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We develop a new approach to formulation and solution of mathematical models of one-dimensional advective—
dispersive transport that specifies the hydrodynamic dispersion coefficient as a function of time since the
solute has entered the flow field, termed ‘age.” This approach addresses Taylor’s concern about the use of
time-dependent dispersion coefficients to model pre-asymptotic dispersion by replacing time-dependence with

age-dependence, where age of solute is exposure-time to the flow. We show closed form solutions obtained
for transport on the —o < x < o and a numerical solution for transport on the 0 < x < co domain. We
demonstrate how this works by application to an in-silico experiment recently published in a study addressing
the same issue in a different manner. Our simple and intuitive approach matches the simulated pre-asymptotic
data without additional terms or parameter fitting. The same principle applies to pre-asymptotic dispersion in
other important upscaled one-dimensional transports e.g., in river corridor or groundwater flows.

1. Introduction

One-dimensional advective—dispersive transport in many types of
steady flows can be described with a mass balance expression that
uses a constant dispersion coefficient provided that sufficient time has
transpired since commencement of transport. This foundation is due
to Taylor (1953, 1954), and interpreted using solute spatial moments
in Aris (1956) for flow in a tube. Applications are ubiquitous involving
any steady nonuniform flow typically involving shear imparting an
early time deformation of uniform initial solute pulses (for initial value
problems), or solute within boundary injections (for boundary value
problems) that are eventually erased by lateral displacements. In many
situations the time required to reach such asymptotic conditions is
large with respect to the observation time scale (Smith, 1981) for
instance in natural streams (Fischer, 1967), and in porous media (Corey
et al., 1970). Thus many authors have sought upscaled one-dimensional
transport models that can represent pre-asymptotic through asymptotic
conditions, via an effective and dynamic longitudinal dispersion coeffi-
cient. Numerous studies have reported on how to express the effective
one-dimensional longitudinal dispersion coefficient of a solute in a
given steady flow field to reflect the pre-asymptotic conditions, as well
as the temporal or spatial scale over which pre-asymptotic conditions
persist, (e.g., Gill (1967), Gill and Sankarasubramanian (1970), Fried
and Combarnous (1971), Smith (1981), Guven et al. (1984), Dagan
(1984), Han et al. (1985), Seo and Cheong (1998), Dentz and Car-
rera (2007), Wang et al. (2012) and Taghizadeh et al. (2020)). The
mathematical approaches used to derive the effective 1-D longitudinal
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dispersion coefficient vary, but most of the foregoing works involve
the following basic steps of analyses. A two- or three-dimensional flow
field, often in a conduit such as a pipe, fracture, river channel, or
aquifer, is specified mathematically; the “microscopic-scale” transport
equation for a solute (typically a point source or a source that spans
a plane perpendicular to the mean flow direction) transported by
this flow field is solved explicitly; and finally the effective dispersion
coefficient, defined by construction of the upscaled 1-D transport model
as one-half of the time derivative of second centered spatial moment of
the solute plume, is derived. The 1-D model typically is designed to
simulate the cross-sectional average concentration in the conduit as a
function of downstream distance and time.

The resulting upscaled one-dimensional dispersion coefficient is
typically expressed in the form [e.g., Eq. (79) in Dentz and Carrera
(2007) or Eq. (28) in Wang et al. (2007)] D(t;v,D,,) = D, + col’;—z .
Zf’;‘]’" ¢,f(n,1,D,), where ¢ is time, v is steady macroscopic (meénn)
velocity, D, is the molecular diffusion coefficient for the solute in static
water, ¢, and ¢, are constants, and f is a function typically involving
exponentials with arguments that are products of 7, D,,, and powers of
n. This detail reveals that these expressions are linear in mean velocity
squared so that if velocity is zero then the derived diffusion coefficient
is no longer time dependent and reduces to D,,.

Limitations on the use of this approach include the assumptions
of: steady flow; an explicit representation of the flow field (either
deterministically or stochastically); a diagonal diffusion (or microdis-
persion (Dentz and Carrera, 2007)) tensor in the microscopic-scale
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transport model; and often mathematical assumptions introduced per
the method used to obtain D(;v, D,,), e.g., that the longitudinal gra-
dient of the cross-sectional averaged solute concentration be much
greater than that of the microscopic concentration fluctuations (Wang
et al., 2012).

