
LETTER Communicated by Terrence Sejnowski

Learning Fixed Points of Recurrent Neural Networks
by Reparameterizing the Network Model

Vicky Zhu
vzhu@babson.edu
Babson College, Mathematics, Analytics, Science, and Technology Division,
Wellesley, MA 02481, U.S.A.

Robert Rosenbaum
Robert.Rosenbaum@nd.edu
University of Notre Dame, Department of Applied and Computational Mathematics
and Statistics, Notre Dame, IN 46556, U.S.A.

In computational neuroscience, recurrent neural networks are widely
used to model neural activity and learning. In many studies, !xed points
of recurrent neural networks are used to model neural responses to static
or slowly changing stimuli, such as visual cortical responses to static vi-
sual stimuli. These applications raise the question of how to train the
weights in a recurrent neural network to minimize a loss function evalu-
ated on !xed points. In parallel, training !xed points is a central topic in
the study of deep equilibrium models in machine learning. A natural ap-
proach is to use gradient descent on the Euclidean space of weights. We
show that this approach can lead to poor learning performance due in part
to singularities that arise in the loss surface. We use a reparameterization
of the recurrent network model to derive two alternative learning rules
that produce more robust learning dynamics. We demonstrate that these
learning rules avoid singularities and learn more effectively than stan-
dard gradient descent. The new learning rules can be interpreted as steep-
est descent and gradient descent, respectively, under a non-Euclidean
metric on the space of recurrent weights. Our results question the com-
mon, implicit assumption that learning in the brain should be expected
to follow the negative Euclidean gradient of synaptic weights.

1 Introduction

Recurrent neural network models (RNNs) are widely used in machine
learning and computational neuroscience. In machine learning, they are
typically used to learn dynamical responses to time series inputs. In com-
putational neuroscience, RNNs are sometimes used to model dynamical
responses of neurons to dynamical stimuli (Durstewitz et al., 2000; Vogels
et al., 2005; Sussillo & Abbott, 2009; Sussillo, 2014; Rajan et al., 2016; Song

Neural Computation 36, 1568–1600 (2024)
https://doi.org/10.1162/neco_a_01681

© 2024 Massachusetts Institute of Technology

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

mailto:
mailto:
https://doi.org/10.1162/neco_a_01681


Learning Fixed Points 1569

et al., 2017; DePasquale et al., 2018; Yang et al., 2019; Pyle & Rosenbaum,
2019; Yang & Wang, 2020; Dubreuil et al., 2022; Márton et al., 2022; Brenner
et al., 2022; Valente et al., 2022; Durstewitz et al., 2023), but they are also of-
ten used to model stationary, !xed-point neural responses to static inputs.
For example, many phenomena observed in visual cortical circuits, such as
surround suppression, are widely modeled by stationary states of compu-
tational models in which recurrent connections model lateral, intralaminar
connectivity (Ferster & Miller, 2000; Ozeki et al., 2009; Rubin et al., 2015;
Ebsch & Rosenbaum, 2018; Curto et al., 2019; Baker et al., 2020).

A natural approach to learning !xed points of RNNs is to use direct gra-
dient descent on the recurrent weight matrix after the network has con-
verged toward a !xed point. A direct application of this approach, called
“truncated backpropagation through time,” can be computationally expen-
sive because it requires the application of backpropagation on a computa-
tional graph unrolled over many time steps. Moreover, backpropagation
through time is dif!cult to implement or approximate with biologically
plausible models of learning (Lillicrap & Santoro, 2019).

Alternative approaches use the implicit equation for !xed points to de-
rive the exact gradients of the loss with respect to the weight matrix at
the !xed point, or some approximations to this quantity (Pineda, 1987;
Almeida, 1990; Williams & Peng, 1990; Ollivier et al., 2015; Liao et al., 2018).
Studies of deep equilibrium models have generalized the training of !xed
points beyond fully connected RNNs to more general classes of models
with implicitly de!ned !xed points (Bai et al., 2019, 2020; Winston & Kolter,
2020). These approaches can also be computationally expensive and dif-
!cult to implement in biologically plausible models because the gradient
derived from the implicit equation involves matrix inverses, which either
need to be computed directly or approximated using, for example, iterative
methods.

In this work, we additionally show that gradient descent on the recurrent
weight matrix can lead to poor learning performance because the associated
loss landscape has singularities and implicit biases that make it poorly con-
ditioned for gradient-based learning.

In mentioning “gradient descent” above, we were implicitly referring to
the Euclidean gradient on weights, which is standard practice. However,
several authors have argued that the default use of the Euclidean gradient
in gradient descent is not necessarily optimal for studying arti!cial or bi-
ological learning. In machine learning, non-Euclidean gradients informed
by information theory, such as the natural gradient, are superior in some
settings (Amari, 1998; Amari & Douglas, 1998; Martens, 2020). Moreover,
in computational neuroscience, where synaptic weights describe physical
properties, the use of a Euclidean gradient implicitly assumes a speci!c
choice of physical units and parameterization of the model (Surace et al.,
2020; Kreutzer et al., 2022; Pogodin et al., 2023). Different units or differ-
ent parameterizations of a biological model will yield different gradients

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1570 V. Zhu and R. Rosenbaum

and ultimately different learning dynamics. For example, synaptic weights
in the brain can be parameterized in units of conductance, current, the in-
tegral of current across time, voltage, the integral of voltage across time,
the probability of vesicle release, or more detailed biophysical parameters.
Each of these parameterizations potentially produces gradients pointing in
different directions. These issues were explored in more depth by Surace
et al. (2020). Hence, gradient descent using the Euclidean gradient of the
loss with respect to synaptic weights under a speci!c choice of parameter-
ization might not capture learning dynamics or learned representations in
biological neuronal networks.

In this work, we derive two new learning rules for !xed points of re-
current neural networks by reparameterizing the network model. The !rst
learning rule can be viewed as steepest descent with respect to a non-
Euclidean metric. The second rule approximates the !rst one, but it is more
ef!cient and can be interpreted as gradient descent on a non-Euclidean ge-
ometry. We demonstrate empirically that these learning rules exhibit more
robust and ef!cient learning dynamics than standard, Euclidean gradi-
ent descent. Robustness is achieved by avoiding singularities that plague
standard gradient descent. Ef!ciency is achieved by avoiding the expen-
sive computation of matrix inverses to compute weight updates. We also
!nd that the parameter updates produced by the new learning rules point
in substantially different directions in parameter space than the negative
Euclidean gradient.

Our results provide a new, more effective learning rule for training !xed
points in RNNs with potential applications for improving the state of the art
for deep equilibrium models (Bai et al., 2019). Moreover, the learning rules
we derive could be combined with standard gradient descent to improve
the training of models with slowly changing input features and long time
dependencies, since these properties are approximated by !xed points. In
addition, our results question the common, implicit assumption in compu-
tational neuroscience that learning should follow the negative Euclidean
gradient of synaptic weights.

Code to apply the proposed learning rules and produce all !g-
ures in this letter can be found at https://github.com/RobertRosenbaum/
LearningFixedPointsInRNNs.

2 Background and Theory

2.1 Model Description. We consider a recurrent neural network (RNN)
model of the form (Dayan & Abbott, 2001; Gerstner et al., 2014; Sussillo &
Abbott, 2009; Sussillo, 2014)

τ
dr
dt

= −r + f (Wr + x), (2.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

https://github.com/RobertRosenbaum/LearningFixedPointsInRNNs


Learning Fixed Points 1571

where r(t) ∈ RN is a vector of model !ring rates, τ > 0 is a time constant,
W ∈ RN×N is a recurrent connectivity matrix, x ∈ RN models external input
to the network, and f : R → R is a nonnegative, nondecreasing activation
function or f-I curve, which is applied pointwise. For a time-constant in-
put, x(t) = x, !xed points are de!ned by setting dr/dt = 0 in equation 2.1 to
obtain an implicit equation,

r = f (Wr + x). (2.2)

The stability of !xed-point !ring rates from equation 2.1 is determined by
the eigenvalues of the Jacobian matrix,

J = 1
τ

[−I + GW], (2.3)

where G = diag( f ′(z)) is a diagonal matrix with entries

Gj j = f ′(z j )

and z = [Wr + x] is the vector of neural inputs or preactivations evaluated
at their !xed points. Speci!cally, a !xed point is hyperbolically stable if all
eigenvalues of J have a negative real part.

We can alternatively consider a recurrent neural network model in dis-
crete time of the form

r(n + 1) = f (Wr(n) + x(n)). (2.4)

Equation 2.1 is more common in computational neuroscience, while equa-
tion 2.4 is more common in machine learning, but they are closely related.
Equation 2.4 has the same !xed points as equation 2.2, but hyperbolic sta-
bility is obtained when eigenvalues of GW have a magnitude less than 1.
Hence, if a !xed point is stable for equation 2.4, it is also stable for equa-
tion 2.1, but the converse is not true. In this work, we focus on the contin-
uous system in equation 2.1, but our approach and learning rules can also
be applied to the discrete system in equation 2.4.

