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Obstacle-Aided Trajectory Control of a Quadrupedal
Robot Through Sequential Gait Composition

Haodi Hu'!, Feifei Qian!

Abstract—Modeling and controlling legged robot locomotion
on terrains with densely distributed large rocks and boulders
are fundamentally challenging. Unlike traditional methods which
often consider these rocks and boulders as obstacles and attempt
to find a clear path to circumvent them, in this study we aim to
develop methods for robots to actively utilize interaction forces
with these ‘“obstacles” for locomotion and navigation. To do
so, we studied the locomotion of a quadrupedal robot as it
traversed a simplified obstacle field with 12 different gaits, and
discovered that with each gait the robot could passively converge
to a distinct orientation. A compositional return map explained
this observed passive convergence, and enabled prediction of the
steady-state orientation angles for each quadrupedal gait. We
experimentally demonstrated that with these predictions, a legged
robot could effectively generate desired shape of trajectories
amongst large, slippery obstacles, simply by switching between
different gaits. Our study offered a novel method for robots
to exploit traditionally-considered “obstacles” to achieve agile
movements on challenging terrains.

Index Terms—ILegged Robots, Biologically-Inspired Robots,
Dynamics, Rough Terrain Locomotion.

I. INTRODUCTION

Many terrestrial environments are filled with large obstacles
such as rocks, boulders, fallen trees (Fig. 1). The ability
to flexibly and efficiently move across these obstacle-dense
terrains can empower legged robots for a variety of important
applications, such as autonomous delivery, search and res-
cue [1], and planetary explorations [2]. However, ambulatory
locomotion on these substrates can be highly challenging, as
the sizes of these obstacles are often comparable with the robot
leg size, resulting in large disturbances that could lead to a
variety of potential locomotion failures, such as unexpected
leg slip, stuck-in-place, large body angle fluctuation, or even
flipping over [3], [4], [5], [6].

(a) (b)

Fig. 1. Natural environments are often heterogeneous, containing large
“bumps” such as fallen trees (a) or large rubble (b), which pose great
challenges for legged robot locomotion. Photo materials credit iStock.
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Due to the complex contact dynamics, existing navigation
and planning methods often rely on finding a clear path to
avoid physical interactions with these large obstacles [7], [8].
For example, the artificial potential field method [9], [10]
represents obstacles as repulsive potentials and goal location
as attractive potentials, allowing robots to smoothly move
towards the goal location while avoiding obstacles. These
methods worked well for wheeled vehicles [11], [12] which
often do not have the ability to cope with large obstacles. For
legged robots with the extra degrees of freedom to engage
large terrain heterogeneity in a diverse fashion [13], [14], [15],
[16], [17], relying on obstacle avoidance could potentially limit
their ability to traverse many natural terrains, where frequent
interactions between legs and obstacles are unavoidable. Other
methods represent these large rocks and boulders as distur-
bances [18], [19] to be rejected by the controller, but for
terrains with large obstacles with sizes comparable with robot
leg dimensions, disturbances rejection can be difficult and is
often vulnerable to the sensor and actuator noises [20].

Recent robophysics [21] research has begun to explore
a new direction in enabling agile locomotion among large
obstacles: by actively utilizing the interaction forces between
robots and obstacles, similar to mountain goats that can push
against rocks to climb up steep slopes, and squirrels that use
sidewalls to “parkour” and reach desired branches [22]. Recent
studies on legged robots discovered that by varying body
shapes [5], [23] or leg-obstacle contact positions [4], [24],
legged robots could elicit different reaction forces from obsta-
cle interactions and producing desired locomotion dynamics
effectively. Similar studies in snake robots have shown that
by adjusting body curvature or compliance [25], [26], snake
robots could use simple controls to navigate through cluttered
obstacle fields [27]. These studies suggested a new possibility
for robots to generate “obstacle-aided” locomotion on terrains
with large, densely-distributed heterogeneity.

To enable the next-generation robots that can intelligently
adapt their locomotion strategies to achieve this obstacle-aided
locomotion in challenging environments, this study seeks to
answer two questions: (1) how to predict the change of robot
state under leg-obstacle interactions? (2) how to select loco-
motion strategies to produce desired movement by utilizing
obstacle interactions?

To answer these two questions, we experimentally study the
orientation trajectory of a quadrupedal robot as it traversed an
array of evenly-spaced obstacles. With a total of 864 experi-
ment trials, we systematically investigate how different robot
gaits, initial orientations, and initial positions, influence the
passive moving direction of the robot (Sec. III). It’s observed
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that under the leg-obstacle interaction forces, the robot orienta-
tion exhibited a strong convergence towards quantized angles.
Furthermore, the set of converged orientation angles depend
primarily on robot gaits, but the robot’s initial conditions (e.g.,
initial orientation and position) largely determine which angle
the robot would converge to.

We represent this gait-dependent orientation convergence as
a series of “funnels” (Fig. 2 right, a, b, c), where each robot
gait couples with the obstacle field and forms one funnel that
constraints robot states from a larger initial set (funnel “inlet”)
to a smaller final set (funnel “outlet”). We hypothesize that, by
sequentially switching through a sequence of gaits, we could
enable the robot to “flow” from one state (i.e., previous funner
outlet) to another (i.e., subsequent funnel outlet) [28], and
efficiently produce desired trajectories (Fig. 2 left, a—+b—c)
across the obstacle field without needing additional steering.
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Fig. 2. Conceptual illustration of a robot achieving desired orientation
trajectories (left diagram) by moving through a number of “funnels” (right
diagram). With each gait (left diagram, (1) and (2)), the robot would passively
converge to different steady-state orientations (b, c) under the leg-obstacle
interaction forces. We represent this convergence as a constraining “funnel”,
where a robot starting from a certain initial state that belongs to the “inlet”
of the funnel would passively flow towards the corresponding “outlet” of the
funnel (i.e., the steady state) of a certain gait. By connecting one funnel after
another (i.e., yellow, cyan, purple in the right diagram), with the outlet of the
previous funnel positioned within the inlet of the next funnel, a robot could
passively move through desired states a, b, ¢ by sequentially executing gait
(1) and (2).

To predict the gait-dependent converged orientations (i.e.,
Fig. 2 right, funnel outlets) and their connections with the
corresponding initial conditions (i.e., Fig. 2 right, funnel
inlets), we propose a general method that computes a gait-
wise return map of robot state transitions for given environ-
ment and gait parameters. We show that the return map can
explain the observed state convergence, and enable theoretical
prediction of obstacle-modulated steady states for any general,
quadrupedal gaits (Sec. IV). Using the model-predicted funnel
inlets and outlets, we demonstrate experimentally that by
sequentially switching through a sequence of gaits, a simple
(microcontroller-based) legged robot could utilize leg-obstacle
collision forces to generate desired trajectory across densely-
distributed large obstacles (Sec. V).

