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Abstract
Using daily variation in wind power generation in the western portion of Texas, we show 
that the resulting lower fossil fuel generation in the eastern portion of the state leads to 
air-quality improvements and, subsequently, to fewer emergency department (ED) visits. 
Spatially, the impact on pollution is widespread, but wind energy reduces ED admission 
rates more in zip codes closer to coal plants. Using intra-day wind generation and elec-
tricity pricing data, we find that more wind generation coming from hours when conges-
tion on the electricity grid is less leads to higher reductions in emissions from east Texas 
power plants and PM2.5 concentrations and ED admission rates in east Texas. Comparing 
wind generation effects across low-demand night hours to higher-demand day hours, more 
NO

X
 and SO

2
 is offset by wind from night hours, but the time-dependent effects for PM2.5 

concentrations and ED admission rates is much weaker, potentially due to differences in 
exposure.

Keywords  Renewable energy · Wind energy · Air pollution · Morbidity · Emergency 
department visits

1  Introduction

Renewable energy sources are an appealing alternative to fossil fuel-based power gen-
eration in terms of preserving natural resources, alleviating pollution, and, increasingly, 
providing a lower-cost generation source. In the last decade, renewable energy invest-
ment has risen drastically, resulting in an expansion of both wind and solar power genera-
tion. Despite this growth, wind and solar power still provided only 8.4 and 2.3 percent of 
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electricity generated, respectively, in the United States in 2020.1 In addition, renewable 
energy sources are non-dispatchable, relying on having adequate meteorological conditions 
to generate, and, thus, not necessarily operating in periods that provide the most societal 
benefits. Finally, renewable energy generators, particularly wind generators, have often 
been sited in locations far from demand centers. With limited transmission capacity, these 
siting locations may limit the ability of renewable generators to offset generation from fos-
sil fuel plants that have traditionally been sited closer to demand centers. These features, 
and potentially others, may limit the ability of renewable energy to deliver detectable short 
term human health benefits. In this paper, we use hospital emergency department (ED) 
admission data to examine short-term health effects of wind energy in the relatively wind-
rich state of Texas. Despite some of the logistic and technological barriers, we find wind 
energy already has displaced fossil generators in a sufficient way to detect small, but pre-
cise and robust, public health benefits.

The analysis builds empirical support for a mechanism chain as follows - increased wind 
generation lowers electricity-sector emissions, which in turn improves local air quality, 
and finally leads to lower ED admission rates. To do this we first, similar to other studies 
described below, show that wind energy in Texas does indeed reduce generation and emis-
sions from both coal- and natural gas-fired generators. Subsequently, using daily measures 
of particulate matter concentrations we find increased wind energy leads to reductions 
in concentration of particulate matter of diameter 2.5 micrometers and smaller (PM2.5). 
Finally, using zip code specific ED admission rates, we find that increased wind energy is 
associated with small, but statistically significant and robust, decreases in ED admission 
rates among older (age 65+) residents. Specifically, a standard deviation increase in lagged 
wind generation lowers total ED admissions by about 0.6%. Furthermore, the magnitude of 
the effect is greater in zip codes near coal-fired power plants.

One concern about wind energy is that it is most plentiful in the night hours, often 
referred to as “off-peak” hours, when the demand for electricity is lowest. Energy storage 
has been discussed as a way to increase the market value of wind energy as it allows gen-
erators to move wind-generated electricity from the wind-rich, demand-poor night hours to 
wind-poor, demand-heavy daytime hours. While the market motivation for this intertem-
poral substitution are clear, the environmental and health impacts are less understood. We, 
thus, consider how the share of wind generation coming from off-peak hours affects the 
benefits of wind energy. Similarly, wind generation during periods when there is transmis-
sion congestion can lower the value of the emissions avoided as it tends to lead to more 
emission reductions in the less-populated western portion of the state (Fell et  al. 2021). 
We, therefore, also assess the effect of wind generation under grid congestion on air quality 
and ED admission rates.

We find that the effect of wind generation on PM2.5 concentrations appear largely unaf-
fected by the share of wind generation coming from either off-peak generation or during 
hours when there is likely transmission grid congestion. However, the effect of wind gen-
eration on ED admission rates for zip codes near coal plants appears to increase in magni-
tude (become more negative) when more wind generation comes during grid-uncongested 
hours and, to a lesser extent, during off-peak wind periods. These results are consistent 
with power-sector emissions responses to wind generation among plants in the eastern 

1  These values are based on the Energy Information Administration’s electric power monthly reports 
(https://​www.​eia.​gov/​energ​yexpl​ained/​elect​ricity). For 2019, the final year of our sample, percentages are 
similar.

https://www.eia.gov/energyexplained/electricity
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portion of Texas. Additionally, for zip codes not near coal plants we find the effect of 
wind is smaller in magnitude and unaffected by wind generation timing or grid conges-
tion issues. The results suggest reducing grid congestion can deliver greater human health 
benefits, though perhaps to a lesser extent if the grid congestion is reduced via intra-day re-
allocation of wind generation from off-peak to peak hours as we would expect with greater 
battery storage.

Our analysis contributes to the literature in several ways. First, there have been many 
studies looking at the environmental value of renewable generation, however much of this 
work has looked at emission reductions associated with increased renewable generation 
(e.g., Cullen 2013; Fell and Kaffine 2018; Holladay and LaRiviere 2017; Novan 2015).

Given the location of wind farms and the timing of wind generation, it is not a given 
that these wind-generation-attributed reductions in emissions lead to detectable air quality 
and health effects, particularly in the short-run. There have been some more recent analy-
ses that not just assess the emissions avoided, but also incorporate site-specific damages 
associated with these avoided emissions (see Fell et al. 2021; Sexton et al. 2018). However, 
the damage estimates used in these studies are based on average conditions and assumed 
dispersion rates (e.g., given average meteorological and atmospheric conditions a ton of 
SO2 emission from county X results in Y dollars of damages). Again, given the variation in 
timing of emissions avoided by non-dispatchable renewable generation, the benefits of the 
associated emission reductions may be considerably different than the the value of avoided 
damages associated with average damage estimates. Our analysis contributes to our under-
standing of the value of emission reductions both in terms of where and when those reduc-
tions occur.

There has also been considerable research on health and cognitive effects of air pol-
lution, both in long-term exposure (Chay and Greenstone 2003; Anderson 2020) and on 
short-term variation (Deryugina et al. 2019; Di et al. 2017; Schlenker and Walker 2016; 
Ebenstein et al. 2016; Herrnstadt et al. 2021). While these estimates are useful, they often 
are focused on the effects of a single pollutant. Identifying the effect of a single pollutant 
is notoriously difficult given the co-emissions of many pollutants. We instead focus on the 
effect of wind generation and remain agnostic as to the direct pollutant. In this respect, 
our estimates are more germane to the discussion of the benefits of renewable generation 
directly. In addition, wind generation varies considerably day-to-day and, as discussed 
below, is relatively concentrated in the west portion of Texas. Thus, we have considerable 
temporal variation in our variable of interest.2 The spatial concentration allows us to iso-
late the impacts of that wind generation on distant regions that may be affected by wind 
generation through a connected electricity market, but are spatially distant from the gen-
eration and therefore have lower correlations between relevant local meteorological condi-
tions (e.g., wind speeds) and wind generation levels.3 Thus, we provide an identification 

2  Prior work has shown a meaningful link between coal and infant mortality both in early industrial econo-
mies (e.g., Beach and Hanlon 2018) and in modern times as alternative fuel sources displace coal (e.g., 
Cesur et al. 2017). Similarly, Lavaine and Neidell (2017) demonstrate a strong link between newborn health 
and pollution using variation in oil refinery production induced by strikes in France, while Luechinger 
(2014) finds similar estimates when leverages variation in pollution levels following mandated pollution 
reduction (scrubbers) at power plants in Germany. Our study leverages daily variation in coal production so 
is not able to capture health impacts of longer run exposure that might lead to worse infant health outcomes 
or higher infant mortality rates.
3  One might be concerned that the choice of siting wind turbines is endogenous. Siting of wind generation 
assets in the U.S. has been influenced, to a large extent, by the federal production tax credit. This sizeable 
credit rewarded developers for siting wind farms in high wind speed regions, such as west Texas. We are 
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concept similar in spirit to that employed by Schlenker and Walker (2016). In that paper, 
the authors show how changes in taxiing times at airports affects ED admission rates for 
those that live near the airport. To do this they exploit changes in taxiing times at Califor-
nia airports that is due to airport congestion at three other, distant major airports (Chicago 
O’Hare, Atlanta Hartsfield-Jackson, New York John F. Kennedy). That is, similar to what 
is done here, they exploit how an activity from a relatively distant location can affect the 
emissions of local sources and therefore effect air quality and health outcomes.

Our paper is most similar in its research questions to that of Rivera et al. (2021). In that 
study, Rivera et al. (2021) explore the effect of solar power generation on daily hospital 
admissions in Chile. As such, their study differs in two key ways. First, by exploring the 
effects of solar generation, which has less day-to-day variation, their identification relies 
more on the long-term expansion of solar generation capacity and can thus be viewed more 
as a longer-run effect of an increase in zero-emissions generation on morbidity. By using 
wind generation, which has considerable day-to-day and intra-day variation, our estimates 
can be interpreted as the near-immediate effect of increased zero-emissions generation on 
ED admissions and, as such, is also not compromised by potential coincidental long-run 
changes to health care provision. Second, their study uses data from a region, Chile, that 
has considerably worse air quality and lower per capita incomes, on average, than our study 
region of Texas. This difference in setting could create differences based both from dose-
response and access to health care angles.

The paper is organized as follows. The following section discusses relevant background 
information for our particular empirical context. Section 3 discusses the data used in this 
application. Our empirical methodology is introduced in Sect.  4 and results are give in 
Sects. 5, 6 and 7. Concluding remarks are given in Sect. 8.

