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ABSTRACT

With modern technology, the activity of thousands of neurons
in the brain can be recorded simultaneously. Such data can
potentially shed light on how neurons communicate with one
another. These neuronal interactions are often viewed under
the framework of functional connectivity, which is defined as
the statistical dependence between recorded neuronal activ-
ity. Several have proposed to use graphical models to esti-
mate functional connectivity between neurons directly from
neuronal recording data. However, one challenge that can
arise from this type of data that is not addressed by a tradi-
tional graphical model is the influence of dynamic latent brain
states on recorded neuronal activity, as the neurons recorded
in one experimental session constitute only a small subset of
all the neurons in the brain. These latent states should be ac-
counted for to get a more accurate estimate of functional con-
nectivity. In this paper, we introduce two models, the dynamic
mean operator (DYNAMO) and the dynamic covariance op-
erator (DYNACO) conditional Gaussian graphical models, to
infer functional connectivity from neuronal activity data af-
ter adjusting for dynamic latent brain states. We apply the
DYNAMO and DYNACO models to a variety of simulation
studies and demonstrate their superior performance over tra-
ditional, unconditional graphical models.

Index Terms— Latent variable conditional graphical
model, Gaussian graphical model, functional PCA, functional
connectivity

1. INTRODUCTION

A plethora of new neuroimaging technologies have allowed
for measurements of large-scale neuronal activity in vivo [3].
Given such data, a fundamental question in modern neuro-
science is how individual neurons in the brain interact with
each other. Such neuronal interactions are often considered
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under the framework of functional connectivity, which is de-
fined as the statistical (as opposed to structural) relationships
between different neurons [1]. Results from studies of func-
tional connectivity can be used to help researchers better un-
derstand how brain processes information and how different
parts of the brain communicate in ways that may not be cap-
tured solely by examining physical synaptic connections.

Modern technology has allowed for the simultaneous
recording of the activity of thousands of neurons in localized
chunks of the brain [3]. Functional connectivity is often esti-
mated through calculating Pearson correlations between the
activity of pairs of neurons [2]. The calculation of individual
pairwise correlations is generally a poor choice for analyz-
ing such high-dimensional neuron activity data, though, as it
does not capture the full dependence structure amongst all of
the observed neurons. One of the ways that multi-neuronal
relationships can be more accurately modeled is through
undirected graphical models. These models have been used
in a wide variety of applications, including genetics, fMRI,
and cell networks [5,6] to explore network structures and con-
ditional dependency relationships in data in high-dimensional
settings. In the neuroscience setting, graphical models can be
used to examine conditional dependence structures between
neurons by identifying pairs of neurons that are predictive
of each other’s behavior given the information from all of
the other neurons observed in the data, helping shed light on
functional connectivity structures.

Unconditional graphical models, though, may not be able
account for all of the potential interactions between neurons
in the brain. First, the number of neurons that can be observed
simultaneously is still an extremely small proportion of the
total number that are in the brain. These unobserved neurons
could have an influence on the activities of the observed neu-
rons in the data. Additionally, other dynamics, such as visual
stimuli and physical movements, could affect how neurons in-
teract with one another. Previous neuroscientific studies have
tried to account for such latent effects using static conditional
latent variable graphical models to estimate the dependency
structure from neuronal activity data [3,4].
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However, other studies have shown that latent brain state
effects can change over time. Thus, the effects of these la-
tent states have on both the functional connectivity between
observed neurons in the data as well as between unobserved
and observed neurons can be dynamic [7], something that the
static latent variable graphical model methods do not account
for. It may be more pertinent to instead apply dynamic la-
tent variable conditional graphical model methods, similar to
those introduced in [8, 9], to estimate functional connectivity
from high-dimensional neuronal activity data. For this spe-
cific application, we would like to estimate a static graph that
serves as a summary of functional connectivity between ob-
served neurons after accounting for dynamic latent states that
represent the collective effects of the unobserved neurons in
the brain on the conditional relationships between observed
neurons.

Our goal for this paper is to investigate the potential use of
dynamic latent variable conditional graphical models to esti-
mate a static graph to represent functional connectivity be-
tween recorded neurons in the presence of dynamic latent
brain states. Below, we introduce two possible representa-
tions of this problem, along with estimation methods for both.
In particular, we modify existing dynamic latent variable con-
ditional graphical model methods to estimate a static graph
after adjusting for dynamic latent variables, rather than a dy-
namic graph as done in the original methods.