In machine learning applications, RNNs are often used to learn map-
pings from input time series, x(t), to output time series, r(t), and they are
often trained using backpropagation through time. In computational neu-
roscience, RNNs of the form in equation 2.1 are often studied for their
!xed-point properties—for example, to study orientation selectivity and
surround suppression among other phenomena (Ferster & Miller, 2000;
Ozeki et al., 2009; Rubin et al., 2015; Ebsch & Rosenbaum, 2018; Curto et al.,
2019; Baker et al., 2020), but the weights in these studies are often cho-
sen by hand, not learned. As a combination of these perspectives, we are

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1572 V. Zhu and R. Rosenbaum

interested in learning mappings from static inputs, x(t) = x, to their associ-
ated !xed points, r, given by equation 2.2.

Speci!cally, consider a supervised learning task with a cost function of
the form

J(W ) = 1
m

m⎠

i=1

L(ri, yi),

where xi is an input, yi is a label, and ri = f (Wri + xi) is the !xed point
that the network converges to under input xi. The loss function, L(r, y),
could in principle be any real-valued function. In examples below, we con-
sider mean-squared error and categorical cross-entropy loss functions. This
learning task presents unique challenges because !xed points are de!ned
implicitly by equation 2.2 instead of explicitly as a function of xi, and also
because we only wish to learn stable !xed points. The data set {(xi, yi)}i can
be the entire data set in the case of full-batch learning or a mini-batch in the
case of stochastic learning. Updates to W during learning can be written as

W ← W + "W

where

"W = 1
m

m⎠

i=1

"Wi.

Here, "Wi is an update rule that can depend on xi, yi, Wi, and ri. Below, we
derive and compare three different update rules, "Wi

1, "Wi
2, and "Wi

3, for
minimizing J.

2.2 Gradient Descent on the Recurrent Weight Matrix. The !rst learn-
ing rule we consider is direct gradient descent of the loss surface with re-
spect to W using the Euclidean gradient,

"Wi
1 = −ηW∇W L(ri, yi), (2.5)

where ηW > 0 is a learning rate and ∇W refers to the standard, Euclidean
gradient with respect to W . If the !xed point, ri, is hyperbolically stable,
then the Jacobian matrix from equation 2.3 has eigenvalues with negative
real part, so I − GiW = −τJ is invertible and we have (see appendix A.1)

"Wi
1 = −ηW Gi [I − GiW

]−T
(∇ri L)

(
ri)T

, (2.6)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1573

where Gi = diag( f ′(zi)) evaluated at the !xed point and U−T denotes the
inverse transpose of a matrix, U. If Gi

j j (= 0 for all j, then Gi is invertible so
equation 2.6 can be simpli!ed to get

"Wi
1 = −ηW

[[
Gi]−1 − W

]−T
(∇ri L)

(
ri)T

. (2.7)

Evaluating equations 2.6 and 2.7 directly is computationally expen-
sive because they require the calculation of a matrix inverse. Truncated
backpropagation through time and other methods provide alternative ap-
proaches to approximating "W1 (Pineda, 1987; Almeida, 1990; Williams &
Peng, 1990; Ollivier et al., 2015; Liao et al., 2018), but note that truncated
backpropagation through time requires the storage of a large computational
graph, making it memory inef!cient. Moreover, we show in the examples
that follow that using "W1 to update weights can lead to poor learning per-
formance. We next propose an alternative update rule based on a nonlinear
reparameterization of the model.

2.3 A New Learning Rule from Reparameterizing the RNN. To moti-
vate the reparameterized model, !rst consider the special case of a linear
network de!ned by

f (z) = z.

In this case, G = I is the identity matrix, and equation 2.2 for the !xed point
can be written as

r = [I − W]−1x.

This is a linear model in the sense that r is a linear function of x, but the
nonlinear dependence of the cost on W (especially a nonlinearity involv-
ing matrix inverses) produces complicated and computationally expensive
updates from equation 2.6.

Instead of performing gradient descent with respect to W , we propose
instead to !rst apply a nonlinear change of coordinates to obtain new
parameters,

A = F(W ) := [I − W]−1. (2.8)

If we parameterize the model in terms of A instead of W , then !xed points
satisfy the standard linear model,

r = Ax, (2.9)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1574 V. Zhu and R. Rosenbaum

which is linear in the input, x, and the parameters, A. Gradient descent of
the loss with respect to A gives the standard update rule for a linear, single-
layer neural network,

"Ai = −ηA∇AL(ri, yi)

= −ηA (∇ri L)
(
xi)T

= −ηA (∇ri L)
(
ri)T

A−T , (2.10)

where we distinguish between the learning rate, ηA, used for the repa-
rameterized model and the learning rate, ηW , used for the original pa-
rameterization. Equation 2.10 gives a gradient-based update to the new
parameter, A, but our original RNN model is parameterized by W . To up-
date our original parameters, we need to change the "A from equation 2.10
back to W coordinates. To do this, note that we want to !nd a value for "W
that satis!es A + "A = F(W + "W ) whenever A = F(W ) and "A comes
from equation 2.10. In other words, the update to W is given by

"Wi
2 = F−1(F(W ) + "Ai)) − W

= −
[
[I − W]−1 − ηA (∇ri L)

(
ri)T

[I − W]T
]−1

+ I − W, (2.11)

where F−1(A) = I − A−1 is the inverse of F(W ).
To summarize this approach, if equation 2.11 is used to update param-

eters, W , under the linear !xed-point model, r = f (Wr + x) with f (z) = z,
then the learning dynamics will be identical to standard linear regression
of parameters, A, on the model r = Ax.

Since gradient descent with respect to A in equation 2.10 represents the
steepest descent of the loss surface in the new parameter space of A and
since equation 2.11 gives the same updates in the original parameter space
of W , the learning rule in equation 2.5 corresponds to the steepest descent
of the cost, J(W ), using a non-Euclidean metric de!ned by

d(W1,W2) = ‖F(W1) − F(W2)‖, (2.12)

where ‖B‖ =
√

Tr(BBT ) is the Euclidean or Frobenius norm on matrices.
Note that d(·, ·) is a metric when restricted to the space of all matrices, W ,
for which I − W is invertible. Hence, if we restrict to W that yields hyperbol-
ically stable !xed points, equation 2.5 corresponds to the steepest descent
with respect to a non-Euclidean metric. However, the metric d is not nec-
essarily generated by an inner product, so equation 2.11 cannot be called
gradient descent since the notion of a gradient requires a metric induced by
an inner product. In section 2.4, we show that an approximation to "Wi

2
produces gradient descent with a non-Euclidean gradient. Moreover, in

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1575

section 3, we present examples showing that "W2 is better suited to learn-
ing !xed points than the standard approach to gradient descent represented
by "W1. But !rst, we need to generalize the derivation of "W2 to arbitrary
activation functions.

Equation 2.11 was derived for the speci!c case f (z) = z, but we can ex-
tend it to a model with arbitrary f (z). To do so, we !rst linearize equation 2.2
to obtain a linearized !xed-point equation,

r = G[Wr + x], (2.13)

which has a closed-form solution given by

r = [I − GW]−1Gx. (2.14)

Note, again, that I − GW is invertible whenever r is a hyperbolically stable
!xed point.

Given equation 2.14, a natural choice of new parameters would be

A = [I − GW]−1G, (2.15)

because it would again produce a (linearized) model of the form r = Ax.
Note that under the linear model f (z) = z, we have G = I, and recover the
parameterization in equation 2.8, so equation 2.15 is a generalization of
equation 2.8.

However, the update rule to W derived from gradient descent on A from
the parameterization in equation 2.15 is susceptible to blow-up or singular-
ities when some values of Gj j = f ′(z j ) become small in magnitude or zero.
This occurs because small changes to A would require large changes to W
when Gj j is small. And in the extreme case that Gj j = 0 for some j, updates
to W do not affect r (i.e., "r j = 0 for any "W under the linear approxima-
tion r = G[Wr + x]), so we cannot derive a "W to match a given "A, that
is, the reparameterization in equation 2.15 is ill posed. See appendix A.2 for
more details on these problems with this particular reparameterization.

To circumvent these problems, we instead take the parameterization

A = F(W ) := [G − GWG]−1 (2.16)

in place of equation 2.15. Under the linearized !xed-point equation in equa-
tion 2.13, we then obtain the linear model

r = GAGx,

which generalizes equation 2.9. This equation is linear in x and in the new
parameters, A. Hence, learning A is again a linear regression problem, albeit

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1576 V. Zhu and R. Rosenbaum

with the extra G terms. These extra G terms prevent singularities and blow
up when Gj j terms become small or zero (see appendix A.2). Under the sim-
ple linear model f (z) = z, we have G = I and recover the parameterization
in equation 2.8, so that equation 2.16 (like equation 2.15) is a generalization
of equation 2.8.

