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Abstract—In this work, we consider the sparsity-constrained
community-based group testing problem, where the population
follows a community structure. In particular, the community
consists of F families, each with M members. A number kf out
of the F families are infected, and a family is said to be infected
if km out of its M members are infected. Furthermore, the
sparsity constraint allows at most ρT individuals to be grouped
in each test. For this sparsity-constrained community model, we
propose a probabilistic group testing algorithm that can identify
the infected population with a vanishing probability of error
and we provide an upper-bound on the number of tests. When
km = Θ(M) and M = ω(log(FM)), our bound outperforms
the existing sparsity-constrained group testing results trivially
applied to the community model. If the sparsity constraint is
relaxed, our achievable bound reduces to existing bounds for
community-based group testing. Moreover, our scheme can also
be applied to the classical dilution model, where it outperforms
existing noise-level-independent schemes in the literature.

I. INTRODUCTION

Group testing (GT), first introduced in 1943 in [1], is an

umbrella term for the methods used to identify k defective

items among n items, with as few tests as possible. The

main idea consists of performing tests on pools/groups of

items rather than testing each item individually. GT has many

applications, ranging from medicine [2] to engineering [3], and

is broadly classified into combinatorial GT and probabilistic

GT. In combinatorial GT, the goal is to identify the defective

items with a zero error probability [4]. In probabilistic GT,

instead, it suffices that the error probability goes to zero

asymptotically, as n → ∞; moreover, for finite n, the error

probability can be made arbitrarily small by appropriately

scaling the number of tests [5]–[11]. GT can be noiseless or

noisy [5], [10], [11]. In noiseless GT, each test is error free (no

false positives or false negatives); whereas, in noisy GT, the

test results may be erroneous [5], [9]–[13]. Examples of noise

models include the binary symmetric noise [5], the dilution

noise [9], [10], [13], and the threshold noise [11].

Most GT problems assume a combinatorial prior on the set

of defective items. This means that the k defective items are

equally likely to be any of the
(
n
k

)
items. In this case, the

counting bound [5] states that the number of tests required to

identify the k defective items is at least Θ
(
k log

(
n
k

))
. When k

follows a sparse regime, that is, k = Θ
(
nδk
)

for some constant

δk ∈ [0, 1), this is significantly less than individual testing,

which requires Θ(n) tests. For sparse k, the counting bound
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indeed becomes Θ(k log(n)). Several GT schemes achieve

the counting bound for noiseless GT with a combinatorial

prior and hence, are order optimal [14]. Recent works have

considered variants of GT with additional information on the

set of defective items [15]–[18]. In [16], the authors introduced

one such model, referred to as the community model, and ana-

lyzed the symmetric and general variants of it. The symmetric

community model considers a community of F families, each

with M members. A number kf out of the F families are

infected. If a family is healthy, none of its members are

infected; if a family is infected, km out of its M members

are infected. Ignoring the community structure, this model

reduces to identifying kfkm infected members out of n = FM
members, which in the sparse regime requires Θ(kfkm log(n))
tests. However, it was observed that leveraging the community

structure can greatly reduce the number of tests [16], [18].

Note that the community-based GT exhibits similarities to

other problems, such as GT with blocks of positives [19] and

one-bit group-sparse signal reconstruction [20].

In this work, we consider the symmetric community model

of [16], but we additionally impose a sparsity constraint. This

constraint allows at most ρT individuals to be pooled in each

test. This model has practical significance. Many infections,

such as COVID-19, are indeed governed by community spread,

and a community model is suitable to capture such scenarios.

This model can be helpful also in bio-security applications,

e.g., to test consignments of seeds/flowers [21]. Moreover, in

many real world applications, there is often a constraint on the

number of items that can be pooled in each test. This constraint

may depend on several factors, e.g., test equipment capacity

and test efficacy. For example, in swab pooling methods for

COVID-19 testing, it is recommended to pool up to 16 swabs

in each test [22]; and some HIV testing schemes allow 80
individual samples per test [23], [24].

