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Physiology, fast and slow: bacterial response to variable resource 
stoichiometry and dilution rate
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ABSTRACT Microorganisms grow despite imbalances in the availability of nutrients and 
energy. The biochemical and elemental adjustments that bacteria employ to sustain 
growth when these resources are suboptimal are not well understood. We assessed 
how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to 
approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) 
stress using chemostats. Cellular elemental and biomolecular pools were variable in 
response to different limiting resources at a slow dilution rate of 0.12 h−1, but these 
pools were more similar across treatments at a faster rate of 0.48 h−1. At slow dilution 
rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by 
changes in cellular C quotas and rates of oxygen consumption, both of which were 
highest under P- and lowest under C- stress. Underlying these phenotypic changes was 
differential gene expression of terminal oxidases used for ATP generation that allows for 
increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 
formed aggregates and biofilms, a physiological response that hindered an accurate 
assessment of growth rate, but which could serve as a mechanism that allows cells to 
remain in conditions where growth is favorable. Our findings highlight the ways that 
microorganisms dynamically adjust their physiology under different resource supply 
conditions, with distinct mechanisms depending on the limiting resource at slow growth 
and convergence toward an aggregative phenotype with similar compositions under 
conditions that attempt to force fast growth.

IMPORTANCE All organisms experience suboptimal growth conditions due to low 
nutrient and energy availability. Their ability to survive and reproduce under such 
conditions determines their evolutionary fitness. By imposing suboptimal resource ratios 
under different dilution rates on the model organism Pseudomonas putida KT2440, we 
show that this bacterium dynamically adjusts its elemental composition, morphology, 
pools of biomolecules, and levels of gene expression. By examining the ability of bacteria 
to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility 
manifests at the cellular level and impacts the flow of energy and elements through 
ecosystems.

KEYWORDS resource limitation, growth rate, bacteria, transcriptomics, stoichiometry, 
Pseudomonas putida

S toichiometric imbalances occur in microorganisms when the proportions of 
elements available for their growth (e.g., Carbon:Nitrogen:Phosphorus; C:N:P) differ 

from those optimal for biomass synthesis and metabolism. Such imbalances can have 
consequences for the flow of elements and energy through ecosystems, potentially 
lowering trophic efficiencies and influencing nutrient cycling (1, 2). Deviations in the 
proportions or concentrations of growth-requiring elements relative to cellular demands 
can result in energy or nutrient limitation of population sizes (Liebig limitation) or growth 
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rates (Blackman limitation) (3–5). Such resource (energy and nutrient) limitations can 
cause dramatic alterations in organismal physiology, including changes in elemental 
stoichiometry, biochemical composition, and gene transcription (6, 7). Here, we use the 
more general term stress to describe the pressure imposed by imbalanced resource ratios 
while making no inherent assumptions about changes in physiology.

The physiology of an organism is dependent on its rate of growth. The tipping point 
that defines the transition between when one resource becomes limiting relative to 
another can vary with growth rate (8). At slow growth rates, heterotrophic bacteria vary 
their biomass stoichiometry in response to changes in resource stoichiometry, includ­
ing C:N:P ratios and macromolecular composition (9–11). By contrast, when organisms 
approach their maximal growth rates (μmax), biomass stoichiometry shows less variability 
despite differences in resource supply ratios (12–14). To explain such observations, 
Monod reasoned that as an organism approaches its maximum growth rate, all cellular 
reactions operate at some optimal rate, leading to convergence in the composition of 
cellular elemental and macromolecular pools (15). However, the mechanisms underlying 
how bacteria modulate cellular physiology in response to both resource stress and 
growth rate are not well explored.

The genus Pseudomonas is taxonomically diverse, near ubiquitous in its distribution, 
and remarkable for its capacity to adjust to different environments (16–18). One of the 
most well-studied pseudomonads is Pseudomonas putida KT2440 (19, 20). KT2440 is 
known for its broad metabolic versatility and genetic plasticity, generating interest in its 
ability to cope with environmental stress as well as its biotechnological potential (21, 
22). The physiology of this organism has been thoroughly studied, including through the 
creation of whole-genome sequences and metabolic models (23–25). KT2440 responds 
dynamically to nutrient limitation through changes in gene expression and energy 
storage (26–28). Moreover, under nutrient-replete conditions that promote rapid growth, 
P. putida can form biofilms that subsequently disperse at the onset of nutrient starvation 
(29–31). To date, less is known about the mechanisms underlying how KT2440 responds 
to the interplay between resource stoichiometry and growth rate.

Here, we used P. putida KT2440 as an experimental model to gain insight into the 
flexibility of cell physiology in the face of resource stress. We asked (i) How does variable 
resource stoichiometry impact biomass stoichiometry and metabolic activity? and (ii) 
How does bacterial physiology change as a function of growth rate? To answer these 
questions, we cultured KT2440 in chemostats at both relatively slow (0.12 h−1) and 
fast (0.48 h−1) dilution rates with media resource stoichiometry designed to facilitate 
balanced growth or to promote carbon (C), nitrogen (N), or phosphorus (P) stress. At 
slow dilution rates, we observed physiological changes that varied as a function of 
resource stoichiometry, including those linked to carbon and energy flow and stor­
age. At high dilution rates cells aggregated, complicating chemostat dynamics, but in 
all treatments demonstrated similar biochemical and transcriptome responses despite 
differing resource supply ratios. Our study highlights the effects of elemental stoichiome­
try and growth rate on bacterial physiology and provides insight into the mechanisms 
required to sustain growth in the face of imbalanced resource ratios.