The rest of the paper is organized as follows. In section 2,
we describe in detail the models we use to represent func-
tional connectivity adjusted for dynamic latent brain states
and the associated estimation methods. We examine the per-
formance of our proposed methods as well as traditional, un-
conditional graphical models in a variety of simulation studies
in section 3. We conclude with a discussion of our results and
potential future work in section 4.

2. DYNAMIC LATENT VARIABLE GRAPHICAL
MODELS AND ESTIMATION

Below, we present two different approaches to estimate condi-
tional independence relationships between observed neurons
adjusted for dynamic latent brain states. We assume in both of
these methods that the latent brain states vary smoothly with
respect to time and are low rank, while the functional connec-
tivity of the observed neurons conditioned on the latent brain
states is static over the observed times in the data.

2.1. Dynamic Mean Operator (DYNAMO) Conditional
Gaussian Graphical Model

Our DYNAMO model is closely related to the conditional
Gaussian graphical model (cGGM) proposed in [19], which
aims to estimate a sparse precision matrix representing con-
ditional independence relationships among variables of in-
terest after adjusting for the effects of covariates on the
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mean structure. However, one key distinction between our
DYNAMO model and the cGGM is that the effects of dy-
namic latent brain states in our case are not directly ob-
servable, whereas the covariates in the cGGM are usually
observed quantities. The DYNAMO model assumes that
the time-varying latent brain states have an effect on the
mean of activity of the observed neurons and that these ef-
fects change smoothly as a function of time. Formally, let
XpxN = [X1,X2,...,Xy,...,Xn] be the observed activity
for p neurons at N observed time points. Each column of X
can then be modeled as:

x; = by + €,

€~ N(0,©0").
where
B,xn = [b1,bg, ...
with
|IB||« <7 and trace(BQB”) < a.

Here, the columns of B quantify the effects of the la-
tent brain states on the observed neurons at time point ¢ =
1,..., N. Bis constrained to be low rank with ||B||. < 7 be-
cause the number of latent brain states is relatively small com-
pared to the number of observed neurons. In addition, as the
latent brain states are assumed to vary smoothly across time,
we force the columns of B to change smoothly over time
with trace(BQBT) < a, where Qnxx = 0 is a smooth-
ing operator such as the second or fourth differences ma-
trix [15]. Columns of E,xn = [e1,...,€n] are realiza-
tions of the conditional structures of the functional connec-
tivity of observed neurons given the effects of the latent brain
states B. €1, ..., €y are assumed to be independently drawn
from the same time-invariant p-variate Gaussian distribution
N(0,,©7"). The sparse, static precision matrix ©,, = 0
represents the true functional connectivity structures of ob-
served neurons and ® is assumed to be independent of the
latent brain dynamics B.

Our ultimate goal in this case is to estimate the sparse,
static precision matrix ®, while also inferring and adjusting
for the effects of latent brain states via the matrix B. To this
end, we could formulate our estimation problem in a penal-
ized maximum likelihood framework to simultaneously esti-
mate the underlying dynamic mean structure and the condi-
tional graph. This would then become a biconvex problem
in ® and B, which could be solved via a flip-flop algorithm.
However, such an iterative algorithm is known to be compu-
tationally intensive.

For simplicity, we propose a one-flop implementation as
an approximation to the flip-flop algorithm. This one-flop
estimation procedure is much less computationally intensive
compared to flip-flop procedures. Specifically, with © fixed
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as the identity matrix, our problem essentially becomes the
functional principal component analysis (PCA) problem [15],
which produces estimates of functional principal loadings \Y%
by solving the generalized eigenvalue problem (XTX)V =
af2V. As aresult, we can obtain estimates of the dynamic
latent effects B = XV KVT with columns of V K consisting
of the first K functional principal loadings. Subsequently, we
can obtain an estimate of the sparse, static functional connec-
tivity graph C) by fitting a graphical model, such as the graphi-
cal Lasso [14] or neighborhood selection approach [18], to the
residuals E = X — B after adjusting for estimated dynamic
latent effects. Thus, the model gives us estimates of both ef-
fects of dynamic latent brain states B and a static conditional
graph C) representing the functional connectivity of observed
neurons. The method is analogous to centering the data be-
fore fitting a graphical model, except that functional PCA is
used to remove a smooth, time-varying mean structure. Our
one-flop estimation procedure is summarized in Algorithm 1.

