
Enabling End-Users to Implement Larger Block-Based Programs

Nico Ritschel
ritschel@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Felipe Fronchetti
fronchettl@vcu.edu

Virginia Commonwealth University
Richmond, United States

Reid Holmes
rtholmes@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Ronald Garcia
rxg@cs.ubc.ca

University of British Columbia
Vancouver, Canada

David C. Shepherd
shepherdd@vcu.edu

Virginia Commonwealth University
Richmond, United States

ABSTRACT

Block-based programming, already popular in computer science

education, has been successfully used to make programming ac-

cessible to end-users in applied domains such as the oeld of ro-

botics. Most prior work in these domains has examined smaller

programs that are usually simple and ot a single screen. However,

real block-based programs often grow larger and, because end-users

are unlikely to break them down into separate functions, they often

become unwieldy. In our study, we introduce a function-centric

block-based environment to help end-users write programs that

require a large number of blocks. Through a user study with 92

users, we evaluated our approach and found that while users could

successfully complete smaller tasks with and without our approach,

they were both quicker and more successful with our function-

centric method when tackling larger tasks. This work demonstrates

that adding scafolding can encourage the systematic use of func-

tions, enabling end-users to write larger programs with block-based

programming environments, which can contribute to the solution

of more complex tasks in applied domains.

ACM Reference Format:

Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David

C. Shepherd. 2022. Enabling End-Users to Implement Larger Block-Based

Programs. In 44th International Conference on Software Engineering Com-

panion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 3 pages. https://doi.org/10.1145/3510454.3528644

1 PROBLEM OUTLINE

Programming has become an integral part of the work of millions

of employees. However, as statistics of the US Department of Labor

[13] show, most of these employees are not professional developers.

They are end-user programmers who have not generally received

formal education or training for performing programming-related

tasks. Because end-user programmers have little programming

experience and knowledge, they need tools that are speciocally

designed with their needs in mind [4, 17]. The most popular form of

beginner-friendly programming tools are block-based programming

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proot or commercial advantage and that copies bear this notice and the full citation
on the orst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9223-5/22/05.
https://doi.org/10.1145/3510454.3528644

environments. Block-based environments combine simplioed high-

level programming languages with a user interface that uses visual

blocks to represent program syntax and a drag and drop interface

to enable the blocks to be intuitively composed. These mechanisms

allow blocks to avoid many of the the frustrations that beginner

programmers traditionally experience [9].

While block-based environments were originally conceived for

computer science education [9], they have been demonstrated to

support end-user programmers in other domains. For example, end-

users have automated their homes [6], developed augmented reality

apps [10], and programmed industrial robots [16] using block-based

environments. Previous evaluations of end-users creating block-

based programs found them to be easy to learn and use [6, 10, 14,

15], but these evaluations were almost exclusively based on small

programs that ot on a single screen. Code that ots on a single

screen without scrolling is easier to understand; linting and coding

styles have long been used to restrict the length of coding units in

professional software development [1, 3, 5]. Thus, to write a longer

program that is still understandable, developers decompose their

program into short, related units of functionality (i.e., functions),

which requires experience and expertise that end-users may not

typically have.

Although most block-based environments provide procedural

abstractions, end-users rarely structure their programs using these

abstractions. Instead, they create programs that exhibit proper-

ties commonly understood to be problematic, like long methods

and code clones [8, 11]. While block-based languages support ab-

straction and decomposition in theory, they do little to encourage

their use, and so end-users do not decompose their programs, even

though decomposition is crucial when creating larger programs.

This work addresses this issue and presents a domain-specioc block-

based programming environment that makes program decompo-

sition accessible to end-users in the oeld of robotics. Inspired by

previous work on block-based industrial robot programming [16],

we chose the programming of mobile robots as our use case, as

these robots are commonly used in warehouses and in small manu-

facturing facilities and could potentially be programmed by end-

users [12]. Although the mobile robot tasks we chose were concep-

tually simple—moving boxes from station to station or re-arranging

a stack of boxes—successful completion required programs larger

than a single screen (50+ blocks), which would naturally be better

solved using functions.

347

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



ICSE ’22 Companion, May 21–29, 2022, Pitsburgh, PA, USA Ritschel, Froncheti, Holmes, Garcia, and Shepherd

Figure 1: Proposed scafolded programming system with side-by-side canvases. The left canvas shows the main program while

the right one shows the body of the currently selected task(s). Users can test programs using the simulator on the right side.

2 APPROACH OUTLINE

We propose a programming system for mobile robots that supports

functions in a scafolded style. We believe that domain-specioc

scafolding can provide explicit support for users as they apply

functional decomposition to their program. Figure 1 shows our sys-

tem, which features a strict one-level hierarchy of domain-specioc

functions, which we call tasks. Tasks are always assigned to a single,

localized workstation and only contain commands that the robot

can carry out within the scope of that workstation. Our system

further supports this hierarchical design with an environment that

splits the programming environment into side-by-side canvases,

where one provides the user with an overview of their program

and the other shows the content of the currently selected task.