For the sparsity-constrained community model, we pro-

pose a probabilistic GT scheme to identify the infected

population with a probability greater than 1 − n−λ, for

any constant λ > 0, and show that the number of tests re-

quired is at most Θ
(

F log(n)
f(ρ̂)

)
, where ρ̂ = min

{
ρT ,

⌊
F
2kf

⌋}

and f(ρ) = ρ

(
1−

(
1− km

M

) ρT
2ρ

)
. For km = Θ(M) and

M = ω(log(FM)), our scheme requires much fewer tests than

applying existing sparsity-constrained GT schemes [24], [25]

to the community model. Moreover, without the sparsity con-

straint, our bound reduces to existing bounds in community-
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TABLE I: Quantities of interest used throughout the paper.

Quantity Definition

F Number of families
M Number of members in each family
n Total number of members, that is, n = FM
D Set of infected families
kf Number of infected families
Bf Set of infected members in family f ∈ [F ]
km Number of infected members in an infected family
ρT Maximum number of members allowed in each test
T Number of tests performed by a GT scheme

based GT [16]. Our scheme can also be applied to the classical

dilution model [9], [11], [13], [26], [27], where there is no

community structure or sparsity constraint. For this model,

our scheme requires Θ
(

k log(n)
α

)
tests, where α is the dilution

noise parameter. This bound provides a factor of α improve-

ment over the best achievable bound [28] of Θ
(

k log(n)
α2

)

among noise-level-independent (NLI) schemes [9] (i.e., when

the test design is independent of α).

Notation. For any k ∈ N, we define [k] := {1, 2, . . . , k}. For

a set X , |X | denotes its cardinality. For a matrix M, we

use Mi,: and M:,j to represent its ith row and jth column,

respectively. An empty set is denoted by ∅. For a vector x,

we let supp(x) := {i : xi 6= 0}. Finally, ∧ and ∨ represent the

Boolean AND and OR operations, respectively.

II. SYSTEM MODEL

We consider F families, denoted by [F ], where each

family consists of M members (this is the symmetric

model in [16]). The total number of members is, therefore,

n := FM . The members of family f ∈ [F ] are referred

to as Mf := {m(f−1)M+i : i ∈ [M ]}. An unknown subset

D ⊆ [F ], consisting of kf families (that is, |D| = kf ), is

infected. We assume a combinatorial prior on this subset of

infected families, that is, the defective set is chosen uniformly

at random among all the
(
F
kf

)
sets of this size kf . If a family f

is not infected, none of its members are infected; whereas, if f
is infected, an unknown subset Bf ⊆ Mf of the M members

of that family are infected. Again, for the symmetric model

considered here, we assume that |Bf | = km for all f ∈ D.

Moreover, we assume that Bf is chosen uniformly at random

among all the
(
M
km

)
subsets of size km. Table I summarizes

the quantities used for problem formulation.

Our goal is to design a GT scheme, which uses as few tests

as possible, to identify the infected population with a vanishing

error probability, i.e., a probability of error that goes to zero

at a rate of n−λ for some constant λ > 0. Due to practical

considerations [22], [29], we impose a sparsity constraint,

which restricts the number of members that can participate

in each test. In particular, in any given test, at most ρT out of

the n members can be pooled together.

III. PRELIMINARIES AND RELATED RESULTS

In this section, we first introduce the contact matrix, which

is the mathematical model for GT. Then, we review some

existing results and adapt them so as to ensure a probability

of error that goes to zero at a rate of n−λ for some constant

λ > 0. In particular, we establish two benchmarks for the

performance of our algorithm, based on existing methods.