Algorithm 1: One-Flop DYNAMO Algorithm
: X € RPN

Input
(i) Estimate dynamic latent effects via functional PCA:

B = XV KV%, where columns of VK consist of the first
K functional principal loadings (the optimal K can be deter-
mined by a scree plot);

(ii) Estimate static functional connectivity graph:

Obtain estimated precision matrix © by fitting a graphical
model to the residual E = X — B;

return B, o.

2.2. Dynamic Covariance Operator (DYNACO) Condi-
tional Gaussian Graphical Model

As opposed to the DYNAMO model, in which we assume that
the dynamic latent brain states affect the mean observed neu-
ral activity, the DYNACO model we introduce in this section
posits that the dynamic latent brain states directly affect the
functional connectivity of the observed neurons by changing
the conditional relationships between latent brain states and
observed neurons. The model follows from the Schur comple-
ment approach described in [8, 10]. As above, let X,,x n =
[X1,...,Xx] be the observed activity for ¢ = 1,...,p neu-
rons att = 1,..., N observed time points. In this situation,
we model columns of X as:

X ~ N(Op7 et_l)v

@t:S—Lt.
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The distribution of x; in the model has a dynamic
marginal precision matrix @; which changes at every time
point. The ©®; can be decomposed into the sum of a dynamic,
low rank, smoothly time varying matrix L; and a static, sparse
conditional precision matrix S. In this case, L; serves as a
summary of collective effects of the unobserved neurons in
the brain on the conditional relationships among observed
neurons and is assumed to vary smoothly over time. In addi-
tion, L; is assumed to be low rank because we hypothesize
that the number of collective latent brain states is relatively
small compared to number of observed neurons. For the
DYNACO model, we are mostly interested in estimating the
static, sparse conditional precision matrix S, which serves as
the estimate of the functional connectivity among observed
neurons conditional on effects of dynamic latent brain states.

Our approach to estimation for the above model is an
extension of the latent variable graphical model proposed
in [8] as well as its time-varying counterparts proposed
in [10, 11]. In order to restrict the sparse component S to
be static while allowing the low rank latent components L,
to change smoothly over time, we adopt the approach in [16]
and use a kernel smoothed estimate of the covariance matrix

3 . K )xax] . . ‘ st
3 = W at each time point ¢ with IC(%)
given by a symmetric nonnegative kernel function of band-

width h. Following from [8, 10], we propose the following
penalized maximum likelihood approach to estimate both S

and Ly, ..., Ly given a sequence of kernel-smoothed empir-
ical covariance matrices X1, ..., XN
N
minimize — log (det(S — L)) + trace(34(S — Ly)
Tinimige ) , | = log (det )
N
+ 73 (Ll + alS] o (1)

t=1

Here, S% | denotes the set of positive definite matrices of
size p and {L;} represents the sequence of dynamic, low rank
matrices L, ..., Ly. ||.||1,0f is defined as an ¢;-penalty on
the off-diagonal terms of the matrix, which encourages spar-
sity in estimate of the sparse functional connectivity graph
S of observed neurons conditional on effects of dynamic la-
tent brain states. In addition, ||.||. denotes the nuclear norm,
which encourages low-rankness in estimates of dynamic la-
tent effects {L;}. Both « and 7 are nonnegative regulariza-
tion parameters, which determine the sparsity levels of S and
ranks of {L,}, respectively.

