goes to zero
at a rate of n~* for some constant A > 0. Due to practical
considerations [22], [29], we impose a sparsity constraint,
which restricts the number of members that can participate
in each test. In particular, in any given test, at most pr out of
the n members can be pooled together.

III. PRELIMINARIES AND RELATED RESULTS

In this section, we first introduce the contact matrix, which
is the mathematical model for GT. Then, we review some
existing results and adapt them so as to ensure a probability

of error that goes to zero at a rate of n~* for some constant
A > 0. In particular, we establish two benchmarks for the
performance of our algorithm, based on existing methods.

A. Combinatorial GT

Consider a general (with no sparsity constraint or commu-
nity structure) GT problem with N items among which & are
defective. Note that we use (N, k) to depict a general group
testing setting and (n, ky, k,,) to describe the community
model. Let T be the number of tests performed by a GT
algorithm. These tests can be described using the contact
matrix M) € {0,1}7*", where each row corresponds to a
test and each column corresponds to an item. If ME’CB =1, then
item 1 is selected in test t. Let = € {0,1} be the indicator
vector for the defective items, that is, &; = 1 if and only if item
1 is defective. Then, the result of the tests can be represented
by a vector y(© € {0,1}7 as

Yy =M o, (1)

where ® denotes the matrix-vector logical multiplication, in
which the arithmetic multiplication and addition are replaced
by logical AND and OR, respectively. More precisely, we
have yt(c) = \/f\;l(ME? A ;). It is known that using a proper
selection of M(¢) and an appropriate decoder, with probability
at least 1 — N~ for any A > 0, the set of defective items can
be identified using 7' = O(klog(N/k)) tests [4].

B. Sparsity-Constrained Combinatorial GT

The result of [4] holds when the number of items to
be tested together in each pool is arbitrary. In general, a
larger number of tests is required if a sparsity constraint is
imposed [24], [25], [30]. Let pyy be the maximum number of
items allowed to participate in each test. From these results and
classical GT [5], it can be argued that, to achieve a probability
of error of N=* for some N > N and any constant A\ > 0,
the number of tests! required is at least equal to [5], [25],

. - N _
T (N, k, pu, N) -0 (max{ Sk log(N)} logN(N)> e

In our system model (Section II), we can ignore the com-
munity structure and directly identify all the k¢k,, infected
members out of the n members. With a sparsity constraint
pr, the number of required tests can be found from (2) as

Thcs= f(n, k¢km, pr,n)=0 (max{pn, ik, log(n)}> .
T
3)
C. Community-Based GT Without Sparsity Constraints

In the system model (Section II), if there is no sparsity
constraint (that is, pr = 00), a two-stage algorithm, introduced
in [16], can be utilized, where: (i) in the first stage, the kf
infected families are identified; and (ii) in the second stage,

IThe additional term of @(1ogN(J\7)) in (2), compared to [S], [25],

guarantees that the error probability vanishes at the desired rate of N—X
instead of N2,
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TABLE II: Quantities of interest used in the GT scheme.

[ Quantity | Definition |

T Number of tests in the first stage
T Number of tests in the second stage
P Number of families selected in each test
T Number of members sampled from each selected family
« Probability that an infected family is active
D¢ Set of active infected families during test ¢
d Threshold for the d-threshold decoder

Ryt Members of a selected family f that participate in test ¢

depending on the regime of (k,,, M), either individual testing
or GT is performed only on the infected families (identified
in the first stage) to identify their k,, infected members. For
both stages, this algorithm leverages existing non-adaptive
probabilistic GT schemes [14]. The numbers of tests in the
first stage and second stage, respectively, are given by

Tcns,) = O(kyslog(n)),

o kOO0
S\ kO (ko log(n))

if by = O(M),  (4)
if Ky = o(M).

D. Incorporating Sparsity in the Two-Stage Algorithm

In the first stage of the algorithm of [16], initially a contact
matrix is designed to identify the %k infected families. How-
ever, since tests should be applied on the individual members
(rather than on the families), once a family is selected to
participate in a test, all of its members will be pooled to be
tested. Therefore, since each family consists of M/ members,
in order to satisfy the sparsity constraint of pr (on the number
of members allowed in each test), we can pool together at most
2% families to be tested. In other words, the initial test matrix
should be designed with a sparsity constraint of £%. Hence,
using (2), the number of tests required in the first stage of the
algorithm is given by

-7 pr
TC,S,| - T(Fa kf7 M7n)
FM
= G)(max{,k:f 1og(F)}logF(n)). 5)
T

Note that since this scheme pools all the members of the
families selected in a test, it only works when pr > M.