A. Combinatorial GT

Consider a general (with no sparsity constraint or commu-

nity structure) GT problem with N items among which k are

defective. Note that we use (N, k) to depict a general group

testing setting and (n, kf , km) to describe the community

model. Let T be the number of tests performed by a GT

algorithm. These tests can be described using the contact

matrix M(c) ∈ {0, 1}T×N , where each row corresponds to a

test and each column corresponds to an item. If M
(c)
t,i = 1, then

item i is selected in test t. Let x ∈ {0, 1}N be the indicator

vector for the defective items, that is, xi = 1 if and only if item

i is defective. Then, the result of the tests can be represented

by a vector y(c) ∈ {0, 1}T as

y
(c) = M(c) � x, (1)

where � denotes the matrix-vector logical multiplication, in

which the arithmetic multiplication and addition are replaced

by logical AND and OR, respectively. More precisely, we

have y
(c)
t =

∨N
i=1(M

(c)
t,i ∧ xi). It is known that using a proper

selection of M(c) and an appropriate decoder, with probability

at least 1−N−λ for any λ > 0, the set of defective items can

be identified using T = Θ(k log(N/k)) tests [4].

B. Sparsity-Constrained Combinatorial GT

The result of [4] holds when the number of items to

be tested together in each pool is arbitrary. In general, a

larger number of tests is required if a sparsity constraint is

imposed [24], [25], [30]. Let ρU be the maximum number of

items allowed to participate in each test. From these results and

classical GT [5], it can be argued that, to achieve a probability

of error of Ñ−λ for some Ñ ≥ N and any constant λ > 0,

the number of tests1 required is at least equal to [5], [25],

T̂
(
N, k, ρU , Ñ

)
=Θ

(
max

{
N

ρU
, k log(N)

}
logN

(
Ñ
))

. (2)

In our system model (Section II), we can ignore the com-

munity structure and directly identify all the kfkm infected

members out of the n members. With a sparsity constraint

ρT , the number of required tests can be found from (2) as

TnC,S= T̂ (n, kfkm, ρT , n)=Θ

(
max

{
n

ρT
, kfkm log(n)

})
.

(3)

C. Community-Based GT Without Sparsity Constraints

In the system model (Section II), if there is no sparsity

constraint (that is, ρT = ∞), a two-stage algorithm, introduced

in [16], can be utilized, where: (i) in the first stage, the kf
infected families are identified; and (ii) in the second stage,

1The additional term of Θ
(
logN (Ñ)

)
in (2), compared to [5], [25],

guarantees that the error probability vanishes at the desired rate of Ñ−λ

instead of N−λ.

3220Authorized licensed use limited to: University of Minnesota. Downloaded on January 14,2025 at 19:14:30 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Quantities of interest used in the GT scheme.

Quantity Definition

TI Number of tests in the first stage
TII Number of tests in the second stage
ρ Number of families selected in each test
r Number of members sampled from each selected family
α Probability that an infected family is active
Dt Set of active infected families during test t
d Threshold for the d-threshold decoder

Rf,t Members of a selected family f that participate in test t

depending on the regime of (km,M), either individual testing

or GT is performed only on the infected families (identified

in the first stage) to identify their km infected members. For

both stages, this algorithm leverages existing non-adaptive

probabilistic GT schemes [14]. The numbers of tests in the

first stage and second stage, respectively, are given by

TC,nS,I = Θ(kf log(n)),

TC,nS,II =

{
kfΘ(M) if km = Θ(M),

kfΘ(km log(n)) if km = o(M).

(4)

D. Incorporating Sparsity in the Two-Stage Algorithm

In the first stage of the algorithm of [16], initially a contact

matrix is designed to identify the kf infected families. How-

ever, since tests should be applied on the individual members

(rather than on the families), once a family is selected to

participate in a test, all of its members will be pooled to be

tested. Therefore, since each family consists of M members,

in order to satisfy the sparsity constraint of ρT (on the number

of members allowed in each test), we can pool together at most
ρT

M
families to be tested. In other words, the initial test matrix

should be designed with a sparsity constraint of ρT

M
. Hence,

using (2), the number of tests required in the first stage of the

algorithm is given by

TC,S,I = T̂
(
F, kf ,

ρT
M

,n
)

= Θ

(
max

{
FM

ρT
, kf log(F )

}
logF

(
n
))

. (5)

Note that since this scheme pools all the members of the

families selected in a test, it only works when ρT ≥ M .