II. MATERIALS AND METHODS

To obtain a better understanding of the robot locomo-
tion under repeated leg-obstacle collisions, we studied the
horizontal-plane dynamics of a quadrupedal robot as it ran
across an obstacle field with systematically-varied gaits and
initial conditions (i.e., orientations and positions).
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A. Robot and Gaits

The robot used in this study is a small RHex-class [14] robot
(Fig. 3a), with a body length of 16.5 cm, a body width of 15.2
cm, and a total weight of 1.4 kg. Four rotary C-shaped robot
legs were 3D printed (PLA plastic) with an outer diameter of
6 cm. All legs were actuated with servo motors (Lynxmotion
LSS-ST1), and controlled by a microcontroller (Arduino Uno).
The gait frequency was kept at 0.33Hz for all experiments in
this study. The phase of a leg 4, 3;(t) € [0,T), was defined as
the relative place of time, ¢, during a full gait cycle, 7. Here the
leg index i € H, where H = {LF, RF, LH, RH} represents
the set of robot legs (left front, right front, left hind, right
hind, respectively). For a quadrupedal robot, a periodic gait
can be uniquely specified using the phase difference between
any three pairs of legs [29], [30], [31].

To represent general quadrupedal gaits, we construct a gait
space [29] (Fig. 3¢), (¢1, @2, ¢3):

61 =(Brr —Brr) N0 T
¢2 = (Bouw — Brr) % T (D
¢3 = (Bra — Prr) % T

Here ¢; € [0,T) represents the phase difference! between the
LF-RF, LH-RF, and RH-RF leg pairs (Fig. 3b). Each point in
the gait space, (¢1, ¢2, ¢3), represents a periodic quadrupedal
gait. Within the gait space (Fig. 3c), the three lines (0, ¢,
00), (0, 0, @p), and (¢g, ¢, 0) represents the groups of
“virtual-bipedal” (VB) gaits [32], where two of the four legs
function as a synchronous pair, and alternate with the other
two synchronous legs. Previous study [33], [34] has found that
two specific virtual bipedal gaits (Fig. 3c, G and G5) could
allow an open-looped robot to passively maintain a consistent
moving direction across evenly-spaced obstacle field. In this
study, to extend this understanding to general quadrupedal
gaits, we experimentally studied a total of 12 gaits, G; to
G112 (Fig. 3 ¢), to investigate how different gaits affect robot
trajectories within the obstacle field:

)
: (¢1,¢2,¢3) = (0.5T,0.5T,0)
b1, P2, ¢3) = (0.375T,0.5T,0.125T)
b1, pa, ¢3) = (0.25T,0.5T,0.25T)
Gi2 : (¢1,¢2, ¢3) = (0.125T,0.5T,0.375T")

All gaits from G to G2 are defined with Srp = 0.5T.
Among them, Gait G, G5, Gg are virtual bipedal (VB) gaits.

G : (¢1, ¢2,¢3) = (0,0.5T,0.5T)
Go : (¢1, b2, ¢3) = (0.125T,0.375T, 0.5T)
G : (¢1, 92, ¢3) = (0.25T,0.25T,0.57)
Gy : (¢1, 2, 3) = (0.375T,0.125T,0.57T)
Gs : (¢1, ¢2, ¢3) = (0.5T,0,0.5T)
Gs : (¢1, b2, ¢3) = (0.5T,0.125T,0.375T) -
Gr : (61,02, ¢3) = (0.5T,0.25T',0.25T)
Gs : (o1, b2, ¢3) = (0.5T,0.375T,0.125T)
( = (
( = (
:( =(

'We use the symbol % to denote a modulo operation.
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Fig. 3. Quadrupedal robot (a) and two representations of robot gaits: gait diagram (b) and gait space (c). LE, RF, LH, RH in (a) and (b) represent the four
legs of the robot: left-front (LF), right-front (RF), left-hind (LH), and right-hind (RH), respectively. Gray regions in (b) represent the stance duration of each
leg within one gait cycle. ¢1, ¢2, ¢3 in (b) represent the phase differences between the LF and RF legs, LH and RF legs, and RH and RF legs, and the span
of (¢1, ¢2, ¢3) forms the three gait axes. Every point within ¢; € [0,T"),¢ = 1,2, 3 represents a unique periodic quadrupedal gait of a quadrupedal robot.
The three dash lines represent the three groups of virtual bipedal gaits. G1 to G'12 indicate the 12 gaits tested in our experiments. Inset in (a) shows a side
view of the robot with gait G'g, where leg RH has a relative phase of ¢3 = 0 with leg RF, and the two left legs, LF and LH, are half-cycle out of phase with

the RF leg, i., , 1 = 0.5T, ¢z = 0.5T.

Specifically, gait (G; is a commonly-observed gait among
quadrupedal animals, “bound”, where two front legs (LF
and RF) move synchronously and with half a cycle out of
phase with two hind legs (LH and RH). Gait G5 is another
commonly-observed biological gait, “trot”, where two legs
within a diagonal pair (LH and RF, LF and RH) move
synchronously and out of phase with the other pair. Gait Gy is
commonly referred to as “pace”, where two left legs (LF and
LH) form a synchronous pair and half a cycle out of phase
with the two right legs (RF and RH). The rest of the 9 gaits
(Ga, Gs, G4, Gg, Gr, Gs, G1g, G11, G12) are “non-virtual-
bipedal” (NVB) gaits, where each individual leg (LF, RF, LH,
RH) enters the stance phase at a different time. We chose
to include G; and G5 as they have been found to exhibit
passively steady-state orientations [33]. By investigating the
other gaits (especially the NVB gaits), we seek to uncover the
general principles that governs the obstacle-modulated robot
trajectories, and develop a model that can predict the robot
trajectories for any general quadrupedal gait.

B. Obstacle field

The interaction between the robot legs and the obstacle
arrays can be extremely complicated — it was discovered in
a previous study [3] that even a small difference in initial
position could lead to significantly different robot trajectories
within only a few steps. For this reason, directly modeling the
robot dynamics on completely random obstacle environment
can be difficult. To begin to obtain a better understanding of
what governs the robot dynamics as it runs through these large
obstacles, we used a simplified obstacle field — an array of
evenly-spaced half-cylindrical obstacles — to study the effect
of gait on robot-obstacle interactions (Fig. 4). The obstacle
diameter (D = 4.8 cm) was comparable with the size of the
robot leg, such that the obstacles are large enough to generate
large perturbation to re-oriented or re-position the robot. The
obstacle spacing (P = 4 cm) was smaller than the robot’s
step length, such that the robot would encounter leg-obstacle
collisions at every step, allowing investigation of the obstacle-
modulated robot dynamics. The periodic structure of obstacles
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reduces the uncertainty in repeated leg-obstacle collisions
and allows stable interaction patterns (Sec. III) to emerge,
while general understanding from the simplified obstacle field
could be extended to different obstacle spacing [33] and more
complex obstacle shapes [3].