IV. THE PROPOSED GT SCHEME

In this section, we propose a new sparse GT algorithm to
identify the infected members in the community structured
problem. Inspired by [16] (where there is no sparsity con-
straint), we adopt a two-stage GT procedure. In the first stage
(see Section IV-A), the goal is to identify the k; infected
families, whereas in the second stage (see Section IV-B), we
perform GT only on the infected families (identified in the first
stage) to identify their k,, infected members. We denote by
T) and T, the number of tests required in the first and second
stages, respectively. Then, the total number of tests required
by the proposed algorithm is given by T =T} + Tj,.

A. First Stage: Identifying Infected Families

We use a contact matrix M(® < {0,1}7*F, initially
designed for F' families for the first stage of the algorithm
(similar to Section III-A with (N, k,T) = (F, ks, T))). For
simplicity, we assume that k; > 2 and F' > 2k;. Table II
summarizes the parameters used in the proposed scheme.
Probabilistic design of the contact matrix: We first choose
a Ty x F contact matrix M(®) with a family-sparsity parameter
p € [F] (which will be determined later). To this end, each row
of M(©) is uniformly, randomly, and independently from other
rows, selected from the (I; ) possible rows that have Hamming
weight equal to p.

Family representative sets: Unlike the scheme in Sec-
tion III-D, where all the members of a selected family par-
ticipate in a test, we choose a set of representative members
for each selected family to participate in tests. In particular,
for each test ¢, a subset Ry € M of members participate in
the test. More formally, the set of individuals that are pooled
together in test ¢ is given by |J Fesupp (ME,C:) Ry,¢. To this end,

for each (t, f), we select Ry, uniformly at random from all
— |ez
B { p J
With the above designs of M(®) and R;,, the number of
members that participate in each test satisfies

ZM Rpel = VZszV;JSpT, (6)

fEsupp(MEy“})

and hence, the sparsity constraint is satisfied.

The sampling matrix: With the representative sets (instead of
the entire family) participating in each test, the identity in (1)
does not hold in general. To see this, consider a case where
M(C} =1, and Ry, N By = @ for an infected family f € D.
Then, even if f is infected and selected to participate in the
test, it will not cause the test ¢ to be positive, since no infected
member of the family is in its representative set. In other
words, such an infected family pretends to be healthy in the
test. To capture this uncertainty, we define a sampling matrix
M) € {0,1}7*F obtained from M(®)., We call an infected
family f € D active in test ¢, if and only if, Ry, N By # @.
We denote the set of active infected families of test ¢ by
D, C D. Then, the sampling matrix M(®) is given by

(c)
M = I My
t.f 0

and the actual results of the tests (performed on the represen-
tatives of the families) are given by

the (') possible subsets of M of size r :=

if f e (FI\D)UD,

if feD\Dy, @

y® =M o, (8)

To understand the sampling matrix in (7), let us con51der an
infected family f € D that is selected in test ¢ (i.e., I\/I =1).
Now, if Ry N By = @, although f is infected, none of its
infected members participate in test ¢. In other words, family f
hides its true identity in test ¢. Since MECJ)‘ =landx; =1, we
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(e) should not

have y, (s)
be influenced by f. This can be ensured by setting Mg J)c =
Let a be the probability that an infected family is actlve,

that is,

= 1. However, the actual test result y,

(")

() ®
In other words, M(c) = 1 is replaced by M(S} = 0 with
probability 1 — a. Moreover if @ = 1, then M(©) = M),
Note that the behavior of M(%) and M(C) is similar to that of
the dilution model, that we recently studied in [28], and has
also been investigated in [11], [13], [31].

Given this construction of M(®) and Ry, and the proba-
bilistic nature of M) and y(s), the families are classified as
infected or healthy using the followmg d-threshold decoder.
The d-threshold decoder: Let yt ) e {0, 1} be the result of
test ¢ € [T}], given by y,f ) = M(7:) ©® @. We define the score
St of family f in test ¢ as

1 ifMC =1 and 4 =1

=P[feDfeD =1

. (10)
0 otherwise.
Then, for a given d > 0, family f is marked as infected if and
only if Sy = ZtT':l Sy > d. O
The following theorem provides the number of tests required
in the first stage of the algorithm to ensure that the construction
above can decode  with an overwhelming probability.