IV. THE PROPOSED GT SCHEME

In this section, we propose a new sparse GT algorithm to

identify the infected members in the community structured

problem. Inspired by [16] (where there is no sparsity con-

straint), we adopt a two-stage GT procedure. In the first stage

(see Section IV-A), the goal is to identify the kf infected

families, whereas in the second stage (see Section IV-B), we

perform GT only on the infected families (identified in the first

stage) to identify their km infected members. We denote by

TI and TII the number of tests required in the first and second

stages, respectively. Then, the total number of tests required

by the proposed algorithm is given by T = TI + TII.

A. First Stage: Identifying Infected Families

We use a contact matrix M(c) ∈ {0, 1}TI×F , initially

designed for F families for the first stage of the algorithm

(similar to Section III-A with (N, k, T ) = (F, kf , TI)). For

simplicity, we assume that kf ≥ 2 and F ≥ 2kf . Table II

summarizes the parameters used in the proposed scheme.

Probabilistic design of the contact matrix: We first choose

a TI×F contact matrix M(c) with a family-sparsity parameter

ρ ∈ [F ] (which will be determined later). To this end, each row

of M(c) is uniformly, randomly, and independently from other

rows, selected from the
(
F
ρ

)
possible rows that have Hamming

weight equal to ρ.

Family representative sets: Unlike the scheme in Sec-

tion III-D, where all the members of a selected family par-

ticipate in a test, we choose a set of representative members

for each selected family to participate in tests. In particular,

for each test t, a subset Rf,t ⊆ Mf of members participate in

the test. More formally, the set of individuals that are pooled

together in test t is given by
⋃

f∈supp
(
M

(c)
t,:

) Rf,t. To this end,

for each (t, f), we select Rf,t uniformly at random from all

the
(
M
r

)
possible subsets of Mf of size r := |Rf,t| =

⌊
ρT

ρ

⌋
.

With the above designs of M(c) and Rf,t, the number of

members that participate in each test satisfies

F∑

f=1

M
(c)
t,f |Rf,t| =

∑

f∈supp
(
M

(c)
t,f

)

⌊
ρT
ρ

⌋
= ρ

⌊
ρT
ρ

⌋
≤ ρT , (6)

and hence, the sparsity constraint is satisfied.

The sampling matrix: With the representative sets (instead of

the entire family) participating in each test, the identity in (1)

does not hold in general. To see this, consider a case where

M
(c)
t,f = 1, and Rf,t ∩ Bf = ∅ for an infected family f ∈ D.

Then, even if f is infected and selected to participate in the

test, it will not cause the test t to be positive, since no infected

member of the family is in its representative set. In other

words, such an infected family pretends to be healthy in the

test. To capture this uncertainty, we define a sampling matrix

M(s) ∈ {0, 1}TI×F obtained from M(c). We call an infected

family f ∈ D active in test t, if and only if, Rf,t ∩ Bf 6= ∅.

We denote the set of active infected families of test t by

Dt ⊆ D. Then, the sampling matrix M(s) is given by

M
(s)
t,f =

{
M

(c)
t,f if f ∈ ([F ] \ D) ∪ Dt,

0 if f ∈ D \ Dt,
(7)

and the actual results of the tests (performed on the represen-

tatives of the families) are given by

y
(s) = M(s) � x. (8)

To understand the sampling matrix in (7), let us consider an

infected family f ∈ D that is selected in test t (i.e., M
(c)
t,f = 1).

