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Obstacle-Aided Trajectory Control of a Quadrupedal

Robot Through Sequential Gait Composition

Haodi Hu1, Feifei Qian1

Abstract—Modeling and controlling legged robot locomotion
on terrains with densely distributed large rocks and boulders
are fundamentally challenging. Unlike traditional methods which
often consider these rocks and boulders as obstacles and attempt
to find a clear path to circumvent them, in this study we aim to
develop methods for robots to actively utilize interaction forces
with these “obstacles” for locomotion and navigation. To do
so, we studied the locomotion of a quadrupedal robot as it
traversed a simplified obstacle field with 12 different gaits, and
discovered that with each gait the robot could passively converge
to a distinct orientation. A compositional return map explained
this observed passive convergence, and enabled prediction of the
steady-state orientation angles for each quadrupedal gait. We
experimentally demonstrated that with these predictions, a legged
robot could effectively generate desired shape of trajectories
amongst large, slippery obstacles, simply by switching between
different gaits. Our study offered a novel method for robots
to exploit traditionally-considered “obstacles” to achieve agile
movements on challenging terrains.

Index Terms—Legged Robots, Biologically-Inspired Robots,
Dynamics, Rough Terrain Locomotion.

I. INTRODUCTION

Many terrestrial environments are filled with large obstacles

such as rocks, boulders, fallen trees (Fig. 1). The ability

to flexibly and efficiently move across these obstacle-dense

terrains can empower legged robots for a variety of important

applications, such as autonomous delivery, search and res-

cue [1], and planetary explorations [2]. However, ambulatory

locomotion on these substrates can be highly challenging, as

the sizes of these obstacles are often comparable with the robot

leg size, resulting in large disturbances that could lead to a

variety of potential locomotion failures, such as unexpected

leg slip, stuck-in-place, large body angle fluctuation, or even

flipping over [3], [4], [5], [6].

(a) (b)

Fig. 1. Natural environments are often heterogeneous, containing large
“bumps” such as fallen trees (a) or large rubble (b), which pose great
challenges for legged robot locomotion. Photo materials credit iStock.
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Due to the complex contact dynamics, existing navigation

and planning methods often rely on finding a clear path to

avoid physical interactions with these large obstacles [7], [8].

For example, the artificial potential field method [9], [10]

represents obstacles as repulsive potentials and goal location

as attractive potentials, allowing robots to smoothly move

towards the goal location while avoiding obstacles. These

methods worked well for wheeled vehicles [11], [12] which

often do not have the ability to cope with large obstacles. For

legged robots with the extra degrees of freedom to engage

large terrain heterogeneity in a diverse fashion [13], [14], [15],

[16], [17], relying on obstacle avoidance could potentially limit

their ability to traverse many natural terrains, where frequent

interactions between legs and obstacles are unavoidable. Other

methods represent these large rocks and boulders as distur-

bances [18], [19] to be rejected by the controller, but for

terrains with large obstacles with sizes comparable with robot

leg dimensions, disturbances rejection can be difficult and is

often vulnerable to the sensor and actuator noises [20].

Recent robophysics [21] research has begun to explore

a new direction in enabling agile locomotion among large

obstacles: by actively utilizing the interaction forces between

robots and obstacles, similar to mountain goats that can push

against rocks to climb up steep slopes, and squirrels that use

sidewalls to “parkour” and reach desired branches [22]. Recent

studies on legged robots discovered that by varying body

shapes [5], [23] or leg-obstacle contact positions [4], [24],

legged robots could elicit different reaction forces from obsta-

cle interactions and producing desired locomotion dynamics

effectively. Similar studies in snake robots have shown that

by adjusting body curvature or compliance [25], [26], snake

robots could use simple controls to navigate through cluttered

obstacle fields [27]. These studies suggested a new possibility

for robots to generate “obstacle-aided” locomotion on terrains

with large, densely-distributed heterogeneity.

To enable the next-generation robots that can intelligently

adapt their locomotion strategies to achieve this obstacle-aided

locomotion in challenging environments, this study seeks to

answer two questions: (1) how to predict the change of robot

state under leg-obstacle interactions? (2) how to select loco-

motion strategies to produce desired movement by utilizing

obstacle interactions?

To answer these two questions, we experimentally study the

orientation trajectory of a quadrupedal robot as it traversed an

array of evenly-spaced obstacles. With a total of 864 experi-

ment trials, we systematically investigate how different robot

gaits, initial orientations, and initial positions, influence the

passive moving direction of the robot (Sec. III). It’s observed
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that under the leg-obstacle interaction forces, the robot orienta-

tion exhibited a strong convergence towards quantized angles.

Furthermore, the set of converged orientation angles depend

primarily on robot gaits, but the robot’s initial conditions (e.g.,

initial orientation and position) largely determine which angle

the robot would converge to.

We represent this gait-dependent orientation convergence as

a series of “funnels” (Fig. 2 right, a, b, c), where each robot

gait couples with the obstacle field and forms one funnel that

constraints robot states from a larger initial set (funnel “inlet”)

to a smaller final set (funnel “outlet”). We hypothesize that, by

sequentially switching through a sequence of gaits, we could

enable the robot to “flow” from one state (i.e., previous funner

outlet) to another (i.e., subsequent funnel outlet) [28], and

efficiently produce desired trajectories (Fig. 2 left, a→b→c)

across the obstacle field without needing additional steering.

Fig. 2. Conceptual illustration of a robot achieving desired orientation
trajectories (left diagram) by moving through a number of “funnels” (right
diagram). With each gait (left diagram, (1) and (2)), the robot would passively
converge to different steady-state orientations (b, c) under the leg-obstacle
interaction forces. We represent this convergence as a constraining “funnel”,
where a robot starting from a certain initial state that belongs to the “inlet”
of the funnel would passively flow towards the corresponding “outlet” of the
funnel (i.e., the steady state) of a certain gait. By connecting one funnel after
another (i.e., yellow, cyan, purple in the right diagram), with the outlet of the
previous funnel positioned within the inlet of the next funnel, a robot could
passively move through desired states a, b, c by sequentially executing gait
(1) and (2).

To predict the gait-dependent converged orientations (i.e.,

Fig. 2 right, funnel outlets) and their connections with the

corresponding initial conditions (i.e., Fig. 2 right, funnel

inlets), we propose a general method that computes a gait-

wise return map of robot state transitions for given environ-

ment and gait parameters. We show that the return map can

explain the observed state convergence, and enable theoretical

prediction of obstacle-modulated steady states for any general,

quadrupedal gaits (Sec. IV). Using the model-predicted funnel

inlets and outlets, we demonstrate experimentally that by

sequentially switching through a sequence of gaits, a simple

(microcontroller-based) legged robot could utilize leg-obstacle

collision forces to generate desired trajectory across densely-

distributed large obstacles (Sec. V).

II. MATERIALS AND METHODS

To obtain a better understanding of the robot locomo-

tion under repeated leg-obstacle collisions, we studied the

horizontal-plane dynamics of a quadrupedal robot as it ran

across an obstacle field with systematically-varied gaits and

initial conditions (i.e., orientations and positions).