Theorem 1. There exists a choice of the parameters (p,d)
such that the d-threshold decoder requires at most

¢(1+ N)F'log(n) < ¢(1+ N)Flog(n)
por - f(p)

tests to identify the ky infected families with error probability

P. <n™?, for any A > 0, where « is given in (9) and

Ty, = min
PE(P]

(11a)

~ Fa N\
f(ﬂ)—ﬁ<1—<1—M> ),C—64e, (11b)
F
ﬁ:min{pT, {Qk J} (11¢)

Proof. The proof of Theorem 1 and the choice of the param-
eters (p,d) (see (22)) are provided in Section VI. O

Remark 1. Our scheme is NLI [9] because the construction

of M(©) does not depend on the noise parameter o. With no
F

2k; |°
Our proposed scheme can then be used with the classifcal
dilution model [9]-[11], [13], [28], where: (i) the task is to
identify k defective items out of n items; and (ii) the defective
items exhibit a dilution effect with probability «, independent
of p. This leads to Ty = © %g(n) . To the best of our

knowledge, the best achievable bound in the literature for
o) klog(n)

sparsity constraint, i.e., py = 00, we have that p = L

the dilution model using a NLI GT scheme is
tests [28] and our scheme outperforms this by a factor of o.

B. Second Stage: Identifying All the Infected Members

To identify all the k;k,, infected members, we can either
perform individual testing or sparsity-constrained GT, for each
of the ky families identified in the first stage. For the linear
regime of k,, (i.e., k,, = ©(M)), individual testing (which
has sparsity of 1) is preferred. In this case, we would require

T = krO(M) (12)
tests. Otherwise, if k,, follows a sub-linear regime (i.e.,
km = o(M)), performing sparsity-constrained GT (see Sec-

tion III-B) in each of the k; infected families would be
preferred. This would require a number of tests equal to

krO( ML a) it pr=o(i).
k1O (kn log(n))  if pTz(a(ka).

T = (13)

Hence, depending on the regime of M, the number of tests
Ty, for the second stage, can be obtained from (12) or (13).

V. ANALYSIS AND COMPARISON

In this section, we further analyze the performance (in terms
of number of tests required) of the GT scheme proposed in
Section IV. Note that all the comparisons are order-wise, and
the multiplicative constants behind the © notation are ignored.
In particular, from Theorem 1 we have the following corollary.

Corollary 1. It holds that

FM
T < @(max{,kf}log(n)>. (14)
kam
Proof. The proof can be found in [32, Appendix A]. O

We now compare our scheme with existing results. Note
that, due to the structure of the problem, the primary interest
is on a specific regime of parameters, namely: (i) the total
number of infected members falls within a sparse regime,

e., kfk,, = o(n) (otherwise individual testing would be

optimum); (ii) once a family is infected, a significant number
of its members get infected, i.e., k,, = O(M); and (iii) the
size of the families is not very small, i.e., M = w(log(n))
(otherwise each family can be thought as an individual).
e Ignoring the community structure. A naive algorithm
that does not exploit the community structure of the problem
was discussed in Section III-B. For the regime of interest on
(km, kykm, M), the ratio of the total (both stages) number of
tests required by the two algorithms can be bounded as

T + Tiiy B @(max{#,k‘f}log(n) —l—k:fM)
Tocs © (max{ o bk log(n) })

-0 (10%7%) i logl(n) ) '

From (15), we note that exploiting the community structure
offers an order-wise reduction in the number of tests.

e Enforcing sparsity for the community-based scheme.
As discussed in Section III-D, we can arrive at a sparse GT
scheme that leverages the community structure. This requires

15)
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Tc,s, tests (see (5)) in its first stage, while the number of tests
required in the second stage is identical to that of our proposed
algorithm (given in (12) or (13)). Since both schemes require
the same number of tests in the second stage, we only compare
their performance in the first stage. We have that

T, @(max{%%f log(F)})

<
Tes,) @(max{p%,kf 1og(F)})
© 10§4F> iflSpT< ﬁ,
_ k¢ log(F) . n n
O (i) i i < pr < gy, (10
e(1) if pp > m-

From equation (16), we note that our scheme outperforms
(order-wise) the scheme proposed by the authors of [16] for
a wide range of parameters. When no sparsity constraint
is imposed (i.e., pr = 0), Tcs) = ©O(kylog(n)), which
is identical to the number of tests required by our scheme
(see (14)). Therefore, without any sparsity constraint, our
scheme performs equivalent to the two-stage scheme of [16].
Also, note that the scheme of Section III-D is not feasible
when pp < M whereas our scheme works for all pr € [n].