Note that each input (i.e., each i) will potentially have a different gain
matrix, Gi = diag( f ′(zi)), so each sample will have a potentially different
value of Ai = [Gi − GiWGi]−1 as well. The gradient-based update of the loss,
L(ri, yi), with respect to Ai for each sample becomes

"Ai = −ηA∇Ai L(ri, yi)

= −ηAGi (∇ri L) (ri)T [Gi]−1A−T .

Using the same approach for deriving equation 2.11, we can again derive
an update to W given by

"Wi
2 = F−1(F(W ) + "Ai) − W

= −
[[

I − GiW
]−1

Gi − ηA
[
Gi]2

(∇ri L) (ri)T [
I − GiW

]T
Gi

]−1

+
[
[Gi]−1 − W

]
. (2.17)

This update can only be evaluated directly in the situation where Gi
j j (= 0

for all j so that the inverse of the gain matrix, G, exists. However, note
that [Wi

2] jk → 0 as Gi
j j → 0, as expected, so in situations where Gi

j j = 0, it
is consistent to take [Wi

2] jk = 0. Note also that equation 2.17 is equivalent to
equation 2.11 whenever G = I, as expected, since equation 2.17 generalizes
equation 2.11 to the case of arbitrary f .

We additionally remark that we considered another reparameterization
given by

A = F(W ) = [I − WG]−1, (2.18)

which gives the linearized model

r = GAx.

The update rule derived from equation 2.18 avoids the blow-up of up-
dates when Gj j is small or zero (similar to equation 2.17 derived from
equation 2.16). Moreover, equation 2.18 has a nice interpretation because
linearizing the !xed-point equation for z = Wr + x = W f (z) + x gives the
simple expression z = Ax under equation 2.18. However, we found empir-
ically that the learning rules derived from equation 2.18 tend to underper-
form those derived from equation 2.16, so we use equation 2.16.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1577

2.4 A Simpler Learning Rule from Linearizing the Reparameterized
Rule. The reparameterized rule in equation 2.17 is a rather complicated
learning rule, and the matrix inverses can be computationally expensive to
compute or approximate. If we assume that ηA > 0 is small, then we can ap-
proximate equation 2.17 by applying Taylor expansion to linear order in ηA.
This gives the linearized parameterized rule (see appendix A.3 for details),

"Wi
3 = −ηA

[
I − WGi] Gi (∇ri L) (ri)T [

I − GiW
]T

[I − GiW]. (2.19)

In contrast to equations 2.6 and 2.17 for "Wi
1 and "Wi

2, equation 2.19 for
"Wi

3 does not require the computation of matrix inverses. Like "Wi
1 and

"Wi
2, "Wi

3 satis!es "Wjk → 0 whenever Gj j → 0, but unlike equation 2.17
for "Wi

2, equation 2.19 for "Wi
3 can be evaluated directly when Gj j = 0 for

some j.
The update rule "Wi

3 converges to "Wi
2 as in the limit of small learn-

ing rate, ηA → 0, and the remainder terms are quadratic in ηA. Therefore,
for suf!ciently small learning rates, the two learning rules should behave
similarly (which we will verify empirically below). At larger learning rates,
their behavior might differ. At the end of appendix A.3, we use the Taylor
coef!cients to derive a more precise condition on how small ηA must be for
the learning rules to agree.

Notably, "Wi
3 can be interpreted as gradient descent of the loss function

with a non-Euclidean gradient. To see why this is the case, !rst note that
"Wi

3 is related to "Wi
1 according to

"Wi
3 = Bi"Wi

1C
i, (2.20)

where

Bi = [I − WGi][I − WGi]T

and

Ci = [I − GiW]T [I − GiW].

Here and for the remainder of this section, we take ηA = ηW = η to high-
light the relationship between the two update rules, but constant scalar co-
ef!cients do not affect these results.

Using equation 2.20, we may conclude that "Wi
3 is equivalent to gradient

descent of the loss with respect to W using a non-Euclidean gradient. To
explain this statement in more detail, note that the gradient of L(ri, yi) with
respect to W depends on the choice of metric or geometry (Surace et al.,
2020). Given an inner product, 〈·, ·+a, on RN×N, the gradient of a function,
F : RN×N → R, on the geometry imposed by 〈·, ·+a evaluated at W ∈ RN×N is

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1578 V. Zhu and R. Rosenbaum

the unique matrix ∇a
W F ∈ RN×N such that for every U ∈ RN×N (Spivak, 2018;

Surace et al., 2020),

〈∇a
W F,U+a = lim

ε→0

F(W + εU ) − F(W )
ε

.

The standard Euclidean gradient, ∇ = ∇E , on matrices is given by taking
the geometry produced by the Euclidean or Frobenius inner product,

〈U,V+E =
⎠

jk

UjkVjk = Tr(UVT ).

Recall that "Wi
1 is de!ned by the Euclidean gradient,

"Wi
1 = −η∇E

W L(ri, yi),

where L(ri, yi) is interpreted as a function of W . We claim that

"Wi
3 = −η∇B

W L(ri, yi), (2.21)

where ∇B
W is the gradient under the geometry de!ned by the inner product,

〈U,V+B = Tr(B−1UC−1VT )

= 〈B−1U,VC−1+E .

Now note that we can use the cyclic property of the trace operator to write

〈U,V+B = Tr(B−1UC−1VT )

= Tr
(
[I − WG]−T [I − WG]−1U[I − GW]−1[I − GW]−TVT)

= Tr
(
[I − WG]−1U[I − GW]−1[I − GW]−TVT [I − WG]−T)

= 〈LU,LV+E,

where L : RN×N → RN×N is a linear operator on N × N matrices de!ned by

L(U ) = [I − WG]−1U[I − GW]−1.

Hence, 〈·, ·+B can be viewed as a Euclidean inner product on linearly trans-
formed coordinates. This con!rms that 〈·, ·+B de!nes an inner product on
square matrices whenever [I − WG] and [I − GW] are nonsingular.

For notational convenience here and below, we do not write the explicit
dependence of B, C, or L on i, but they do depend on i through Gi. In other

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1579

words, there are distinct matrices, B and C, and therefore distinct inner
products, 〈·, ·+B, at each gradient descent iteration.

Given equation 2.20, we can prove equation 2.21 by showing that

∇B
W L = B

[
∇E

W L
]

C. (2.22)

To show equation 2.22, !rst de!ne the N × N standard basis matrices 1 jk ∈
RN×N entrywise by

1 jk
j′k′ =

{
1 j = j′ and k = k′

0 otherwise

for j, k = 1, . . . , N. Now compute the inner product of the gradient with 1 jk,
〈[
∇BL

]
, 1 jk〉

B =
〈
B−1 [

∇BL
]
, 1 jkC−1〉

E

= Tr
(

B−1 [
∇BL

]
C−1 [

1 jk]T
)

=
N⎠

n=1

[
B−1 [

∇BL
]

C−11k j]
n,n

=
N⎠

n,m=1

[
B−1 [

∇BL
]

C−1]
n,m [1k j]m,n

=
[
B−1 [

∇BL
]

C−1]
jk , (2.23)

where the last line follows from the fact that 1k j
n,m = 1 when n = k and m = j,

and it is equal to zero for all other j, k. But we also have, from the de!nition
of a gradient,

〈[
∇BL

]
, 1 jk〉

B = lim
ε→0

J(W + ε1 jk) − J(W )
ε

= ∂J
∂Wjk

=
[
∇EL

]
jk . (2.24)

Since equations 2.23 and 2.24 apply for all indices j, k, we may conclude
that

B−1 [
∇BL

]
C−1 =

[
∇EL

]

and therefore that

[
∇BL

]
= B

[
∇EL

]
C,

which concludes our proof.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1580 V. Zhu and R. Rosenbaum

In summary, if W is updated according to "Wi
3 from equation 2.19, then

this is equivalent to performing gradient descent on the loss with respect
to the weight matrix under the geometry de!ned by the new inner prod-
uct, 〈U,V+B. We next present examples showing that this geometry is better
suited to learning W than gradient descent with respect to the standard Eu-
clidean geometry. Speci!cally, "Wi

3 learns more robustly than "Wi
1.

3 Experiments and Results

We next evaluate and interpret each of the learning rules already derived
on two different learning tasks.

3.1 Learning Fixed Points in a Linear Model. For demonstrative pur-
poses, we !rst consider an example of linear regression with mean-squared
error loss. Speci!cally, we consider f (z) = z with

L(r, y) = ‖r − y‖2,

where ‖ · ‖ is the Euclidean norm on RN. Note that G = I is the iden-
tity in this case. We de!ne the N × m matrices, X =

[
x1 x2 . . . xm

]
, Y =[

y1 y2 . . . ym
]
, and R =

[
r1 r2 . . . rm

]
= [I − W]−1X. The cost function can

be written as

J(W ) = 1
m

∥∥ [I − W]−1X − Y
∥∥2

. (3.1)

It is useful to also write the cost in terms of the parameters A = [I − W]−1

to get a standard quadratic cost function,

JA(A) = 1
m

‖AX − Y‖2 . (3.2)

For this problem, minimizers of J(W ) and JA(A) can be found explicitly. Be-
fore continuing to empirical examples, we derive and discuss these explicit
minimizers.