2 � Background

The geographic setting for our analysis is the market area managed by the Electricity Reli-
ability Corporation of Texas (ERCOT). The ERCOT footprint covers most of the geo-
graphic area of Texas (see Fig. 1) and about 90% of the electricity consumption in the state. 
ERCOT manages the wholesale market for electricity, where, from a simplified standpoint, 
electricity generating units bid electricity sales into the market and so-called load serving 
entities buy the electricity, which they in turn sell to final consumers.

From a generating standpoint, Texas is by far the nation’s leading state in terms of wind 
energy generation, with ERCOT’s daily wind generation averaging about 18% of daily 
electricity demanded, often referred to as load. But, this renewable generation is not evenly 
distributed geographically across the state. As can be seen in Fig. 2a, the majority of the 
wind farms are in the west part of the ERCOT footprint and, indeed, wind generation in 
the West Zone makes up about 70% of the region’s total wind generation (see Fig. 3). On 
the other hand, the larger fossil fuel generating units, particularly the coal generating units, 
are located in the more densely populated eastern regions of the state (see Fig.  2b). As 
such, the geographic distribution of wind generation, load, and fossil-fuel power plants is 

Footnote 3 (continued)
leveraging this incentive in our identification strategy to some degree because this incentive created a siting 
pattern that resulted in most of wind generation being in the west portion of the state, reasonably far, and 
therefore meteorologically differentiated, from the population centers in the eastern part of the state.
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a microcosm of that for the entire U.S., where wind generation is concentrated in the less-
densely populated mid-continent region. Furthermore, the emissions from these fossil-gen-
erated plants in Texas is significant. In 2019, Texas had the most electricity-sector based 
emissions of sulfur dioxide ( SO2 ) and nitrogen oxide ( NOX ) among the U.S. states and was 
19th among U.S. states in terms of SO2 emissions per megawatt-hour (MWh) of generation 
(https://​www.​eia.​gov/​elect​ricity/​state/​Texas/).

We exploit this geographic distribution of generation to aid in the identification of the 
wind generation effects on hospitalization rates. Specifically, given that the wind genera-
tion is focused in the west portion of the state and the fossil generators are concentrated in 
the east, we examine effects of wind generation on eastern portion of Texas. This provides 
two benefits. First, by focusing on the east portion of the state we are examining the area 
most likely to benefit from the wind generation’s displacement of fossil generation. Sec-
ond, by looking at the eastern portion of the state, we are more able to distinguish between 
the effects of local meteorological conditions and wind generation than would be possi-
ble if one were to examine the effects of renewable generation occurring in approximately 
same geographic area as the measured health outcomes.

Note also that our point estimates cannot be generalized and applied directly to other 
regions as the estimate of wind generation effects will depend on locally-varying determi-
nants such as other types of generators on the system, pollutant dispersion patterns, and 
population concentrations. However, as discussed in Fell et al. (2021), the general pattern 
of wind generation being concentrated in remote, low-population-density regions that is 
relatively far from electricity demand centers and its accompanying fossil-fuel generators 
that we see in Texas is a common development pattern we see in other parts of the world. 
We focus on Texas for two main reasons. One, it has readily available electricity sector 
data, as well as relatively accessible Emergency Department data. Second, ERCOT is 
essentially isolated from the other electricity grids in the U.S., limiting the need to address 
effects from electricity imports and exports.

3 � Data

For our analysis, we collect data across three primary categories: electricity generation, 
meteorological and air quality, and emergency department admission records. All primary 
variables used in this analysis are summarized in Table 1. The data are collapsed to ZIP 
Code Tabulation Areas (ZCTA’s), which is the U.S. Census Bureau’s approximation of zip 
codes.4 The sample includes data for 669 ZCTAs over 1,459 days for a sample size of 
976,071.

As noted above, much of the wind generation capacity and production is concentrated in 
the western regions of Texas. As such, one concern is that in these regions, there is a high 
degree of correlation between wind generation and wind speed (or other meteorological 
factor), and wind speed itself likely impacts pollution concentrations and ED admission 

4  The U.S. Census Bureau creates ZCTAs, but ZCTAs do not always perfectly correspond to zip codes, 
which is the given spatial identifier in the ED-RDF. We use the 2016 zip code-to-ZCTA crosswalk provided 
by UDS Mapper. For the populations of the ZCTAs, we use the Census Bureau’s American Community 
Survey (ACS) Demographic and Housing Estimates five-year average from 2016. We restrict to zip codes 
that are within the State of Texas, have a population of at least 10,000, and have at least 20 people over the 
age of 65 in the ACS.

https://www.eia.gov/electricity/state/Texas/
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rates directly. Indeed, ZCTA-specific wind speeds for ZCTAs in the“West” load zone have 
a correlation coefficient with ERCOT wind generation of 0.51, while for ZCTAs located in 
other zones correlation coefficient is only 0.38. If we consider further east zip codes, cor-
relation between wind generation and ZCTA-specific wind speeds continues decline. For 
example, ZCTA’s with longitudes greater than −97, −96, and −95 degrees have correla-
tions between ZCTA-specific windspeeds and ERCOT wind generation of 0.36, 0.29, and 
0.26, respectively. However, the response of ED admission rates and PM2.5 concentrations 
to wind generation for these subsamples are quantitatively similar to the results presented 
below. Furthermore, as can be seen in Appendix Fig. 8, there are other general meteoro-
logical differences across the state that we can exploit. Thus, to better identify the effect 
of wind generation separately from the effect of wind speeds or other meteorological vari-
ables, we consider only those ZCTAs in the non-West zones of ERCOT in our base specifi-
cations (see Fig. 1). We also drop those ZCTAs in the far south part of the state (below 27◦ 
latitude) as there is some wind generation capacity in that area (see Fig. 2). A map of the 
ZCTAs remaining after these restrictions are imposed is given in Fig. 4.5

The health outcome variable of interest is hospital emergency department (ED) admis-
sion rates. These rates are derived from hospital discharge data made available to us by 
the Texas Department of State Health Services through their Texas Hospital Emergency 
Department Research Data File (ED-RDF).6 The ED-RDF contain data from the Inpatient 
and Outpatient RDF on inpatients admitted through the ED and outpatients receiving ser-
vices in the ED. The ED-RDF provides individual ED admissions details, including date 
of admissions, zip code of the admitted patient, patient’s age, inpatient or outpatient status, 

Fig. 1   ERCOT geographic foot-
print. Notes: The labeled regions 
West, North, South, and Houston 
make up the ERCOT geographic 
footprint and designate the four 
primary load zones of ERCOT 
(source: ERCOT, http://​www.​
ercot.​com/​news/​media​kit/​maps)

5  Additionally, we consider a specification where we remove extreme windspeed and precipitation days 
given there may be a concern that extreme weather events are correlated with health outcomes and more 
correlated with wind generation. These results are presented in Table 7 and yield responses similar to our 
primary results shown below.
6  Details on the Texas Health Care Information Collection (THCIC) can be found at: https://​www.​dshs.​
texas.​gov/​thcic/.

http://www.ercot.com/news/mediakit/maps
http://www.ercot.com/news/mediakit/maps
https://www.dshs.texas.gov/thcic/
https://www.dshs.texas.gov/thcic/
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and, importantly, primary diagnosis code.7 To form an admissions rate, we sum the admis-
sions by ZCTA and divide by the ZCTAs population.

Table 1 presents Emergency Department admissions rates per 1 million persons aged 65 
and older, our main dependent variable of interest. Means are also presented without the 
age restriction and then by diagnosis type. Air pollution has been associated with a wide 
variety of adverse health and cognitive outcomes.8 Following Jha and Muller (2018) and 

Fig. 2   Texas Wind Farms and Coal Plants in 2016. Notes: Panel a plots the location of the wind farms in 
Texas as of the end of 2016 and panel b plots the plant locations of facilities with coal-fired generation 
(source: Energy Information Agency Form 860)

Fig. 3   ERCOT Zonal Wind Generation. Notes: The plots are of daily sum of hourly wind generation by 
ERCOT Load Zones shown in Fig. 1 as provided by ERCOT (http://​www.​ercot.​com/​gridi​nfo/​gener​ation)

7  We restrict the sample to outpatient records with length of stays between 0 and 2 days, inclusive, and 
inpatient stays greater than 0 days and fewer than 14 days. We further restrict to admissions from the emer-
gency department, urgent care, and trauma center.
8  For example, using atmospheric temperature inversions as a source of exogenous variation in air pollu-
tion, Sager (2019) finds a small and statistically significant increase in vehicle accidents due to increased 
PM2.5 levels. Similarly, Herrnstadt et al. (2021) establishes a link between air pollution and criminal activ-

http://www.ercot.com/gridinfo/generation
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Table 1   Summary statistics

Zonal load variables correspond to the ERCOT-defined weather zones and “ERCOT-Wide” is the 
total load across ERCOT. “Gas Turbine Gen” and “Gas Comb. Cycle Gen” refer to natural gas fired 
generation from single cycle and combined cycle generators, respectively. “N/S” and “E/W” refer to 
North/South and East/West, respectively, such that North and East winds are positive value and South 
and West winds are negative. “Precipitation" is given as day t’s hourly average precipitation. “Bound-
ary Layer” is the distance from the Earth’s surface to the capping inversion. The “Wet Bulb Temp” is 
derived from the temperature and relative humidity variables sourced from ERA5 model. Age-group 
specific ED admission rates are based on that age group’s population. Disease-specific groupings 
refer to primary diagnosis for respiratory and circulatory disease, injuries and poisonings, and infec-
tious disease and neoplasms, respectively

Variable Obs Mean Std. Dev Min Max

ED Admission rates (per 1 m population)
ED Visits Age≥ 65 976071 1471 927 0 16000
ED Visits, All Ages 976071 994 560 0 9671
Resp & Circ. Age≥ 65 976071 407 437 0 8621
Injury Age≥ 65 976071 254 331 0 6000
Inf & Neo. Age≥ 65 976071 85 187 0 5236

Air quality and emissions variables
PM2.5 487701 16 10 1.09 248.1
NOX (lbs) 1461 429507 119413 171390 757344
SO2 (lbs) 1461 983318 352704 314294 1899947