MATERIALS AND METHODS

Media composition

Pseudomonas putida KT2440 (DSM 6125) was grown in a modified version of COMBO 
medium originally developed for the growth of aquatic zooplankton and phytoplankton 
(32). Normal culture conditions included 200 mM C as glucose (33.3 mM), 10 mM N as 
NH4Cl, and 0.625 mM P as K2HPO4, yielding a C:N:P molar ratio of 320:16:1. We refer to 
this medium as “Balanced” throughout the manuscript as it (i) reflects an N:P of typical 
organismal biomass (11, 33–35) and (ii) has a C:P ratio near the boundary between 
C- and P- deficient conditions of some bacteria (36). The medium was buffered with 
40 mM HEPES to a final pH of 7.4. The medium was prepared by first autoclaving CaCl2 
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and Fe:EDTA dissolved in high-purity water (18.2 mega-ohm); this was cooled and a 
concentrated preparation of all remaining components, which had been filter-sterilized 
through a 0.2 µm polyethersulfone filter, was aseptically amended (Table S1).

C:N:P ratios in COMBO medium were manipulated to impose resource stress by 
decreasing the concentration of one element from Balanced medium conditions. Based 
on results from batch culture experiments (Fig. S1), C:N:P molar ratios used for the 
chemostats were 320:16:1 (Balanced), 40:16:1 (C-stress), 320:6:1 (N-stress), and 320:16:0.2 
(P-stress). These elemental ratios are consistent with those previously observed to force 
resource stress in aquatic bacteria beyond a typical biomass C:N:P of ~70:16:1 (11, 35).

Growth conditions

KT2440 was grown in chemostats at 20°C with a culture volume of 75 mL (37, 38). 
Cultures were grown at two different dilution rates to represent slow and fast growth: 
0.12 h−1 and 0.48 h−1. The maximum specific growth rate at 20°C under batch culture 
conditions exceeded 0.5 h−1 (Fig. S1), and empirical observations in chemostats showed 
that planktonic KT2440 washed out at dilution rates exceeding 0.6 h−1 but not at 0.48 h−1. 
Hence, a dilution rate of 0.48 h−1 approached the maximum growth rate for this organism 
at 20°C. Previously reported maximum growth rates for KT2440 average ~0.6 h−1 at 30°C 
(27, 39, 40).

To initiate all experiments, a cryo-preserved glycerol (20% vol/vol) stock of KT2440 
was streaked onto an LB agar plate (BD Difco, Thermo Fisher Scientific, USA) and 
incubated at 20°C. A single colony was picked, inoculated in Balanced COMBO medium, 
and incubated overnight with shaking. One mL of stationary-phase culture was 
inoculated into each chemostat and incubated overnight in batch mode. Each resource 
stress treatment was performed in quadruplicate chemostats. After each chemostat 
became turbid, chemostats were switched from batch to continuous culture with the 
dilution rate controlled using a peristaltic pump (Watson-Marlow 205S, 16 channel). For 
the low dilution rate, the flow rate was immediately set to 0.12 h−1, while for the high 
dilution rate (0.48 h−1) the chemostat flow rates were increased stepwise over a 24-h 
period. Oxygen (O2) was controlled using aquarium pumps and, in fully turbid cultures, 
was sustained at 150 µM (equivalent to ~55% saturation). The chemostat pH ranged 
between 6.5 and 7. Chemostats were sampled after cells reached steady state (five 
residence times at the appropriate dilution rate (41)).

Sampling constraints

To sample chemostats, the entire culture volume was removed and immediately 
processed for downstream analyses. Cell aggregation (flocculation) was observed in all 
treatments at dilution rates exceeding 0.3 h−1 (see Results and Discussion). Cells were 
observed to disaggregate approximately 1 h after being removed from the chemostat. 
Therefore, all assays described below were completed within 30 minutes of sampling to 
minimize physiological changes. We acknowledge that this sampling interval may bias 
our results and interpretation.

Residual nutrient quantification

The residual concentrations of media N and P remaining in each chemostat were 
quantified. The inflow medium (~20 mL) was filtered through a rinsed, 0.45 µm pore 
size, mixed cellulose ester (MCE) filter. Prior to the disassembly of each chemostat 
for sampling, equal volumes of culture outflow (~5 mL) from each chemostat treat­
ment were pooled (~20 mL) and filtered as above. Filtrate was stored at −20°C. Ammo­
nium (NH₄+) and soluble reactive phosphorus (SRP) were quantified using an Astoria 
A2 segmented flow analyzer (Astoria-Pacific, OR, USA). The percent concentrations of 
residual NH₄+ and SRP were calculated by dividing the N or P remaining in the outflow 
by the initial concentrations in the media. Because the outflow from each chemostat 
treatment was pooled, values represent averages of four replicate chemostats per 
treatment.
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Biomass determinations: Dry weight, cell counts, cell volumes, and ATP

To estimate biomass dry weight, chemostat culture (10 mL) was filtered onto a pre-
weighed 25 mm diameter 0.2 µm GTTP polycarbonate filter (MilliporeSigma). The filter 
was dried at 105°C overnight, stored in a desiccator, and reweighed. Cell abundances 
were estimated by epifluorescence microscopy of DAPI-stained bacteria. One mL of 
culture was fixed with a final concentration of 3% formaldehyde overnight at 4°C. 
Cells were filtered onto a 25 mm, 0.2 µm GTTP filter, and frozen at −20°C. DNA was 
stained using DAPI Vectashield (Vector Laboratories) and cells were visualized using an 
epifluorescence microscope (Olympus BX53) at 1,000× magnification. At least 10 fields 
of view or 200 cells were counted per sample. Cell volumes were estimated assuming 
the cell shape was a spherocylinder (42). Adenosine triphosphate (ATP) concentrations 
were determined via luminescence production using the BacTiter-Glo Microbial Cell 
Viability Assay (Promega, WI, USA). Briefly, 100 µL of culture was mixed with an equal 
volume of BacTiter-Glo reagent and incubated in the dark at room temperature for 
5 min. Luminescence was quantified using a luminometer (GloMax 20/20, Promega). ATP 
concentrations were calculated based on a standard curve made from ATP disodium salt 
(Sigma-Aldrich, MA, USA).