In order to decouple some of the terms in problem (1)
that are difficult to jointly optimize and develop a tractable
algorithm to solve problem (1), we adopt the Alternating Di-
rection Method of Multipliers (ADMM) framework described
in [12] as well as the variable splitting scheme used in [10].
Specifically, we introduce a set of auxiliary variables {W;}
and recast problem (1) as follows:
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N
minimize — log (det(®,)) + trace(3, ¥
S,{Lt}y{\Pt}eSiJr;[ g (det(¥:)) (2 t)]
N
+ 73 Lell + IS 1o )
t=1

subjectto ¥, —(S—L;)=0,Vt=1,...,N

The corresponding augmented Lagrangian in scaled form can
be written as:

‘cp(sv {Lt}v {‘I’t}’ {Ut})
N
[ — log (det(¥,)) + trace(3,¥,)]

=1
N
+TZ || Ll + o|S]]1,0t
t=1
P N
+ S (% - S+ Lo+ U — |[U13)
t=1

where {U;} are the set of scaled dual variables. Follow-
ing from [10, 12], we give Algorithm 2 to solve problem
(1): proxN%H.HM“(A) is the proximal operator for the off-
diagonal ¢1-norm, which performs soft-thresholding [17] of
the off-diagonal elements of matrix A to encourage spar-
sity in the solutions. In addition, ProXz . (A) denotes the

proximal operator for the nuclear norm, which performs soft-
thresholding of the singular values of matrix A to encourage
the solutions to be low rank. Empirical convergence of Al-
gorithm 2 is measured by the norm of the primal and dual
residuals [12]. Because problem (1) is convex, Algorithm 2
is guaranteed to converge to a global solution [12].

3. NUMERICAL STUDIES

We now compare the DYNAMO and DYNACO models to
unconditional graphical model estimates from the Glasso or
neighborhood selection methods in a variety of simulation
studies. In the DYNAMO case, we evaluate performance of
the one-flop algorithm and present results from using both
neighborhood selection and the Glasso to estimate O after
adjusting for the mean effects of dynamic latent brain states.
The Glasso and neighborhood selection graphs are estimated
using the huge package in R.

We generate data from 4 different simulation scenarios,
with 5 replicate data sets for each. Scenarios 1 and 2 are
generated from the DYNAMO model with N = 500 and
p = 50 and N = 500 and p = 200, respectively. Sim-
ilarly, scenarios 3 and 4 are generated from the DYNACO
model with N = 500 and p = 50 and N = 500 and p =
200, respectively. In each simulation scenario, true sparse
precision matrices are simulated to have a connected small-
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Algorithm 2: ADMM algorithm for DYNACO
Imput : X e RPN o, 7>0,p>0;

Initialize: Primal variables to identity matrices and
dual variables to zero matrices;

Precompute: 3 V= 1,...,N;
while not converged do
(1) Update W, (Vt in parallel):
(a) Compute the eigenvalue decomposition:
rAR @) =%, - p(s® ~ L - uP)
(b) Update ¥,:
v = ir(ﬁf (— Ay 4/ (AF)? +4p1) (X G))"
(ii) Update sparse S:
Lo g k40 100, ®
k k+1 k k
gk+1) :pmx%\l‘\h,m‘r(ﬁgmt +L;7 +U0")
(iii) Update low rank L; (V¢ in parallel):
L§k+1) = prox. . (S(k+1) _ \I,gk+1) _ ng))
(iv) Update dual variables U, (V¢ in parallel):

U§k+1) _ ng) + (‘I’gk+1) _ S(k+]) + L§k+1))

end
return S =S¢+ T, = LEkH)Nt =1,...,N

world structure, which has been widely postulated as a pos-
sible structure for connections in the brain [13]. The latent
dynamics are simulated to vary over time according to some
smoothly oscillating functions with various frequencies and
amplitudes. Specifically, for the DYNAMO model, we create
an p x N latent variable matrix B of rank 2 whose columns
vary smoothly over time according to 2 smooth sinusoids of
different frequencies along with a p X p sparse precision ma-
trix ® with a connected small-world topology. We then gen-
erate €1,...,ex & N(0,,©" ") and create the simulated
data matrix X,xny = B+ E with E,xny = [€1,...,€n].
For the DYNACO model, we generate N p x 2 matrices H;
that represent the dynamic conditional relationships between
the observed and unobserved variables, as well as a p X p
static, sparse conditional precision matrix S. Following the
simulation studies in [10], which assumes the individual la-
tent dynamics are independent from one another, we simulate
the true dynamic marginal precision matrices at each time
point ®; = S — L; where L; = HthT. The simulated
data are then sampled from multivariate Gaussian distribu-
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Table 1. Results from simulation scenarios 1 and 2 averaged over 5 replicates. Best performing methods are boldfaced.