Fig. 4. Experiment setup of an open-loop, quadrupedal robot traveling through
an array of evenly-spaced half-cylindrical shape obstacles with a fixed gait,
Gi, i € {1,2,...,12}. Triangles represent camera positions. Cameras 1-4
were used to track the robot CoM position (X, Y, Z) and body angles (pitch,
yaw, roll) during the obstacle field traversal. Cameras 5 and 6 were used to
provide robot-obstacle interaction videos from the front view and top view.
P and D represent obstacle spacing and diameter, respectively. 6, represents
the robot yaw angle measured counter-clockwise from the x direction.

C. Experiment procedure

To understand how changes in robot orientation and trajec-
tory are related to leg-obstacle contact positions, we measure
robot kinematics in the horizontal plane of the world frame,
including center-of-mass (CoM) position, (X, Y'), and orien-
tation, 0 (Fig. 4), as the robot traverses the obstacle field.
Four cameras (Optitrack Prime 13W) were installed at the four
corners of the experiment arena to track robot kinematics, and
two additional cameras (Optitrack Prime Color) are used to
obtain experiment videos. Both tracking data and video are
recorded at a frame rate of 120 frames per second (FPS).
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At the beginning of each trial, the robot was placed within
the obstacle field with an initial orientation, 6, and initial po-
sition, X(. Due to the constant obstacle shape profile along the
y-axis, robot dynamics was insensitive to its lateral position,
Y, and thus Y, was kept at O for all trials. For each trial, the
robot was set to traverse the obstacle field with a fixed periodic
gait and without any sensory feedback or steering control,
which allows us to observe the change of robot orientation
and trajectory as a result of the physical interactions between
robot legs and the obstacle field. Each trial was recorded for
20 seconds, or until the robot exited the range of the obstacle
field (5m long x 3m wide). Robot final orientation, 6, was
computed as the averaged robot orientation from the last two
gait cycles (i.e., the last 6 seconds of the trial).

We performed experiments for 12 robot gaits, G; to G2
(Eqn. 2). Each gait was tested with 16 different robot initial
orientations, where 6y was systematically varied from 0° to
75° with an increment of 5°. For initial orientation larger than
75°, the robot would run sideways towards 90° regardless of
gaits for most trials, whose mechanism was trivial [24] and
therefore not included in the discussion of this paper. Empir-
ical measurements in [3], [24] suggested that the magnitude
and direction of obstacle disturbances depended primarily on
the inclination angle at the relative contact position on each
obstacle. Due to the periodic distribution of the obstacles in our
study, the obstacle inclination is a one-dimensional periodic
function along the x direction, with a spatial period, P+ D, of
8.8 cm, measured from the edge of one obstacle to the next.

Here we use X to denote the relative robot CoM position,

X, within each spatial period: X := X % (P + D). For
experiments with all gaits, we started the robot within the
obstacle field with X, = 0 cm. To understand the effect of
initial relative position on robot final orientation, 67, we tested
gait G1, G5 and Gy with two additional Xy, at 1 cm and 5
cm. We collected 3 trials each for each combination of gait,
initial orientation, and initial relative position, resulting in a
total of 864 trials.

ITII. EXPERIMENTAL RESULTS
A. Dependence of robot final orientation on gait

We observed a strong convergence of robot orientation
towards specific final orientations for all 12 gaits. Fig. 5 shows
the experimentally-measured robot trajectory (Fig. 5b) and
orientation (Fig. 5c) for three of the gaits tested: Gy, G11,
and Gy. Among the 144 trials with the G gait (Fig. Sc, top
row), the robot orientation passively converged to 0° 4= 1° in
36 trials (25%), 35° £ 5° in 81 trials (56%), and 85° + 6° in
27 trials (19%). Among the 48 trials with the G, gait (Fig.
5c, middle row), the robot orientation converged to -19° + 3°
in 6 trials (13%), 19° & 3° in 17 trials (35%), 45° 4= 7° in
14 trials (29%), and 68° 4 4° in 11 trials (23%). Similarly,
among the 144 trials with the Gg gait (Fig. Sc, bottom row),
robot orientation passively converged to 7° &+ 10° in 69 trials
(48%), 49° 4+ 5° in 72 trials (50%), and 82° 4 2° in 3 trials
(2%). In most trials, the robot orientation converges to these
passively stable steady states within the first few seconds of
leg-obstacle interactions. Note that we did not perform any
body-level steering, and therefore the observed convergence
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Fig. 5. Experimentally measured robot z — y plane trajectories (b) and orientation v.s. time (c) with three different gaits: G1, G11, and Gg (a). Colors in (b)
and (c) represent different initial orientations, 6, as shown in the color bar. Vertical dashed lines in (c) indicate the starting time of the last two gait cycles

where the averaged final orientation, 6 ¢, was computed.
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of robot orientation is a result of physical collisions between
robot legs and obstacles.

Fig. 11 shows the experimentally-measured ¢ (red shaded
area) for all 12 gaits. The quantized final orientations sug-
gested that robot gait contributes significantly to determining
the obstacle-modulated robot dynamics. More interestingly,
different gait would send the robot towards different passively-
stable moving directions, providing the possibility for a robot
to navigate itself across obstacle fields by adapting its gait.
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Fig. 6. Averaged final orientatior_l, 7] £ versus initial orientation, 0o, for gait
G'1, with three initial positions: Xo = 0 cm (a), 1 cm (b), and 5 cm (c). Red
circles represent experiment measurements. Three trials were performed for
each initial condition. Blue triangles represent model predictions.
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B. Dependence of robot final orientation on initial orientation
and position

With each robot gait, there could exist multiple steady-state
orientations, 6 (Fig. 5¢). Which 0 the robot would converge
to depended primarily on the initial condition. Fig. 6 shows
the experimentally-characterized 0 for a representative gait,
G4, with three different initial positions: Xy = 0 cm (Fig.
6a, red circles), 1 cm (Fig. 6b, red circles), and 5 cm (Fig.
6¢c, red circles). For each Xy, trials from 16 different initial
orientations, 8y, were plotted.

Based on Fig. 5c, there existed three primary steady-state
orientations for G'1: 0°, 35° and 85°. We noticed that trials
starting with initial robot orientations within 0° ~ 10°, 35°
~ 55°, and 70° ~ 75°, would converge to 0°, 35°, and 85°,
respectively (Fig. 6). However, with initial orientation within
10° ~ 35° and 55° ~ 70°, robot could converge to different
final orientations depending on its initial relative position, X
(Fig. 6a, b, c).

We hypothesized that both the gait-dependent steady-state
orientations, and their corresponding basins of attraction, were
results of different leg-obstacle contact patterns set by the
robot gait. To understand how different gaits map initial robot
states to passively stable steady states, in Sec. IV we use a
compositional return map to investigate the convergence of
robot dynamics under leg-obstacle collision forces.