Meteorological variables
N/S Wind (m/s) 976071 0.983 2.772 −11.302 10.584
E/W Wind (m/s) 976071 −0.531 1.499 −9.714 11.061
Wind Speed (m/s) 976071 2.990 1.497 0.003 11.728
Precipitation (m) 976071 0.0001 0.0004 0 0.01
Relative Humidity 976071 14.34 0.169 13.37 14.65
Boundary Layer (m) 976071 596 246 61 1674
Wet Bulb Temp (K) 976071 352 12 305 371

Load and generation variables (in GWh)
Coast Zone 1461 289 50 206 408
East Zone 1461 35 6 23 55
Far West Zone 1461 65 13 45 95
North Zone 1461 20 3 15 29
North Cent. Zone 1461 322 66 214 499
South Zone 1461 84 15 57 135
South Cent. Zone 1461 161 32 113 239
West Zone 1461 29 4 21 44
ERCOT-Wide 1461 1005 176 716 1449
Wind Gen 1461 179 83 26 430
Coal Gen 1461 265 74 71 420
Gas Turbine Gen 1461 61 43 8 226
Gas Comb. Cycle Gen 1461 378 117 95 650

Footnote 8 (continued)
ity. Bishop et al. (2022) use variation in PM2.5 exposure due to implementation of the Clean Air Act and 
find a significant impact of PM2.5 on dementia rates.
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Schlenker and Walker (2016), we define conditions that are more or less likely to be related 
to pollution. We use the HCUP Clinical Classifications Software to group ICD-10-CM pri-
mary diagnosis codes.9 For the population under study, those ages 65 and older, relevant 
conditions include respiratory and circulatory diseases (i.e., CIR and RSP in the HCUP 
classification) and “injury, poisoning, and certain other consequences of external causes” 
(INJ). In contrast, we group together two sets of conditions that are much less likely to be 
related to air-quality: neoplasms (NEO) and infectious and parasitic diseases (INF).

For a measure of air quality, we use gridded PM2.5 predictions from NASA’s Godd-
ard Earth Observing System composition forecast (GEOS-CF) system. This system com-
bines NASA satellite-based aerosol measurements with an atmospheric chemistry model 
(GEOS-Chem) to make hindcast predictions of PM2.5 concentrations on a 0.25◦ × 0.25◦ 
latitude/longitude grid (Keller et al. 2021). The data is available from 2018 onward. From 
this data we derive ZCTA-specific, daily PM2.5 measures by using a bilinear interpolation 
referenced to the latitude and longitude of the ZCTAs centroid and the latitude/longitude 
of the gridded PM2.5 data. Note that PM2.5 is not a perfect, nor complete, measure of air 
quality, but rather we use it as measure indicative of improvements of air quality.10

Fig. 4   Included ZCTA’s. Notes: Each dot represents the centroid of a ZCTA included in the sample of the 
main specifications

9  Clinical Classifications Software Refined (CCSR)for ICD-10-CM Diagnoses. Healthcare Cost and Utili-
zation Project (HCUP). February 2022. Agency for Healthcare Research and Quality, Rockville, MD. www.​
hcup-​us.​ahrq.​gov/​tools​softw​are/​ccsr/​dxccsr.​jsp, [accessed November 2022].
10  We also explored the use of EPA’s Air Quality Index (AQI) data, which is based on monitor readings 
and provides an index value for the general air quality, based on reading over several pollutants including 
PM2.5, ozone, NOX , and SO2. However, this data is not as spatially resolute, providing data at only the 
county or major metropolitan area level, and has some missing data as monitors fail to report some days. 
That written, the AQI based results are generally directionally consistent with the results presented below 
for the satellite-derived PM2.5 data.

http://www.hcup-us.ahrq.gov/toolssoftware/ccsr/dxccsr.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccsr/dxccsr.jsp
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The meteorological data comes from the European Centre for Medium-Range Weather 
Forecasts’ ERA5 climate reanalysis model. The ERA5 climate reanalysis provides data on 
various meteorological variables by combining forecast models with weather station obser-
vations. The data is produced at a 0.25◦ × 0.25◦ (roughly 30 km × 30 km) spatial resolution 
at the sub-daily temporal level over our analysis period of 2016-2019. Using this data, we 
form daily averages and assign values to each ZCTA using a bilinear interpolation refer-
enced to the latitude and longitude of the ZCTAs centroid. The meteorological variables 
collected include precipitation, boundary layer height, temperature, relative humidity, dew 
temperature, and u (east/west) and v (north/south) wind speeds. From these variables, we 
also form wet bulb temperature and wind speed values.

With respect to electricity generation data, we collect hourly wind generation, along 
with hourly generation from coal-fired, natural gas combined cycle, and natural gas simple 
cycle sources, for ERCOT over the years 2016–2019 based on ERCOT’s publicly available 
data on its historic generation fuel mix.11 We then aggregated this data to get daily meas-
ures of generation by sources, as well as measures of wind generation over peak-demand 
hours (hours beginning 8–19) and offpeak-demand hours (hours beginning 0–7 and 20–23). 
ERCOT also publishes hourly data on total load and load by weather zone which we use as 
additional controls.12 We have data for the 1,461 days from January 2016–December 2019 
at the ERCOT-wide level.

We also collect data on generation and emissions from individual fossil-fueled generat-
ing units in ERCOT through the Environmental Protection Agency’s Air Markets Program 
Database (EPA-AMPD). The EPA-AMPD data gives hourly generation from all fossil-fuel 
plants with capacity’s of at least 25 MW. The data also contains hourly emissions from 
these sources for SO2 and NOX , both of which are precursors to PM2.5 and other pollut-
ants harmful to human health, as well as CO2.13 With this facility-level data we are able to 
calculate the vast majority of the hourly and daily emissions from electricity generators in 
the ERCOT area. The facility level data also allows us to estimate heterogeneous treatment 
effects of wind generation based on the ZCTA’s proximity to fossil fuel generation.

4 � Methodology

The aim of this research is to estimate the effect of wind generation on ED admission rates 
and to build a mechanism chain for this result through the effects of wind generation on 
fossil-fuel generation and on measures of PM2.5 concentrations. We begin with these latter 
two estimations.

As noted above, several studies have demonstrated the effect of wind generation on 
fossil-fuel generators and emissions from these generators. We estimate similar mod-
els to ensure that these previously-estimated relationships between fossil-fuel generation/

11  The downloadable “Fuel Mix Report: 2007–2019” data is given as the 15-min generation by source 
across the ERCOT grid. We aggregated this 15-min data to the hourly level. (See http://​www.​ercot.​com/​
gridi​nfo/​gener​ation).
12  ERCOT is divided into eight weather zones: North, North Central, Far West, West, South Central, South, 
East, and Coast. A map of the zones can be found at http://​www.​ercot.​com/​news/​media​kit/​maps.
13  We pair the EPA-AMPD data with the Energy Information Agency’s Form 860 (EIA-860) data (https://​
www.​eia.​gov/​elect​ricity/​data/​eia860/) to determine which generating units participate in the ERCOT mar-
ket, as designated by the assigned “Balancing Authority Area” listed in the EIA-860 data.

http://www.ercot.com/gridinfo/generation
http://www.ercot.com/gridinfo/generation
http://www.ercot.com/news/mediakit/maps
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia860/
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emissions and wind generation continue to hold over our sample period. Specifically, we 
estimate the following:

where yt is either the aggregate fossil-fuel generation from a type of generator class (e.g., 
coal, natural-gas single gas turbine, natural-gas combined cycle) or aggregate emissions 
( SO2 or NOX ) for ERCOT in time period t, Windt is ERCOT wind generation, Xt is a vector 
of control variables including measures of load and natural gas prices, �t is a vector of time 
fixed effects (month-by-year and day-of-week fixed effects).14 We estimate model at the 
daily level and quadratic specifications of Windt and interaction terms including measures 
of intra-day wind generation timing.

Changes in emissions from fossil-fuel generators due to wind generation may or may 
not lead to detectable changes in ambient air quality due to dispersion patterns. We, there-
fore, next consider the effect of wind generation on ambient air quality, as represented by 
the above-described PM2.5 measure. We estimate variants of the following:

where yit is a measure of PM2.5 concentration in ZCTA i on day t. Because pollutants 
may take several days before deposition, we include lagged wind generation ( Windt−1 ) as 
a control, though we explore other wind-generation specifications. Xit is a set of controls, 
inclusive of contemporaneous and lagged local meteorological variables and weather-zone 
measures of load, and �i is a zip code fixed effect. The remaining terms in (2) are the same 
as in (1). We similarly explore interaction terms with Windt−1 as with (1) and additionally 
include interaction terms with coal-fired-generation-proximity indicator variables.15

Note that the likelihood of nonlinear effects of many of the meteorological effects, along 
with locationally-specific effects of wind direction and wind speed variables, means there 
is a possibility of many control variables and a concern of over-fitting.16 We therefore also 
estimate (2) using the post double selection LASSO (PDS-LASSO) proposed by Belloni 
et  al. (2014) and Belloni et  al. (2016). The PDS-LASSO works essentially by selecting 
variables in X via a LASSO estimator that predict the dependent variable of interest, yit , 

(1)yt = �Windt + X
�

t
� + �t + �t

(2)yit = �Windt−1 + X
�

it
� + �it + �i + �it

14  For natural gas prices, we use daily Henry Hub prices as reported by the Energy Information Agency 
(https://​www.​eia.​gov/​dnav/​ng/​hist/​rngwh​hdD.​htm).
15  One may also consider specifications where the effect of wind generation depends not only on being 
near a coal plant, but also downwind from the plant as was done in Rivera et al. (2021). However, the par-
ticular geography and climate of Texas, coupled with the dispersion of power plants and population cent-
ers in East Texas, makes differentiated downwind effects less pronounced in this setting. Indeed, Luo et al. 
(2021) model pollution dispersion from fossil-fuel power plants in Texas over several historical dates and 
do not observe obvious patterns of PM2.5 concentration increases indicative of clearly visible downwind 
effect. Similarly, in our estimation of the effect of wind generation on PM2.5 concentrations or ED admis-
sion rates, we find no evidence of a differentiated effect being in a ZCTA that is both near a coal plant and 
downwind from the coal plant on a given day compared to simply being near a coal plant.
16  In our complete universe of controls, we consider controls that include contemporaneous and lagged 
ZCTA-level precipitation, boundary layer height, relative humidity, wet-bulb temperature, windspeed, and 
weather-zone-specific load. These variables are considered in levels, squared and cubed. We also allow for 
location-specific wind direction effects by interacting 3-digit-ZCTA-identifiers with north/south and east/
west wind speeds (contemporaneous and lagged). That is, we allow the effect of north/south and east/west 
wind speed measures to vary by ZCTA’s that share common first three digits and are, therefore, geographi-
cally close to one another.

https://www.eia.gov/dnav/ng/hist/rngwhhdD.htm
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and then running a second LASSO estimator to select the variables in X that predict the 
exogenous variable of interest, Windt−1 . The final estimation uses the variables in X that are 
selected in either of the first two LASSO estimator steps by a more standard fixed-effects 
estimation.17

The final estimation procedure of considering the effect of wind generation on ED 
admission rates is carried out in much the same way as the air quality estimation steps. 
Here, we replace yit in (2) with ED visits.18 The controls in Xit are the same as those used 
in the air quality estimation. Again, we employ the PDS-LASSO estimation procedure, but 
also consider a standard fixed-effects estimation with a paired down choice of control vari-
ables (see Table 6).