3.1.1 Computing Explicit Minimizers in a Linear Model. In the under-
parameterized case (N ≤ m when all matrices full rank), JA(A) in 3.2 has
a unique minimizer de!ned by

A∗ = YX+,

where X+ = XT (XXT )−1 is the Moore-Penrose pseudo-inverse of X when
N ≤ m. Therefore, J(W ) has a unique minimizer at

W∗ = I − [A∗]−1 = XXT (YXT )−1

under the assumption that A∗ is invertible.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1581

The overparameterized case (N > m when matrices are full rank) is more
relevant and interesting. In this case, there are in!nitely many choices of W
and A for which J(W ) = 0 and JA(A) = 0. The problem of choosing a solution
to JA(A) = 0 is a standard least squares problem, and a common approach
is to take

A∗ = YX+,

where X+ = (XTX )−1XT is the Moore-Penrose pseudo-inverse of X when
N > m. It is tempting to use this value of A∗ and then take W∗ = I − [A∗]−1.
However, note that A∗ is the solution to AX = Y that minimizes the Frobe-
nius norm of A, that is,

A∗ = argmin
A

‖A‖ s.t. AX = Y.

Therefore, W∗ = I − [A∗]−1 represents a solution, W , that minimizes the
norm of A = [I − W]−1. Since the Jacobian matrix is given by J = (−I +
W )/τ = −A−1/τ , stability is promoted by W having a small spectral radius
(all eigenvalues of W must have a real part less than 1 for stability). Hence,
W∗ = I − [A∗]−1 is a poor choice for W∗. Minimizing the Frobenius norm
of A will tend to push the eigenvalues of A toward zero, which can lead
to large eigenvalues of W = I − A−1 and J = −A−1/τ , promoting unstable
!xed points. Instead, to !nd a good optimizer, W∗, we can !nd solutions
that minimize the norm of W instead of A. To this end, we can solve

W∗ = argmin
W

‖W‖ s.t. [I − W]−1X = Y.

To solve this problem, we rewrite it in a more standard form:

W∗ = argmin
W

‖W‖ s.t. WY = Y − X.

This problem has the solution

W∗ = [Y − X]Y+, (3.3)

where Y+ = (YTY)−1YT is the Moore-Penrose pseudo-inverse of Y when
N > m. This is the solution with minimal Frobenius norm on W and is there-
fore more likely than I − [A∗]−1 to have a small spectral radius and therefore
more likely to give stable !xed points. Hence, equation 3.3 provides a good
optimizer in the overparameterized case (N > m).

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1582 V. Zhu and R. Rosenbaum

3.1.2 Visualizing the Loss Landscape of a Linear Model. For empirical exam-
ples, we !rst generated inputs, xi, independently from a gaussian distribu-
tion and generated targets yi using a ground-truth weight matrix, Ŵ , and
adding noise. Speci!cally, we de!ne

X ∼ σxZN×m,

Y ∼
[
I − Ŵ

]−1
X + σyZN×m, (3.4)

where σx = 0.1 controls the magnitude of the inputs, σy = 0.01, and each
ZN×m represents an N × m matrix of independent, standard, gaussian ran-
dom variables. The ground-truth weight matrix is generated by

Ŵ ∼ σw√
N

ZN×N.

Following Girko’s circular law, the eigenvalues of Ŵ lie approximately
within a circle of radius σw with high probability (Girko, 1985). Hence, we
take σw = 0.5 < 1 to control the spectral radius of the circle to be less than 1,
so that all eigenvalues of the Jacobian matrix, J = (−I + Ŵ )/τ , are negative
and !xed-point !ring rates are stable under the ground-truth parameters,
Ŵ .

The cost landscape, J(W ), cannot easily be visualized as a function of W
for N > 1 because W has N2 dimensions, so even N = 2 would be dif!cult
to visualize. To help visualize J(W ), we !rst plotted it on a random line
segment passing through W∗ in RN×N. Speci!cally, we de!ned the param-
eterized function

W (t) = W∗ + ct√
N

ZN×N, (3.5)

where c = 2.5 scales the maximum magnitude of the perturbation and t was
varied from −1 to 1 to create the visualization of J(W (t)) (see Figure 1A).
This corresponds to plotting J(W ) along a one-dimensional slice of the space
RN×N on which W lives. Note that the true minimizer, W = W∗, is sampled
when t = 0. The values of W sampled by the process can produce stable
or unstable !xed points. Making the approximation W∗ ≈ Ŵ , we have that
ρ(W (t)) ≈

√
σ 2

w + c2t2 and therefore an approximate stability condition is
given by |t| <

√
1 − σ 2

w/c ≈ 0.346.
Figure 1A shows the resulting cost curve for !ve random values of Z,

with the blue dashed lines marking the approximate stability boundary.
The cost is relatively well behaved within the boundary but poorly con-
ditioned outside the boundary because of the singularities produced by the
matrix inverses in equation 3.1. Speci!cally, outside of the stability region,
the spectral radius of W is larger than 1, so some eigenvalues are near 1 in

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1583

Figure 1: Visualizing the cost landscape for a linear model. (A) The cost function
J(W (t)) as a function of t from equation 3.5. This represents the cost evaluated
along !ve random line segments in RN×N, each passing through W∗ at t = 0.
Two blue dashed lines show the stability boundary, |t| = 0.346. The vertical axis
is cut off at J = 1000 to better visualize the curves. Blue and black circles show
stable and unstable initial conditions used for learning. (B) The cost function
J(W (t1, t2)) from equation 3.6. This represents the cost evaluated on a randomly
oriented square with center at W∗. The color axis is cut off at J = 1000.

magnitude. As a result, the [I − W]−1 in equation 3.1 can lead to very large
values of J(W ).

To further visualize the loss landscape, we repeated the procedure above
in two dimensions by sampling values of W from a random plane passing
through W∗. Speci!cally, we de!ned the parameterized function,

W (t1, t2) = W∗ + c√
N

(t1Z1 + t2Z2), (3.6)

where Z1, Z2 ∼ NN×N(0, 1), t1 and t2 were each varied from −1 to 1 to cre-
ate the visualization of J(W (t)), and c = 2.5 scales the perturbation (see
Figure 1B). Note that W (t1, t2) = W∗ when t1 = t2 = 0, so the center of the
square corresponds to the minimum cost, J = 0. The approximate stability

condition becomes
√

t2
1 + t2

2 <
√

1 − σ 2
w/c = 0.346, so the approximate sta-

bility boundary is a circle (see Figure 1B, dashed blue curve). Singularities
create intricate ridges of large cost outside of the stability boundary (see
Figure 1B).

In summary, Figure 1 shows that the cost landscape, J(W ), is extremely
poorly conditioned outside of the stability region, that is, when W has a
spectral radius larger than 1. Note, however, that the effective cost land-
scape, JA(A), of the reparameterized model is a simple quadratic landscape,
given by equation 3.2. Gradient-based learning according to "W1 must tra-
verse the poorly conditioned landscape from Figure 1. But the learning
dynamics of the reparameterized rule, "W2, are equivalent to those pro-
duced by A traversing a comparatively well-behaved quadratic landscape.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1584 V. Zhu and R. Rosenbaum

Figure 2: Performance of three different learning rules for a linear regression
problem. (A) The cost function, J(W ), from equation 3.1 for !ve different learn-
ing rates, η = ηW , using direct gradient descent on the weight matrix, "Wi

1 from
equation 3.7. (B) Same as panel A, but for the reparameterized learning rule,
"Wi

2, from equation 3.8 with η = ηA. (C) Same as panel B, but for the linearized
rule, "Wi

3 from equation 3.10.

We show in empirical examples below that this difference helps "W2 and
its linear approximation, "W3, perform more robustly than "W1.

3.1.3 Gradient Descent on the Recurrent Weight Matrix in a Linear Model.
We !rst perform direct gradient descent on J with respect to W using "W1.
The gradient-based update rule from equation 2.7 can be written as

"W1 = 1
m

m⎠

i=1

"Wi
1

= −2ηW

m
[
I − WT]−1

[R − Y] RT . (3.7)

Empirical simulations show relatively poor learning performance (see Fig-
ure 2A). Learning is slow for small learning rates, but larger learning rates
fail to converge to good minima. Recall that the true minimum is zero be-
cause the model is overparameterized. We next show that the linearized
approximation to "W2 performs similarly well.