A. Robot and Gaits

The robot used in this study is a small RHex-class [14] robot

(Fig. 3a), with a body length of 16.5 cm, a body width of 15.2

cm, and a total weight of 1.4 kg. Four rotary C-shaped robot

legs were 3D printed (PLA plastic) with an outer diameter of

6 cm. All legs were actuated with servo motors (Lynxmotion

LSS-ST1), and controlled by a microcontroller (Arduino Uno).

The gait frequency was kept at 0.33Hz for all experiments in

this study. The phase of a leg i, βi(t) ∈ [0, T ), was defined as

the relative place of time, t, during a full gait cycle, T . Here the

leg index i ∈ H , where H = {LF,RF,LH,RH} represents

the set of robot legs (left front, right front, left hind, right

hind, respectively). For a quadrupedal robot, a periodic gait

can be uniquely specified using the phase difference between

any three pairs of legs [29], [30], [31].

To represent general quadrupedal gaits, we construct a gait

space [29] (Fig. 3c), (φ1, φ2, φ3):

φ1 = (βLF − βRF ) % T

φ2 = (βLH − βRF ) % T

φ3 = (βRH − βRF ) % T

(1)

Here φi ∈ [0, T ) represents the phase difference1 between the

LF-RF, LH-RF, and RH-RF leg pairs (Fig. 3b). Each point in

the gait space, (φ1, φ2, φ3), represents a periodic quadrupedal

gait. Within the gait space (Fig. 3c), the three lines (0, φ0,

φ0), (φ0, 0, φ0), and (φ0, φ0, 0) represents the groups of

“virtual-bipedal” (VB) gaits [32], where two of the four legs

function as a synchronous pair, and alternate with the other

two synchronous legs. Previous study [33], [34] has found that

two specific virtual bipedal gaits (Fig. 3c, G1 and G5) could

allow an open-looped robot to passively maintain a consistent

moving direction across evenly-spaced obstacle field. In this

study, to extend this understanding to general quadrupedal

gaits, we experimentally studied a total of 12 gaits, G1 to

G12 (Fig. 3 c), to investigate how different gaits affect robot

trajectories within the obstacle field:

G1 : (φ1, φ2, φ3) = (0, 0.5T, 0.5T )

G2 : (φ1, φ2, φ3) = (0.125T, 0.375T, 0.5T )

G3 : (φ1, φ2, φ3) = (0.25T, 0.25T, 0.5T )

G4 : (φ1, φ2, φ3) = (0.375T, 0.125T, 0.5T )

G5 : (φ1, φ2, φ3) = (0.5T, 0, 0.5T )

G6 : (φ1, φ2, φ3) = (0.5T, 0.125T, 0.375T )

G7 : (φ1, φ2, φ3) = (0.5T, 0.25T, 0.25T )

G8 : (φ1, φ2, φ3) = (0.5T, 0.375T, 0.125T )

G9 : (φ1, φ2, φ3) = (0.5T, 0.5T, 0)

G10 : (φ1, φ2, φ3) = (0.375T, 0.5T, 0.125T )

G11 : (φ1, φ2, φ3) = (0.25T, 0.5T, 0.25T )

G12 : (φ1, φ2, φ3) = (0.125T, 0.5T, 0.375T )

(2)

All gaits from G1 to G12 are defined with βRF = 0.5T .

Among them, Gait G1, G5, G9 are virtual bipedal (VB) gaits.

1We use the symbol % to denote a modulo operation.
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Fig. 3. Quadrupedal robot (a) and two representations of robot gaits: gait diagram (b) and gait space (c). LF, RF, LH, RH in (a) and (b) represent the four
legs of the robot: left-front (LF), right-front (RF), left-hind (LH), and right-hind (RH), respectively. Gray regions in (b) represent the stance duration of each
leg within one gait cycle. φ1, φ2, φ3 in (b) represent the phase differences between the LF and RF legs, LH and RF legs, and RH and RF legs, and the span
of (φ1, φ2, φ3) forms the three gait axes. Every point within φi ∈ [0, T ), i = 1, 2, 3 represents a unique periodic quadrupedal gait of a quadrupedal robot.
The three dash lines represent the three groups of virtual bipedal gaits. G1 to G12 indicate the 12 gaits tested in our experiments. Inset in (a) shows a side
view of the robot with gait G9, where leg RH has a relative phase of φ3 = 0 with leg RF, and the two left legs, LF and LH, are half-cycle out of phase with
the RF leg, i.e., , φ1 = 0.5T , φ2 = 0.5T .

Specifically, gait G1 is a commonly-observed gait among

quadrupedal animals, “bound”, where two front legs (LF

and RF) move synchronously and with half a cycle out of

phase with two hind legs (LH and RH). Gait G5 is another

commonly-observed biological gait, “trot”, where two legs

within a diagonal pair (LH and RF, LF and RH) move

synchronously and out of phase with the other pair. Gait G9 is

commonly referred to as “pace”, where two left legs (LF and

LH) form a synchronous pair and half a cycle out of phase

with the two right legs (RF and RH). The rest of the 9 gaits

(G2, G3, G4, G6, G7, G8, G10, G11, G12) are “non-virtual-

bipedal” (NVB) gaits, where each individual leg (LF, RF, LH,

RH) enters the stance phase at a different time. We chose

to include G1 and G5 as they have been found to exhibit

passively steady-state orientations [33]. By investigating the

other gaits (especially the NVB gaits), we seek to uncover the

general principles that governs the obstacle-modulated robot

trajectories, and develop a model that can predict the robot

trajectories for any general quadrupedal gait.

B. Obstacle field

The interaction between the robot legs and the obstacle

arrays can be extremely complicated – it was discovered in

a previous study [3] that even a small difference in initial

position could lead to significantly different robot trajectories

within only a few steps. For this reason, directly modeling the

robot dynamics on completely random obstacle environment

can be difficult. To begin to obtain a better understanding of

what governs the robot dynamics as it runs through these large

obstacles, we used a simplified obstacle field – an array of

evenly-spaced half-cylindrical obstacles – to study the effect

of gait on robot-obstacle interactions (Fig. 4). The obstacle

diameter (D = 4.8 cm) was comparable with the size of the

robot leg, such that the obstacles are large enough to generate

large perturbation to re-oriented or re-position the robot. The

obstacle spacing (P = 4 cm) was smaller than the robot’s

step length, such that the robot would encounter leg-obstacle

collisions at every step, allowing investigation of the obstacle-

modulated robot dynamics. The periodic structure of obstacles

reduces the uncertainty in repeated leg-obstacle collisions

and allows stable interaction patterns (Sec. III) to emerge,

while general understanding from the simplified obstacle field

could be extended to different obstacle spacing [33] and more

complex obstacle shapes [3].
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Fig. 4. Experiment setup of an open-loop, quadrupedal robot traveling through
an array of evenly-spaced half-cylindrical shape obstacles with a fixed gait,
Gi, i ∈ {1, 2, ..., 12}. Triangles represent camera positions. Cameras 1-4
were used to track the robot CoM position (X , Y , Z) and body angles (pitch,
yaw, roll) during the obstacle field traversal. Cameras 5 and 6 were used to
provide robot-obstacle interaction videos from the front view and top view.
P and D represent obstacle spacing and diameter, respectively. θ, represents
the robot yaw angle measured counter-clockwise from the x direction.