Finally, though wind generation has been used as an exogenous variable in several studies as 
it is largely driven by wind speeds, one may be concerned about some choice aspects of wind 
generation that may lead to an endogeneity issue.19 To account for this, we instrument for wind 
generation with a capacity-weighted average of wind speeds at wind generating facilities in the 
West zone of ERCOT. The results of this estimation are given in Table 8 and are qualitatively 
and quantitatively similar to the non-IV approaches. Note that, because of power limitations, 
we cannot estimate the IV model with standard errors clustered by week (as is done in the main 
estimation). Therefore, we proceed with the non-IV approaches for our primary analysis.

5 � Results

The effect of wind on fossil fuel generation by type and emissions from the electricity sec-
tor, as estimated via Eq. (1), are given in Table 2. As can be seen by summing the coefficients 
on wind generation across the “Coal”, “NGCC” (natural-gas combined cycle), and “NGGT” 
(natural-gas single gas turbine) dependent variable specifications, an extra GWh of wind offsets 
almost exclusively one of these three fossil-fuel generation types. Additionally, while wind gen-
eration primarily offsets relatively low-emitting NGCC, wind generation still reduces significant 
amounts of SO2 and NOX.20

The next step is to verify if this wind-generation-induced reduction in fossil-fuel gen-
eration and associated emissions results in improved air quality, as measured by PM2.5 

17  In our estimation, we leave the time and cross-sectional fixed effects unpenalized by the LASSO esti-
mators such that they are always included in the final estimation step. Note also that this method leads to 
computable standard errors for the exogenous variable of interest, Wind

t−1 and Wind
t−1 interaction terms in 

our case. Additionally, we considered specifications with a fixed set of independent variables. Results from 
these regressions are given Table 6 in the Appendix and produce effects from wind generation similar to 
those from the LASSO procedure.
18  Note that in using daily ED admission rates, even after trimming the sample to exclude small towns, 
there are still a high number of “0” observations depending on which ED admission rate variation is used. 
Given this, we employ Poisson estimators, with ED admission count data as dependent variables, for the 
various different specifications we explore in this analysis (see Appendix Table 10). The Poisson estimators 
generally yield parameter estimates in the same direction as the PDS-LASSO estimates with ED admission 
rates and the implied scale of the marginal effects relative to the mean ED admission counts is near that for 
the results based on ED admission rates.
19  Curtailment of wind generation is one aspect where the wind generation is actively controlled by the 
generator or system operators. However, in our sample period, curtailed wind production is quite low, aver-
aging around two percent of total wind generation (U.S. Energy Information Agency (2023)).
20  We estimated a similar functional form to (1) using hourly data. The parameters on wind generation are 
numerically similar to those given in Table 2.
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concentrations, and lowered ED Admission rates in the eastern portion of Texas. Results 
of this analysis are presented in Panel A for PM2.5 concentrations and Panel B for all-
causes ED admission rates for the age ≥ 65 group of Table 3.21 For each panel, we consider 
three basic specifications. Column (1) results consider a specification with lagged wind 
generation ( Windt−1 alone as the covariate of interest). Column (2) results allow for the 
effect to be different for those near major-emitting coal-fired generation sources by inter-
acting lagged wind generation with an indicator variable equal to one if the given ZCTA’s 
centroid is within 30 miles of a coal-fired generator ( Windt−1 ∗ 1(Coal Cap ≤ 30) ). For 
column (3) results, we further refine this possibility for a heterogeneous effect by includ-
ing an interaction between lagged wind generation and an indicator equal to one if the 
given ZCTA’s centroid is within 30 miles of a coal-fired generator that has positive gen-
eration on day t − 1 , thereby allowing generators a margin to respond to the wind genera-
tion.22 All results use the PDS-LASSO procedure to select the control variables other than 
lagged wind generation, its interaction with the near-coal capacity and near-coal generation 
dummy variables, and year-by-month and day-of-week fixed effects.

Considering the results from Column (1) of Panels A and B in Table 3, we find lagged 
wind generation in ERCOT has a negative and statistically significant effect on both PM2.5 
concentrations and ED admission rates among the age ≥ 65 group for East-Texas ZCTA’s. 
These parameters are such that a one standard deviation increase in the lagged daily wind 
generation reduces day t PM2.5 concentrations by an average of about 10% of the mean 
and ED admission rates by about 0.5% across the East-Texas.

The column (2) results from Table 3 indicate that ZCTA’s near coal plants PM2.5 con-
centrations reduce slightly more than those not near coal plants in response to lagged wind 
generation, but the differential is small and statistically insignificant. On the other hand, 
the column (2) results indicate that ED admission rates response to wind generation is con-
siderably larger in magnitude for ZCTA’s near coal-generating capacity.23 The parameters 
from column 2 of Panel B imply that a one standard deviation increase in wind genera-
tion reduces ED admission rates for the age ≥ 65 group within 30 miles of a coal-fired 
generator by about 0.9% of the daily mean of those ZCTA’s. Similarly, for the column (3) 
results of Table 3, we find slightly larger magnitudes of response for PM2.5 concentrations 
to lagged wind generation among ZCTA’s near coal-fired plants that are generating, but the 

21  We consider the age ≥ 65 group for our base specification as this population has been shown to be rela-
tively more affected by air quality issue (Deryugina et  al. (2019)). We also consider dependent variable 
specifications based ED admission rates with no age restrictions and for patients with age ≤ 5. Results from 
these groupings are given in Table 9.
22  A concern with using this specification is that a coal plant may turn production to zero in response to 
higher wind generation and thus we would be understating the effect of wind generation. However, in our 
data, over 95% of the days in which coal generators have zero generation occurs in the midst of at least a 
five-day window in which the generation has no daily generation. This is likely due to the long start-up 
times and relatively high start-up costs for coal plants. Given the propensity to shut down for extended 
periods, considering a near-coal indicator that is one only on days when the nearby coal plant has positive 
generation may better highlight the role of wind generation at limiting coal-fired emissions.
23  We also consider specifications where we interact lagged wind generation with a continuous measure of 
a ZCTA’s distance to the nearest coal plant and that distance squared. These results indicate, for ED admis-
sion rates, a nonlinear coal-plant-distance interaction effect where the magnitude of the effect of lagged 
wind on ED admissions is increasing up to about 30 miles from the nearest coal plant and then begins to 
attenuate. Effect sizes wind generation for within 30 miles of a coal plant are in line with the column (2) 
and (3) results of Panel B in Table 3. For PM2.5 concentrations, this continuous-distance-interaction model 
showed little change in the effect of wind on concentrations at various distance-to-coal-plant values. For 
these reasons, we elected to present the easier-to-interpret binary "near coal" specifications.
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differential is again small and not statistically significant, whereas the the effect of lagged 
generation on ED admission rates appears to be concentrated in ZCTA’s near currently-
generating coal-fired plants. This finding is as expected given the majority of observations 
from ZCTA’s near coal generators are near facilities that have positive generation (276,450 
observations are from ZCTA’s within 30 miles of a coal-fired generator and, of those, 
257,090 are near coal generators with positive generation on day t − 1).

The disparity between the near-coal effects of lagged wind generation on PM2.5 con-
centrations and ED admission rates could be reconciled for several possible reasons. First, 
PM2.5 concentrations are based on modeled predictions based off of satellite-derived aero-
sol readings and then further bilinearly interpolated to get a ZCTA-specific measure. This 
process obviously creates various levels of imprecision that may limit our ability to find 
highly region-specific effects. Second, there are other pollutants emitted from coal-fired 
power plants that may also affect health outcomes, but disperse less uniformly than PM2.5 
may. Additionally, long-run exposure to pollutants of individuals near coal plants may be 
different than those further away which may drive different health outcome responses to 
changes in pollution concentrations.