Cellular phosphorus

To measure cell phosphorus content, 3 mL of chemostat culture was filtered onto a 
pre-combusted, acid-washed, 25 mm, 0.7 µm glass fiber filter (Whatman). Filters were 
dried overnight at 105°C and stored in a desiccator. Filters were then placed in a 
scintillation vial and combusted at 500°C for 5 h. Samples were hydrolyzed with 10 mL 
of 0.15 M HCl at 60°C for 1 h. Finally, samples were treated with ammonium molybdate 
and potassium antimonyl tartrate, which, in the presence of ascorbic acid, allows for the 
quantification of phosphorus (43).

Cellular carbon and nitrogen

Particulate C and N contents were determined from a set of chemostats run in parallel 
that were sacrificed specifically for these measurements to obtain sufficient biomass. 
Approximately 50 mL of culture was centrifuged at 4,300 × g for 10 min at 4°C. The 
cell pellet was washed with high-purity water (18.2 mega-ohm), centrifuged, and the 
supernatant discarded. This was repeated three times. The cell pellet was dried overnight 
at 105°C, stored in a desiccator, and weighed. The C and N contents were determined 
using an Exeter Analytical CE-440. C:N, N:P, and C:P ratios are reported as averages of the 
means with standard error uncertainty propagation.

Concentrations of DNA and RNA

DNA and RNA were quantified fluorometrically as previously described (44, 45) using the 
Quant-iT Ribogreen RNA Reagent and Kit (Thermo Fisher Scientific). One mL of culture 
was centrifuged at 22,000 × g for 10 min at 4°C. The supernatant was discarded and 
the cell pellet was frozen at −80°C. The pellet was resuspended in 300 µL of extraction 
buffer (1% N-lauroylsarcosine in 1× TE buffer), sonicated on ice for 2 min, and incubated 
for 2 h with shaking at room temperature. Samples were diluted 1:6 with ice-cold 
Tris-EDTA buffer and incubated for 15 min with agitation. Samples (75 µL) were added 
to a 96-well black microplate, amended with 75 µL Ribogreen, and incubated for 5 min 
in the dark. Fluorescence was measured at 485/30 nm excitation and 528/20 emission 
on a microplate reader (FLx800 Bio-Tek). Samples were then amended with 10 µL of 
RNAse (Promega) to remove RNA, incubated in the dark for 25 min, and fluorescence was 
remeasured. RNA and DNA concentrations were calculated based on the difference in 
fluorescence against a set of RNA and DNA standards.
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Lipids

Lipid contents were determined using previously described methods (46–48). One mL of 
culture was centrifuged, freeze-dried, and stored at −80°C. The lyophilized culture was 
homogenized in a 2:1 chloroform:methanol mixture and extracted using the micro­
sulfophosphovanillan method. Standards were prepared by dissolving cholesterol in 
2:1 chloroform:methanol. Samples and standards were read on a spectrophotometer 
(Agilent Cary 60 UV-Vis) at 525 nm.

Protein

Total protein quantification was performed using the Thermo Scientific Coomassie Plus 
Kit (Thermo Fisher Scientific). One mL of culture was pelleted at 22,000 × g for 5 min 
and frozen at −80°C. The pellet was homogenized in 400 µL 30% trichloroacetic acid, 
incubated at 4°C for 30 min, and then centrifuged at 15,500 × g at 4°C for 10 min. 
After the supernatant was removed, the pellet was rinsed with 5% TCA, treated with 
300 µL of 0.2 M sodium hydroxide (NaOH), and vortex homogenized. Each sample (50 µL) 
was amended with 1.5 mL of Coomassie Plus Reagent (Thermo Fisher Scientific) and 
incubated for 10 min at room temperature. Protein content was determined colorimetri­
cally at 595 nm on a spectrophotometer against protein standards ranging from 25 to 
2000 µg mL−1.

Oxygen consumption

Chemostat culture (15 mL) was diluted with 150 mL of the appropriate medium and 
immediately placed into a glass serum bottle equipped with an Oxygen Sensor Spot 
optode (PreSens). Optodes were affixed to the inside of the bottles and fiber optic cables 
were attached to the outside for light excitation and detection of emission. Bottles were 
crimp-sealed and O2 concentrations were measured in the dark over 20 min to estimate 
rates of consumption. Cultures were diluted into fresh media because respiration 
rates were faster than our ability to set up the experiment before O2 was completely 
consumed (e.g., 5 min). As our measurements were made following the dilution of cells 
into fresh media, they likely reflect an upper limit on rates of O2 consumption for each 
treatment.

Transcriptomic sequencing

Culture (~15 mL) from each of four replicate chemostats was centrifuged at 4,300 × g 
for 10 min at 4°C and the supernatant was discarded. The cell pellet was submerged in 
RNAlater (Thermo Fisher Scientific) and stored at −20°C. Total RNA was extracted using 
the RNeasy Mini Kit (Qiagen, Germany). RNA library preparation, rRNA depletion, and 
sequencing on an Illumina Novaseq were performed using protocols recommended by 
the manufacturers (Novogene, Inc., Sacramento, CA).