Now, if Rf,t ∩ Bf = ∅, although f is infected, none of its

infected members participate in test t. In other words, family f

hides its true identity in test t. Since M
(c)
t,f = 1 and xf = 1, we
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have y
(c)
t = 1. However, the actual test result y

(s)
t should not

be influenced by f . This can be ensured by setting M
(s)
t,f = 0.

Let α be the probability that an infected family is active,

that is,

α = P[f ∈ Dt|f ∈ D] = 1−

(
M−km

r

)
(
M
r

) . (9)

In other words, M
(c)
t,f = 1 is replaced by M

(s)
t,f = 0 with

probability 1 − α. Moreover, if α = 1, then M(c) = M(s).

Note that the behavior of M(s) and M(c) is similar to that of

the dilution model, that we recently studied in [28], and has

also been investigated in [11], [13], [31].

Given this construction of M(c) and Rf,t, and the proba-

bilistic nature of M(s) and y
(s), the families are classified as

infected or healthy using the following d-threshold decoder.

The d-threshold decoder: Let y
(s)
t ∈ {0, 1} be the result of

test t ∈ [TI], given by y
(s)
t = M

(s)
t,: � x. We define the score

Sf,t of family f in test t as

Sf,t =

{
1 if M

(c)
t,f = 1 and y

(s)
t = 1,

0 otherwise.
(10)

Then, for a given d > 0, family f is marked as infected if and

only if Sf =
∑TI

t=1 Sf,t ≥ d. �

The following theorem provides the number of tests required

in the first stage of the algorithm to ensure that the construction

above can decode x with an overwhelming probability.

Theorem 1. There exists a choice of the parameters (ρ, d)
such that the d-threshold decoder requires at most

TI = min
ρ∈[ρ̂]

ζ(1 + λ)F log(n)

ρα
≤

ζ(1 + λ)F log(n)

f(ρ̂)
(11a)

tests to identify the kf infected families with error probability

Pe ≤ n−λ, for any λ > 0, where α is given in (9) and

f(ρ) = ρ

(
1−

(
1−

km
M

) ρT
2ρ

)
, ζ = 64 e4, (11b)

ρ̂ = min

{
ρT ,

⌊
F

2kf

⌋}
. (11c)

Proof. The proof of Theorem 1 and the choice of the param-

eters (ρ, d) (see (22)) are provided in Section VI.

Remark 1. Our scheme is NLI [9] because the construction

of M(c) does not depend on the noise parameter α. With no

sparsity constraint, i.e., ρT = ∞, we have that ρ̂ =
⌊

F
2kf

⌋
.

Our proposed scheme can then be used with the classical

dilution model [9]–[11], [13], [28], where: (i) the task is to

identify k defective items out of n items; and (ii) the defective

items exhibit a dilution effect with probability α, independent

of ρ. This leads to TI = Θ
(

kf log(n)
α

)
. To the best of our

knowledge, the best achievable bound in the literature for

the dilution model using a NLI GT scheme is Θ
(

k log(n)
α2

)

tests [28] and our scheme outperforms this by a factor of α.

B. Second Stage: Identifying All the Infected Members

To identify all the kfkm infected members, we can either

perform individual testing or sparsity-constrained GT, for each

of the kf families identified in the first stage. For the linear

regime of km (i.e., km = Θ(M)), individual testing (which

has sparsity of 1) is preferred. In this case, we would require

TII,L = kfΘ(M) (12)

tests. Otherwise, if km follows a sub-linear regime (i.e.,

km = o(M)), performing sparsity-constrained GT (see Sec-

tion III-B) in each of the kf infected families would be

preferred. This would require a number of tests equal to

TII,sL=




kfΘ

(
M
ρT

log(n)
log(M)

)
if ρT =o

(
M
km

)
,

kfΘ(km log(n)) if ρT =Θ
(
M
km

)
.

(13)

Hence, depending on the regime of M , the number of tests

TII for the second stage, can be obtained from (12) or (13).