3.1.4 Learning Using the Reparameterized Rule in a Linear Model. For this
linear example, the reparameterized learning rule from equations 2.11 and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1585

2.17 can be written as

"W2 = [I − W] −
(

[I − W]−1 − 2ηA

m
(R − Y)XT

)−1

. (3.8)

Recall that the learning dynamics produced by equation 3.8 are equivalent
to those produced by learning the standard quadratic cost function, JA(A),
along with the standard gradient-based update rule,

"A = −2ηA

m
(AX − Y)XT , (3.9)

which is often called the “delta rule.”
The behavior of the learning dynamics under equation 3.9 in the overpa-

rameterized case is well understood (Gunasekar et al., 2017, 2018; Soudry
et al., 2018; Zhang et al., 2021). Speci!cally, A tends toward solutions to
AX = Y that minimize the distance, ‖A − A0‖, of A from its initial con-
dition under the Frobenius norm. As a result, "W2 !nds solutions, W , to
[I − W]−1X = Y that minimize the distance, d(W,W0), of W from its initial
condition under the metric, d, de!ned in equation 2.12. In addition, since
the Jacobian matrix is given by J = −A−1/τ , we may conclude that "W2
!nds solutions that minimize the distance,

∥∥J −1
0 − J −1

∥∥, between the in-
verse Jacobian and its initial condition under the Frobenius norm.

In comparison to the gradient-based update, "W1, from see equation 3.7;
see Figure 2A, we see that "W2 from equation 3.8 performs much more ro-
bustly (see Figure 2B). The cost reliably converges toward zero with increas-
ing rates of convergence at larger learning rates.

3.1.5 Learning Using the Linearized Reparameterized Rule in a Linear Model.
The linearized, reparameterized update rule from equation 2.19 for this lin-
ear model can be written as

"W3 = −2ηA

m
[I − W] (R − Y)XT [I − W] . (3.10)

This learning rule gives a simpler equation that is more ef!cient to compute,
but still shows excellent agreement with the reparameterized rule, "W2 (see
Figure 2C; compare to panel B).

Note that equation 3.10 does not require any explicit computation of ma-
trix inverses with the exception of the computation of !ring rates R = [I −
W]−1X. However, note that expanding the (R − Y) term in equation 3.10
and then substituting R = [I − W]−1X allows this inverse to cancel, and we
obtain an expression without inverses:

"W3 = −2ηA

m

(
XXT [I − W] − [I − W]YXT [I − W]

)
. (3.11)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1586 V. Zhu and R. Rosenbaum

Figure 3: Angles and correlations between weight updates. (A) Angle (θ12) be-
tween the weight updates for the gradient-based and reparameterized learn-
ing rules. (B) Same as panel A, but comparing the parameterized rule with its
linearization.

Note that the equation R = [I − W]−1X, and therefore equation 3.11, are spe-
ci!c to the linear case, f (z) = z. When using a nonlinear f (z), !xed-point
!ring rates, R, cannot generally be computed in closed form, but must be
approximated by directly simulating equation 2.1 until convergence.

3.1.6 Comparing the Direction of Updates. To check the similarity between
the updates from each learning rule, we calculated the angle between the
updates at each iteration, de!ned by

θαβ = cos−1

(
"Wα · "Wβ√

("Wα · "Wα )("Wβ · "Wβ )

)

for α,β ∈ {1, 2, 3}, where A · B = Tr(ATB) is the Frobenius inner product.
For suf!ciently small learning rates, any update, "W , that decreases the
cost must satisfy "W · "W1 > 0 where "W1 is the gradient-based update
(Richards & Kording, 2023) since the change in cost can be written as

"J = "W · ∇W J + O(η2) (3.12)

= −ηW

m
"W · "W1 + O(η2).

Additionally, "W2 → "W3 as ηA → 0. Hence, we should expect that θαβ <

90◦ for all pairs, α and β.
Figure 3 shows the angles θ12 and θ23 during learning. The angles θ13 were

virtually identical to θ23, so they are not shown. In each example, we used
the same update, "Wβ , to update W throughout learning. Hence, the two
updates, dWα and dWβ , were compared starting at the same initial W at each
learning step.

The angle θ12 between the gradient-based updates and the reparame-
terized updates is relatively close to 90◦ (see Figure 3A), indicating that
they point in different directions, nearly as different as possible under the

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1587

condition that they both decrease the cost. Unsurprisingly, θ23 is near zero
(see Figure 3B), indicating that the reparameterized rule is similar to its
linearization.

3.2 Training Fixed Points on a Nonlinear Categorization Task. So far,
for demonstrative purposes, we considered only simple examples of linear
regression in which closed equations for optima are known. We next con-
sider an example of image categorization using the MNIST hand-written
digit benchmark.

The learning goal is to minimize a categorical cross-entropy loss on C =
10 classes using one-hot encoded labels. Speci!cally,

L(yi, si) = −yi · log(si)

where yi is a “one-hot” encoded label for digit i,

si
l = ezi

l

∑C
k=1 ezi

k
,

is the softmax output, and zi ∈ RC is a logit computed from a random pro-
jection of !xed-point rates of a recurrent network. Speci!cally,

zi = Woutri,

where Wout ∈ RC×N is a !xed, random readout matrix and ri = f (Wri + xi)
is the !xed point from an N × N recurrent network with input i. Inputs are
"attened 28 × 28 MNIST images, pi ∈ RM, where M = 28 ∗ 28 = 784 and we
multiply them by a !xed, random read-in matrix to form the input to the
network,

xi = Winpi,

where Win ∈ RN×M and N = 300 is the number of neurons in the network.
We did not train Wout or Win because we wanted to focus on the effectiveness
of learning the recurrent weight matrix, W . We used a hyperbolic target
activation function, f (z) = tanh(z). To compute r, we simulated equation 2.1
using a forward Euler scheme for 500 time steps with τ = 100dt where dt
is the step size used in the Euler method. The model was trained on three
epochs of the MNIST data set using a batch size of 512.

For this learning task, the gradient-based update rule from equation 2.7
can be written as

"W1 = −ηW

m

m⎠

i=1

[[
Gi]−1 − WT

]−1
WT

out
[
si − yi] [

ri]T
.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1588 V. Zhu and R. Rosenbaum

Figure 4: Gradient-based learning on a nonlinear classi!cation task. Results
from training the !xed points of a recurrent network to categorize MNIST digits
using the gradient-based update rule, "W1. (A–D) Training and testing losses
and accuracies evaluated at each step over the course of three epochs.

We found that this gradient-based learning rule performed poorly (see Fig-
ure 4). Small learning rates learned slowly, as expected, while larger learn-
ing rates produced instabilities that caused the loss and accuracy to jump
erratically during learning. Indeed, analysis of the Jacobian matrices
showed that !xed points became unstable for the two largest learning rates
considered in Figure 4.

We next tested the linearized, reparameterized update rule, "W3. We did
not include results for "W2 because, as in the linear examples already con-
sidered, they are very similar to "W3, and they are computationally more
expensive to calculate. For this learning task, "W3 can be written as

"W3 = −ηA

m

m⎠

i=1

[
I − WGi] GiWT

out
[
si − yi] [ri]T [

I − GiWT] [
I − GiW

]
.

Using this linearized, reparameterized update rule signi!cantly improved
learning performance (see Figure 5). Learning performance improved con-
sistently with increasing learning rates, and higher accuracy was achieved
without instabilities. Analysis of the Jacobian matrices showed that !xed
points were stable for all of the learning rates considered in Figure 5.
We conclude that the linearized, reparameterized learning rule can im-
prove the learning of !xed points in nonlinear recurrent neural network
models.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1589

Figure 5: A reparameterized learning rule on a nonlinear classi!cation task. Re-
sults from training the !xed points of a recurrent network to categorize MNIST
digits using the gradient-based update rule, "W3. (A–D) Training and testing
losses and accuracies evaluated at each step over the course of three epochs.
Compare to Figure 4.

4 Discussion

In summary, we have shown that when learning !xed points of recurrent
neural network models, the direct application of gradient descent with re-
spect to the recurrent weight matrix under the Euclidean geometry is com-
putationally expensive and not robust. Badly conditioned loss surfaces can
cause ineffective learning. Moreover, matrix inverses in the equations for
the gradients are expensive to evaluate or approximate.

We derived two alternative learning rules derived from a reparameteri-
zation of the recurrent network model. These learning rules perform more
robustly than the standard gradient descent approach. Moreover, one of the
two learning rules is simpler and more computationally ef!cient. The learn-
ing rules can be interpreted as steepest descent and gradient descent on the
recurrent weight matrix under a non-Euclidean metric. Our results support
recent calls to reconsider the default use of Euclidean gradients on param-
eters in machine learning (Amari, 1998; Amari & Douglas, 1998; Martens,
2020) and computational neuroscience (Surace et al., 2020; Pogodin et al.,
2023).