C. Experiment procedure

To understand how changes in robot orientation and trajec-

tory are related to leg-obstacle contact positions, we measure

robot kinematics in the horizontal plane of the world frame,

including center-of-mass (CoM) position, (X , Y ), and orien-

tation, θ (Fig. 4), as the robot traverses the obstacle field.

Four cameras (Optitrack Prime 13W) were installed at the four

corners of the experiment arena to track robot kinematics, and

two additional cameras (Optitrack Prime Color) are used to

obtain experiment videos. Both tracking data and video are

recorded at a frame rate of 120 frames per second (FPS).
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At the beginning of each trial, the robot was placed within

the obstacle field with an initial orientation, θ0, and initial po-

sition, X0. Due to the constant obstacle shape profile along the

y-axis, robot dynamics was insensitive to its lateral position,

Y , and thus Y0 was kept at 0 for all trials. For each trial, the

robot was set to traverse the obstacle field with a fixed periodic

gait and without any sensory feedback or steering control,

which allows us to observe the change of robot orientation

and trajectory as a result of the physical interactions between

robot legs and the obstacle field. Each trial was recorded for

20 seconds, or until the robot exited the range of the obstacle

field (5m long x 3m wide). Robot final orientation, θf , was

computed as the averaged robot orientation from the last two

gait cycles (i.e., the last 6 seconds of the trial).

We performed experiments for 12 robot gaits, G1 to G12

(Eqn. 2). Each gait was tested with 16 different robot initial

orientations, where θ0 was systematically varied from 0◦ to

75◦ with an increment of 5◦. For initial orientation larger than

75◦, the robot would run sideways towards 90◦ regardless of

gaits for most trials, whose mechanism was trivial [24] and

therefore not included in the discussion of this paper. Empir-

ical measurements in [3], [24] suggested that the magnitude

and direction of obstacle disturbances depended primarily on

the inclination angle at the relative contact position on each

obstacle. Due to the periodic distribution of the obstacles in our

study, the obstacle inclination is a one-dimensional periodic

function along the x direction, with a spatial period, P+D, of

8.8 cm, measured from the edge of one obstacle to the next.

Here we use X̄ to denote the relative robot CoM position,

X , within each spatial period: X̄ := X % (P + D). For

experiments with all gaits, we started the robot within the

obstacle field with X̄0 = 0 cm. To understand the effect of

initial relative position on robot final orientation, θf , we tested

gait G1, G5 and G9 with two additional X̄0, at 1 cm and 5

cm. We collected 3 trials each for each combination of gait,

initial orientation, and initial relative position, resulting in a

total of 864 trials.

III. EXPERIMENTAL RESULTS

A. Dependence of robot final orientation on gait

We observed a strong convergence of robot orientation

towards specific final orientations for all 12 gaits. Fig. 5 shows

the experimentally-measured robot trajectory (Fig. 5b) and

orientation (Fig. 5c) for three of the gaits tested: G1, G11,

and G9. Among the 144 trials with the G1 gait (Fig. 5c, top

row), the robot orientation passively converged to 0◦ ± 1◦ in

36 trials (25%), 35◦ ± 5◦ in 81 trials (56%), and 85◦ ± 6◦ in

27 trials (19%). Among the 48 trials with the G11 gait (Fig.

5c, middle row), the robot orientation converged to -19◦ ± 3◦

in 6 trials (13%), 19◦ ± 3◦ in 17 trials (35%), 45◦ ± 7◦ in

14 trials (29%), and 68◦ ± 4◦ in 11 trials (23%). Similarly,

among the 144 trials with the G9 gait (Fig. 5c, bottom row),

robot orientation passively converged to 7◦ ± 10◦ in 69 trials

(48%), 49◦ ± 5◦ in 72 trials (50%), and 82◦ ± 2◦ in 3 trials

(2%). In most trials, the robot orientation converges to these

passively stable steady states within the first few seconds of

leg-obstacle interactions. Note that we did not perform any

body-level steering, and therefore the observed convergence

Fig. 5. Experimentally measured robot x− y plane trajectories (b) and orientation v.s. time (c) with three different gaits: G1, G11, and G9 (a). Colors in (b)
and (c) represent different initial orientations, θ0, as shown in the color bar. Vertical dashed lines in (c) indicate the starting time of the last two gait cycles
where the averaged final orientation, θf , was computed.
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of robot orientation is a result of physical collisions between

robot legs and obstacles.

Fig. 11 shows the experimentally-measured θf (red shaded

area) for all 12 gaits. The quantized final orientations sug-

gested that robot gait contributes significantly to determining

the obstacle-modulated robot dynamics. More interestingly,

different gait would send the robot towards different passively-

stable moving directions, providing the possibility for a robot

to navigate itself across obstacle fields by adapting its gait.

θ

 θ  θ

 θ

(°)

(°
)

(a)

(b)

(c)

Fig. 6. Averaged final orientation, θf , versus initial orientation, θ0, for gait

G1, with three initial positions: X̄0 = 0 cm (a), 1 cm (b), and 5 cm (c). Red
circles represent experiment measurements. Three trials were performed for
each initial condition. Blue triangles represent model predictions.

B. Dependence of robot final orientation on initial orientation

and position

With each robot gait, there could exist multiple steady-state

orientations, θf (Fig. 5c). Which θf the robot would converge

to depended primarily on the initial condition. Fig. 6 shows

the experimentally-characterized θf for a representative gait,

G1, with three different initial positions: X̄0 = 0 cm (Fig.

6a, red circles), 1 cm (Fig. 6b, red circles), and 5 cm (Fig.

6c, red circles). For each X̄0, trials from 16 different initial

orientations, θ0, were plotted.

Based on Fig. 5c, there existed three primary steady-state

orientations for G1: 0◦, 35◦ and 85◦. We noticed that trials

starting with initial robot orientations within 0◦ ∼ 10◦, 35◦

∼ 55◦, and 70◦ ∼ 75◦, would converge to 0◦, 35◦, and 85◦,

respectively (Fig. 6). However, with initial orientation within

10◦ ∼ 35◦ and 55◦ ∼ 70◦, robot could converge to different

final orientations depending on its initial relative position, X̄0

(Fig. 6a, b, c).

We hypothesized that both the gait-dependent steady-state

orientations, and their corresponding basins of attraction, were

results of different leg-obstacle contact patterns set by the

robot gait. To understand how different gaits map initial robot

states to passively stable steady states, in Sec. IV we use a

compositional return map to investigate the convergence of

robot dynamics under leg-obstacle collision forces.