IV. MODEL REVEALED ROBOT ORIENTATION
CONVERGENCE MECHANISM

To reveal the mechanisms behind the experimentally-
observed convergence of robot orientations and their depen-
dence on robot gaits, we leveraged an obstacle disturbance
selection (ODS) framework [33] to compute the robot state
transitions under obstacle collisions (Sec. IV-A). The concept
of obstacle disturbance selection was recently introduced to
connect individual leg-obstacle contacts with the robot body
dynamics. By representing obstacles as a horizontal-plane
force field, and representing robot legs as obstacle disturbance
“selectors”, the ODS framework is useful in connecting the
leg-obstacle contact position patterns [24] with the obstacle
reaction forces and the robot dynamics. In this study, we
expanded the ODS framework to understand the effect of
general quadrupedal gaits on obstacle-modulated robot dy-
namics. First, we leveraged the ODS force model [33] to
compute the change of robot’s position and orientation due to
the obstacle forces exerted at each leg (Sec. IV-B). We show
that obstacle forces from all obstacle-contacting legs can be
composed to estimate the change of robot state during multi-
leg, multi-obstacle contact events (Sec. IV-C) for a given gait.
Composition of multiple contact events within a stride yielded
a return map (Sec. IV-D) that revealed how gait patterns
affected the robot state convergence (Sec. IV-F), and provided
a simple method for predicting gait-dependent steady-state
robot orientations (Sec. IV-E).
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A. Representing obstacles as a horizontal-plane force field,
and robot legs as obstacle force selectors

The ODS framework [33] represented physical obstacles
as a horizontal-plane’ force field. According to empirical
measurements from [3], the horizontal-plane obstacle forces
from each individual leg, F;, could be computed as a function
of the obstacle inclination angle, ~, at the leg-obstacle contact
position, X; (Fig. 7a, b). The direction of F; depended on
which side of obstacles the leg contacted: F; pointed forward
(i.e., along the +x direction) for X; € (D/2, D), and pointed
backward (i.e., along the —x direction) for X; € (0, D/2).

P+D
0 D P+D
X;(cm)
(®)

Fig. 7. The ODS representation of the obstacles (a, b) and the robot (c). (a)
shows a cross-section view of the half-cylindrical obstacle, where «y denotes
the obstacle inclination angle at X;, and F; denotes the horizontal-plane
obstacle force at X;. The obstacle force, F;, as a function of X;, is shown
in (b). (c) shows the ODS representation of a multi-legged robot. The black
rectangle represents the robot body, and the black circular markers at the
rectangle vertices represent the four legs of the robot. Solid circle represents
the leg in the stance phase, whereas open circles represent the legs in the swing
phase. Gray-shaded regions indicate the location of half-cylindrical obstacles,
where the parallel solid lines indicate obstacle edges, and the dashed lines
indicate the obstacle center.

The robot body was approximated as a rectangle in the z—y
plane (Fig. 7c). Each robot leg was modeled as “obstacle force
selectors” that attached at the vertices of the rectangle and
select the obstacle disturbances, F;, available at their positions,
X;. To simplify the complexity of the model and capture
the dominating effects, the C-shape legs were represented as
points fixed at the hip joints, whereas the actual leg shape or
the periodic movement of the toe relative to the hip were not
specifically modelled.

We note that our goal was not to develop a high-fidelity
simulation that captures all physical details. Instead, we seek
to use a highly-simplified model to capture the dominant
effect that governs the obstacle-modulated robot orientations.
Therefore, we make several simplifying assumptions and
approximations, such as neglecting actual leg shape, body
pitching/rolling, and inertial effect. It has been demonstrated
in [33] that despite these simplifications, the ODS model could
successfully capture experimentally-measured robot steady-
state orientations under the influence of leg-obstacle collisions.

2The general expression of the horizontal force field is F(X,Y"). In this
study, due to the symmetry of obstacle shape along the y direction and the
periodicity along the z direction, the obstacle force only depends on the
relative position of the leg-obstacle contact point, X;, and is therefore denoted

as F;(X;).
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B. Representing interaction opportunities from each individ-
ual leg

Using the ODS representation, we computed the change in
robot states when an individual leg contact with an obstacle.
Due to the symmetry along the y direction and the period-
icity along the z direction, the horizontal-plane robot state
could be described using a reduced state space, (6, X). Here
0 € [—m,m) is the yaw angle of the robot body, measured
counter-clockwise from the z-axis of the world frame, and X
is the robot CoM relative position within one spatial period
of the obstacle field, P + D. Given a robot state, (6, X),
each individual leg’s position in the world frame, z;, and
the corresponding obstacle force, F;(x;), can be determined.
The rotational and translational acceleration of the robot body,
caused by the obstacle forces from an individual leg, ¢, can
be expressed as:

i Py — T4y
0= —"—— 3
- ©)
. F_F
X=——"1 (4)
m

Here y; represents the y-axis position of robot leg ¢ relative to
its CoM. F,; and Ty represents the damping force and torque,
computed as Fy = c; X ,and T; = ¢ 0. Damping coefficients
c1 = 29.6 and co = 0.097 were obtained by matching the
model-computed robot forward speed and orientation conver-
gence rate with experimental measurements, and kept constant
across all gaits and trials. I represents the moment of inertia
of the robot, computed based on uniform weight distribution.

By integrating Eqn. 3 and Eqn. 4 for a fixed time duration,
0t, we could generate vectors showing how the robot state (6,
X), would change, when a single leg engages with the obsta-
cles. We refer to these vectors as the state transition vectors,
defined as the vector pointing from the robot’s current position
and orientation, (6o, Xo), to the position and orientation that
the robot would reach after a short duration, assuming no
initial angular and linear body velocities § = 0, X = 0.

Note that the state transition vectors could be significantly
different (Fig. 8a, b, c, d) if a different robot leg were to
contact the obstacles. Fig. 8 illustrates the state transition
vectors computed with §¢ = 0.3 seconds, the estimated time of
leg-obstacle contact during our experiments. In this example,
we can see that if the RF leg were to engage with the obstacle
(Fig. 8e), the obstacle force would result in a clockwise (CW)
rotation in robot orientation, 6, from 0° to -10° (Fig. 8a,
6 component of the blue vector), and a decrease in robot’s
relative position, X, from 3.0 cm to 1.6 cm (Fig. 8a, X
component of the highlighted vector). However, if the LF leg
were to engage with the obstacle (Fig. 8f), the obstacle force
would result in a counter-clockwise (CCW) rotation in robot
orientation, €, from 0° to 10° (Fig. 8b, # component of the blue
vector), and a decrease in robot’s relative position, X, from 3.0
cmto 1.6 cm (Fig. 8b, X component of the highlighted vector).
Similarly, if leg LH (Fig. 8c, g) or RH (Fig. 8d, h) were
engaged with obstacles, the robot would transition towards
different states under the leg-obstacle interaction forces.
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Fig. 8. Robot state transition vectors when only one individual leg (a, e -
RF; b, f- LF; ¢, g - LH; d, h - RH) were to engage with the obstacle, shown
in the robot’s state space (a, b, ¢, d) and the world frame (e, f, g, h). Blue
arrows in (a, b, ¢, d) represent the state transition vectors. Blue solid circles
represent a representative robot’s initial state, (6, Xo). Curved and straight
blue arrows in (e, f, g, h) illustrate the change in robot state corresponding to
the state transition arrows from (g, Xg) in (a, b, ¢, d), highlighted with the
thick blue arrows. The state transition vectors were displayed for a discrete set
of initial conditions, for robot orientations § € [—80°, 80°] with a resolution
of 10°, and robot positions X € [0, P + D) with a resolution of lcm. State
transition vectors for robot orientation outside [—80°,80°] were computed
similarly but were not displayed. In (a-h), grey-shaded regions represent the
location of obstacles; solid horizontal lines represent obstacle edges; and
dashed horizontal lines represent obstacle center lines. In (e, f, g, h), black
rectangles represent the robot body, and circles at the vertices of the rectangle
represent the robot legs. Black solid circles represent robot legs in the stance
phase, whereas black empty circles represent legs in the swing phase.