We showed that the learning rules we derived prevent weights from
passing through a boundary beyond which singularities arise in the loss
surface. For randomly initialized weight matrices, we showed that this
boundary approximately corresponds to the boundary of criticality, beyond

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1590 V. Zhu and R. Rosenbaum

which !xed points lose stability, typically to chaotic dynamics. A large body
of prior work has studied networks near criticality and demonstrated that
they can exhibit a variety of bene!cial properties and can often provide
more accurate models of biological data (Levina et al., 2009; Cramer et al.,
2020; Morales & Muñoz, 2021; Zeraati et al., 2021; Velikanov & Yarotsky,
2021; Bahri et al., 2021; Liang & Zhou, 2022; Xie & Marsili, 2022; Safavi
et al., 2023). It might seem paradoxical, then. that our learning rules im-
prove learning performance by pushing the network away from criticality.
This apparent paradox is potentially explained by the fact that criticality
in recurrent networks is perhaps most bene!cial for performing dynamical
tasks in which information about stimuli and task context must be remem-
bered and processed across a range of timescales. On the other hand, we
focused on learning !xed points with time-constant inputs, a task in which
dynamics and rich timescales are not needed, but stability is more impor-
tant. Consistent with this distinction, sensory cortical areas exhibit faster
timescales, and prefrontal areas exhibit slower timescales (Murray et al.,
2014). Slower timescales (mixed with faster ones) are expected in networks
near criticality, whereas faster timescales are expected in networks farther
from criticality since they converge quickly to their steady states or quasi-
steady states. Prefrontal areas participate in dynamical tasks such as the
generation of movement, whereas sensory areas participate in tasks more
similar to those considered in our study.

Recently, authors have argued that the use of Euclidean gradients for
modeling learning in the brain is justi!ed because any learning rule that
takes small steps and reduces the loss must be positively correlated with
the negative Euclidean gradient (Richards & Kording, 2023). Put another
way, the angle between the parameter updates and the negative Euclidean
gradient must be less than 90◦ (see equation 3.12 and surrounding discus-
sion). While this is true of the learning rules that we studied, the angle is
very close to 90◦ in practice, indicating only a weak correlation. Hence, our
work shows that the Euclidean gradient is not always strongly correlated
with effective learning rules.

We focused on a single, fully connected recurrent layer, which limits the
ease with which our model can be applied to larger data sets. Partly for
this reason, we only considered the relatively simple MNIST data set as a
benchmark. Future work could extend our results to multilayer recurrent
networks in which read-in and read-out matrices are trained and in which
at least some fully connected layers are replaced by convolutional connec-
tivity. These extensions will allow our approach to be applied to larger and
more challenging data sets.

Fixed points of recurrent neural networks are widely used in compu-
tational neuroscience to model static neural responses to static stimuli
(Ferster & Miller, 2000; Ozeki et al., 2009; Rubin et al., 2015; Ebsch & Rosen-
baum, 2018; Curto et al., 2019; Baker et al., 2020), and our results could
be useful for these modeling approaches. On the other hand, recurrent

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1591

neural networks in machine learning are almost exclusively used for time-
varying inputs. And models with time-varying input are widely used
in computational neuroscience to model tasks with time-varying stimuli
(Vogels et al., 2005; Sussillo & Abbott, 2009; Sussillo, 2014; Rajan et al., 2016;
Song et al., 2017; DePasquale et al., 2018; Yang et al., 2019; Pyle & Rosen-
baum, 2019; Yang & Wang, 2020; Dubreuil et al., 2022; Márton et al., 2022;
Valente et al., 2022). Our results rely on the assumption of a time-constant
input, x(t) = x, which limits their direct application to many machine learn-
ing problems. Moreover, even in neuroscience, the assumption of a static
stimulus is only an approximation. Natural stimuli are dynamical. How-
ever, if !xed points are approached faster than the stimulus changes (i.e.,
τ is faster than x(t)) then the response, r(t), is approximated by the !xed
point in equation 2.2 and our results provide an approximation. Moreover,
a combination of our !xed-point learning rules with dynamical learning
rules, such as backpropagation through time, could improve learning in
situations where some components of the input are static and others are
dynamical. Future work should test whether our learning rules can be com-
bined with backpropagation through time to improve performance on tasks
with multiple timescales.

Appendix

A.1 Derivation of the Direct Gradient Descent Update, "W1. Here, we
derive equation 2.6 for direct gradient descent on W . To derive this equa-
tion, it is suf!cient to show that

∇W L =
(

r [∇rL]T [I − GW]−1 G
)T

.

Here we are considering a single input, label, and !xed point—x, y, and
r—so we can omit the i superscripts that appear in equation 2.6. Note that
∇W L(r(W )) is a matrix with elements

∂L
∂Wjk

= [∇rL(r, y)] · ∂r
∂Wjk

. (A.1)

To derive ∂r
∂Wjk

, we !rst derive the change of !ring rate, "r, to linear order
in an update "Wjk. Consider an initial r0 satisfying r0 = f (W0r0 + x) and an
update to W de!ned by W = W0 + "W for some "W . The new !xed point
satis!es r = f (Wr + x), and we wish to compute "r = r − r0 to linear order
in "W . De!ne z0 = W0r0 + x and z = Wr + x. Then

"r = f (z) − f (z0)

= f (z0) + f ′(z0)(z − z0) − f (z0) + O(z − z0)2

= G(z − z0) + O(z − z0)2.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1592 V. Zhu and R. Rosenbaum

To linear-order in "r, we have

"r = G(z − z0)

= G ((Wr + x) − (W0r0 + x0))

= G ((W0 + "W )r − W0r0)

= G(W0r + "Wr − W0r0)

= G(W0"r + "Wr)

"r − GW0"r = G"Wr

[I − GW0]"r = G"Wr.

As a result, we have that

∂r
∂Wjk

= [I − GW]−1G1 jkr,

which is interpreted as a column vector. Here, 1 jk is the matrix with all en-
tries equal to zero except for element ( j, k), which is equal to 1. Equation 2.6
then follows from lemma 1.

Lemma 1.

[I − GW]−1G1 jkr = rk
[
[I − GW]−1G

]
(:, j) (A.2)

where rk is the kth element of r and B(:, j) denotes the jth column of a matrix, B.

Proof. We !rst calculate 111r, 112r, and 121r:

111r =





1 0 . . . 0

0 · . . . ·
· · . . . ·
· · . . . ·
0 0 . . . 0









r1
·
·
·

rM




=





r1

0
·
·
0




= r1I(:, 1),

112r =





0 1 . . . 0
0 · . . . ·
· · . . . ·
· · . . . ·
0 0 . . . 0









r1
·
·
·

rM




=





r2

0
·
·
0




= r2I(:, 1),

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1593

121r =





0 0 . . . 0

1 · . . . ·
· · . . . ·
· · . . . ·
0 0 . . . 0









r1
·
·
·

rM




=





0

r1
·
·
0




= r1I(:, 2).

Denote A := [I − GW]−1G, so A111r = r1A(:,1), A112r = r2A(:,1), and A121r =
r1A(:,2). Notice that they are column vectors. WLOG, A1 jkr = rkA(:, j),

LHS = ∇wL(r(W )) =





dL
dW11

dL
dW12

. . . . . . dL
dW1M

dL
dW21

dL
dW22

. . . . . . dL
dW2M

dL
dWj1

. . . dL
dWjk

. . . dL
dWjM

dL
dWM1

dL
dWM2

. . . . . . dL
dWMM





=





r1[∇rL(r)] · A(:,1) r2[∇rL(r)] · A(:,1) . . . rM[∇rL(r)] · A(:,1)

r1[∇rL(r)] · A(:,2) r2[∇rL(r)] · A(:,2) . . . rM[∇rL(r)] · A(:,2)

. . . . . . rk[∇rL(r)] · A(:, j) . . .

r1[∇rL(r)] · A(:,M) r2[∇rL(r)] · A(:,M) . . . rM[∇rL(r)] · A(:,M)




,

RHS =
(
r[∇rL(r)]T [I − GW]−1G

)T =
(
r[∇rL(r)]T A

)T
,

=









r1
∂L(r)
∂r1

r1
∂L(r)
∂r2

. . . r1
∂L(r)
∂rM

r2
∂L(r)
∂r1

r2
∂L(r)
∂r2

. . . r2
∂L(r)
∂rM

. . . . . . . . . . . .

rM
∂L(r)
∂r1

rM
∂L(r)
∂r2

. . . rM
∂L(r)
∂rM









A11 A12 . . . A1M

A21 A22 . . . A2M

. . . . . . . . . . . .

AM1 AM2 . . . AMM









T

=





r1[∇rL(r)]T A(:,1) r1[∇rL(r)]T A(:,2) . . . r1[∇rL(r)]T A(:,M)

r2[∇rL(r)]T A(:,1) r2[∇rL(r)]T A(:,2) . . . r2[∇rL(r)]T A(:,M)

. . . . . . . . . . . .

rM[∇rL(r)]T A(:,1) rM[∇rL(r)]T A(:,2) . . . rM[∇rL(r)]TA(:,M)





T

=





r1[∇rL(r)] · A(:,1) r2[∇rL(r)] · A(:,1) . . . rM[∇rL(r)] · A(:,1)

r1[∇rL(r)] · A(:,2) r2[∇rL(r)] · A(:,2) . . . rM[∇rL(r)] · A(:,2)

. . . . . . rk[∇rL(r)] · A(:, j) . . .

r1[∇rL(r)] · A(:,M) r2[∇rL(r)] · A(:,M) . . . rM[∇rL(r)] · A(:,M)





= LHS.