V. ANALYSIS AND COMPARISON

In this section, we further analyze the performance (in terms

of number of tests required) of the GT scheme proposed in

Section IV. Note that all the comparisons are order-wise, and

the multiplicative constants behind the Θ notation are ignored.

In particular, from Theorem 1 we have the following corollary.

Corollary 1. It holds that

TI ≤ Θ

(
max

{
FM

ρT km
, kf

}
log(n)

)
. (14)

Proof. The proof can be found in [32, Appendix A].

We now compare our scheme with existing results. Note

that, due to the structure of the problem, the primary interest

is on a specific regime of parameters, namely: (i) the total

number of infected members falls within a sparse regime,

i.e., kfkm = o(n) (otherwise individual testing would be

optimum); (ii) once a family is infected, a significant number

of its members get infected, i.e., km = Θ(M); and (iii) the

size of the families is not very small, i.e., M = ω(log(n))
(otherwise each family can be thought as an individual).

• Ignoring the community structure. A naive algorithm

that does not exploit the community structure of the problem

was discussed in Section III-B. For the regime of interest on

(km, kfkm,M), the ratio of the total (both stages) number of

tests required by the two algorithms can be bounded as

TI + TII,L

TnC,S

≤
Θ
(
max

{
n

ρT km
, kf

}
log(n) + kfM

)

Θ
(
max

{
n
ρT

, kfkm log(n)
})

= Θ

(
log(n)

M
+

1

log(n)

)
. (15)

From (15), we note that exploiting the community structure

offers an order-wise reduction in the number of tests.

• Enforcing sparsity for the community-based scheme.

As discussed in Section III-D, we can arrive at a sparse GT

scheme that leverages the community structure. This requires
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TC,S,I tests (see (5)) in its first stage, while the number of tests

required in the second stage is identical to that of our proposed

algorithm (given in (12) or (13)). Since both schemes require

the same number of tests in the second stage, we only compare

their performance in the first stage. We have that

TI

TC,S,I

≤
Θ
(
max

{
n log(F )
ρT km

, kf log(F )
})

Θ
(
max

{
n
ρT

, kf log(F )
})

=





Θ
(

logF
M

)
if 1 ≤ ρT < n

kmkf
,

Θ
(

ρT kf log(F )
n

)
if n

kfkm
≤ ρT < n

kf log(F ) ,

Θ(1) if ρT ≥ n
kf log(F ) .

(16)

From equation (16), we note that our scheme outperforms

(order-wise) the scheme proposed by the authors of [16] for

a wide range of parameters. When no sparsity constraint

is imposed (i.e., ρT = ∞), TC,S,I = Θ(kf log(n)), which

is identical to the number of tests required by our scheme

(see (14)). Therefore, without any sparsity constraint, our

scheme performs equivalent to the two-stage scheme of [16].

Also, note that the scheme of Section III-D is not feasible

when ρT < M whereas our scheme works for all ρT ∈ [n].

VI. PROOF OF THEOREM 1

In this section, we prove Theorem 1. We use two proposi-

tions that are stated next. Specifically, Proposition 1 bounds

µp = E
[
Sf

∣∣ f /∈ D
]

and µm = E
[
Sf

∣∣ f ∈ D
]
, (17)

where Sf =
∑TI

t=1 Sf,t with Sf,t defined in (10). We note that

Sf of f ∈ D is expected to be higher than Sf of f /∈ D. This

is formally shown by Proposition 1.

Proposition 1. For x ∈ [kf ], let hx be defined as

hx :=

x∑

`=0

(
x

`

)
α`(1− α)x−`

(
1−

(
F−`−1
ρ−1

)
(
F
ρ

)
)
, (18)

for α given by (9). Then, for any ρ in the interval
[⌊

F
2kf

⌋]
,

(i) hx ≤
(
1−

ρ

F

)
+

αρ

F
,

(ii) µp = TI

(
hkf

−
(
1−

ρ

F

))
≤ TI

αρ

F
,

(iii) µm = TI

(
α+(1−α)hkf−1−

(
1−

ρ

F

))
≤ TI

2αρ

F
,

(iv) µm − µp ≥
αρTI

2F
e−2.