Raw reads were cleaned with Trimmomatic v0.39 (49). Read recruitment against 
the KT2440 genome (NCBI accession GCA_000007565; 23, 50) was performed using 
Bowtie 2 v2.3.5.1 (51) and SAMtools v1.10 (52). Recruitment against each gene was 
quantified using featureCounts (53). Functional annotation was performed using NCBI 
Prokaryotic Genome Annotation Pipeline annotations (54) and GhostKOALA (55) against 
the KEGG database (56). Reads that mapped to ribosomal RNA genes were removed from 
further analysis. Gene expression was normalized using the metric Transcripts Per Million 
(TPM) for comparison and visualization. To show transcriptional differences of multiple 
treatments at the same time, we averaged the TPM of each gene across replicates 
within a given treatment and then normalized its expression relative to other treatments 
using the R package GGtern (57). We compared treatments using NMDS ordinations 
based on Bray-Curtis dissimilarities of rarefied recruitment counts with vegan (58). We 
tested whether resource stoichiometry and dilution rate were statistically significant 
drivers of transcriptome composition using adonis in vegan. DESeq2 (59) was used 
on unrarefied gene counts to identify differentially expressed genes between different 
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resource stresses and dilution rates. To identify potential pathways that were differen-
tially expressed, genes were grouped into functional categories based on KEGG pathway 
annotations using KEGGREST (60). Figures were made using ggplot2 (61) and BioRender 
(https://biorender.com/).

RESULTS

Elemental and biomolecular pools

We assessed the physiological response of P. putida KT2440 to differences in resource 
stoichiometry and chemostat dilution (growth) rate based on measurements of 
elemental and biochemical pools, cell morphology, O2 consumption, and transcriptome 
composition. Dry weight yield was greatest (0.5 g L−1) in the Balanced treatment and 
lowest in the P-stressed treatment (0.2 g L−1) at both dilution rates (Fig. S2). Cell 
abundance at 0.12 h−1 (slow dilution) was typically 3 × 108 cells mL−1 under all conditions 
except P-stress, where cell densities were ~1 × 108 cells mL−1. Dry weight cell−1 and 
volume cell−1 at 0.12 h−1 were lowest in the C-stressed treatment (Student’s t-test, C 
vs Balanced, P < 0.05), while ATP dry weight−1 was highest under C- and lowest under 
P-stress (C vs P, P < 1 × 10−4). However, ATP cell−1 was largely invariant across treatments 
at the slow dilution rate (averaging ~2 × 10−9 nmol cell−1; ANOVA, P < 0.61), consistent 
with ATP concentrations reflecting cytoplasm volume rather than biomass per se (62).

One of the most obvious phenotypic shifts that accompanied increases in dilution 
rate was cell autoaggregation and biofilm formation. At a dilution rate of 0.48 h−1 cells 
tended to clump, forming visually apparent aggregates containing hundreds of cells 
with combined lengths that could exceed 70 µm. This behavior was evident across 
all resource ratios and prevented accurate enumeration of cell abundances. Visual 
observation showed that cells released from aggregates after 1 h of removal from the 
chemostat. The tendency to aggregate and form biofilms complicates the assessment 
of growth rate; previous studies have found that cells within aggregates and biofilms 
can grow at different rates (63, 64), which in chemostats may violate the assumption 
of steady-state behavior. The increase in dilution rate clearly triggered a phenotypic 
response (cell aggregation), but it remains unclear the extent to which the cells in these 
high dilution treatments were uniformly growing at the specified growth rate (0.48 h−1) 
or whether the aggregation response resulted in a mixed population of fast and slow 
growing cells. Given this uncertainty, we refer to the dilution rate rather than the growth 
rate when comparing treatments.

For each treatment, we measured cellular C, N, and P contents (Fig. 1). Together, these 
three elements accounted for ~50%–60% of the observed KT2440 dry weight. At the 
slow dilution rate, carbon accounted for a smaller proportion of the dry weight when 
cells were grown under C-stressed conditions, while cells became increasingly carbon-
rich and larger under P-stressed conditions, representing ~43% and 48% of the dry 
weight, respectively (C vs. P, P < 0.042). By contrast, dry weight-normalized N contents 
were lowest under P- and N-stress and greatest under C-stress, ranging between ~9.5% 
and 12.5% (C vs. P, P < 0.07). P accounted for a significantly lower fraction (~0.6%) of 
the dry weight under P-stress than the other treatments at the slow dilution rate. As a 
result, C:N, C:P, and N:P molar ratios were highest under P- (~5.9, 236, 40, respectively) 
and lowest under C- (~4.5, 93, 21) stress. Elemental contents and ratios in the Balanced 
medium treatment, which was intended to represent optimal resource ratios for growth, 
generally fell between values observed in the N- and P-stressed treatments. At the faster 
dilution rate, C, N, and P contents per unit dry weight and the resulting molar ratios 
were more similar among treatments: for example, C, N, and P contents in all treatments 
averaged 45%, 12%, and 1.6%, respectively, while the C:N, C:P, and N:P ratios averaged 
4.2, 70, and 15, indicating average biomass C:N:P of ~70:15:1. Coefficient of variation of 
resource ratios within all treatments decreased with increasing dilution rate (C:N, 0.11 to 
0.07; C:P, 0.41 to 0.24; N:P, 0.32 to 0.27).

We also measured cellular pools of protein, lipid, RNA, DNA, and ATP (Fig. S3). 
Together, these macromolecular pools represented ~45%–60% of the dry weight. At the 
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slow dilution rate, protein represented 14%–25% of the dry weight, with P-stressed cells 
demonstrating the lowest protein content, while C-stressed treatments demonstrated 
elevated protein content. Protein content increased (23%–30% of dry weight) with 
dilution rate across all treatments (t-test, P < 1 × 10−5). Total lipids exhibited opposite 
patterns. At slow dilution rates, the lipid content of C-stressed cells was lowest (14%), 
while P-stressed cells were enriched in lipids (25% dry weight; C vs P, t-test, P < 1 × 10−3). 
Across all resource treatments, lipid content decreased at faster dilution rates (0.12 h−1 vs 
0.48 h−1, t-test, P < 0.02). RNA content represented ~10% of the biomass and increased 
with dilution rate in all treatments except Balanced conditions (t-tests, P < 0.05). Cells 
under P-stress showed the most dramatic changes in RNA with dilution rate, increasing 
from 3% of the dry weight at 0.12 h−1 to 10% at 0.48 h−1. DNA and ATP represented small 
proportions of the dry weight under all conditions, comprising <3% and <0.13%, 
respectively. Similar to elemental content and stoichiometry, macromolecular content 
per dry weight converged at a higher dilution rate regardless of media resource composi­
tion.