The implication is that, by selecting which leg to engage
with obstacle interactions, a robot could elicit different ob-
stacle forces from the same environment and move towards
desired directions. To this end, the plots in Fig. 8a-d represents
the interaction opportunity from each individual leg.

C. Computing robot state transitions under multi-leg obstacle
interactions

In this section, we use the state transition vectors from
each leg to compute how the robot state would change when
multiple legs contact the obstacles simultaneously.

Based on the ODS framework [33], the total obstacle force
and torque exerted on the robot body can be computed as a
sum of forces and torques from each obstacle-contacting leg.
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As a result, when multiple legs contact with obstacles, Eqn. 3
and Eqn. 4 became

; Fi-yi— Ty
0 = -t Jr —a
‘Z — 5)
1€S(t)
5 F; — Fy
X = N
> ©6)
i€S(t)

where S(t) = | S;i(t) represents the collection of legs that
are subjected to obstacle disturbances at time ¢. S; = 1
indicates that a leg i, ¢ € {RF,LF,LH,RH} is in the
obstacle-contacting phase and would “select” the F}; available
at its current position, and S; = 0 indicates that a leg i is
re-circulating, and thus would not be subjected to F; at its
position.

By integrating Eqn. 5 and Eqn. 6 over a short® duration, 6t,
the changes in robot state under multi-leg, multi-obstacle in-
teractions could be estimated from the individual leg-obstacle
contact forces. Fig. 9c illustrates the state transition vectors
when two legs, LH and RH, were simultaneously in contact
with obstacles. As highlighted by the thick black arrow, from
a given initial state, (6y, Xo) = (35°, 2.7 cm) (Fig. 9c, Bs),
the robot state would transition toward (8, X) = (30°, 1.6 cm)
(Fig. 9c, B,4), under the obstacle forces from both LH and
RH legs. This is consistent with the observations from our
experiments (Fig. 12c-iv), where the robot body was observed
to rotate clockwise (Fig. 9g, curved blue arrow) and slipped
backward slightly (Fig. 9g, straight blue arrow) upon the LH
and RH leg touchdown.

The robot could produce significantly different dynamics if
a different group of legs (e.g., Fig. 9a, leg RF and LF; versus
Fig. 9c, leg RH and LH) were to touchdown simultaneously.
This began to reveal the observed effect of gait on obstacle-
modulated robot dynamics: As robot gait varies, the grouping
of obstacle-contacting legs changes. As a result, the multi-
legged robot could passively “flow” toward different states
under the obstacle interaction forces.

D. Representing obstacle-modulated robot dynamics as a gait-
dependent, compositional return map

In this section, we compose the state transition vectors into
a return map to predict the robot’s steady states under repeated
leg-obstacle interactions.

We represented the effect of gait on robot dynamics as a
sequence of leg-obstacle interaction events (which we referred
to as “modes”). Each leg-obstacle interaction event (“mode”)
functioned as a map that sent the robot state at the beginning of
the interaction, to the robot state at the end of the interaction.
Composing the modes during the entire stride cycle yielded
the stride-wise return map [35], [36], F', that sent the robot
state from one stride to another.

For a general quadrupedal gait, each stride cycle comprised
up to four steps, with each step beginning with a leg touch-
down event. For example, for a VB gait like GG1, each stride

3Numerical simulation suggested that the model-predicted robot steady-
state orientations were insensitive to the selection of §t values for 6t < 0.9s.
For all results reported in this paper, 6t was set to 0.3 s.
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cycle comprised of two steps: (i) step one, where the RF
and LF legs (Fig. 9e, solid circles) simultaneously touched
down, at the beginning of each stride cycle (¢t = 0); (ii)
step two, where the LH and RH legs (Fig. 9g, solid circles)
simultaneously touched down half a cycle later (t = T/2).
Each step can be further divided into two modes: (i) a
“slipping” mode, S, where the leg initially contacted with the
obstacle, and the robot’s orientation and position could change
significantly during a short period of time as the contacting
legs slipped off the obstacles; (ii) an “advancing” mode, V,
where the legs have slipped off the contacting obstacles, and
the robot moved forward along its current heading.

As such, the stride-wise return map for G can be rep-
resented as the composition of the four mode maps: F' =
S1 0V 085 0V;, where S, represents the mapping of robot
state from the touchdown to the end of the slipping for the
n-th step, and V,, represents the mapping of robot state from
the end of slipping to the beginning of the next touchdown for
the n-th step.

The mode maps can be readily computed from the state
transition vectors. Fig. 9 illustrates the robot state transition
vectors corresponding to the four modes, for a VB gait, G;.
The slipping mode maps, S7 (Fig. 9a) and Sy (Fig. 9¢), were
computed as the robot state transition vectors from the active
(i.e., in stance) legs (leg LF and RF for Si, leg LH and RH
for S;). The advancing mode maps, V; and V5 (Fig. 9b, d,
blue arrows), was computed as a linear displacement along
the robot’s current orientation. The magnitude of the advancing
map vector was computed from the experimentally-measured
robot stride length on flat ground scaled by the duration of
the advancing mode within a full stride, then projected to the
world frame.

The stride-wise return map for any general gait can be com-
puted similarly. Fig.10 illustrates the state transition vectors
for a NVB gait, G11. For G1, each stride consists three
leg touchdown events: RF (at ¢ = 0), LH (at ¢ = 0.57),
LF and RH (at ¢t = 0.75T). Each touchdown event started
with the slipping mode (where the robot orientation changes
significantly as the touchdown leg slides off the obstacle) and
followed by an advancing mode (where the obstacle force from
the touchdown legs no longer contributes significantly to the
body yaw). Therefore, for G11, F' is composed of 6 modes:
F =S10Vi080V50 830 V3, where S; and Vi, Sy and
V5, S3 and V3 correspond to the robot state transition upon
the touchdown of {RF}, {LH}, {LF, RH}, respectively. For
S1 (Fig.10a) and S5 (Fig.10c), the state transition vectors are
the same as those from single leg RF and LH (Fig.8a, c). For
Ss (Fig.10e), the state transition vectors were computed as a
vector addition from LF and RH legs’ state transition vectors
(Fig.8b, d). Similar to the VB case, the advancing modes, V7,
Vo, V3, were computed as the experimentally-measured flat-
ground stride length scaled by the duration of the advancing
mode (0.57 for Vi, 0.25T for V5, 0.25T for V3). For both VB
and NVB gaits, the initial angular and linear body velocities
were assumed to be zero at the beginning of each mode.