!

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1594 V. Zhu and R. Rosenbaum

Combining equation A.1 with equation A.2 gives

∇W L =
(

r [∇rL(r)]T [I − GW]−1 G
)T

which can be simpli!ed to get equation 2.6 for "W1.

A.2 Analysis of a Natural Reparameterization and Its Linear Approx-
imation. We now consider the updates given by the reparameterization
A =

[
G−1 − W

]−1. The direct reparameterized update, "W2 in this case, is
given by

"W2 = −
[(

A − ηA(∇rL)(x)T)−1 − A−1
]

= −
[([

G−1 − W
]−1 − ηA(∇rL)(r)T [

G−1 − WT])−1
− G−1 − W

]
.

Proof. Since A =
[
G−1 − W

]−1, we have W = G−1 − A−1. Let W0 and A0

represent previous step update before W and A then

"W = W − W0

= G−1 − A−1 −
([

G0]−1 − [A0]−1
)

= (G−1 −
[
G0]−1) − A−1 + [A0]−1

= −
(
A0 + "A

)−1 + [A0]−1

= −
(

A0 − ηA (∇rL) (x)T
)−1

+ [A0]−1

= −
(

A0 − ηA (∇rL) (r)T [A0]−T
)−1

+ [A0]−1.

To get the expression that has only G and W , we can substitute A = [G−1 −
W]−1 and A−1 = G−1 − W and use G = GT and G−T = G−1 since G is a di-
agonal matrix. This gives

"W2 = −
(

A − ηA (∇rL) (r)T A−T
)−1

+ A−1

= −
([

G−1 − W
]−1 − ηA (∇rL) (r)T [

G−1 − WT])−1
+

[
G−1 − W

]
.

!
Note that as Gj j → 0, A−1

j j = [Gi
j j]

−1 − Wj j → ∞, so this reparameteriza-
tion is poorly behaved in situations where Gj j = f ′(z j ) becomes small or
zero because the second term in the sum diverges while the !rst term does
not.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1595

We also show that linearizing this parameterization around ηA = 0 still
leads to updates that diverge when elements of G become small. Following
the linearization from section 2.4, the linearized, reparameterized update is
given by

"W3 = −ηAA−1(∇rL)(x)TA−1

= −ηA
[
G−1 − W

]
(∇rL)(r)T [

G−1 − WT] [
G−1 − W

]
.

Proof. First note that "W2|ηA=0 = 0, so we have to linear-order in ηA,

"W2 = d"W2

dηA

∣∣∣∣
ηA=0

ηA + O(η2
A). (A.3)

Now let

V = A + "A = A − ηA(∇rL)
(
A−1r

)T ;

then "W2 = A−1 − V−1, so

d"W2

dηA
= dA−1

dηA
− dV−1

dηA

= V−1 dV
dηA

V−1

since dA−1/dηA = 0. Combining this with equation A.3 and the de!nition
of V gives the linearized update,

"W3 = V−1 dV
dηA

V−1
∣∣∣∣
ηA=0

ηA

= V−1
(
− (∇rL)

(
A−1r

)T
)

V−1
∣∣∣
ηA=0

ηA

= −A−1(∇rL) (r)T A−TA−1ηA

= −
[
G−1 − W

]−1 (∇rL) (r)T [
G−1 − WT] [

G−1 − W
]
ηA.

Again, substitute A−1 = G−1 − W , to get the !nal expression. Notice that
"W3 = A−1A−T"W1A−TA−1, so one can let B = A−1A−T and C = A−TA−1,
which are symmetric, and "W3 = B"W1C. !

Note again that "W3 diverges if elements of G go to zero. Therefore, the
natural reparameterization A = [G−1 − W]−1 is not well suited for learning.

A.3 Linearization of the Corrected Reparameterization. Here, we de-
rive the linearized update, "W3, given in equation 2.19. This update rule

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



1596 V. Zhu and R. Rosenbaum

is derived by expanding "W2 from equation 2.17 to linear-order. Recall
that "W2 was derived from the reparameterization A = [G − GWG]−1. Let
U = [G−1 − W]−1; then we can rewrite equation 2.17 as

"W2 = −
[
U − ηAG2 (∇rL) (r)T [I − GW]T G

]−1
+ U−1.

Now, denote everything inside of the inverse as V so

V = U − ηAG2 (∇rL) (r)T [I − GW]T G.

Then equation 2.17 can be further rewritten as

"W2 = U−1 − V−1.

Now, following the same approach as in section A.2, note that "W2|ηA=0 =
0, so the linearization of "W2 around ηA = 0 is given by

"W3 = d"W2

dηA

∣∣∣∣
ηA=0

ηA

=
[

dU−1

dηA
− (−V−1 dV

dηA
V−1)

]

ηA=0
ηA

= V−1
(
−G2 (∇rL) (r)T [I − GW]T G

)
V−1

∣∣∣
ηA=0

ηA

= U−1
(
−G2 (∇rL) (r)T [I − GW]T G

)
U−1ηA

= −ηA[G−1 − W]G2 (∇rL) (r)T [I − GW]T G[G−1 − W]

= −ηA [I − WG] G (∇rL) (r)T [I − GW]T [I − GW].

The radius of convergence of the Taylor expansion that we used to derive
"Wi

3 from "Wi
2 is de!ned by

∥∥∥ηA

[[
Ai]−1

] [
Gi]2 (

"Ai) [
Gi]2

∥∥∥

= ‖ηA
[
Gi − W

]
[Gi]2 (∇ri L)

(
ri)T [

Gi − GiWTGi] [Gi]2‖ < 1. (A.4)

Therefore, if

ηA 3 1

‖
[
Gi − GiWGi

]
[Gi]2 (∇ri L)

(
ri
)T [

Gi − GiWTGi
]

[Gi]2‖
,

the "Wi
3 from equation 2.19 approximates "Wi

2 from equation 2.17.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025



Learning Fixed Points 1597

Acknowledgments

This material is based on work supported by the Air Force Of!ce of Scien-
ti!c Research under award FA9550-21-1-0223 and National Science Foun-
dation awards DMS-1654268 and DBI-1707400.

References

Almeida, L. B. (1990). A learning rule for asynchronous perceptrons with feedback
in a combinatorial environment. In J. Diederich (Ed.), Arti!cial neural networks:
Concept learning (pp. 102–111).

Amari, S.-I. (1998). Natural gradient works ef!ciently in learning. Neural Computa-
tion, 10(2), 251–276. 10.1162/089976698300017746

Amari, S.-I., & Douglas, S. C. (1998). Why natural gradient? In Proceedings of the
1998 IEEE International Conference on Acoustics, Speech and Signal Processing (vol. 2,
pp. 1213–1216). 10.1109/ICASSP.1998.675489

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., & Sharma, U. (2021). Explaining neural scaling
laws. arXiv:2102.06701.

Bai, S., Kolter, J. Z., & Koltun, V. (2019). Deep equilibrium models. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances
in neural information processing systems, 32. Curran.

Bai, S., Koltun, V., & Kolter, J. Z. (2020). Multiscale deep equilibrium models. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in
neural information processing systems, 33 (pp. 5238–5250). Curran.

Baker, C., Zhu, V., & Rosenbaum, R. (2020). Nonlinear stimulus representations in
neural circuits with approximate excitatory-inhibitory balance. PLOS Computa-
tional Biology, 16(9), e1008192. 10.1371/journal.pcbi.1008192

Brenner, M., Hess, F., Mikhaeil, J. M., Bereska, L. F., Monfared, Z., Kuo, P.-C., &
Durstewitz, D. (2022). Tractable dendritic RNNs for reconstructing nonlinear dy-
namical systems. In Proceedings of the International Conference on Machine Learning
(pp. 2292–2320).

Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., & Priesemann,
V. (2020). Control of criticality and computation in spiking neuromorphic net-
works with plasticity. Nature Communications, 11(1), 2853.