Slow-growing cells adjust their physiology to acquire the limiting resource

We used transcriptomic sequencing for mechanistic insights into the adaptive strategies 
of KT2440 in response to variations in resource stoichiometry and dilution rate. When 

FIG 1 P. putida KT2440 elemental stoichiometry varies with resource stoichiometry and dilution rate. Carbon (C), nitrogen (N), and phosphorus (P) per dry weight 

(A, B, C) and their molar ratios (D, E, F). Note that Y-axes are not the same across plots.
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comparing transcriptomes of cells cultured at 0.12 h−1, the type of resource stress 
was a statistically significant predictor of transcriptome composition (PERMANOVA, R2 

= 0.747, P < 0.001). There were 2,576, 1,139, and 1,847 differentially expressed genes 
when comparing C- and P-, C- and N-, and N- and P- stressed treatments, respectively 
(Tables S2 to S8), indicating that, at a fixed dilution rate, different kinds of resource 
stress induce distinct patterns of transcription. The most differentially expressed genes 
among treatments were involved in the uptake and assimilation of whichever resource 
was limiting, including glucose, ammonium, and phosphate (Fig. 2). These transcripts 
were likely controlled by increased expression of key regulatory pathways. For exam­
ple, under C-stress, KT2440 expressed the non-protein-coding RNAs crcZY to sequester 
the Crc protein, thereby inhibiting carbon catabolite repression and releasing genes 

FIG 2 The major transcriptional response to variable resource stoichiometry at a dilution rate of 0.12 h−1 (slow growth) is the expression of genes to obtain the 

limiting resource and their global regulators. (A) Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilatory of transcriptomes. 

Circles represent the 75% confidence interval for each resource ratio. (B) Ternary plot comparing average relative percent transcript expression between C-, N-, 

and P-stressed resource treatments, where each gray circle represents a gene. Genes of interest are shown in color. (C) Cartoon highlighting major pathways 

involved in nutrient uptake and global regulation within each treatment. The colors in A, B, and C are the same; for example, the genes enriched under C-stress 

are red in all panels. Genes in purple in B and C are shared under C- and N- stress.
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for glucose assimilation (65–67). Under N- and P-stress, respectively, the gln and pho 
regulons were highly expressed, operons that function in sensing and responding to N 
and P deficiency (26, 68). Interestingly, KT2440 also expressed transcripts that encode 
proteins for the uptake of C, N, and P in forms that were not provided in the media. 
For example, C-stressed cells transcriptionally expressed a putative porin involved in 
the uptake of ethylene glycol (69), N-stressed cells expressed genes for the transport of 
nitrate and urea and their conversion to ammonium before assimilation, while P-stressed 
cells transcribed phnXW whose products function in the degradation of 2-aminoethyl­
phosphonate. Furthermore, cells in some treatments shared expression of transcripts 
that were largely absent in the remaining treatment. For example, under C- and N-stress, 
transporters involved in the uptake and degradation of compounds that had both C and 
N moieties, such as amino acids, were expressed. By contrast, transcripts for the synthesis 
and turnover of RNA and proteins were elevated in the N- and P-stressed treatments 
relative to C-stress, including elongation factor P, an endonuclease, a polyribonucleotide 
nucleotidyltransferase, and a putative protease (26). Relatively, fewer transcripts were 
shared by C- and P-stressed cells.

Central carbon metabolism and energy flux

Given differences in biomass C content between treatments, we assessed pathways 
involved in central C metabolism. Transcripts involved in glucose catabolism and the 
tricarboxylic acid (TCA) cycle (70) were more highly expressed under P- and N- relative 
to C-stress (Fig. S4). Transcripts involved in fatty acid biosynthesis and degradation, along 
with genes that function in the synthesis, structure, and degradation of polyhydroxyalka­
noates (PHAs) were especially enriched under P-stress. The general trend toward higher 
relative expression of these pathways under P-stress was maintained even at fast dilution 
rates, consistent with elevated C:P ratios and lipid contents of these cells.

Differences in C metabolism would be expected to have ramifications for energy 
generation, respiratory O2 consumption, and growth efficiency. When normalized to dry 
weight, rates of O2 consumption were lowest in slow dilution rate P-stressed cells (C vs P, 
P < 0.01); however, when normalized to ATP (or per cell), C-stressed cells demonstrated 
the lowest rates of respiration (Fig. 3; C vs P, P < 1.7 × 10−3). Here again, we leveraged 
the transcriptome for potential clues into the underlying cause of these metabolic 
differences. The five terminal oxidases involved in the electron transport chain showed 
resource-stress-specific differences in expression at slow growth (Fig. S5). C-stressed cells 
expressed the aa3 oxidase and to a smaller extent cio, while the cbb3-1 oxidase was more 
highly expressed under P-stress. Transcripts encoding proteins that catalyze the first 
step of electron transfer and final step of ATP generation, such as nuo dehydrogenase, 
succinate dehydrogenase, and ATP synthase, were less abundant under C-stress. These 
observations indicate that C-stress alters energy-generating pathways.