6 � Lead/Lag Structure and Diagnosis Codes

Next, we consider additional specifications to explore the robustness of the results and rele-
vant policy angles for renewable energy. To begin, our primary results presented above are 
based on lagged daily wind generation and other contemporaneous and lagged controls to 
account for the multi-day pollutant deposition process. In Table 4, we explore the sensitiv-
ity of lag length by including current and 2-day lags (t and t − 2 ) and leads ( t + 1 and t + 2 ) 
wind generation controls.24

The first column of Table 4 shows estimates from a regression PM2.5, while in the sec-
ond column the dependent variable is ED admissions rates for the age ≥ 65 group. The 
summations of the lead and lag coefficients are presented at the bottom of the table. The 
row labeled “Sum of Near Coal Lags {t, t − 1, t − 2} ” shows the joint estimate for the six 
lagged coefficients. These sums are negative and statistically significant, although the larg-
est point estimate is for the one-day lag. Below that, the row labeled “Sum of Near Coal 
Leads {t + 1, t + 2} ” presents the joint effect of the four lead coefficients. Although the 
individual point estimate on the day t + 2 lead interacted with near coal is negative and 
statistically significant, the estimated coefficient on the not-near coal t + 2 lead is positive 
and statistically significant. Thus, the joint effect of the four lead coefficients is small and 
not statistically significant. The estimated effect of the two-day lagged wind generation is 
larger in magnitude and numerically similar to that of just the one-day lagged wind gen-
eration presented in Table 3. These results support the use of a one-day lagged wind gen-
eration as the key explanatory variable of interest. Given this, we proceed with models 
focused on the effect of 1-period lagged wind generation alone.25

24  Using variation in pollution levels in China, Xia et al. (2022) show that exposure to pollution over con-
secutive days can lead to even higher morbidity impacts.
25  We also considered specifications with up to seven leads and lags of wind generation. With these specifi-
cations we continue to find that only the joint effect on lagged wind generation has statistically and econom-
ically significant impacts day t PM2.5 concentrations and ED admission rates. Furthermore, with the seven 
day lead and lag specification, none of the individual parameters on the forward looking wind generation 
( t + 1, t + 2, ... ) variables are statistically significant for both the PM2.5 and ED admission rate regressions.
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As noted above, we have information on the patients’ diagnosis codes, which allows us 
to consider effects on specific conditions that may be more or less related to contemporane-
ous air-quality. As described in Sect. 3, we consider broad groupings of diagnosis codes 
when forming the ED admission rates. The dependent variables for the columns of Table 5 
are the ED admission rates for (1) respiratory and circulatory diseases, (2) injuries and poi-
sonings, and (3) neoplasms (cancer) and infectious and parasitic diseases. These results are 
all based on specifications that interact the lagged wind generation with the indicator for 
the given ZCTA being near (within 30 miles) of a coal generator. The row labeled “Near 
Coal Eff.” gives the summed coefficients of the lagged wind and lagged wind interacted 
with the near-coal indicator, with standard errors below. As described in Sect. 3, we antici-
pate the largest impact on respiratory and circulatory conditions, but prior work has found 
a causal link from air pollution to a broader range of health outcomes including cognitive 
performance and accidents. Thus, neoplasms and infectious and parasitic diseases provide 
the most defensible falsification test.

In Table 5, we find negative and statistically significant effect of lagged wind generation 
on admissions related to respiratory and circulatory diagnosis codes, as well as for those 
indicating some bodily injury, for ZCTA’s near coal plants. These parameters imply that 
a standard deviation increase in wind generation lowers both respiratory and circulatory 
admission rates and bodily-injury admission rates for the age ≥ 65 group from ZCTA’s near 
coal plants by about 1.1% of their respective means. On the other hand, admissions given 
diagnosis codes related to infections and neoplasms (cancer), have small, both in absolute 
magnitude and relative to its mean, and statistically insignificant responses to wind genera-
tion. This is as expected given ailments associated with these diagnosis codes are likely 
unaffected by air quality conditions.

We also consider the wind-generation effects on ED admissions classified as out-patient 
and in-patient admissions, where admissions classified as “out-patient” are those where 
the patient is released without an overnight stay and in-patient admissions require longer 
hospital stays and, thus, may be more likely related to some chronic condition. In Table 5, 
we find lagged wind generation has a larger (in magnitude) and more statistically signifi-
cant effect on out-patient admissions than in-patient admissions. However, the proportional 
effects relative to the mean of the IP or OP admission rate are similar across admission 
types, thus for subsequent analyses we continue to consider admission rates based on the 
pooled IP and OP admissions.

7 � Wind Generation Timing

The intermittent nature of wind generation means system operators do not choose, for the 
most part, when to dispatch generation from wind farms. This non-dispatchability has sev-
eral consequences related to the potential hospital visits avoided by more wind genera-
tion. First, given that demand for electricity varies throughout the day and that generators 
have heterogeneous marginal costs across generation technologies, which generators are 
marginal potentially varies throughout the day. Similarly, the level of wind generation can 
alter which generators are marginal, as the level of wind generation determines how much 
the positive marginal cost portion of the supply curve is shifted in or out. Also, because 
emissions vary by fossil-fuel generator types, there is variation in the amount and type of 
emissions offset by increased wind generation throughout the day and at different levels of 
wind generation (see Cullen 2013; Novan 2015). At the same time, Fell et al. (2021) have 
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shown that wind generation in ERCOT coming during periods of grid congestion reduces 
the amount of emissions offset from generation sources in the more densely populated 
eastern portion of the state. Thus, the extent to which wind generation is anticipated to 
reduce ED hospital visits might vary by time of day, level of production, and amount of 
grid congestion.

Exploring wind generation timing effects is of interest because with growing energy 
storage capabilities, market arbitragers will be able to effectively temporally move wind 
generation from low-demand/low-price periods to high-demand/high-price periods. The 
effect of such a move on health outcomes remains an open question.

To explore these issues, we estimate various specifications of wind generation timing 
and level effects on emissions from east Texas generating facilities, PM2.5 concentrations, 
and ED admission rates. More specifically, we look consider variations of (1) and (2) to 
allow for quadratic wind generation controls. We also explore specifications interacting lin-
ear and quadratic wind generation controls with the share of daily wind generation com-
ing during low-demand (off-peak) hours and the share of daily wind generation coming 
during hours when the transmission grid appears uncongested.26 For specifications using 
ZCTA-specific PM2.5 concentrations and ED admission rates, we also explore the varying 
marginal responses to wind generation separately for ZCTA’s near coal-fired plants (e.g., 
within 30 miles) and those not near coal plants.

Figure 5 plots the marginal responses of emissions from ERCOT electricity generation 
facilities in east Texas (i.e. those not in the West Load Zone) for pollutants SO2 and NOx . 

Table 2   Generation and emission 
effects

The data are given at the daily level from 2016-2019. *, **, *** indi-
cate statistical significance at the 10, 5, and 1 percent levels, respec-
tively. “Coal”, “NGCC”, and “NGGT” refer to dependent variables of 
ERCOT-wide generation (in GWh’s) from coal units, natural gas com-
bined cycle units, and natural gas single-cycle turbines, respectively. 
“ SO2 ” and “ NO

x
 ” refer to ERCOT-wide electricity-sector emissions 

of sulfur dioxide (in lbs) and nitrogen oxides (in lbs), respectively. 
“Wind” refers to ERCOT-wide wind generation in GWh’s. Standard 
errors, clustered at week of sample, are included in parentheses below 
the parameter estimates. All specifications include year-by-month and 
day-of-week fixed effects, load by weather zone, and Henry Hub natu-
ral gas prices as additional controls

Coal NGCC​ NGGT​ SO
2

NOx

Wind −0.22*** −0.64*** −0.14*** −743.1*** −458.5***
(0.010) (0.009) (0.009) (47.0) (13.5)

Obs 1,461 1,461 1,461 1,461 1,461
R2 0.94 0.98 0.89 0.92 0.95

26  For off-peak share calculations we sum wind generation from day t − 1 coming in hours beginning 0–7 
and 20–23 and divide that off peak wind generation by day t − 1 ’s total wind generation. One concern with 
this approach may be that wind generation from t − 1 ’s hours 20–23 have a different effect on day t’s PM2.5 
and ED rates due to it temporal proximity than t − 1 ’s generation from hours 0–7. Accordingly, we also 
consider a lagged wind and lagged off-peak wind share that runs from hour 20 of day t − 2 through hour 
19 of day t − 1 . In this setting, off-peak lagged wind generation is the continuous set of hours from hour 20 
of t − 2 to hour 7 of t − 1 . Results from this specification are not materially different from those presented 
below.
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Subplots (a) and (b) plot the marginal responses of emissions of the two pollutants to wind 
generation from an augmentation of (1) that includes linear and quadratic controls of wind 
generation. With this quadratic specification, we find a clear diminishing marginal effect of 
wind generation for SO2 and, to a lesser extent, for NOx . Subplots (c) and (d) plot the mar-
ginal response to wind generation for the specification that interacts wind generation terms 
with the share of daily wind generation that comes during off-peak hours.27 The marginal 
effects are evaluated at varying levels of off-peak wind shares with wind generation held at 
its mean value. Here we find effectively no impact of off-peak wind share on the marginal 
effect of wind with respect to SO2 , but the magnitude of the wind effect increases with 
more off-peak wind generation for NOx.

Finally, subplots (e) and (f) plot the marginal responses of SO2 and NOx emissions from 
east Texas power plants with respect to wind generation for specifications that interact lin-
ear and quadratic wind generation terms with the share of daily wind generation coming 
during hours when the grid is uncongested. To determine this share, we first follow Fell 
et al. (2021) and define grid congestion as hours when the average pairwise difference in 

Table 3   Air quality and ED admission rate effects

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. Standard errors, 
clustered at week of sample, are included in parentheses below the parameter estimates. All specifica-
tions include ZCTA, year-by-month, and day-of-week fixed effects. “PM2.5” is a measure of daily average 
PM2.5 concentrations. “ED Admiss. Rate” are the daily ED admission rates per million residents by ZCTA 
for patients aged 65 or older. Other controls, selected by the post-double selection LASSO method, are 
excluded as the standard errors cannot be calculated directly. The possible other controls include contem-
poraneous and t − 1 and t − 2 lagged zcta-specific meteorological variable, zonal load, natural gas prices, 
North/south and east/west wind speeds by 3-digit ZCTA values. All possible controls enter in levels up to a 
third-order polynomial

Panel A: PM 2.5

(1) (2) (3)
Wind

t−1
−0.0181*** −0.0175*** −0.0177***
(0.00340) (0.00345) (0.00348)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.00148 −0.00182

(0.00163) (0.00226)
Wind

t−1 ∗ 1(Coal Gen ≤ 30) 0.000613
(0.00205)

Observations 487,701 487,701 487,701
Panel B: ED Admiss. Rate
(1) (2) (3)

Wind
t−1

−0.0929** −0.0536 −0.0541
(0.0404) (0.0416) (0.0415)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.111*** 0.0231

(0.0367) (0.0528)
Wind

t−1 ∗ 1(Coal Gen ≤ 30) −0.147***
(0.0426)

Observations 976,071 976,071 976,071

27  Off-peak hours are defined as hours beginning 0-7 and 20-23.
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load-zone wholesale prices is greater than $1/MWh. We then sum the wind generation for 
ERCOT across hours in a given day when the grid is not congested and divide that by the 
total daily wind generation. Plotting the marginal effects across a range of uncongested 
wind shares, while holding wind generation at its mean value, we find a clear increase in 
the magnitude of the wind generation effect on offsetting SO2 and NOx . This is consistent 
with Fell et al. (2021) result that congestion diminishes wind generation’s effect on envi-
ronmental damages in ERCOT.28

These more nuanced relationships between wind energy and power plant emissions 
motivate further exploration of the effects of wind generation on air quality and ED admis-
sion rates. Figures 6 and 7 present marginal response results from the specifications includ-
ing linear and quadratic lagged wind generation terms, those wind generation terms inter-
acted with the share of lagged wind generation coming from off-peak hours, and the those 
wind generation terms interacted with the share of lagged wind generation coming from 
uncongested hours. We further interact all these additional terms with a “near coal” indica-
tor variable to explore differential effects for those ZCTA’s near coal generation plants.