Representing robot state transitions in the state space allows
the features of the environment (e.g., obstacle dimension and
distribution) and the robot morphology (e.g., dimension and
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Fig. 9. State transition vectors for each mode (S1, Vi, Sa, Va, from top to
bottom) within a full stride for gait G'1, illustrated in the robot’s state space
(a-d) and the world frame (e-h). (a, e) and (c, g) represent S and Sa, the
slipping modes for {RF, LF} and {RH, LH} leg pairs, respectively. The state
transition vectors for the slipping modes were computed as a sum of individual
leg state transition vectors from Fig. 8. (b, f) and (d, h) represent V7 and Va2,
the advancing modes for RF, LF and RH, LH leg pairs, respectively. States
A1, Az, Az, Ay and Bi, B2, B3, By represent the initial state of each
mode for the steady state with 6y = 0° and 6y = 35°, respectively. Color
schemes are the same as Fig. 8.

leg positions) to be fully encoded in the (6, X) coordinate.
With this representation, the robot’s body-level dynamics
under simultaneous or sequential leg-obstacle collisions can be
directly computed and visualized in the state space, to facilitate
the understanding of obstacle-modulated robot dynamics (Sec.
IV-E, Sec. IV-F) and gait planning (Sec. V).

E. Model revealed mechanisms of gait-dependent steady states
and enabled prediction of gait-dependent “funnel” outlets

The stride-wise return maps could explain the
experimentally-observed passive robot orientations for
different gaits. For the case illustrated in Fig. 9, we noticed
that a robot that started at state A; would return to the
same state after a full stride: (A1) = F(q(A1)), where
q := (6, X) represents the robot state. Similarly, a robot that
started at state By would return to By after each full stride.
The orientation angles of A; and B; were 0° and 35°, the
same angles as the robot was observed to passively converge
to in our locomotion experiments (Fig. Sc, first row). We refer
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Fig. 10. State transition vectors for each mode (S1, V1, Sa, Va, S3, V3, from
top to bottom) within a full stride for gait G'11, illustrated in the robot’s state
space (a-f) and the world frame (g-1). (a, g), (c, i) and (e, k) represent S1, Sa2,
and S3, the slipping modes for {RF}, {LH} and {LF, RH} legs, respectively.
The state transition vectors for the slipping modes were computed as a sum
of individual leg state transition vectors from Fig. 8. (b, h), (d, j), and (f, 1)
represent V1, Va, and V3, the advancing modes for {RF}, {LH} and {LF,
RH} legs, respectively. States C, Ca, C3, Ca, Cs, Cg represent the initial
state of each mode for the steady state with 8y = 19°. Color schemes are
the same as Fig. 8.
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to state A; and B;j as the fixed points4 [35] of the discrete,
obstacle-modulated robot dynamics. Similarly, stride-wise
fixed points can be identified by solving ¢ = F'(q) for NVB
gaits like G1; (Fig. 10, C1).

For any general quadrupedal gait, G = (¢1, P2, P3), we
could use its return map, F, to theoretically determine the
obstacle-modulated robot steady states. To do so, we construct
a directed graph that represents the robot’s state transition
under repeated strides, following the method reported in [34].
Each node of the graph represents a robot state, whereas each
directed edge represents the change of robot state within one
stride (i.e., F'). Once the directed graph was constructed, the
robot’s steady state could be identified by searching for self-
mapping nodes within the graph [34]. Using this method, the
steady state orientations could be predicted without having to
perform numerical simulation from the beginning to the end,
significantly reducing the computational effort required. This
reduced computational effort could allow small, simple robots
to assess obstacle interaction outcomes, and plan efficient
strategies.

To validate the model-predicted steady states, we theoret-
ically computed the steady-state orientation (Fig. 11, blue
filled markers) for G; through Gi5, and compared against
the experiment-measured robot final orientations (Fig. 11, red
histogram bands) from the 864 trials. The intensity of the red
histogram bands represents the likelihood of experimentally
observing an averaged final orientation, 6.
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Fig. 11. Gait-dependent steady-state robot orientations for (G through

G'12. Blue markers represent model predicted stride-wise steady orientation,
whereas the red histogram bands represent the experimentally measured robot
steady orientation from the 864 trials, averaged for the last two gait cycles.
Experimental data for each gait include all 16 initial orientations tested. The
color scale of the red histogram bands represents the percentage of trials for
each gait where the 67 was observed, whereas deeper red represents a larger
percentage.

The model-predicted steady-state robot orientations agreed
well with the experimental measurements for all general gaits
tested: the majority of high-intensity red histogram bands
are located within the adjacency (i.e., within 10°) of the
predicted steady-state orientations. We note that there were
a few model-predicted steady-state orientations that were not
observed from our experiments (e.g., G7, 62°; Gg, 67°). This
is likely because the basins of attraction [35] of these steady

“4For all results reported in this paper, the Poincare section of the return
map was defined as the beginning of the RF leg stance phase.
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states were relatively small®, and therefore the probability of
observing these steady states in experiments was low. With the
basin of attraction analysis reported in Sec. IV-F, one could
identify these steady states that were less likely to observe
experimentally.

These model-predicted steady states explained the
experimentally-observed dependence of passive robot
orientation on gaits (Sec. III-A), and allowed theoretical
prediction of these gait-dependent passive orientations. For
a small robot navigating in a field with densely-distributed
large, slippery obstacles, a model that can predict these
passively-stable orientations is extremely useful: knowing the
mapping from each gait to the passively-stable orientation
angle enabled by that gait, the robot does not have to “fight
against” the large obstacle disturbances, but instead could
simply execute a fixed gait to passively “flow” towards a
desired moving direction. For example, with a gait G1, a
robot starting at 50° could passively flow to 35°, whereas a
gait G3 would let the robot passively flow back from 35°
to 50°. Similarly, a robot could use a sequence of gaits to
flexibly change its moving directions, and follow desired paths
among the large, slippery obstacles, through the utilization of
obstacle disturbances (Sec. V).

FE. Model revealed steady state convergence dynamics and en-
abled the computation of basins of attractions (funnel “inlets”)

In addition to predicting the steady states (i.e., “funnel
outlets”), the state transition vectors could also help re-
veal how robot states converge from an initial state to the
experimentally-observed steady state, and determine the basins
of attraction associated with each steady state. The basins of
attraction referred to the set of initial states that can passively
converge to each steady state (i.e., “funnel inlets” in Fig. 2).