Dilution-rate-dependent responses

NMDS ordination analysis based on Bray-Curtis dissimilarity showed that transcriptome 
composition across all treatments was less variable at a dilution rate of 0.48 h−1 relative to 
0.12 h−1 (Fig. 4). Resource stoichiometry was a weaker predictor of transcript composition 
at the higher dilution rate relative to the slow dilution rate (R2 = 0.473, P < 0.024). When 
comparing all treatments together, both dilution rate and resource stoichiometry were 
statistically significant drivers of transcriptome composition (dilution rate, R2 = 0.11, P < 
0.002; resource stoichiometry, R2 = 0.38, P < 0.001). Over 2,000 genes were differentially 
expressed between the slow and fast dilution rate treatments (Table S9). Many important 
metabolic genes that were differentially expressed at slow dilution rates, including those 
involved in cellular respiration, glucose catabolism, and the TCA cycle, did not differ as a 
function of resource stress at the faster dilution rate (Fig. S6). Nevertheless, even at fast 
dilution rates, cells in the P- and N-stressed treatments overexpressed transcripts for 
proteins involved in the transport and assimilation of P and N, respectively.
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When comparing transcriptomes at fast versus slow dilution rates, some of the most 
differentially abundant genes included those associated with ribosomes. When grouping 
genes based on KEGG pathways, those involved in the synthesis of ribosomal proteins, 
tRNA biosynthesis, amino acid biosynthesis, and DNA replication were more highly 
expressed in cells at fast than at slow growth (Fig. 4). These changes were especially 
evident under P-stress and more modest for C- and N-stress, largely consistent with 
treatment-specific differences in biomass P and RNA content. For example, under N-
stress, no ribosomal protein genes were differentially expressed at the faster dilution rate 
relative to the slower one (Fig. S7). The RNA to protein ratio, which is known to increase 
with growth rate (71–74), increased with dilution rate under P-stress and balanced 
conditions but not in C- or N-stressed cells. Departures from the expected increase in the 
RNA:protein ratio with growth rate could reflect the storage of ribosomes under slow 
growth conditions. Consistent with this idea, the ribosome modulation factor (rmf), 
which stores ribosomes by dimerization (75), was highly expressed under C- and N-stress 
under slow dilution rates.

We searched for genes that could provide a mechanistic underpinning for cell 
autoaggregation at high dilution rates. KT2440 can aggregate and form biofilms via the 
synthesis and export of a variety of polymers, including alginate, cellulose, exopolysac­
charides, and lap proteins, many of which are controlled post-transcriptionally (76–80). In 
our experiments, genes involved in these pathways were not enriched in the faster 
dilution treatments; rather, many were more highly expressed in the slower dilution rate 
treatments or were specific to only one resource stress condition (Table S2). For example, 
the response regulator cfcR (PP_4959) and its post-transcriptional regulator rsmE, which 
control the level of c-di-GMP and modulate biofilm formation (81–83), were both more 
highly expressed at 0.12 h−1. However, other genes involved in cell membrane biogenesis 
and flagellar synthesis were differentially expressed depending on the dilution rate. For 

FIG 3 Respiratory changes appear critical to adaptation to variable resource stoichiometry at a dilution rate of 0.12 h−1. (A and B) Oxygen consumption per 

dry weight and per ATP. Note that Y-axes are not the same between plots. (C) Ternary plot comparing relative percent transcript expression between C-, N-, and 

P-limited resource ratios at 0.12 h−1, where each gray circle represents a gene. Respiratory genes of interest are represented in color. (D) A cartoon of the electron 

transport chain of P. putida KT2440. The colors of the terminal oxidases and ATP synthase in panel D reflect the genes in C.
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example, cfa transcripts, responsible for the synthesis of cyclopropane fatty acids (CFAs), 
were enriched at slow dilution rates. Similarly, some gene clusters involved in flagellar 
synthesis, which are organized into at least 10 transcriptional units (84), were also more 
highly expressed at 0.12 h−1. Altogether, mechanisms underlying the phenotypic 
transition from free-living to aggregation that accompanied increased dilution rate were 
not readily apparent from the transcriptional analyses. These results are consistent with 
previous studies working with P. aeruginosa that indicate that mechanisms controlling 
cell aggregation are not universal within a single strain and can be difficult to identify 
due to specific environmental conditions (85).

On balanced resource conditions

Finally, we compared the balanced medium condition (intended to represent optimal 
resource supply) against the various treatments designed to impose resource stress. 
Relative to the C, N, or P- stressed treatments, we found that cells in the balanced 
medium were enriched in transcripts for transposases, phage-associated genes, secretion 
systems, and the production of alginate, genes which were not highly expressed 

FIG 4 P. putida KT2440 physiology converges at fast dilution rates despite differences in resource stoichiometry, with specific changes in RNA. (A) Non-metric 

multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilatory of transcriptomes at different dilution rates and resource treatments. Circles 

represent the 75% confidence interval of each dilution rate. (B) A fluorescence microscopy image (with white scale bar) of a cell aggregate and photograph 

following culture removal from the chemostat showing flocculation at 0.48 h−1. (C) Expression of genes involved in the pathways of ribosome synthesis, tRNAs, 

amino acids, and DNA replication as a function of dilution rate. Log2FC; log2FoldChange. (D) RNA content per dry weight. (E) The ratio of total RNA to total 

protein at different dilution rates and resource treatments. (F) Transcript expression (in transcripts per million, TPM) of the ribosome modulation factor (rmf).
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overall but were nonetheless differentially abundant (Fig. 5; Table S10). Cells grown in 
the balanced treatments also had higher expression of transcripts for the uptake of 
micronutrients, including sulfonates (ssu), zinc (znu), nickel (nik), and the pyoverdine 
(pvd) operon that encodes for the production of siderophores and iron uptake. Taken 
together, these observations suggest that under optimal conditions, when cells are not 
as limited by C, N, and P, they may become limited by trace elements used as protein 
co-factors. Interestingly, many of these genes were also expressed by N-stressed cells at 
high dilution rates but not under C- and P-stress, highlighting similarities among cells 
under balanced growth at both dilution rates and N-stressed cells at high dilution rates 
(Fig. 5; Fig. S6; Table S11). Such findings are consistent with analyses of residual nutrients 
in the chemostats: at high dilution rates, both N-stressed and balanced chemostats had 
residual N and P, suggesting some other nutrient limited complete consumption of these 
elements in the chemostats.