For the results with daily, ZCTA-level PM2.5 concentrations as the dependent variable, 
we find similar to the results for power-plant emissions, a strong diminishing (in magni-
tude) marginal effect of wind generation for regions both near and not near coal plants 
(Fig. 6, subplots (a) and (b)). However, unlike the effects of wind generation on emissions, 
the marginal effects of PM2.5 concentrations with respect to wind generation appear rela-
tively unaffected by the share of wind generation coming during off-peak hours (subplots 
(c) and (d)) or the share of wind generation coming from periods when the grid is likely 
uncongested (subplots (e) and (f)).29

The results using ED admission rates across all diagnosis codes for the age ≥ 65 
group as the dependent variable differ somewhat from those with PM2.5 concentrations. 
To begin, for ZCTA’s near coal plants, we find no diminishing marginal effect of wind 
generation (Fig. 7, subplot (a)). For those not near coal, the marginal effect of wind does 
diminish somewhat, though 95% confidence intervals of point estimates are inclusive 
of zero for all wind generation levels considered. For near-coal ZCTA’s, we find some 
degree of an increasing (in magnitude) marginal effect of wind generation as more wind 
generation comes during off-peak hours (subplot (c)). When considering the effects of 
grid congestion, we find a much larger magnitude of the marginal effect of wind genera-
tion on ED admission rates for near-coal ZCTA’s when the majority of wind generation 
comes during periods when the grid is likely not congested relative to when wind gen-
eration is coming during grid-congested hours (subplot (e)). Similar to the base speci-
fications results in Table 3, the ED admission rates for ZCTA’s not near coal plants are 
smaller and statistically insignificant over the range of off-peak and uncongested wind 
generation shares.30

These results have particular policy relevancy as it relates to energy storage and 
transmission network expansion. With respect to wind generation, storage provides the 

28  Parameter estimates from which the Fig. 5 are derived are given in Table 12 in the Appendix. We also 
include similar marginal response plots for dependent variables based aggregate generation from coal, 
NGCC, and NGSC plants in east Texas (see Fig.  9 and associated Table 11). As expected, the marginal 
response plots from specifications using emissions as the dependent variable follow a similar pattern to 
those with coal generation as the dependent variable.
29  Fig. 6 is derived from the parameter estimates reported in Table 13.
30  Fig. 7 is derived from the parameter estimates reported in Table 14.
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opportunity to move electricity temporally, from low-value off-peak hours to high-value 
peak-demand hours. Our results indicate that such a temporal redistribution of wind gen-
eration may attenuate its impact on emissions of NOX . However, the temporal redistribu-
tion does not appear to have any significant impact on wind generation’s effect on PM2.5 
concentrations and relatively minor effects of ED admission rates. To the extent that energy 
storage or other transmission expansions alleviate grid congestion, our results indicate that 
such investments will increase the effect of wind generation in offsetting emissions of local 
pollutants from power plants located farther from wind farms and in reducing ED admis-
sion rates for those living near emissions-intensive generators. This, again, highlights the 
non-market benefits of grid infrastructure investments.

Table 4   Lead and lag length sensitivity

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. Dependent vari-
ables are given in the column headers, with “PM2.5” denoting the ZCTA-specific PM2.5 concentration 
measure and “ED Admiss. Rate” denoting the daily, ZCTA-specific ED admissions per 1 million residents 
for the age ≥ 65 group. See Table 3 for a description of the sample and control variables

PM 2.5 ED Admiss. Rate
(1) (2)

Wind
t

0.00347 −0.0369
(0.00330) (0.0345)

Wind
t−1

−0.0173*** −0.0465
(0.00349) (0.0319)

Wind
t−2

−0.00785** 0.0129
(0.00368) (0.0341)

Wind
t+1 0.000435 0.0285

(0.00353) (0.0331)
Wind

t+2 0.00709** 0.0558*
(0.00346) (0.0297)

Wind
t
∗ 1(Coal ≤ 30) −0.000826 −0.0291

(0.00170) (0.0297)
Wind

t−1 ∗ 1(Coal ≤ 30) −0.00299 −0.0387
(0.00206) (0.0316)

Wind
t−2 ∗ 1(Coal ≤ 30) 0.00186 −0.0257

(0.00215) (0.0302)
Wind

t+1 ∗ 1(Coal ≤ 30) 0.000303 −0.00540
(0.00170) (0.0295)

Wind
t+2 ∗ 1(Coal ≤ 30) −0.00378* −0.0552*

(0.00202) (0.0326)
Sum of Near Coal Lags {t, t − 1, t − 2} −0.0236*** −0.164***

(0.0064) (0.0655)
Sum of Near Coal Leads {t + 1, t + 2} 0.00405 0.0238

(0.0044) (0.0479)
Observations 483,687 972,057
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8 � Conclusion

Wind generated electricity has grown rapidly in the U.S. and elsewhere in the past two 
decades. However, given its non-dispatchability and typical siting in less densely populated 
regions, this emissions-free generation may not necessarily deliver significant short-term 
health benefits. We examine this issue by exploring the effect of short-term variation in 
wind generation levels in the ERCOT market on ED admission rates across the more heav-
ily-populated east Texas region.

We build a causal chain, showing first, consistent with others, that wind generation 
reduces fossil generation and associated emissions in the ERCOT market. We then show 
that increases in lagged daily wind generation lowers PM2.5 concentrations across east 
Texas counties. Finally, we find that an increases in lagged wind generation reduces ED 
admission rates among individuals ages 65 or older. Additionally, while the effect size is 
small, with a standard deviation increase in near-term daily average wind generation levels 
reducing ED admission rates by about 0.5% of the mean rate, the effect is precisely meas-
ured and consistent across a variety of model specifications.

We consider several alternative specifications to find evidence of heterogeneous treat-
ment effects along dimensions relevant to energy policy considerations. First, we explore 
the effect of wind generation on ED admission rates for ZCTA’s near coal-fired plants and 
find the effect of wind generation on ED admission rates nearly doubles for those within 30 
miles of coal plants relative to the mean effect across all East-Texas ZCTA’s.

In addition to reducing the total amount of energy generation from fossil fuels, energy 
storage has the potential to both alter the timing of fossil fuel generation and to reduce the 

Table 5   Heterogeneity by diagnosis and in-patient vs. out-patient

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. Sample and speci-
fication parallels Table 3, Column (2). The dependent variable is indicated by the column heading. “Near 
Coal Eff.” gives the summed effect of the parameters on Wind

t−1 and Wind
t−1 ∗ 1(Coal Cap ≤ 30) , with 

standard errors below in parentheses. “Dep. Var. Mean” gives the mean of the dependent variable labeled in 
the column headers. “Resp. & Circ”, “Injury”, and “Inf. & Neo.” refer to admissions with diagnosis codes 
that correspond to HCUP Clinical Classification System diagnosis groupings of respiratory and circulatory, 
injuries, and infections and neoplasms (cancer), respectively. “Out-Patient” refers to ED visits that do not 
lead to an overnight admission and “In-Patient” visits are those that are initiated in the ED and lead to an 
overnight hospital stay. Other controls, selected by the post-double selection LASSO method, are excluded 
as the standard errors cannot be calculated directly. The possible other controls include contemporaneous 
and t − 1 and t − 2 lagged zcta-specific meteorological variable, zonal load, natural gas prices, north/south 
and east/west wind speeds by 3-digit ZCTA values. All possible controls enter in levels up to a third-order 
polynomial

Resp & Circ Injury Inf & Neo Out-Patient In-Patient
(1) (2) (3) (4) (5)

Wind
t−1

−0.0299 −0.00353 −0.00821 −0.0262 −0.0332
(0.0194) (0.00805) (0.00523) (0.0234) (0.0288)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.0248** −0.0311*** 0.0127** −0.0973*** −0.00902

(0.0122) (0.0111) (0.00521) (0.0316) (0.0142)
Near Coal Eff −0.0548*** −0.0346*** 0.00445 −0.123*** −0.0422

(0.0201) (0.0113) (0.00572) (0.0349) (0.0269)
Dep. Var. Mean 406.9 254.5 84.85 958.7 512.3
Observations 976,071 976,071 976,071 976,071 976,071
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amount of grid congestion. To model how this might impact the health benefits of wind 
generation, we explore how the marginal impacts of wind on ED visits varies by time of 
day and by grid congestion. First, we find that the effect of wind generation on ED visits 
is slightly larger when more of the wind generation comes during off-peak hours, but this 
relationship is attenuated relative to the amount of fossil fuel generation that is displaced. 
This suggests that policies affecting the timing of fossil fuel generation may have only a 

Fig. 5   Emissions Marginal Responses. Notes: This figure plots the marginal response with respect to wind 
generation of emissions from power plants not in the West Load Zone of ERCOT for pollutants listed at the 
top of each sub-figure. Subplots correspond to parameter estimates from Table 12. Point estimates are rep-
resented by the dots with vertical lines representing the 95% confidence intervals



308	 H. Fell, M. S. Morrill 

1 3

limited impact in isolation. However, when more wind generation comes during periods 
when the transmission network is not congested, the impact on health is more substan-
tial. These latter results suggest that alleviation of congestion, either via more transmission 
lines or through effectively altering the timing of wind generation through energy storage 
to reduce congestion, could significantly increase the health benefits associated with wind 
generation.