Take gait G1 as an example, Fig. 12a(i) - a(vii) visualizes
how the distribution of robot states (colored points) evolved
over time. Following the state transition vectors, a robot start-
ing from all possible initial states (Fig. 12 a-(i)) would quickly
converge to few localized regions in the state space (Fig. 12
a, (iv) to (vii)). The orientation of these converged states (0°,
+35°, and £90°) were consistent with experiment-observed
6. To visualize the collection of initial states that converged
to the same orientation, we colored the initial states in Fig.
12a-(i) based on the orientation of the final state that they
would converge to. These colored regions marked the basins
of attractions (funnel inlets) for the corresponding steady state
(funnel outlets). The predicted basins of attractions (Fig. 13
colored regions) agreed well with experiment measurements
(Fig. 6).

The basins of attraction explained the experimentally-
observed dependence of robot final orientations on its initial
states (Fig. 6). Fig. 12b,c shows the experiment recording of a
robot starting from two different initial states: (6, X) = (20°,
8.8cm) (corresponding to marker A in Fig. 12a-(i)), and (0,
X) = (20°, 6.0cm) (corresponding to marker B in Fig. 12a-
(1)). According to the predicted basins of attraction, a robot

SSimulation results suggested that the boundary of basins of attractions
were only 5° from the steady-state orientation
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with initial state A would converge to a final orientation of 0°,
whereas with initial state B the robot would converge to 35°.
This is consistent with the experimental observations (Fig. 12b,
c). Using this prediction, we could also infer the robustness of
each steady state: steady states with large basins of attraction
may be less sensitive to intrinsic noises in the experiments,
allowing simple robots to robustly navigate complex terrains
by utilizing obstacle-interacting forces.

V. OBSTACLE-AIDED NAVIGATION BY COMPOSING GAIT
FUNNELS

In this section, we demonstrate that using different gaits, a
robot could “select” different funnels and “passively” converge
to different orientation angles under the obstacle forces without
needing any external steering.

A. Sequential connection of gait “funnels” to achieve desired
shape trajectory

The gait-dependent steady states offered a robust way for
robots to passively (i.e., without body-level steering) converge
to desired orientations. We hypothesize that by sequentially
switching through a number of gaits, a legged robot could
efficiently generate desired trajectory by utilizing obstacle-
interaction forces. This is especially useful for environments
where obstacle sizes are large as compared to robot leg
size, where it is challenging to treat obstacle forces as small
disturbances. In addition, since the steady states are stable and
are attracted from nearby states, the method is less sensitive
to sensor and actuator noises and therefore offers a great
opportunity for small robots with limited sensing and actuation
resources.

To select the gait sequence for the desired trajectory, we
search through the directed graph that encoded the model-
predicted steady states and associated basins of attractions
from Sec. IV, following method developed in [34]. Although
with only three specific virtual bipedal gaits, [34] demonstrated
that the directed graph based gait planner can successfully
identify possible gait sequences to connect from a given initial
robot state to a desired goal robot state.

Here we extend the graph based gait planner to include
any general quadrupedal gaits, (¢1, @2, ¢3), for obstacle-aided
locomotion and navigation. For each gait, steady state ori-
entations (funnel outlets) and associated basins of attractions
(funnel inlets) could be determined using the method discussed
in Sec. IV-E and Sec. IV-F. The gait planner then searched for
a sequence of funnels that when connected sequentially (Fig.
2) could allow the robot state to passively “flow” from a given
initial state to a desired end state.

To experimentally validate the effectiveness of the sequen-
tial gait composition method for obstacle-aided navigation,
we challenged the robot to produce three different shapes
of trajectories, letter “U”, “S”, and “C” (Fig. 14b) while
across the obstacle field, without any body-level steering. The
obstacle distribution and the initial state of the robot, (6,
Xo), were given to the robot prior to the trial. Using the
model-predicted steady states (Fig. 11 blue markers) and their
corresponding basins of attractions (Fig. 13 colored regions)
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Fig. 12. Robot state transitions for a representative gait, G'1, computed using the state transition vectors (a), and recorded from experiments (b, c). Colored
points in (a), from bottom to top plots, represent the evolving robot states, (0, X), at ¢t = 0Os, 0.05s, 0.3s, 1.5s, 1.8s, 3.3s, 4.8s, respectively. Marker colors
represent different initial states that converge to the same steady-state orientation. Solid and dashed curves represent obstacle edges and center, respectively,
projected in the robot state space. Curve color represents the obstacle projection relative to different robot legs: red, green, purple, and black corresponding
to LF, RE, RH, and LH legs, respectively. Markers A and B in (a) represent two initial robot states with the same orientation (8p = 20°) and initial positions
only 2.8cm apart, but converged to two different steady-state orientations, 0° and 35°, respectively. Image sequences in (b) and (c) were recorded from the two
experiment trials with initial conditions corresponding to markers A and B in (a), respectively. Solid black circles represent legs in the stance phase, whereas
empty black circles represent legs in the swing phase. Black arrows indicate the obstacle forces exerted on each individual leg, and blue arrows indicate the
direction of robot orientation change due to obstacle forces.
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Fig. 13. Computed basins of attraction for G1, G11, Gg, shown from top to
bottom, respectively. Black squares represent model-predicted steady states
determined through the stride-wise return map. Colored regions represent
basins of attraction associated with each steady state. Colors represent the
orientation angles of the corresponding steady states. The three horizontal
dashed lines in the top plot marked X = Ocm, lcm, Scm, corresponding to
the experiment initial conditions reported in Fig. 6.

for the twelve gaits, GG; through G1o, the robot planned its
gait sequence for each desired trajectory before the traverse.

The planned gait sequence for the “S”-shaped trajectory,
Gi1 — Gg = G1 — G11 — G1 — G5 — G, is illustrated in
Fig. 14a. The required initial state for the “S”-shaped trajectory
was 0y = 70°, Xy = 3 cm (Fig. 14a, state a). The model
predicted that a GG1; gait could allow the robot to passively
converge to 07 = 62° (Fig. 14a, state b). Since state b is within
the basin of attraction of the next funnel (Fig. 14a, orange
region on Gy layer), the next planned gait, G¢, would send
the robot to 03 = 39° (Fig. 14a, state c). Similarly, the robot
subsequently switched through gaits G, G11, G1, G5, and
G, as its orientation “flowed” through the predicted “funnel
outlets” (i.e., steady-state orientations of each gait): 5 = 0°
(Fig. 14a, state d), 0; = —19° (Fig. 14a, state e), 0f = —36°
(Fig. 14a, state f), 5 = —17° (Fig. 14a, state g), and 65 = 39°
(Fig. 14a, state h), respectively. This illustrates the “funnel”
concept depicted in Fig. 2: the outlet of each gait “funnel”
resides in the inlet of the next gait (e.g., , Fig. 14a, state g
located within the cyan regions on the G5 layer); as such, by
connecting these funnels one after another, the robot state was
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constrained to flow through the desired waypoint states under
the modulation of obstacle forces.