IV. MODEL REVEALED ROBOT ORIENTATION

CONVERGENCE MECHANISM

To reveal the mechanisms behind the experimentally-

observed convergence of robot orientations and their depen-

dence on robot gaits, we leveraged an obstacle disturbance

selection (ODS) framework [33] to compute the robot state

transitions under obstacle collisions (Sec. IV-A). The concept

of obstacle disturbance selection was recently introduced to

connect individual leg-obstacle contacts with the robot body

dynamics. By representing obstacles as a horizontal-plane

force field, and representing robot legs as obstacle disturbance

“selectors”, the ODS framework is useful in connecting the

leg-obstacle contact position patterns [24] with the obstacle

reaction forces and the robot dynamics. In this study, we

expanded the ODS framework to understand the effect of

general quadrupedal gaits on obstacle-modulated robot dy-

namics. First, we leveraged the ODS force model [33] to

compute the change of robot’s position and orientation due to

the obstacle forces exerted at each leg (Sec. IV-B). We show

that obstacle forces from all obstacle-contacting legs can be

composed to estimate the change of robot state during multi-

leg, multi-obstacle contact events (Sec. IV-C) for a given gait.

Composition of multiple contact events within a stride yielded

a return map (Sec. IV-D) that revealed how gait patterns

affected the robot state convergence (Sec. IV-F), and provided

a simple method for predicting gait-dependent steady-state

robot orientations (Sec. IV-E).
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A. Representing obstacles as a horizontal-plane force field,

and robot legs as obstacle force selectors

The ODS framework [33] represented physical obstacles

as a horizontal-plane2 force field. According to empirical

measurements from [3], the horizontal-plane obstacle forces

from each individual leg, Fi, could be computed as a function

of the obstacle inclination angle, γ, at the leg-obstacle contact

position, X̄i (Fig. 7a, b). The direction of Fi depended on

which side of obstacles the leg contacted: Fi pointed forward

(i.e., along the +x direction) for X̄i ∈ (D/2, D), and pointed

backward (i.e., along the −x direction) for X̄i ∈ (0, D/2).

 (
N

)

D P+D
(cm)

-40

0

40

0

D0 D/2 P+D

(c)

x

y

P(a)

(b)

D
F��θ

Fig. 7. The ODS representation of the obstacles (a, b) and the robot (c). (a)
shows a cross-section view of the half-cylindrical obstacle, where γ denotes
the obstacle inclination angle at X̄i, and Fi denotes the horizontal-plane
obstacle force at X̄i. The obstacle force, Fi, as a function of X̄i, is shown
in (b). (c) shows the ODS representation of a multi-legged robot. The black
rectangle represents the robot body, and the black circular markers at the
rectangle vertices represent the four legs of the robot. Solid circle represents
the leg in the stance phase, whereas open circles represent the legs in the swing
phase. Gray-shaded regions indicate the location of half-cylindrical obstacles,
where the parallel solid lines indicate obstacle edges, and the dashed lines
indicate the obstacle center.

The robot body was approximated as a rectangle in the x−y
plane (Fig. 7c). Each robot leg was modeled as “obstacle force

selectors” that attached at the vertices of the rectangle and

select the obstacle disturbances, Fi, available at their positions,

X̄i. To simplify the complexity of the model and capture

the dominating effects, the C-shape legs were represented as

points fixed at the hip joints, whereas the actual leg shape or

the periodic movement of the toe relative to the hip were not

specifically modelled.

We note that our goal was not to develop a high-fidelity

simulation that captures all physical details. Instead, we seek

to use a highly-simplified model to capture the dominant

effect that governs the obstacle-modulated robot orientations.

Therefore, we make several simplifying assumptions and

approximations, such as neglecting actual leg shape, body

pitching/rolling, and inertial effect. It has been demonstrated

in [33] that despite these simplifications, the ODS model could

successfully capture experimentally-measured robot steady-

state orientations under the influence of leg-obstacle collisions.

2The general expression of the horizontal force field is F (X,Y ). In this
study, due to the symmetry of obstacle shape along the y direction and the
periodicity along the x direction, the obstacle force only depends on the
relative position of the leg-obstacle contact point, X̄i, and is therefore denoted
as Fi(X̄i).

B. Representing interaction opportunities from each individ-

ual leg

Using the ODS representation, we computed the change in

robot states when an individual leg contact with an obstacle.

Due to the symmetry along the y direction and the period-

icity along the x direction, the horizontal-plane robot state

could be described using a reduced state space, (θ, X̄). Here

θ ∈ [−π, π) is the yaw angle of the robot body, measured

counter-clockwise from the x-axis of the world frame, and X̄
is the robot CoM relative position within one spatial period

of the obstacle field, P + D. Given a robot state, (θ, X̄),

each individual leg’s position in the world frame, xi, and

the corresponding obstacle force, Fi(xi), can be determined.

The rotational and translational acceleration of the robot body,

caused by the obstacle forces from an individual leg, i, can

be expressed as:

θ̈ =
Fi · yi − Td

I
, (3)

Ẍ =
Fi − Fd

m
. (4)

Here yi represents the y-axis position of robot leg i relative to

its CoM. Fd and Td represents the damping force and torque,

computed as Fd = c1 ·Ẋ , and Td = c2 ·θ̇. Damping coefficients

c1 = 29.6 and c2 = 0.097 were obtained by matching the

model-computed robot forward speed and orientation conver-

gence rate with experimental measurements, and kept constant

across all gaits and trials. I represents the moment of inertia

of the robot, computed based on uniform weight distribution.

By integrating Eqn. 3 and Eqn. 4 for a fixed time duration,

δt, we could generate vectors showing how the robot state (θ,

X̄), would change, when a single leg engages with the obsta-

cles. We refer to these vectors as the state transition vectors,

defined as the vector pointing from the robot’s current position

and orientation, (θ0, X̄0), to the position and orientation that

the robot would reach after a short duration, assuming no

initial angular and linear body velocities θ̇ = 0, Ẋ = 0.

Note that the state transition vectors could be significantly

different (Fig. 8a, b, c, d) if a different robot leg were to

contact the obstacles. Fig. 8 illustrates the state transition

vectors computed with δt = 0.3 seconds, the estimated time of

leg-obstacle contact during our experiments. In this example,

we can see that if the RF leg were to engage with the obstacle

(Fig. 8e), the obstacle force would result in a clockwise (CW)

rotation in robot orientation, θ, from 0° to -10° (Fig. 8a,

θ component of the blue vector), and a decrease in robot’s

relative position, X̄ , from 3.0 cm to 1.6 cm (Fig. 8a, X̄
component of the highlighted vector). However, if the LF leg

were to engage with the obstacle (Fig. 8f), the obstacle force

would result in a counter-clockwise (CCW) rotation in robot

orientation, θ, from 0° to 10° (Fig. 8b, θ component of the blue

vector), and a decrease in robot’s relative position, X̄ , from 3.0

cm to 1.6 cm (Fig. 8b, X̄ component of the highlighted vector).