Scenario 1 (DYNAMO p = 50, N = 500) | Scenario 2 (DYNAMO p = 200, N = 500)
Method Recall Precision F-1 Recall Precision F-1
Glasso Oracle 0.15(0.01) | 0.16 (0.01) 0.15 (0.01) 0.15(0.01) 0.16 (0.01) 0.15(0.01)
NS Oracle 0.30 (0.03) | 0.30(0.03) 0.30 (0.03) 0.28 (0.01) 0.27 (0.01) 0.27 (0.01)
Glasso 0.55(0.01) | 0.21(0.01) 0.30 (0.01) 0.68 (0.01) 0.13 (0.01) 0.21 (0.01)
NS 0.04 (0.04) | 0.19(0.17) 0.07 (0.07) 0.05 (0.03) 0.47 (0.12) 0.08 (0.05)
Dynamo Glasso Oracle | 0.71(0.02) | 0.71 (0.02) 0.71 (0.02) 0.50 (0.03) 0.50 (0.03) 0.50 (0.03)
Dynamo NS Oracle 0.84 (0.02) | 0.84(0.02) 0.84 (0.02) 0.81 (0.03) 0.82 (0.01) 0.82 (0.02)
Dynamo Glasso 0.85(0.02) | 0.62(0.02) 0.72 (0.01) 0.87 (0.01) 0.45 (0.01) 0.60 (0.01)
Dynamo NS 0.88 (0.02) | 0.80(0.03) 0.84 (0.02) 0.16 (0.02) 0.88 (0.02) 0.27 (0.02)
Dynaco Oracle 0.28 (0.18) | 0.28 (0.18) 0.28 (0.18) 0.05(0.01) | 0.055(0.01) | 0.0525(0.01)
Dynaco Stability 0.29 (0.01) | 0.34(0.01) 0.32 (0.01) 0.18 (0.01) 0.22 (0.02) 0.19 (0.01)

Table 2. Results from simulation

scenarios 3 and 4 averaged over 5 replicates. Best performing methods are boldfaced.

Scenario 3 (DYNACO p = 50, N = 500) Scenario 4 (DYNACO p = 200, N = 500)

Method Recall Precision F-1 Recall Precision F-1
Glasso Oracle 0.46 (0.04) | 0.48 (0.03) 0.47 (0.04) 0.46 (0.03) | 0.43(0.08) 0.44 (0.03)
NS Oracle 0.52 (0.04) | 0.53(0.04) 0.53 (0.03) 0.46 (0.03) | 0.44(0.01) 0.45 (0.01)
Glasso 0.76 (0.06) | 0.34(0.02) 0.47 (0.02) 0.00 (0.00) | 0.00 (0.00) 0.00 (0.00)
NS 0.67 (0.04) | 0.45(0.01) 0.54 (0.02) 0.66 (0.01) | 0.23(0.02) 0.34 (0.02)
Dynamo Glasso Oracle | 0.47 (0.03) | 0.47 (0.03) 0.47 (0.03) 0.44 (0.04) | 0.44 (0.05) 0.44 (0.04)
Dynamo NS Oracle 0.52 (0.02) | 0.52(0.02) 0.52 (0.02) 0.45(0.03) | 0.47 (0.05) 0.46 (0.04)
Dynamo Glasso 0.77 (0.06) | 0.34(0.01) 0.47 (0.01) 0.67 (0.01) | 0.17 (0.02) 0.27 (0.03)
Dynamo NS 0.73 (0.03) | 0.42(0.01) 0.54 (0.01) 0.68 (0.01) | 0.22(0.01) 0.33(0.02)
Dynaco Oracle 0.58 (0.03) | 0.59 (0.03) 0.58 (0.03) 0.33(0.04) | 0.39(0.05) 0.36 (0.04)
Dynaco Stability 0.53(0.02) | 0.69 (0.02) 0.60 (0.02) 0.30(0.02) | 0.35(0.03) 0.32 (0.02)

tions x; ~ N(Op,G;l)Nt =1,...
data matrix X,y = [X1,...,Xn].