Similar to the “S”-shaped trajectory, the gait planner re-
turned two different gait sequences: G; — G117 — Gg —
G5 — Gy for the “U” shaped trajectory, and Gi; —
Gg — G1 — G¢ — G for the “C” shaped trajectory.
Robot trajectories recorded from the experiment (Fig. 14b)
demonstrated that the robot was able to successfully produce
all three desired trajectories simply by sequentially executing
the planned gaits.

We highlight that during the entire trial, no external sensing
or body-level steering was adopted. The robot simply executed
the planned gait in sequence, i.e., performing each gait for 3
strides before switching to the next. This demonstrated that
with the ability to predict the interaction outcomes of leg-
obstacle interactions, even an extremely simple robot could
effectively follow desired paths through the densely distributed
large obstacles (with diameters comparable with the robot
leg size). We also note that in Sec. III we only performed
experiments for initial orientations between 0 - 75 degrees, but
in the demonstration, the planner used model-predicted steady
states and initial states beyond this range. For these states, we
didn’t have any experiment data, and the planner solely relied
on our model prediction. This spoke to the predictive power
of our reduced-complexity model.

B. Extending the method to non-evenly-spaced obstacle field

In this section, we demonstrate how our method can be
extended beyond the simplified setting of evenly-spaced ob-
stacles. To do so, we challenged the robot to produce the same
“S”-shaped trajectory on a “slow-varying” obstacle field with
non-evenly-spaced obstacles. The new obstacle field consisted
of 4 segments, each segment containing 7 semi-cylindrical
obstacles. The obstacle spacing for the 4 segments were set to
different values: 2cm, 4cm, Scm, and 7cm (Fig. 15a).

For regions within the same obstacle spacing (i.e., X <
Xp—Cand X > Xp+ C, where X represents the starting
position of the new segment, and C' is the robot’s half diagonal
length), the same method from Sec. IV and Sec. V could be
directly applied to compute the return map and perform the
gait planning.

For regions where the obstacle spacing varies from one to
another (i.e., X € [Xp—C, Xp+()), steady-state orientations
would no longer exist. However, the state transition vectors
could be computed in a similar manner to guide the gait
planning. As an example, the green rectangle in Fig.15b
highlights a representative region of varying obstacle spacing,
where the two legs (LF and RF) were within the 4cm spacing
region, and the other two legs (LH and RH) were within the
2cm spacing region. Due to the varying obstacle spacing, the
obstacle force, F;(X;), would exhibit different distribution for
each leg. However, the state transition vectors for each leg
could still be computed by integrate Eqn. 3 and Eqn. 4, as
illustrated in Sec. IV. Fig. 15c visualizes the state transition
vectors corresponding to the scenario shown in Fig. 15b. For a
given gait, G, these state transition vectors could be composed
to construct the directed graph for the transitional region. With
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(b)

Fig. 14. The planning (a) and experiment validation (b) of the obstacle-aided navigation. (a) visualizes the planned gait sequences for the robot to achieve
an ”S”-shaped trajectory. From top to bottom, each layer represents one gait: G131 — Ge¢ — G1 — G11 — G1 — G5 — Gg. The white circular
markers on each layer represent the predicted robot’s steady state under repeated obstacle collisions by maintaining the specific gait. The colored regions
surrounding the white circles represent the predicted basins of attraction of the steady state, i.e., the set of initial states that would be “attracted” to the
steady state. The colors of the basins of attraction represent the robot orientation angle at the steady state, as shown in the color bar. The three images in
(b) show the experimentally-recorded robot trajectories across the obstacle field for the three desired paths: “U”, “S”, and “C”. The solid black line is the
experimentally-recorded robot trajectory in the world frame, tracked by the motion capture cameras.

the directed graph, the same method from Sec. V could be
applied to search for the gait sequence that takes the robot’s
initial state to the desired state, for a desired trajectory.

We experimentally tested the robot’s trajectory across this
slow-varying obstacle field, with the model-planned gait se-
quence: G7 — G3 — G1 — G3 — G1 — Gr. The gait
sequence was pre-programmed in the robot, and the robot
simply switched to the subsequent gait once a fixed number of
strides were completed. Experimentally-measured robot trajec-
tory (Fig. 15a) demonstrated that our method applied well on
the slow-varying obstacle field, allowing the robot to produce
the desired trajectory by utilizing obstacle disturbances.

This experiment demonstrated the feasibility for our meth-

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

ods to be extended beyond the simplified setting. Going
forward, for environments with more rapidly-varying obstacle
distributions, the state transition vectors and the open-looped
robot gaits to achieve a desired moving direction could be
computed similarly for a finite spatial segment (e.g., a few
steps ahead), and updated over time. For completely ran-
domized obstacle distribution, steady states would no longer
exist. As such, achieving robust open-loop navigation would
require a better understanding of the transitional dynamics.
The method to compute state transition vectors provided a
starting point to model the transitional dynamics, and to assess
the sensitivity of a trajectory to sensor and actuator noises.

VI. CONCLUSION
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J3<

J4{

(b)

Fig. 15. The experiment demonstration of obstacle-aided trajectory control across unevenly-spaced obstacles. (a) The “slow-varying” obstacle field consisting
of four segments of different spacing: 2 cm within J1, 3cm within J2, 5 cm within J3, and 7 cm within Jy4. Black line represents the experimentally-measured
robot trajectory across the obstacle field using the planned gait sequence: G7 — G3 — G1 — G3 — G1 — G7. (b) A schematic corresponding to the
obstacle area within the green box in (a), where LF, RF legs were within the obstacle region with spacing P> and LH, RH legs within the obstacle area with
spacing P;. The green dash line marks the division line between two segments, denoted as X p. (c) The state transition vectors corresponding to the green

box zone marked in (a) and (b), for RF, LF, LH, RH leg from top to bottom.

The results presented in this paper revealed how different
gaits allow a multi-legged robot to elicit different interaction
forces from its environment. Furthermore, we show that this
understanding can allow a simple robot to plan gait sequences
to move towards desired directions by utilizing obstacle distur-
bances. This opens a new avenue for simple, low-cost robots to
cope with environments with large obstacles and perturbations:
instead of relying on canceling these large perturbations, a
simple robot could actively utilize these disturbances and
collisions to produce desired dynamics.

While this paper is still a beginning step towards the vision
of “obstacle-aided locomotion and navigation”, the results
from this paper could be applied to guide the morpholog-
ical and gait parameter selections for a variety of simple
robots [37], [38], [39] for them to effectively traverse their
environments with minimal sensing and computation. Even
for robots with better sensing and computation capabilities,
the understandings of robot-environment interaction could
allow environment to become part of the control resources, to
improve their locomotion effectiveness on complex terrains.
In addition, we envision that our results could help explore
questions beyond robotics, such as to explain animals’ gait
adaptation behaviors on rough terrain [31]. These explorations
could in turn inspire simple strategies for robots to navigate
challenging environments.

Given the simplicity of the model and the robustness of the

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

results, we envision that continued expansion on this “obstacle-
aided locomotion” strategy could open up many new avenues,
enabling future robots to flexibly interact with a variety of
complex real-world environments such as rocky hills, forests,
and earthquake rubble.
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