Similarly, if leg LH (Fig. 8c, g) or RH (Fig. 8d, h) were

engaged with obstacles, the robot would transition towards

different states under the leg-obstacle interaction forces.
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CoM

CoM

Fig. 8. Robot state transition vectors when only one individual leg (a, e -
RF; b, f - LF; c, g - LH; d, h - RH) were to engage with the obstacle, shown
in the robot’s state space (a, b, c, d) and the world frame (e, f, g, h). Blue
arrows in (a, b, c, d) represent the state transition vectors. Blue solid circles
represent a representative robot’s initial state, (θ0, X̄0). Curved and straight
blue arrows in (e, f, g, h) illustrate the change in robot state corresponding to
the state transition arrows from (θ0, X̄0) in (a, b, c, d), highlighted with the
thick blue arrows. The state transition vectors were displayed for a discrete set
of initial conditions, for robot orientations θ ∈ [−80°, 80°] with a resolution
of 10°, and robot positions X̄ ∈ [0, P +D) with a resolution of 1cm. State
transition vectors for robot orientation outside [−80°, 80°] were computed
similarly but were not displayed. In (a-h), grey-shaded regions represent the
location of obstacles; solid horizontal lines represent obstacle edges; and
dashed horizontal lines represent obstacle center lines. In (e, f, g, h), black
rectangles represent the robot body, and circles at the vertices of the rectangle
represent the robot legs. Black solid circles represent robot legs in the stance
phase, whereas black empty circles represent legs in the swing phase.

The implication is that, by selecting which leg to engage

with obstacle interactions, a robot could elicit different ob-

stacle forces from the same environment and move towards

desired directions. To this end, the plots in Fig. 8a-d represents

the interaction opportunity from each individual leg.

C. Computing robot state transitions under multi-leg obstacle

interactions

In this section, we use the state transition vectors from

each leg to compute how the robot state would change when

multiple legs contact the obstacles simultaneously.

Based on the ODS framework [33], the total obstacle force

and torque exerted on the robot body can be computed as a

sum of forces and torques from each obstacle-contacting leg.

As a result, when multiple legs contact with obstacles, Eqn. 3

and Eqn. 4 became

θ̈ =
∑

i∈S(t)

Fi · yi − Td

I
, (5)

Ẍ =
∑

i∈S(t)

Fi − Fd

m
, (6)

where S(t) =
⋃

Si(t) represents the collection of legs that

are subjected to obstacle disturbances at time t. Si = 1
indicates that a leg i, i ∈ {RF,LF,LH,RH} is in the

obstacle-contacting phase and would “select” the Fi available

at its current position, and Si = 0 indicates that a leg i is

re-circulating, and thus would not be subjected to Fi at its

position.

By integrating Eqn. 5 and Eqn. 6 over a short3 duration, δt,
the changes in robot state under multi-leg, multi-obstacle in-

teractions could be estimated from the individual leg-obstacle

contact forces. Fig. 9c illustrates the state transition vectors

when two legs, LH and RH, were simultaneously in contact

with obstacles. As highlighted by the thick black arrow, from

a given initial state, (θ0, X̄0) = (35°, 2.7 cm) (Fig. 9c, B3),

the robot state would transition toward (θ, X̄) = (30°, 1.6 cm)

(Fig. 9c, B4), under the obstacle forces from both LH and

RH legs. This is consistent with the observations from our

experiments (Fig. 12c-iv), where the robot body was observed

to rotate clockwise (Fig. 9g, curved blue arrow) and slipped

backward slightly (Fig. 9g, straight blue arrow) upon the LH

and RH leg touchdown.

The robot could produce significantly different dynamics if

a different group of legs (e.g., Fig. 9a, leg RF and LF; versus

Fig. 9c, leg RH and LH) were to touchdown simultaneously.

This began to reveal the observed effect of gait on obstacle-

modulated robot dynamics: As robot gait varies, the grouping

of obstacle-contacting legs changes. As a result, the multi-

legged robot could passively “flow” toward different states

under the obstacle interaction forces.

D. Representing obstacle-modulated robot dynamics as a gait-

dependent, compositional return map

In this section, we compose the state transition vectors into

a return map to predict the robot’s steady states under repeated

leg-obstacle interactions.

We represented the effect of gait on robot dynamics as a

sequence of leg-obstacle interaction events (which we referred

to as “modes”). Each leg-obstacle interaction event (“mode”)

functioned as a map that sent the robot state at the beginning of

the interaction, to the robot state at the end of the interaction.

Composing the modes during the entire stride cycle yielded

the stride-wise return map [35], [36], F , that sent the robot

state from one stride to another.

For a general quadrupedal gait, each stride cycle comprised

up to four steps, with each step beginning with a leg touch-

down event. For example, for a VB gait like G1, each stride

3Numerical simulation suggested that the model-predicted robot steady-
state orientations were insensitive to the selection of δt values for δt ≤ 0.9s.
For all results reported in this paper, δt was set to 0.3 s.
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cycle comprised of two steps: (i) step one, where the RF

and LF legs (Fig. 9e, solid circles) simultaneously touched

down, at the beginning of each stride cycle (t = 0); (ii)

step two, where the LH and RH legs (Fig. 9g, solid circles)

simultaneously touched down half a cycle later (t = T/2).

Each step can be further divided into two modes: (i) a

“slipping” mode, S, where the leg initially contacted with the

obstacle, and the robot’s orientation and position could change

significantly during a short period of time as the contacting

legs slipped off the obstacles; (ii) an “advancing” mode, V ,

where the legs have slipped off the contacting obstacles, and

the robot moved forward along its current heading.

As such, the stride-wise return map for G1 can be rep-

resented as the composition of the four mode maps: F =
S1 ◦ V1 ◦ S2 ◦ V2, where Sn represents the mapping of robot

state from the touchdown to the end of the slipping for the

n-th step, and Vn represents the mapping of robot state from

the end of slipping to the beginning of the next touchdown for

the n-th step.

The mode maps can be readily computed from the state

transition vectors. Fig. 9 illustrates the robot state transition

vectors corresponding to the four modes, for a VB gait, G1.

The slipping mode maps, S1 (Fig. 9a) and S2 (Fig. 9c), were

computed as the robot state transition vectors from the active

(i.e., in stance) legs (leg LF and RF for S1, leg LH and RH

for S2). The advancing mode maps, V1 and V2 (Fig. 9b, d,

blue arrows), was computed as a linear displacement along

the robot’s current orientation. The magnitude of the advancing

map vector was computed from the experimentally-measured

robot stride length on flat ground scaled by the duration of

the advancing mode within a full stride, then projected to the

world frame.

The stride-wise return map for any general gait can be com-

puted similarly. Fig.10 illustrates the state transition vectors

for a NVB gait, G11. For G11, each stride consists three

leg touchdown events: RF (at t = 0), LH (at t = 0.5T ),

LF and RH (at t = 0.75T ). Each touchdown event started

with the slipping mode (where the robot orientation changes

significantly as the touchdown leg slides off the obstacle) and

followed by an advancing mode (where the obstacle force from

the touchdown legs no longer contributes significantly to the

body yaw). Therefore, for G11, F is composed of 6 modes:

F = S1 ◦ V1 ◦ S2 ◦ V2 ◦ S3 ◦ V3, where S1 and V1, S2 and

V2, S3 and V3 correspond to the robot state transition upon

the touchdown of {RF}, {LH}, {LF, RH}, respectively. For

S1 (Fig.10a) and S2 (Fig.10c), the state transition vectors are

the same as those from single leg RF and LH (Fig.8a, c). For

S3 (Fig.10e), the state transition vectors were computed as a

vector addition from LF and RH legs’ state transition vectors

(Fig.8b, d). Similar to the VB case, the advancing modes, V1,

V2, V3, were computed as the experimentally-measured flat-

ground stride length scaled by the duration of the advancing

mode (0.5T for V1, 0.25T for V2, 0.25T for V3). For both VB

and NVB gaits, the initial angular and linear body velocities

were assumed to be zero at the beginning of each mode.