Proof. The proof can be found in [32, Appendix B].

The next proposition will be useful in the proof of Theo-

rem 1 for choosing the family-sparsity parameter ρ.

Proposition 2. Let U ∈ N and υ ∈ (0, 1). Then,

arg max
ρ∈[U ]

ρ
(
1− υ

ρT
ρ

)
= U. (19)

Proof. The proof can be found in [32, Appendix C].

We are ready to prove Theorem 1. Let P+ and P− be the

probabilities of false positive and false negative errors of the

d-threshold decoder for a given f ∈ [F ], respectively, i.e.,

P+ = P[Sf ≥ d|f /∈ D] and P− = P[Sf < d|f ∈ D]. (20)

By the union bound, the total error probability Pe can be upper

bounded as

Pe ≤ (F − kf )P+ + kfP−. (21)

We choose the following parameters,

ρ = ρ̂, d =
µm+µp

2
, TI =

ζ(1 + λ)F log(n)

ρα
, (22)

where ρ̂ and ζ are given in (11), α is given in (9), and λ > 0
is a constant. With these choices, we bound P+ and P− as

P+ = P

[
Sf ≥

µm + µp

2

∣∣∣ f /∈ D

]

(a)
= P

[
Sf ≥µp(1+δp)

∣∣∣f /∈ D
] (b)

≤ exp

(
−

δ2pµp

2 + δp

)

= exp

(
−
(µm−µp)

2

6µp+2µm

)
(c)

≤ exp

(
−
e−4αρTI

40F

)
(d)

≤n−1−λ, (23)

where the labeled (in)equalities follow from: (a) letting

δp =
µm−µp

2µp
≥ 0; (b) applying Chernoff’s bound; (c) using

Proposition 1; and (d) using TI in (22).

The false negative error probability can be bounded as

P−

(a)
= P

[
Sf < µm(1− δm)

∣∣∣ f ∈ D
]

(b)

≤ exp

(
−
δ2mµm

2

)
(c)

≤ n−1−λ, (24)

where the labeled (in)equalities follow from: (a) letting

δm =
µm−µp

2µm
∈ (0, 0.5]; (b) using Chernoff’s bound; and (c)

using Proposition 1 and TI in (22).

Combining (23) and (24) together with the union bound

in (21), we get Pe ≤ n−λ. Furthermore, the number of tests

that suffice to achieve this probability of error is given by

TI

(a)
=

ζ(1+λ)F log(n)

ρ

(
1−

(M−km
r )

(Mr )

) =
ζ(1+λ)F log(n)

ρ
(
1−
∏r

j=1

(
1− km

M−j+1

))

≤
ζ(1 + λ)F log(n)

ρ
(
1−

(
1− km

M

)r)
(b)

≤
ζ(1 + λ)F log(n)

ρ

(
1−

(
1− km

M

) ρT
2ρ

) , (25)

where (a) follows from using TI in (22) and α in (9) and (b)

is due to the fact that ρ ≤ ρT and hence, r =
⌊
ρT

ρ

⌋
≥ ρT

2ρ .

To conclude the proof, we find the value of ρ that min-

imizes (25). For this, we analyze the denominator of the

right-hand side of (25), which is f(ρ) defined in (11), where

ρ ≤ ρT . In the proof above, we also used Proposition 1,

which requires ρ ≤
⌊

F
2kf

⌋
. Thus, we need ρ ≤ ρ̂, where ρ̂

is defined in (11). We now seek to maximize f(ρ) over the

set ρ ∈ [ρ̂]. Substituting υ =
(
1− km

M

) 1
2 in Proposition 2, it

follows that the optimal choice of ρ is ρ = ρ̂. Using ρ = ρ̂
in (25) concludes the proof of Theorem 1.
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