Our hypothesis is that this scafolded approach to program de-

composition and code navigation ofers end-users a simplioed, yet

powerful way to structure their programs. We have used the frame-

work of 13 Cognitive Dimensions of Notation (CDN)1 [7], which pro-

vides terminology for analyzing visual languages, to motivate and

analyze the presented design. Most notably, the presented approach

to function scafolding allows end-users to program without having

to plan and decide on the structure of their programs in advance.

This reduces the amount of Premature Commitment that end-users

face, as well the Error-proneness of manual re-structuring of code

in the absence automated refactoring tools as they are ofered by

professional development environments. The system9s side-by-side

canvases support the overall design by improving the Visibility of

task-specioc code and separating it from the high-level program

structure. Unlike previous approaches [2], this structure does not

require the end-users to perform the Hard Mental Operation of

manually setting up and maintaining such a hierarchy.

3 EVALUATION AND RESULTS

To gather insights on how end-users structure their programs in

traditional block-based environments, and to compare our approach

1CDN terminology is underlined in the remainder of this section.

to the traditional way of programming, we conducted a random-

ized online experiment2. We recruited 92 end-user participants

via Amazon Mechanical Turk (AMT) and randomly assigned each

participant to use either our scafolded programming environment

or a similar, traditional block-based programming environment.

We asked participants to complete three interactive tutorials that

taught them how to use the respective systems and how to use

functions and tasks to structure their programs. We then asked

participants to complete a series of three tasks with increasing dio-

culty to determine if and how they could solve each task. The orst

task was small enough to ot on a single screen while the other two

were longer. The second task was substantially easier to identify

program structure than the third one.

In line with previous studies, we found that end-users from both

cohorts performed well on the orst task that ot on a single screen.

For the second task, we found that 60% of those participants that

used a traditional programming environment did structure their

programs, and 69% of those chose a structure that was aligned with

our scafolded approach. For the onal task, only 28% of the partici-

pants using a traditional environment structured their programs,

with no clearly dominating style present. Despite a median length

of 65 blocks per program, the remaining participants wrote their

entire program as a single, linear sequence of commands.

Overall, participants who structured their programs performed

substantially better. Those participants who used the scafolded

environment that required them to structure their programs had a

20% higher success rate in the second task and a 29% higher success

rate for the third task. We therefore conclude that the scafolded

environment helped participants signiocantly when they solved

larger programming tasks.

4 ACKNOWLEDGEMENT

This work was funded by the NSF under grant NRI-2024561.

2A complete version of our experiment is available online at:
https://researcher2021.github.io/mobile-robots/

348



Enabling End-Users to Implement Larger Block-Based Programs ICSE ’22 Companion, May 21–29, 2022, Pitsburgh, PA, USA

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.

2011. An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti
Code, on Program Comprehension. In 2011 15th European Conference on Software
Maintenance and Reengineering. 181–190.

[2] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaVi-
ola Jr. 2010. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2503–2512.

[3] Sooa Charalampidou, Apostolos Ampatzoglou, and Paris Avgeriou. 2015. Size
and cohesion metrics as indicators of the long method bad smell: An empirical
study. In Proceedings of the 11th International Conference on Predictive Models and
Data Analytics in Software Engineering. 1–10.

[4] Brian James Dorn. 2010. A case-based approach for supporting the informal com-
puting education of end-user programmers. Ph.D. Dissertation. Georgia Institute
of Technology.

[5] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman, Amsterdam.

[6] Mateus Carvalho Gonçalves, Otávio Neves Lara, Raphael Winckler de Bettio, and
André Pimenta Freire. 2021. End-user development of smart home rules using
block-based programming: a comparative usability evaluation with programmers
and non-programmers. Behaviour & Information Technology (2021), 1–23.

[7] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a 8cognitive dimensions9 framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[8] Felienne Hermans, Kathryn T Stolee, and David Hoepelman. 2016. Smells in
block-based programming languages. In Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). 68–72.
[9] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-

mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[10] José Miguel Mota, Iván Ruiz-Rube, Juan Manuel Dodero, and Inmaculada
Arnedillo-Sánchez. 2018. Augmented reality mobile app development for all.
Computers & Electrical Engineering 65 (2018), 250–260.

[11] Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Hermans.
2017. Software clones in scratch projects: On the presence of copy-and-paste in
computational thinking learning. In International Workshop on Software Clones
(IWSC). 1–7.

[12] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. 2011. Intro-
duction to autonomous mobile robots. MIT press.

[13] US Department of Labor. 2021. Occupational outlook handbook.
https://www.bls.gov/ooh/ (2021).

[14] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22–25.

[15] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C
Shepherd, and Diana Franklin. 2018. Evaluating CoBlox: A comparative study
of robotics programming environments for adult novices. In Proceedings of the
Conference on Human Factors in Computing Systems (CHI). 1–12.

[16] David Weintrop, David C Shepherd, Patrick Francis, and Diana Franklin. 2017.
Blockly goes to work: Block-based programming for industrial robots. In Pro-
ceedings of the Blocks and Beyond Workshop (B&B). 29–36.

[17] SusanWiedenbeck, Patti L Zila, and Daniel S McConnell. 1995. End-user training:
an empirical study comparing on-line practice methods. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 74–81.

349