Representing robot state transitions in the state space allows

the features of the environment (e.g., obstacle dimension and

distribution) and the robot morphology (e.g., dimension and

Fig. 9. State transition vectors for each mode (S1, V1, S2, V2, from top to
bottom) within a full stride for gait G1, illustrated in the robot’s state space
(a-d) and the world frame (e-h). (a, e) and (c, g) represent S1 and S2, the
slipping modes for {RF, LF} and {RH, LH} leg pairs, respectively. The state
transition vectors for the slipping modes were computed as a sum of individual
leg state transition vectors from Fig. 8. (b, f) and (d, h) represent V1 and V2,
the advancing modes for RF, LF and RH, LH leg pairs, respectively. States
A1, A2, A3, A4 and B1, B2, B3, B4 represent the initial state of each
mode for the steady state with θf = 0° and θf = 35°, respectively. Color
schemes are the same as Fig. 8.

leg positions) to be fully encoded in the (θ, X̄) coordinate.

With this representation, the robot’s body-level dynamics

under simultaneous or sequential leg-obstacle collisions can be

directly computed and visualized in the state space, to facilitate

the understanding of obstacle-modulated robot dynamics (Sec.

IV-E, Sec. IV-F) and gait planning (Sec. V).

E. Model revealed mechanisms of gait-dependent steady states

and enabled prediction of gait-dependent “funnel” outlets

The stride-wise return maps could explain the

experimentally-observed passive robot orientations for

different gaits. For the case illustrated in Fig. 9, we noticed

that a robot that started at state A1 would return to the

same state after a full stride: q(A1) = F (q(A1)), where

q := (θ, X̄) represents the robot state. Similarly, a robot that

started at state B1 would return to B1 after each full stride.

The orientation angles of A1 and B1 were 0° and 35°, the

same angles as the robot was observed to passively converge

to in our locomotion experiments (Fig. 5c, first row). We refer
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Fig. 10. State transition vectors for each mode (S1, V1, S2, V2, S3, V3, from
top to bottom) within a full stride for gait G11, illustrated in the robot’s state
space (a-f) and the world frame (g-l). (a, g), (c, i) and (e, k) represent S1, S2,
and S3, the slipping modes for {RF}, {LH} and {LF, RH} legs, respectively.
The state transition vectors for the slipping modes were computed as a sum
of individual leg state transition vectors from Fig. 8. (b, h), (d, j), and (f, l)
represent V1, V2, and V3, the advancing modes for {RF}, {LH} and {LF,
RH} legs, respectively. States C1, C2, C3, C4, C5, C6 represent the initial
state of each mode for the steady state with θf = 19°. Color schemes are
the same as Fig. 8.

to state A1 and B1 as the fixed points4 [35] of the discrete,

obstacle-modulated robot dynamics. Similarly, stride-wise

fixed points can be identified by solving q = F (q) for NVB

gaits like G11 (Fig. 10, C1).

For any general quadrupedal gait, G = (φ1, φ2, φ3), we

could use its return map, F , to theoretically determine the

obstacle-modulated robot steady states. To do so, we construct

a directed graph that represents the robot’s state transition

under repeated strides, following the method reported in [34].

Each node of the graph represents a robot state, whereas each

directed edge represents the change of robot state within one

stride (i.e., F ). Once the directed graph was constructed, the

robot’s steady state could be identified by searching for self-

mapping nodes within the graph [34]. Using this method, the

steady state orientations could be predicted without having to

perform numerical simulation from the beginning to the end,

significantly reducing the computational effort required. This

reduced computational effort could allow small, simple robots

to assess obstacle interaction outcomes, and plan efficient

strategies.

To validate the model-predicted steady states, we theoret-

ically computed the steady-state orientation (Fig. 11, blue

filled markers) for G1 through G12, and compared against

the experiment-measured robot final orientations (Fig. 11, red

histogram bands) from the 864 trials. The intensity of the red

histogram bands represents the likelihood of experimentally

observing an averaged final orientation, θf .

P
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f 
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Fig. 11. Gait-dependent steady-state robot orientations for G1 through
G12. Blue markers represent model predicted stride-wise steady orientation,
whereas the red histogram bands represent the experimentally measured robot
steady orientation from the 864 trials, averaged for the last two gait cycles.
Experimental data for each gait include all 16 initial orientations tested. The
color scale of the red histogram bands represents the percentage of trials for
each gait where the θf was observed, whereas deeper red represents a larger
percentage.

The model-predicted steady-state robot orientations agreed

well with the experimental measurements for all general gaits

tested: the majority of high-intensity red histogram bands

are located within the adjacency (i.e., within 10°) of the

predicted steady-state orientations. We note that there were

a few model-predicted steady-state orientations that were not

observed from our experiments (e.g., G7, 62°; G8, 67°). This

is likely because the basins of attraction [35] of these steady

4For all results reported in this paper, the Poincare section of the return
map was defined as the beginning of the RF leg stance phase.
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states were relatively small5, and therefore the probability of

observing these steady states in experiments was low. With the

basin of attraction analysis reported in Sec. IV-F, one could

identify these steady states that were less likely to observe

experimentally.

These model-predicted steady states explained the

experimentally-observed dependence of passive robot

orientation on gaits (Sec. III-A), and allowed theoretical

prediction of these gait-dependent passive orientations. For

a small robot navigating in a field with densely-distributed

large, slippery obstacles, a model that can predict these

passively-stable orientations is extremely useful: knowing the

mapping from each gait to the passively-stable orientation

angle enabled by that gait, the robot does not have to “fight

against” the large obstacle disturbances, but instead could

simply execute a fixed gait to passively “flow” towards a

desired moving direction. For example, with a gait G1, a

robot starting at 50° could passively flow to 35°, whereas a

gait G3 would let the robot passively flow back from 35°

to 50°. Similarly, a robot could use a sequence of gaits to

flexibly change its moving directions, and follow desired paths

among the large, slippery obstacles, through the utilization of

obstacle disturbances (Sec. V).

F. Model revealed steady state convergence dynamics and en-

abled the computation of basins of attractions (funnel “inlets”)

In addition to predicting the steady states (i.e., “funnel

outlets”), the state transition vectors could also help re-

veal how robot states converge from an initial state to the

experimentally-observed steady state, and determine the basins

of attraction associated with each steady state. The basins of

attraction referred to the set of initial states that can passively

converge to each steady state (i.e., “funnel inlets” in Fig. 2).