Fig. 6   PM2.5 Marginal Responses. Notes: This figure plots the marginal response with respect to wind 
generation of ZCTA-level, daily PM2.5 concentrations. Subplots correspond to parameter estimates from 
Table 13 from column (1) for plots (a) and (b), column (2) for plots (c) and (d), and column (3) for plots 
(e) and (f). Point estimates are represented by the dots with vertical lines representing the 95% confidence 
intervals
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Appendix

See Figs. 8 and 9 and Tables 6, 7, 8, 9, 10, 11, 12, 13 and 14.

Fig. 7   ED Admission Rate Marginal Responses. Notes: This figure plots the marginal response with respect 
to wind generation of ED admission rates for individuals age ≥ 65 and based on “More Related” diagnosis 
codes. Subplots correspond to parameter estimates from Table  14 with column (1) for plots (a) and (b), 
column (2) for plots (c) and (d), respectively, and column (3) for plots (e) and (f). Point estimates are repre-
sented by the dots with vertical lines representing the 95% confidence intervals



310	 H. Fell, M. S. Morrill 

1 3

Data Sample Description

In this section, we describe the universe of possible control variables from which the 
PDS-LASSO procedure selects a subset. To begin, our complete data sample runs, daily, 
from 01/01/2016 - 12/31/2019, for a total of 1461 days. There is a total of 786 ZCTA’s 
in our data. To reduce the correlation between local meteorological conditions and wind 
generation, we exclude ZCTA’s in the wind-generation-heavy West load zone of ERCOT 
and those south of 27 degrees latitude as there is another cluster of wind generators in the 
southern portion of Texas. We also exclude ZCTA’s with populations of age ≥ 65 residents 
less than 10,000. These cuts results in a sample of 669 ZCTA’s.

For the PDS-LASSO procedure, we allow for a large set of controls. The summary sta-
tistics table (Table 1) lists the root control variable (Meteorological Variables and zonal 
and ERCOT-wind Load Variables), from which we form additional control variables 
through lags, higher order polynomials, and interactions with three-digit ZCTA-identifi-
ers to allow for region-specific effects. For each of these variables, except the N/S and 
E/W wind speed variables, we include as a possible control the given variable in levels, 
squared, and cubed for the contemporaneous, 1-day lagged, and 2-day lagged versions of 

Fig. 8   Meteorological Conditions. Notes: Moving clockwise from the upper left plot,  these maps plot the 
daily average of hourly precipitation (m), temperature (K), wind speed (m/s), and wind direction (degrees 
relative to due North) by zip code in Texas over the 2016-2019 sample period. Units of the data are the 
same for these variables as given in Table 1
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the variable, for a total of 135 possible controls. For the N/S and E/W wind speed based 
variables, we interact the contemporaneous and 1-day lag variables, in levels and squared, 
with 3-digit ZCTA identifiers to allow for the directional wind speed effects to vary by 
region. There are 34 3-digit ZCTA’s for our sample that excludes the West load zone and 
ZCTA’s south of 27◦ latitude, so the total number of possible N/S- and E/W-based wind 
speed controls is 408. Given this set up, the PDS-LASSO procedure selects variables from 
a possible 543 controls. In addition to these possible controls, we also control month-by-
year and day-of-week fixed effects which are excluded from the LASSO selection proce-
dure. Note also, because we allow for control variables lagged 2-days, our total possible 
number of observations falls to 976,071 (669*1459).

The number of selected variables via the PDS-LASSO procedure varies by dependent 
variable and “treatment” variable(s) (e.g., lagged wind, lagged wind interacted with the 
off-peak-to-peak wind ratio) used. For example, in our base specification using the “Total” 
ED admission rates for the 65+ age group and lagged wind generation as the treatment 
variable of interest, the PDS-LASSO procedure selects 103 of the possible 543 possible 
controls. The set of controls includes wind speed, precipitation, boundary-layer height, 
and wet-bulb temperature, as well as many N/S and E/W wind speed measures, both 

Fig. 9   Generation Marginal Responses. Notes: This figure plots the marginal response of aggregate daily 
generation of different technology types for plants not in the ERCOT West Load Zone with respect to wind 
generation. Subplots correspond to parameter estimates from Table 11. Point estimates are represented by 
the dots with vertical lines representing the 95% confidence intervals
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contemporaneous and lagged and in levels and squared, interacted with various 3-digit 
ZCTA identifiers. When also allow the treatment to vary for those ZCTA’s with 30 miles 
of a coal plant (lagged wind interacted with a within-30-miles-of-coal indicator), the PDS-
LASSO procedure selects even more controls, 132, out of the possible 543. The primary 
difference between the selected variables of these two specification, and more generally, 

Table 6   Fixed regressors results

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. Standard errors, 
clustered at week of sample, are included in parentheses below the parameter estimates. Presented results 
are estimated from specifications with a fixed set of regressors. The dependent variable is given in the col-
umn header. “PM2.5” refers to average daily PM2.5 measures at the ZCTA level for years 2018-2019 as 
derived from the NASA MODIS model. “Total” refers to the total ED admission rate for age ≥ 65 patients. 
“Resp. & Circ”, “Injury”, and “Inf. & Neo.” refer to admissions with diagnosis codes that correspond to 
HCUP Clinical Classification System diagnosis groupings of respiratory and circulatory, injuries, and infec-
tions and neoplasms (cancer), respectively. All diagnosis code admissions are for the age ≥ 65 group. In 
addition to the variables shown, all specifications also include month-by-year, day of week, and ZCTA fixed 
effects and lagged ( t − 1 ) values of all variables show above

PM 2.5 Total Resp & Circ Injury Inf & Neo

Wind
t−1

−0.0193*** −0.0573 −0.0113 −0.00384 −0.00660
(0.00368) (0.0407) (0.0189) (0.00863) (0.00546)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.00215 −0.0755** −0.0328*** −0.0171 0.00991*

(0.00169) (0.0365) (0.0113) (0.0108) (0.00505)
Precip

t
−466.7 -48,102*** −11,720*** −9,801*** -1,967***
(596.9) (5,104) (1,678) (1,224) (639.4)

Wet Bulb
t

0.309*** 2.182*** 0.590*** −0.0413 0.234***
(0.0658) (0.469) (0.191) (0.108) (0.0717)

BLH
t

−0.00443*** 0.0262** −0.000959 0.0110*** 0.00334**
(0.00149) (0.0110) (0.00476) (0.00272) (0.00155)

North
t

0.000104 0.00282 0.00295* −0.000821 0.00108*
(0.000399) (0.00308) (0.00155) (0.000742) (0.000548)

North Central
t

−2.16e−05 -9.75e−05 −9.10e−05 -7.49e−06 −6.58e−
05**

(2.68e−05) (0.000244) (0.000114) (4.55e−05) (3.00e−05)
South

t
−0.000109* −0.00122* −0.000547 5.34e−05 -6.80e−05
(6.26e−05) (0.000642) (0.000381) (0.000141) (7.93e−05)

South Central
t

−7.01e−05 −0.000293 -9.59e−05 −0.000156 -1.50e−05
(4.26e−05) (0.000400) (0.000187) (0.000116) (7.02e−05)

East
t

0.000304 0.000919 −1.30e−05 0.000337 0.000438
(0.000218) (0.00229) (0.000893) (0.000428) (0.000310)

Coast
t

3.65e−05 0.000821*** 0.000289*** 9.52e−05** 6.32e−
05***

(2.56e−05) (0.000189) (7.73e−05) (3.83e−05) (2.37e−05)
West

t
0.000295 −0.00350 −0.000639 −0.000160 −0.000398
(0.000310) (0.00381) (0.00156) (0.000741) (0.000586)

Far West
t

−7.35e−05 −0.00120 −0.000980 0.000137 −5.89e−06
(0.000167) (0.00201) (0.000774) (0.000433) (0.000312)

Observations 487,701 976,740 976,740 976,740 976,740
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is the number of N/S and E/W windspeed interacted with 3-digit ZCTA identifiers that are 
included.

For the specifications using ZCTA-level PM2.5 concentration measure, the sample 
count is reduced because the data is only available for years 2018 and 2019. We have 
729 sample days with PM2.5 readings, with reading unavailable in our data for May 19, 
2019, over 669 ZCTAs for a total of 487,701 observations. Note also, the results of the 
various specifications using ED Admission as the dependent variable, but restricted to the 

Table 7   Removal of extreme wind/precipitation days

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. ZCTA-level PM2.5 
measures is the dependent variable for results in columns (1) and (2) and ZCTA-level total ED admission 
rates for those 65 and older is the dependent variable for columns (3) and (4). Results in columns (1) and 
(3) remove observation days t, t − 1, andt + 1 if the ZCTA’s windspeed or precipitation on day t is greater 
than the 97.5 percentile of the ZCTA’s windspeed or precipitation measure. Column (2) and (4) results are 
based on samples similarly defined, but remove days t, t − 1, t − 2, t + 1, andt + 2 if windspeed or precipita-
tion measures are above the 97.5 percentile values. Other controls, selected by the post-double selection 
LASSO method, are excluded as the standard errors cannot be calculated directly. The possible other con-
trols include contemporaneous and t − 1 and t − 2 lagged zcta-specific meteorological variable, zonal load, 
natural gas prices, north/south and east/west wind speeds by 3-digit ZCTA values. All possible controls 
enter in levels up to a third-order polynomial

PM2.5 ED Admiss. Rate

(1) (2) (3) (4)

Wind
t−1

−0.0177*** −0.0187*** −0.0612 −0.0528
(0.00375) (0.00384) (0.0492) (0.0516)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.00182 −0.00238 −0.0860** −0.0748*

(0.00173) (0.00187) (0.0390) (0.0410)
Observations 423,271 386,859 850,684 778,994

Table 8   Instrumental variables approach

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. ZCTA-level PM2.5 
measures is the dependent variable for results in columns (1) and (2) and ZCTA-level total ED admission 
rates for those 65 and older is the dependent variable for columns (3) and (4). In all specifications, Wind

t−1 
and Wind

t−1 ∗ 1(Coal Cap ≤ 30) are instrumented for using a capacity-weighted average wind speed at 
wind farms in the West load zone of state and that interacted with 1(Coal Cap ≤ 30) , respectively. Other 
controls include contemporaneous and t − 1 lagged zcta-specific meteorological variable, zonal load, natural 
gas prices, north/south and east/west wind speeds by 3-digit ZCTA values

PM2.5 ED Admiss. Rate

(1) (2) (3) (4)

Wind
t−1

−0.0268*** −0.0270*** −0.0479** −0.0156
(0.0003) (0.0003) (0.0197) (0.0217)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) 0.000748* −0.0966***

(0.0004) (0.0252)
Observations 487,701 487,701 976,740 976,740
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2018-2019 period as the PM2.5 data is, leads to qualitatively similar results as those shown 
in this study.