FIG 5 Cells supplied with Balanced medium C:N:P ratios appear phosphorus limited and express genes for the uptake of trace elements. (A and B) The 

proportion of the ammonium (NH4
+) and soluble reactive phosphorus (SRP) remaining in the outflow as a function of nutrient stress and dilution rate. (C) Genes 

enriched (P < 0.05) under Balanced growth (0.12 h−1 and 0.48 h−1) when compared against all other treatments. Genes of interest are shown in color and 

labeled. (D) Ternary plot comparing average relative percent transcript expression between Balanced (0.12 h−1 and 0.48 h−1) and N-stress (0.48 h−1) resource ratios, 

showing that transcriptomes under N-stress at high dilution rates are similar to those in cells grown under Balanced resource ratios. Each gray circle represents a 

gene.
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DISCUSSION

Cells activate multiple pathways that transport and assimilate compounds 
containing the growth-limiting element

Here we evaluated the response of Pseudomonas putida KT2440 to changes in C, N, 
and P stoichiometry and dilution (growth) rate. Treatment-specific patterns of elemental 
stoichiometry and transcriptome expression were evident at slow dilution rates of 0.12 
h−1. One of the strongest responses to resource stress was the expression of regulatory 
pathways and transcripts related to the acquisition and assimilation of the growth-lim­
iting element. This finding is consistent with previous work showing pseudomonads 
have a robust regulatory network that enables them to control their response to 
resource limitation (86–88). Under C-stress, KT2440 expressed crcZY, non-coding RNAs 
that sequester the Crc protein and release carbon catabolite repression of glucose 
assimilation (65–67, 89). Under N-stress, the gln operon, which regulates dozens of genes 
involved in N and C metabolism (26), was highly expressed. Our findings provide further 
support that the Crc and Ntr regulatory systems help regulate C:N biomass stoichiometry 
in Pseudomonas (26, 65, 67, 86, 87, 90, 91), especially under conditions of slow growth. 
We note that KT2440 also expressed transcripts for the acquisition of C, N, and P sources 
that were not supplied in the media. In our experiments, cells responded to C-stress 
by seeking to acquire not only glucose but also glycolate and glyoxylate. N-stressed 
cells activated pathways to acquire the ammonium supplied in the medium but also 
alternative forms of nitrogen, including nitrate, urea, and amino acids. Similarly, cells 
under P-stress expressed genes for the incorporation of not only phosphate but also 
phosphonates. Finally, both C- and N-stressed cells expressed transcripts for the uptake 
of alternative compounds containing both C and N moieties, such as amino acids and 
compatible solutes. Altogether, these observations show that KT2440 activates multiple 
pathways to acquire essential elements that are limiting to growth regardless of their 
form, including by recycling intracellular content, accessing metabolic byproducts, and 
scavenging dead extracellular material as cells decompose (7, 92, 93).

Different forms of resource stress induce specific changes in how carbon is 
partitioned between catabolic and anabolic pathways

Our findings also highlight how resource stress can induce changes in energy generation 
and carbon storage in slow-growing cells. For example, P stress resulted in increases 
in cellular C reserves, C:N and C:P ratios, and total lipids, coincident with elevated 
transcripts related to C metabolism and storage. By contrast, C-stress cells had lower 
cellular C and C:N and C:P ratios. These observations may be in part due to C storage 
as polyhydroxyalkanoates in P- and N-stressed cells. PHAs act as carbon and energy 
reservoirs to minimize energy spillage and may constitute up to 80% of cell dry 
weight under nutrient-limited conditions (94–101). Furthermore, our findings suggest 
that C-stressed cells maintained lower rates of respiration per ATP (or per cell), while 
P-stressed cells appeared to use less oxygen per unit dry weight despite greater rates 
of respiration per cell. We see evidence that underlying these changes in C storage and 
growth efficiency were modifications in respiratory electron transport pathways. KT2440 
contains at least five terminal oxidases, each of which exhibits a unique redox poten­
tial, affinity for O2, and ability to pump protons for ATP generation. These alternative 
pathways allow KT2440 to regulate respiration based on O2 concentration, C source, 
growth phase, and nutrient limitation (98, 102–104). The cyo terminal oxidase, which was 
preferred at fast dilution rates in our experiments, acts as part of a global regulatory 
network that senses electron transport chain activity and influences the expression 
of hundreds of genes (102, 103, 105). At slow dilution rates, C-stressed cells used an 
aa3-type oxidase preferentially to cyo, while P-stressed cells appear to rely more heavily 
on the cbb3-1 oxidase. Oxidases of the aa3-type can have higher proton-translocating 
efficiency than their cbb3 counterparts (106–108). Hence, the aa3 oxidase may func­
tion as an energy conservation mechanism under low C conditions (109). Changing 
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the terminal oxidase from cyo to aa3 may have dual purposes for C-stressed cells: it 
could alter the expression of genes otherwise controlled by cyo and also optimize ATP 
generation in the face of decreased reductant flux and energy deficiency. Because we 
measured ATP pools, not fluxes, a valuable direction for future work would be to estimate 
ATP turnover under different types of resource stress (110, 111).