, N and arranged into a

In each of the simulation scenarios, we present results
from unconditional graphical models (i.e. Glasso, neighbor-
hood selection) and the DYNAMO and DYNACO models,
using both oracle model selection based on true graph spar-
sity and latent variable rank (where applicable) as well as
data-driven model selection methods. The extended Bayes in-
formation criteria (EBIC) and rotational information criteria
(RIC) are used for data-driven model selection for the Glasso,
neighborhood selection, and DYNAMO models, while sta-
bility selection with block bootstrapping is used for the DY-
NACO model. The average recall, precision, and F-1 scores
from the model estimates for each of the simulation scenarios,
as well as the standard error for the aforementioned metrics
across 5 replicate data sets for each scenario, are shown in
Table 1 and 2. In scenarios 1 and 2, the estimates from the
DYNAMO model achieve much higher F-1 scores than the
estimates from both the unconditional graphical models and
the DYNACO model. The DYNACO model performs much
better than the unconditional graphs in scenario 3, while DY-
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NAMO still attains decent F-1 scores in both scenario 3 and 4.
Such simulation results show that the DYNAMO model can
perform relatively well in the presence of either dynamic la-
tent mean structure or dynamic latent brain states that directly
influence the covariance structures of observed neuronal ac-
tivity and that the DYNAMO model is more robust to different
situations and to perturbations in data.

The true adjacency matrices and the corresponding esti-
mated adjacency matrices from the best performing models
in scenario 1 are shown in Fig. 1. It is clear that both DY-
NAMO and DYNACO outperform the unconditional graphi-
cal models in terms of recovery of the true graph structure. In
particular, the graph estimated by the DYNAMO model most
closely captures the true graph structure while the DYNACO
model still gives a relatively more accurate estimate of the
true graph structure compared to the unconditional graphical
models. On the other hand, the unconditional neighborhood
selection graph estimate fails to detect the small world struc-
ture of the simulated functional connectivity graph. In the
neuroscience context, such unconditional graphical models
could fail to detect highly interconnected groups of neurons,
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Fig. 1. Simulation results from simulation scenario 1. From the leftmost panel to the rightmost panel, we have the true adjacency
matrix according to ®, the best estimated unconditional graphs (from neighborhood selection with oracle model selection), the
best graph estimated by DYNAMO (with neighborhood selection and oracle model selection), and the best graph estimated
by DYNACO (with oracle model selection). We can see that both DYNAMO and DYNACO outperform the unconditional
graphical models as DYNAMO and DYNACO achieve higher true positive rates with relatively low false positive and false
negative rates.

which may otherwise shed light on organizations of neural  perspective. Investigation can be done to see if the estimated
circuits. functional connectivity graphs from dynamic latent variable
conditional graphical models on real-world neuronal activity
recording data provide neuroscientifically meaningful find-
ings compared to unconditional graphical models. Further
work can also be done to see if different variants of graphical
model methods could be used in the neuroscience field, and to
possibly develop new classes of graphical models that will be
more useful specifically to neuroscientific problems. In con-
clusion, the application of graphical models in neuroscience
has the potential to help us gain insight into how neurons
in the brain communicate with one another, and our work
is a step towards better understanding the types of graphical
models that should be used in the field.

4. DISCUSSION

In this work, we have presented two potential frameworks
and estimation procedures for dynamic latent variable condi-
tional graphical models, the DYNAMO and DYNACO mod-
els, for estimating a static graph for functional connectivity
from neuronal activity data while accounting for the poten-
tial effects of unobserved neurons, modeled as dynamic la-
tent brain states. The DYNAMO model adjusts for dynamic
latent brain states in terms of smoothly changing mean struc-
tures while the DYNACO model accounts for dynamic latent
states which have a time-varying influence on the covariance
structure of observed neurons. We demonstrate the effective-
ness of our proposed models through a variety of simulation
studies. In particular, our studies reveal that the DYNAMO
model could potentially provide more accurate estimates of
functional connectivity graph of observed neurons after ad-
justing for dynamic latent brain states compared to traditional,
unconditional graphical models. Moreover, the DYNAMO
model is easy to implement and produce estimates that appear
to be more robust to different generative models, especially in
higher dimensional cases.

There are many potential methodological extensions to
our work that can be explored further in future work. For
example, neuronal activity data are often collected along with
auxiliary information, such as visual and auditory stimuli
or body movements. Incorporating such auxiliary informa-
tion in corresponding models could potentially provide more
accurate estimation of the underlying dynamic latent brain
states. Moreover, there are also further studies that can be
built on the work done in this paper from a neuroscientific
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