VI. PROOF OF THEOREM 1

In this section, we prove Theorem 1. We use two proposi-
tions that are stated next. Specifically, Proposition 1 bounds

.up:E[Sf ’ f%D] and /Lm:]E[Sf | fEIDL

where Sy = Y"1, S}, with S, defined in (10). We note that
Sy of f € D is expected to be higher than Sy of f ¢ D. This
is formally shown by Proposition 1.

7)

Proposition 1. For = € [ky|, let h, be defined as

hy = Zx: (;f) at(1 — @)t (1 - (F‘(’;%l)> (18)

£=0 14

for « given by (9). Then, for any p in the interval H%H,

(i) he < (1= 2) + 2,

(ii) p = T.(hkf - (1 - %)) < ﬂ%,
(i) o = Ti(at (1=0)ha 1~ (1= 2)) < 222,
apli -

2F

Proof. The proof can be found in [32, Appendix B]. O

(V) fim — pp 2

The next proposition will be useful in the proof of Theo-
rem 1 for choosing the family-sparsity parameter p.

Proposition 2. Let U € N and v € (0,1). Then,

T
1—v> ) =U. 19
arg;rel?gﬁp( vﬂ) (19)
Proof. The proof can be found in [32, Appendix C]. O

We are ready to prove Theorem 1. Let P, and P_ be the
probabilities of false positive and false negative errors of the
d-threshold decoder for a given f € [F], respectively, i.e.,

P, =P[S; >d|f ¢ D] and P_ =P[S; < d|f € D]. (20)

By the union bound, the total error probability P. can be upper
bounded as

Pe < (F —ks)Py +ksP_. 21
We choose the following parameters,
—~ mt 1+ A Flog(n

2 po
where p and ¢ are given in (11), a is given in (9), and A > 0
is a constant. With these choices, we bound P, and P_ as

fom + Hp f§ED}

@) (b) ph
D P[Sr2up(1+5,)| ¢ D] < exp<_2f’+§
p

(b= p1p)*\ ©) e tapTi\@D
_ _ < — < 23
eXp< T e § Tl R
where the labeled (in)equalities follow from: (a) letting
6y = % > 0; (b) applying Chernoff’s bound; (c) using
Proposition 1; and (d) using 7j in (22).
The false negative error probability can be bounded as

p_ & P[sf < pim (1 = 6,) ’ fe D}
) 2\ (@)
< eXp<—6m5m> <nTA

where the labeled (in)equalities follow from: (a) letting

O = H5-52 € (0,0.5]; (b) using Chernoff’s bound; and (c)
using Proposition 1 and 7} in (22).

Combining (23) and (24) together with the union bound
in (21), we get P, < n~*. Furthermore, the number of tests

that suffice to achieve this probability of error is given by
(@) C(1+X)F'log(n) C(1+ M) Flog(n)
I = =

,0<1— (Azlg’;;")) p(l—ngl <1—#))
((L+ N Flog(n) ® ((1+ A)Flog(n)
Co(1-(1-5)7) _p<1— (1—’37)3?)7

where (a) follows from using 7; in (22) and « in (9) and (b)

(24)

(25)

is due to the fact that p < pr and hence, r = ”7T > %'

To conclude the proof, we find the value of p that min-
imizes (25). For this, we analyze the denominator of the
right-hand side of (25), which is f(p) defined in (11), where

p < pr. In the proof above, we also used Proposition 1,
F

is defined in (11). We now seek to maximize f(p) over the
1

which requires p < J Thus, we need p < p, where p

set p € [p]. Substituting v = (1 - kﬁ)i in Proposition 2, it
follows that the optimal choice of p is p = p. Using p = p
in (25) concludes the proof of Theorem 1.
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