Cell auto-aggregation is a generic response to high dilution rate, regardless 
of resource limitation

One of the most visible phenomena we observed was autoaggregation of cells when 
grown at fast dilution rates. This switch in phenotype complicates the assessment of 
growth rate because flocculation could decouple dilution rate from cellular growth: 
aggregated and biofilm-associated cells have previously been shown to vary in growth 
rate, elemental ratios, and gene expression (104, 112, 113). The reasons for autoaggre­
gation and biofilm formation can vary but can reflect a physiological mechanism that 
allows cells to persist in nutrient-enriched locations or to minimize cell stress (114, 115). 
Consistent with our study, previous work has shown that aggregative behavior by strains 
of P. putida occurs at high dilution rates (116–119). Similar aggregative behavior has 
also been reported in Enterococcus faecalis, Escherichia coli, Staphylococcus aereus, and 
P. aeruginosa during exponential growth (120, 121), with the latter growing predomi­
nantly as aggregates during conditions of fast growth (85, 122). Both P. putida and 
P. aeruginosa disperse from biofilms in response to starvation (29, 30, 122). Consis­
tent with this observation, we found that at slow dilution rates, KT2440 differentially 
expressed transcripts for the production of cyclopropane fatty acids, ring-containing 
lipids synthesized in response to adverse conditions and during entry into the stationary 
phase (123–127), as well as flagellar transcripts that would be required for dispersal. 
Therefore, we hypothesize that KT2440 forms aggregates when growing rapidly under 
favorable conditions and disaggregates when resources become scarce. This physiolog­
ical behavior may be both common (128) and important as bacteria approach μmax, 
allowing cells to remain in a fixed, nutrient-rich location by preparing for surface 
attachment and biofilm formation. Further work will be needed to clarify the significance 
and mechanisms of this behavior in KT2440. This would require using near-instantaneous 
sampling protocols as aggregation responses can be transient.

P. putida cultured at high dilution rates converges on a common physiologi­
cal phenotype regardless of media composition

Although cell aggregation complicates the use of dilution rate as a measure of growth 
rate in chemostats, we observed physiological changes that suggest KT2440 was 
growing faster at 0.48 h−1 than at 0.12 h−1. For example, while biomass elemental 
stoichiometry and transcriptome expression were flexible at the slow dilution rate, they 
were less variable and converged across treatments when the dilution rate approached 
μmax. These findings are consistent with the observation that elemental stoichiometry 
of bacterial biomass varies depending on resource conditions, especially at slow growth, 
but converges at fast growth rates near a C:N:P of ~70:15:1 (9, 14). Similar trends have 
been reported for transcriptome composition, which shows a dependence on growth 
rate (129, 130) and convergence at fast growth (131). We also found that RNA became 
a larger proportion of cell biomass at faster dilution rates, consistent with previous 
studies that have documented positive relationships between cellular RNA pools and 
growth rate (71, 132–136). However, in our experiments, the strength of the RNA-growth 
rate relationship varied depending on resource stoichiometry. For example, increases 
in cellular RNA were most pronounced under P-stress, but more modest under C- or 
N-stress, in agreement with a previous study that found no change in RNA content as 
a function of growth rate under C-limitation in KT2440 (27). Bacterial P content can 
be highly flexible (137), suggesting differences in the fraction of active ribosomes and 
protein elongation rates may account for differences in RNA content (73, 138, 139). One 
mechanism for altering the number of active ribosomes is ribosomal hibernation via rmf 
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(140), a gene that was expressed by KT2440 here under C- and N-stress at slow growth. 
Elevated expression of rmf has been observed in C- and N-limited E. coli (74), and rmf 
mutants show an inability to control ribosome abundance (141). The elevated pools 
of RNA that we observed at slow growth under C- and N- stress suggest that KT2440 
maintains excess, stored ribosomes when P resources are abundant, permitting rapid 
increases in protein synthesis when limiting resources once again become available (5, 
73, 135). Altogether, our data point to physiological changes that would be consistent 
with increases in growth rate as a function of dilution rate and that cell physiology is less 
variable as cells approach μmax even under different resource ratios.

Changes in luxury gene expression may be one way cells respond to resource 
conditions

Finally, we explored the response of cells to more optimal resource conditions (Balanced 
medium treatment) where the N:P supply ratio matched the commonly observed cell 
biomass ratio of 16:1 (11, 33–35). Phenotypic and residual element concentrations 
indicated that cells in the Balanced medium behaved somewhat differently from the 
other treatments, suggesting a distinct physiology intermediate to N- or P-stress. 
Interestingly, we observed similar transcriptomic patterns in the Balanced treatments 
at both dilution rates and under N-stress at the fast dilution rate (0.48 h−1). These 
findings were consistent with analyses of residual elements in the chemostats: at fast 
growth, both N-stressed and Balanced treatment chemostats had appreciable residual N 
and P. One explanation could be that as growth rates approach μmax, residual concentra­
tions of the limiting resource increase (142). Nevertheless, transcriptomic data may be 
consistent with the interpretation of a shift toward an alternative limiting resource at 
high growth rates. For example, shared transcripts specific to these three treatments 
(Balanced at 0.12 h−1 and 0.48 h−1, N stressed 0.48 h−1) included those for the uptake 
of micronutrients, including the pyoverdine operon for the production of siderophores 
(pvd), sulfonates (ssu), zinc (znu), and nickel (nik), consistent with limitation by trace 
elements. We hypothesize that a dilution rate of 0.48 h−1 may have relaxed N-stress 
but increased requirements for micronutrients such as sulfur, iron, or zinc. Future work 
should consider the role of growth rate on cellular micronutrient requirements (143). 
Interestingly, these three treatments also expressed luxury transcripts not required for 
growth in monoculture but which may provide an advantage in natural settings when 
competing with other organisms. Resource limitation can lead to downregulation of 
genes that potentially carry a fitness cost, including transposases (144), secretion systems 
(145), siderophores (146), and virulence traits (147, 148). We hypothesize that under 
fast growth when C, N, or P may be less limiting, luxury genes are expressed; however, 
downregulation of these genes, which are unnecessary to maintain growth and may 
carry a metabolic burden, could be one mechanism to deal with resource stress.
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