Curto, C., Geneson, J., & Morrison, K. (2019). Fixed points of competitive threshold-
linear networks. Neural Computation, 31(1), 94–155. 10.1162/neco_a_01151

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. MIT Press.
DePasquale, B., Cueva, C. J., Rajan, K., Escola, G. S., & Abbott, L. (2018). Full-force: A

target-based method for training recurrent networks. PLOS One, 13(2), e0191527.
10.1371/journal.pone.0191527

Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F., & Ostojic, S. (2022). The
role of population structure in computations through neural dynamics. Nature
Neuroscience, 25(6), 783–794. 10.1038/s41593-022-01088-4

Durstewitz, D., Koppe, G., & Thurm, M. I. (2023). Reconstructing computational sys-
tem dynamics from neural data with recurrent neural networks. Nature Reviews
Neuroscience, 24(11), 693–710. 10.1038/s41583-023-00740-7

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

https://doi.org/10.1162/089976698300017746
https://doi.org/10.1109/ICASSP.1998.675489
https://doi.org/10.1371/journal.pcbi.1008192
https://doi.org/10.1162/neco_a_01151
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.1038/s41593-022-01088-4
https://doi.org/10.1038/s41583-023-00740-7


1598 V. Zhu and R. Rosenbaum

Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models
of working memory. Nature Neuroscience, 3(11), 1184–1191. 10.1038/81460

Ebsch, C., & Rosenbaum, R. (2018). Imbalanced ampli!cation: A mechanism of
ampli!cation and suppression from local imbalance of excitation and inhibi-
tion in cortical circuits. PLOS Computational Biology, 14(3), e1006048. 10.1371/
journal.pcbi.1006048

Ferster, D., & Miller, K. D. (2000). Neural mechanisms of orientation selectiv-
ity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471. 10.1146/
annurev.neuro.23.1.441

Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press.

Girko, V. L. (1985). Circular law. Theory of Probability and Its Applications, 29(4), 694–
706. 10.1137/1129095

Gunasekar, S., Lee, J., Soudry, D., & Srebro, N. (2018). Characterizing implicit bias
in terms of optimization geometry. In Proceedings of the International Conference on
Machine Learning (pp. 1832–1841).

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neyshabur, B., & Srebro, N. (2017).
Implicit regularization in matrix factorization. In I. Guyon, Y. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neu-
ral information processing systems, 30. Curran.

Kreutzer, E., Senn, W., & Petrovici, M. A. (2022). Natural-gradient learning for spik-
ing neurons. eLife, 11. 10.7554/eLife.66526

Levina, A., Herrmann, J. M., & Geisel, T. (2009). Phase transitions towards critical-
ity in a neural system with adaptive interactions. Physical Review Letters, 102(11),
118110. 10.1103/PhysRevLett.102.118110

Liang, J., & Zhou, C. (2022). Criticality enhances the multilevel reliability of stim-
ulus responses in cortical neural networks. PLOS Computational Biology, 18(1),
e1009848.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., . . . Zemel, R. (2018).
Reviving and improving recurrent back-propagation. In Proceedings of the Inter-
national Conference on Machine Learning (pp. 3082–3091).

Lillicrap, T. P., & Santoro, A. (2019). Backpropagation through time and the brain.
Current Opinion in Neurobiology, 55, 82–89. 10.1016/j.conb.2019.01.011

Martens, J. (2020). New insights and perspectives on the natural gradient method.
Journal of Machine Learning Research, 21(1), 5776–5851.

Márton, C. D., Zhou, S., & Rajan, K. (2022). Linking task structure and neural network
dynamics. Nature Neuroscience, 25(6), 679–681.

Morales, G. B., & Muñoz, M. A. (2021). Optimal input representation in neural sys-
tems at the edge of chaos. Biology, 10(8), 702. 10.3390/biology10080702

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., . . .
Wang, X. J. (2014). Ahierarchy of intrinsic timescales across primate cortex. Nature
Neuroscience, 17(12), 1661–1663. 10.1038/nn.3862

Ollivier, Y., Tallec, C., & Charpiat, G. (2015). Training recurrent networks online without
backtracking. arXiv:1507.07680.

Ozeki, H., Finn, I. M., Schaffer, E. S., Miller, K. D., & Ferster, D. (2009). Inhibitory sta-
bilization of the cortical network underlies visual surround suppression. Neuron,
62(4), 578–592. 10.1016/j.neuron.2009.03.028

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

https://doi.org/10.1038/81460
https://doi.org/10.1371/journal.pcbi.1006048
https://doi.org/10.1146/annurev.neuro.23.1.441
https://doi.org/10.1137/1129095
https://doi.org/10.7554/eLife.66526
https://doi.org/10.1103/PhysRevLett.102.118110
https://doi.org/10.1016/j.conb.2019.01.011
https://doi.org/10.3390/biology10080702
https://doi.org/10.1038/nn.3862
https://doi.org/10.1016/j.neuron.2009.03.028


Learning Fixed Points 1599

Pineda, F. (1987). Generalization of back propagation to recurrent and higher or-
der neural networks. In D. Anderson (Ed.), Neural information processing systems.
American Institute of Physics.

Pogodin, R., Cornford, J., Ghosh, A., Gidel, G., Lajoie, G., & Richards, B. (2023).
Synaptic weight distributions depend on the geometry of plasticity. arXiv:2305.19394.

Pyle, R., & Rosenbaum, R. (2019). A reservoir computing model of reward- mod-
ulated motor learning and automaticity. Neural Computation, 31(7), 1430–1461.
10.1162/neco_a_01198

Rajan, K., Harvey, C. D., & Tank, D. W. (2016). Recurrent network models of sequence
generation and memory. Neuron, 90(1), 128–142. 10.1016/j.neuron.2016.02.009

Richards, B. A., & Kording, K. P. (2023). The study of plasticity has always been about
gradients. Journal of Physiology, 601(15), 3141–3149. 10.1113/JP282747

Rubin, D. B., Van Hooser, S. D., & Miller, K. D. (2015). The stabilized supralinear
network: A unifying circuit motif underlying multi-input integration in sensory
cortex. Neuron, 85(2), 402–417. 10.1016/j.neuron.2014.12.026

Safavi, S., Chalk, M., Logothetis, N., & Levina, A. (2023). Signatures of criticality in
ef!cient coding networks. bioRxiv, 2023–02.

Song, H. F., Yang, G. R., & Wang, X.-J. (2017). Reward-based training of recurrent
neural networks for cognitive and value-based tasks. eLife, 6, e21492.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., & Srebro, N. (2018). The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research,
19(1), 2822–2878.

Spivak, M. (2018). Calculus on manifolds: A modern approach to classical theorems of ad-
vanced calculus. CRC Press.

Surace, S. C., P!ster, J.-P., Gerstner, W., & Brea, J. (2020). On the choice of metric
in gradient-based theories of brain function. PLOS Computational Biology, 16(4),
e1007640. 10.1371/journal.pcbi.1007640

Sussillo, D. (2014). Neural circuits as computational dynamical systems. Current
Opinion in Neurobiology, 25, 156–163. 10.1016/j.conb.2014.01.008

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557. 10.1016/j.neuron.2009.07.018

Valente, A., Pillow, J. W., & Ostojic, S. (2022). Extracting computational mechanisms
from neural data using low-rank RNNs. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in neural information processing sys-
tems, 35 (pp. 24072–24086). Curran.

Velikanov, M., & Yarotsky, D. (2021). Universal scaling laws in the gradient descent train-
ing of neural networks. arXiv:2105.00507.

Vogels, T. P., Rajan, K., & Abbott, L. F. (2005). Neural network dynamics. Annual
Review of Neuroscience, 28, 357–376. 10.1146/annurev.neuro.28.061604.135637

Williams, R. J., & Peng, J. (1990). An ef!cient gradient-based algorithm for on-
line training of recurrent network trajectories. Neural Computation, 2(4), 490–501.
10.1162/neco.1990.2.4.490

Winston, E., & Kolter, J. Z. (2020). Monotone operator equilibrium networks. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in
neural information processing systems, 33 (pp. 10718–10728). Curran.

Xie, R., & Marsili, M. (2022). A random energy approach to deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2022(7), 073404.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

https://doi.org/10.1162/neco_a_01198
https://doi.org/10.1016/j.neuron.2016.02.009
https://doi.org/10.1113/JP282747
https://doi.org/10.1016/j.neuron.2014.12.026
https://doi.org/10.1371/journal.pcbi.1007640
https://doi.org/10.1016/j.conb.2014.01.008
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1146/annurev.neuro.28.061604.135637
https://doi.org/10.1162/neco.1990.2.4.490


1600 V. Zhu and R. Rosenbaum

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X.-J. (2019). Task
representations in neural networks trained to perform many cognitive tasks. Na-
ture Neuroscience, 22(2), 297–306. 10.1038/s41593-018-0310-2

Yang, G. R., & Wang, X.-J. (2020). Arti!cial neural networks for neuroscientists: A
primer. Neuron, 107(6), 1048–1070. 10.1016/j.neuron.2020.09.005

Zeraati, R., Priesemann, V., & Levina, A. (2021). Self-organization toward criticality
by synaptic plasticity. Frontiers in Physics, 9, 619661. 10.3389/fphy.2021.619661

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM,
64(3), 107–115. 10.1145/3446776

Received August 30, 2023; accepted March 18, 2024.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/36/8/1568/2462319/neco_a_01681.pdf by Stanford Libraries user on 14 January 2025

https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1016/j.neuron.2020.09.005
https://doi.org/10.3389/fphy.2021.619661
https://doi.org/10.1145/3446776