Table 9   Hospital admission rate effects: all ages and age≤5

*, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, respectively. Standard errors, 
clustered at week of sample, are included in parentheses below the parameter estimates. The first two col-
umns refer to the grouping of ED patients from all ages and the second two columns are based on ED 
admission rates for the age group less than or equal to 5. “Total” refers ED admission rate dependent vari-
ables using all ED admissions “R. & C.” refers to dependent variable specifications based on admissions 
with diagnosis code classified as respiratory or circulatory conditions under the HCUP classification sys-
tem. All specifications include ZCTA, year-by-month, and day-of-week fixed effects. Additional controls 
are selected using the post-double LASSO selection procedure

All ages Age ≤ 5

Total R & C Inj Total R & C Inj

Wind
t−1

−0.0269 −0.00523 0.00683* 0.0630 0.0371 0.00490
(0.0198) (0.00907) (0.00383) (0.0653) (0.0411) (0.0111)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −0.0240 0.0105* −0.0219*** −0.110** 0.0230 −0.0377***

(0.0150) (0.00567) (0.00427) (0.0458) (0.0230) (0.0133)
Observations 976,071 976,071 976,071 976,071 976,071 976,071

Table 10   Poisson regression results - base specification

Parameter estimates are estimated via a Poisson pseudo-likelihood regression. *, **, *** indicate statistical 
significance at the 10, 5, and 1 percent levels, respectively. Robust standard errors are included in parenthe-
ses below the parameter estimates. Dependent variables are age 65+ ED admission rates for the diagnosis 
code groupings given in the column headers. Parameters beyond the wind generation and wind generation 
interaction terms are for ZCTA-specific daily mean values of windspeed (Windspeed

t
 ), precipitation (Pre-

cipitation
t
 ), boundary layer height (BLH

t
 ), and wet-bulb temperature (Wet Bulb

t
 ). Additional controls 

include contemporaneous and lagged ZCTA-level windspeed, precipitation, boundary layer height, relative 
humidity, wet-bulb temperature, weather-zone load, N/S wind speed by 3-digit ZCTAs, and month-by-year, 
day-of-week, and ZCTA fixed effects

Total Resp & Circ Injury Inf & Neo

Wind
t−1

−1.74e−05 −4.00e−06 1.48e−06 −4.48e−05
(1.06e−05) (1.95e−05) (2.46e−05) (4.20e−05)

Wind
t−1 ∗ 1(Coal Cap ≤ 30) −6.83e−05*** −7.27e−05*** −8.07e−05** 8.04e−05

(1.38e−05) (2.61e−05) (3.23e−05) (5.53e−05)
Windspeed

t
−0.00113** −0.000467 −0.00176 0.00105
(0.000547) (0.00100) (0.00127) (0.00216)

Precipitation
t

−31.24*** −28.80*** −40.18*** −23.97***
(1.748) (3.114) (3.923) (6.503)

BLH
t

−8.12e−06** −2.25e−05*** 1.49e−05 2.39e−06
(4.11e−06) (7.57e−06) (9.52e−06) (1.64e−05)

Wet Bulb
t

0.00412*** 0.00366*** 0.00172*** 0.00459***
(0.000217) (0.000396) (0.000502) (0.000856)

Observations 976,740 976,740 976,740 976,740
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Table 12   Heterogeneous effects: emissions

The dependent variable for each specifications is daily summed emissions from fossil-fuel plants in ERCOT 
excluding those from the West Load Zone for the pollutant given in the column header. *, **, *** indicate 
statistical significance at the 10, 5, and 1 percent levels, respectively. Standard errors, clustered at week of 
sample, are included in parentheses below the parameter estimates. Additional controls ERCOT aggregate 
load, Henry-hub natural gas prices, and month-by-year and day-of-week fixed effects

SO
2

SO
2

SO
2

NO
X

NO
X

NO
X

Wind
t−1

−1,205*** −1,165 −568.5 −385.9*** −705.4*** −163.0
(167.5) (953.3) (466.4) (40.86) (254.6) (109.2)

Wind2
t−1

1.243*** 1.279 −1.998 0.0786 1.583** −0.879**
(0.404) (2.634) (1.379) (0.101) (0.678) (0.356)

Wind
t−1*

(

WindOff
t−1

Wind
t−1

) 716.6 127.6

(446.9) (239.0)

Wind2
t−1

*

(

WindOff
t−1

Wind
t−1

)

−2.976** −0.537

(1.255) (0.651)

Wind
t−1*

(

Wind
Uncong

t−1

Wind
t−1

)

0.289 0.167

(0.564) (0.130)

Wind2
t−1

*

(

Wind
Uncong

t−1

Wind
t−1

)

−0.003* −0.001**

(0.0016) (0.0004)
Observations 1,461 1,461 1,461 1,461 1,461 1,461
R2 0.918 0.918 0.919 0.956 0.958 0.957
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Table 13   Heterogeneous effects: PM2.5

The dependent variable for all specifications is daily, ZCTA-level PM2.5 measures. *, **, *** indicate sta-
tistical significance at the 10, 5, and 1 percent levels, respectively. Standard errors, clustered at week of 
sample, are included in parentheses below the parameter estimates. Additional controls are selected using 
the post-double LASSO selection procedure using lagged wind and lagged wind squared (column (1)) or 
lagged wind interacted with the off-peak ratio (column (2)) or lagged wind interacted with the uncongested 
rate (column (3)) as the treatment variables. All specification include month-by-year and day-of-week fixed 
effects

PM 2.5

(1) (2) (3)

Wind
t−1

−0.0460*** 0.0775 −0.00329
(0.0138) (0.0874) (0.0241)

Wind2
t−1

7.79e−05** −0.000264 −2.38e−06
(3.21e−05) (0.000249) (5.06e−05)

Wind
t−1 ∗

(

WindOff
t−1

Wind
t−1

)

−0.230

(0.164)

Wind2
t−1

∗

(

WindOff
t−1

Wind
t−1

) 0.000641

(0.000477)

Wind
t−1 ∗

(

Wind
Uncong

t−1

Wind
t−1

)

−0.0634*

(0.0345)

Wind2
t−1

∗

(

Wind
Uncong

t−1

Wind
t−1

)

0.000119

(8.50e−05)
Wind

t−1 ∗ 1(Coal ≤ 30) 0.00669 −0.00979 −0.0324**
(0.00852) (0.0565) (0.0131)

Wind2
t−1

∗ 1(Coal ≤ 30) −2.03e−05 5.59e−05 5.31e−05*
(1.94e−05) (0.000138) (2.74e−05)

Wind
t−1 ∗

(

WindOff
t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
0.0365

(0.101)

Wind2
t−1

∗

(

WindOff
t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
−0.000162

(0.000254)

Wind
t−1 ∗

(

Wind
Uncong

t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
0.0689***

(0.0216)

Wind2
t−1

∗

(

Wind
Uncong

t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
−0.000145***

(4.85e−05)
Observations
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Table 14   Heterogeneous effects: ED admissions rate

The dependent variable for all specifications is daily, ZCTA-level ED admission rates (per 1 million resi-
dents) for the age ≥ 65 group. *, **, *** indicate statistical significance at the 10, 5, and 1 percent levels, 
respectively. Standard errors, clustered at week of sample, are included in parentheses below the parameter 
estimates. Additional controls are selected using the post-double LASSO selection procedure using lagged 
wind and lagged wind squared (column (1)) or lagged wind interacted with the off-peak ratio (column (2)) 
or lagged wind interacted with the uncongested rate (column (3)) as the treatment variables. All specifica-
tion include month-by-year and day-of-week fixed effects

ED Admiss. Rate

(1) (2) (3)

Wind
t−1

−0.146 −0.605 −0.320
(0.121) (0.590) (0.242)

Wind2
t−1

0.000197 0.00157 0.000606
(0.000234) (0.00182) (0.000430)

Wind
t−1 ∗

(

WindOff
t−1

Wind
t−1

) 0.918

(1.102)

Wind2
t−1

∗

(

WindOff
t−1

Wind
t−1

)

−0.00249

(0.00350)

Wind
t−1 ∗

(

Wind
Uncong

t−1

Wind
t−1

)

0.400

(0.319)

Wind2
t−1

∗

(

Wind
Uncong

t−1

Wind
t−1

)

−0.00104

(0.000754)
Wind

t−1 ∗ 1(Coal ≤ 30) −0.00415 0.778 0.432**
(0.110) (0.737) (0.217)

Wind2
t−1

∗ 1(Coal ≤ 30) −0.000284 −0.00173 −0.00125***
(0.000273) (0.00222) (0.000445)

Wind
t−1 ∗

(

WindOff
t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
−1.327

(1.328)

Wind2
t−1

∗

(

WindOff
t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
0.00223

(0.00420)

Wind
t−1 ∗

(

Wind
Uncong

t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
−0.726**

(0.323)

Wind2
t−1

∗

(

Wind
Uncong

t−1

Wind
t−1

)

∗ 1(Coal ≤ 30)
0.00150*

(0.000801)
Observations 976,071 976,071 976,071
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