Take gait G1 as an example, Fig. 12a(i) - a(vii) visualizes

how the distribution of robot states (colored points) evolved

over time. Following the state transition vectors, a robot start-

ing from all possible initial states (Fig. 12 a-(i)) would quickly

converge to few localized regions in the state space (Fig. 12

a, (iv) to (vii)). The orientation of these converged states (0◦,

±35◦, and ±90◦) were consistent with experiment-observed

θf . To visualize the collection of initial states that converged

to the same orientation, we colored the initial states in Fig.

12a-(i) based on the orientation of the final state that they

would converge to. These colored regions marked the basins

of attractions (funnel inlets) for the corresponding steady state

(funnel outlets). The predicted basins of attractions (Fig. 13

colored regions) agreed well with experiment measurements

(Fig. 6).

The basins of attraction explained the experimentally-

observed dependence of robot final orientations on its initial

states (Fig. 6). Fig. 12b,c shows the experiment recording of a

robot starting from two different initial states: (θ, X̄) = (20◦,

8.8cm) (corresponding to marker A in Fig. 12a-(i)), and (θ,

X̄) = (20◦, 6.0cm) (corresponding to marker B in Fig. 12a-

(i)). According to the predicted basins of attraction, a robot

5Simulation results suggested that the boundary of basins of attractions
were only 5° from the steady-state orientation

with initial state A would converge to a final orientation of 0◦,

whereas with initial state B the robot would converge to 35◦.

This is consistent with the experimental observations (Fig. 12b,

c). Using this prediction, we could also infer the robustness of

each steady state: steady states with large basins of attraction

may be less sensitive to intrinsic noises in the experiments,

allowing simple robots to robustly navigate complex terrains

by utilizing obstacle-interacting forces.

V. OBSTACLE-AIDED NAVIGATION BY COMPOSING GAIT

FUNNELS

In this section, we demonstrate that using different gaits, a

robot could “select” different funnels and “passively” converge

to different orientation angles under the obstacle forces without

needing any external steering.

A. Sequential connection of gait “funnels” to achieve desired

shape trajectory

The gait-dependent steady states offered a robust way for

robots to passively (i.e., without body-level steering) converge

to desired orientations. We hypothesize that by sequentially

switching through a number of gaits, a legged robot could

efficiently generate desired trajectory by utilizing obstacle-

interaction forces. This is especially useful for environments

where obstacle sizes are large as compared to robot leg

size, where it is challenging to treat obstacle forces as small

disturbances. In addition, since the steady states are stable and

are attracted from nearby states, the method is less sensitive

to sensor and actuator noises and therefore offers a great

opportunity for small robots with limited sensing and actuation

resources.

To select the gait sequence for the desired trajectory, we

search through the directed graph that encoded the model-

predicted steady states and associated basins of attractions

from Sec. IV, following method developed in [34]. Although

with only three specific virtual bipedal gaits, [34] demonstrated

that the directed graph based gait planner can successfully

identify possible gait sequences to connect from a given initial

robot state to a desired goal robot state.

Here we extend the graph based gait planner to include

any general quadrupedal gaits, (φ1, φ2, φ3), for obstacle-aided

locomotion and navigation. For each gait, steady state ori-

entations (funnel outlets) and associated basins of attractions

(funnel inlets) could be determined using the method discussed

in Sec. IV-E and Sec. IV-F. The gait planner then searched for

a sequence of funnels that when connected sequentially (Fig.

2) could allow the robot state to passively “flow” from a given

initial state to a desired end state.

To experimentally validate the effectiveness of the sequen-

tial gait composition method for obstacle-aided navigation,

we challenged the robot to produce three different shapes

of trajectories, letter “U”, “S”, and “C” (Fig. 14b) while

across the obstacle field, without any body-level steering. The

obstacle distribution and the initial state of the robot, (θ0,

X̄0), were given to the robot prior to the trial. Using the

model-predicted steady states (Fig. 11 blue markers) and their

corresponding basins of attractions (Fig. 13 colored regions)
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Fig. 12. Robot state transitions for a representative gait, G1, computed using the state transition vectors (a), and recorded from experiments (b, c). Colored
points in (a), from bottom to top plots, represent the evolving robot states, (θ, X̄), at t = 0s, 0.05s, 0.3s, 1.5s, 1.8s, 3.3s, 4.8s, respectively. Marker colors
represent different initial states that converge to the same steady-state orientation. Solid and dashed curves represent obstacle edges and center, respectively,
projected in the robot state space. Curve color represents the obstacle projection relative to different robot legs: red, green, purple, and black corresponding
to LF, RF, RH, and LH legs, respectively. Markers A and B in (a) represent two initial robot states with the same orientation (θ0 = 20°) and initial positions
only 2.8cm apart, but converged to two different steady-state orientations, 0° and 35°, respectively. Image sequences in (b) and (c) were recorded from the two
experiment trials with initial conditions corresponding to markers A and B in (a), respectively. Solid black circles represent legs in the stance phase, whereas
empty black circles represent legs in the swing phase. Black arrows indicate the obstacle forces exerted on each individual leg, and blue arrows indicate the
direction of robot orientation change due to obstacle forces.
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Fig. 13. Computed basins of attraction for G1, G11, G9, shown from top to
bottom, respectively. Black squares represent model-predicted steady states
determined through the stride-wise return map. Colored regions represent
basins of attraction associated with each steady state. Colors represent the
orientation angles of the corresponding steady states. The three horizontal
dashed lines in the top plot marked X̄0 = 0cm, 1cm, 5cm, corresponding to
the experiment initial conditions reported in Fig. 6.

for the twelve gaits, G1 through G12, the robot planned its

gait sequence for each desired trajectory before the traverse.

The planned gait sequence for the “S”-shaped trajectory,

G11 → G6 → G1 → G11 → G1 → G5 → G6, is illustrated in

Fig. 14a. The required initial state for the “S”-shaped trajectory

was θ0 = 70°, X̄0 = 3 cm (Fig. 14a, state a). The model

predicted that a G11 gait could allow the robot to passively

converge to θ∗1 = 62° (Fig. 14a, state b). Since state b is within

the basin of attraction of the next funnel (Fig. 14a, orange

region on G6 layer), the next planned gait, G6, would send

the robot to θ∗2 = 39° (Fig. 14a, state c). Similarly, the robot

subsequently switched through gaits G1, G11, G1, G5, and

G6, as its orientation “flowed” through the predicted “funnel

outlets” (i.e., steady-state orientations of each gait): θ∗3 = 0°

(Fig. 14a, state d), θ∗4 = −19° (Fig. 14a, state e), θ∗5 = −36°

(Fig. 14a, state f), θ∗6 = −17° (Fig. 14a, state g), and θ∗7 = 39°

(Fig. 14a, state h), respectively. This illustrates the “funnel”

concept depicted in Fig. 2: the outlet of each gait “funnel”

resides in the inlet of the next gait (e.g., , Fig. 14a, state g
located within the cyan regions on the G5 layer); as such, by

connecting these funnels one after another, the robot state was

constrained to flow through the desired waypoint states under

the modulation of obstacle forces.

Similar to the “S”-shaped trajectory, the gait planner re-

turned two different gait sequences: G1 → G11 → G6 →
G5 → G1 for the “U” shaped trajectory, and G11 →
G6 → G1 → G6 → G1 for the “C” shaped trajectory.

Robot trajectories recorded from the experiment (Fig. 14b)

demonstrated that the robot was able to successfully produce

all three desired trajectories simply by sequentially executing

the planned gaits.

We highlight that during the entire trial, no external sensing

or body-level steering was adopted. The robot simply executed

the planned gait in sequence, i.e., performing each gait for 3

strides before switching to the next. This demonstrated that

with the ability to predict the interaction outcomes of leg-

obstacle interactions, even an extremely simple robot could

effectively follow desired paths through the densely distributed

large obstacles (with diameters comparable with the robot

leg size). We also note that in Sec. III we only performed

experiments for initial orientations between 0 - 75 degrees, but

in the demonstration, the planner used model-predicted steady

states and initial states beyond this range. For these states, we

didn’t have any experiment data, and the planner solely relied

on our model prediction. This spoke to the predictive power

of our reduced-complexity model.

B. Extending the method to non-evenly-spaced obstacle field

In this section, we demonstrate how our method can be

extended beyond the simplified setting of evenly-spaced ob-

stacles. To do so, we challenged the robot to produce the same

“S”-shaped trajectory on a “slow-varying” obstacle field with

non-evenly-spaced obstacles. The new obstacle field consisted

of 4 segments, each segment containing 7 semi-cylindrical

obstacles. The obstacle spacing for the 4 segments were set to

different values: 2cm, 4cm, 5cm, and 7cm (Fig. 15a).

For regions within the same obstacle spacing (i.e., X <
XD −C and X > XD +C, where XD represents the starting

position of the new segment, and C is the robot’s half diagonal

length), the same method from Sec. IV and Sec. V could be

directly applied to compute the return map and perform the

gait planning.

For regions where the obstacle spacing varies from one to

another (i.e., X ∈ [XD−C,XD+C)), steady-state orientations

would no longer exist. However, the state transition vectors

could be computed in a similar manner to guide the gait

planning. As an example, the green rectangle in Fig.15b

highlights a representative region of varying obstacle spacing,

where the two legs (LF and RF) were within the 4cm spacing

region, and the other two legs (LH and RH) were within the

2cm spacing region. Due to the varying obstacle spacing, the

obstacle force, Fi(Xi), would exhibit different distribution for

each leg. However, the state transition vectors for each leg

could still be computed by integrate Eqn. 3 and Eqn. 4, as

illustrated in Sec. IV. Fig. 15c visualizes the state transition

vectors corresponding to the scenario shown in Fig. 15b. For a

given gait, G, these state transition vectors could be composed

to construct the directed graph for the transitional region. With
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Fig. 14. The planning (a) and experiment validation (b) of the obstacle-aided navigation. (a) visualizes the planned gait sequences for the robot to achieve
an ”S”-shaped trajectory. From top to bottom, each layer represents one gait: G11 → G6 → G1 → G11 → G1 → G5 → G6. The white circular
markers on each layer represent the predicted robot’s steady state under repeated obstacle collisions by maintaining the specific gait. The colored regions
surrounding the white circles represent the predicted basins of attraction of the steady state, i.e., the set of initial states that would be “attracted” to the
steady state. The colors of the basins of attraction represent the robot orientation angle at the steady state, as shown in the color bar. The three images in
(b) show the experimentally-recorded robot trajectories across the obstacle field for the three desired paths: “U”, “S”, and “C”. The solid black line is the
experimentally-recorded robot trajectory in the world frame, tracked by the motion capture cameras.

the directed graph, the same method from Sec. V could be

applied to search for the gait sequence that takes the robot’s

initial state to the desired state, for a desired trajectory.

We experimentally tested the robot’s trajectory across this

slow-varying obstacle field, with the model-planned gait se-

quence: G7 → G3 → G1 → G3 → G1 → G7. The gait

sequence was pre-programmed in the robot, and the robot

simply switched to the subsequent gait once a fixed number of

strides were completed. Experimentally-measured robot trajec-

tory (Fig. 15a) demonstrated that our method applied well on

the slow-varying obstacle field, allowing the robot to produce

the desired trajectory by utilizing obstacle disturbances.

This experiment demonstrated the feasibility for our meth-

ods to be extended beyond the simplified setting. Going

forward, for environments with more rapidly-varying obstacle

distributions, the state transition vectors and the open-looped

robot gaits to achieve a desired moving direction could be

computed similarly for a finite spatial segment (e.g., a few

steps ahead), and updated over time. For completely ran-

domized obstacle distribution, steady states would no longer

exist. As such, achieving robust open-loop navigation would

require a better understanding of the transitional dynamics.

The method to compute state transition vectors provided a

starting point to model the transitional dynamics, and to assess

the sensitivity of a trajectory to sensor and actuator noises.

VI. CONCLUSION
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Fig. 15. The experiment demonstration of obstacle-aided trajectory control across unevenly-spaced obstacles. (a) The “slow-varying” obstacle field consisting
of four segments of different spacing: 2 cm within J1, 3cm within J2, 5 cm within J3, and 7 cm within J4. Black line represents the experimentally-measured
robot trajectory across the obstacle field using the planned gait sequence: G7 → G3 → G1 → G3 → G1 → G7. (b) A schematic corresponding to the
obstacle area within the green box in (a), where LF, RF legs were within the obstacle region with spacing P2 and LH, RH legs within the obstacle area with
spacing P1. The green dash line marks the division line between two segments, denoted as XD . (c) The state transition vectors corresponding to the green
box zone marked in (a) and (b), for RF, LF, LH, RH leg from top to bottom.

The results presented in this paper revealed how different

gaits allow a multi-legged robot to elicit different interaction

forces from its environment. Furthermore, we show that this

understanding can allow a simple robot to plan gait sequences

to move towards desired directions by utilizing obstacle distur-

bances. This opens a new avenue for simple, low-cost robots to

cope with environments with large obstacles and perturbations:

instead of relying on canceling these large perturbations, a

simple robot could actively utilize these disturbances and

collisions to produce desired dynamics.

While this paper is still a beginning step towards the vision

of “obstacle-aided locomotion and navigation”, the results

from this paper could be applied to guide the morpholog-

ical and gait parameter selections for a variety of simple

robots [37], [38], [39] for them to effectively traverse their

environments with minimal sensing and computation. Even

for robots with better sensing and computation capabilities,

the understandings of robot-environment interaction could

allow environment to become part of the control resources, to

improve their locomotion effectiveness on complex terrains.

In addition, we envision that our results could help explore

questions beyond robotics, such as to explain animals’ gait

adaptation behaviors on rough terrain [31]. These explorations

could in turn inspire simple strategies for robots to navigate

challenging environments.

Given the simplicity of the model and the robustness of the

results, we envision that continued expansion on this “obstacle-

aided locomotion” strategy could open up many new avenues,

enabling future robots to flexibly interact with a variety of

complex real-world environments such as rocky hills, forests,

and earthquake rubble.
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