Henceforth we simplify the notation to D(r) where ¢ is time since
solute entered the flow field. Some authors use D(x) where x is distance
traversed by the solute, in which case pre-asymptotic dispersion is
termed “scale-dependent.’ The temporal scale of pre-asymptotic trans-
port in any given flow is typically found in terms of a characteristic
time (or space) scale for solutes to fully experience the complete
distributions of transport velocities, e.g., pipe radius squared divided
by molecular diffusion coefficient in pipe flow (e.g., Gill and Sankara-
subramanian, 1970), river depth squared divided by lateral dispersion
coefficient (e.g., Wang et al., 2012) or spatial scale of velocity fluctu-
ations divided by lateral dispersion coefficient in porous media, (e.g.,
Dentz et al., 2000). Corresponding spatial scales are obtained by mul-
tiplying these temporal scales by mean velocity (e.g., Dagan, 1987;
Fischer, 1967). More general studies examine nonlocal forms for dis-
persive flux in more complex transport scenarios. Here we restrict our
attention to local forms.

The resulting equation for the simplest 1D steady flow case is often
written with D(r), as

dc dc d%c
— — —-D(t)— =0 1
o tox TP05 n

with either the semi-infinite space domain x > 0 for boundary value
formulation or the infinite domain —co < x < o and with appropriate
initial conditions in either case. A solution to (1) for all + > 0 by Gill
and Sankarasubramanian (1970) involves a series in space derivatives
(hinting at later non-local theories) with truncation to two terms of
the series found often suitable. Pasmanter (1985) study a range of
transport problems in 3-D via Lie algebra (often involving wavevector
power series expansions) and note the approximate nature of several
outstanding 1-D solutions. Of the numerous other works on closed-form
1-D solutions we mention the remarkably poorly-cited Warrick et al.
(1972) who solve the initial value problem including an independently
transient velocity and Barry and Sposito (1989) who give a quasi-
implicit solution for the boundary value problem requiring solution
of Volterra integral equations of the 2nd kind. Efforts to find simpler
solutions to the 1-D boundary value problem continue unsuccessfully,
foreshadowed by Warrick et al. (1972) who warn that a solution to the
boundary value problem may not exist, and with some controversy,
e.g., Deng and Qiu (2012). Thus it is unsurprising that most studies
involving boundary value problems on x > 0 with either time- or space-
dependent dispersion coefficients seek to approximate these as initial
value problems on —c0 < x < oo, for which closed-form solutions
are more readily available. The associated errors in this approximation
depend on Péclet number, e.g., Charbeneau (2000), Gurung and Ginn
(2020), and so numerical solutions are often required.

Taylor critiqued the notion of time-dependent dispersion coeffi-
cients “D(t)” (Taylor, 1959; Smith, 1981; Taghizadeh et al., 2020)
stating “It seems to me that this is an illogical conception... If therefore
you attempt to analyze the distribution of concentration from two
sources which started at different times by this method, it would be
necessary to assume, in places where the distributions overlapped, that
the diffusion constant had two different values at the same time and
at the same point in space”. Taghizadeh et al. (2020) show (Section
9, 1st paragraph) that Taylor’s paradox corresponds to a problem
with superposition of solutions for solute distributions emanating from
different start times, because a time-dependent dispersion coefficient
would necessarily have multiple values at a given point in (x,7) for
a transport equation applied to a single space-time coordinate system
with a singly-defined origin in time. The same paradox arises when dis-
persion coefficients depend on scale or space traversed and expressed
as D(x) (Pickens and Grisak, 1981; Dagan, 1987; Yates, 1992; Gelhar,
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1993; Pérez Guerrero and Skaggs, 2010) when solutes start at different
locations, e.g., in the case of diffusive release of a solute from sediments
along a river reach.

We emphasize two important points: first, when boundary and
initial conditions involve only one release location and one time,
Taylor’s critique does not apply; second, when multiple releases occur
over time, or at multiple locations, one may solve the problem with
pre-asymptotic dispersion numerically by calculating the solute concen-
tration distribution emanating from each source (using, respectively,
D(x), or D(t)), and then adding these respective solutions over all (x, t),
as long as no nonlinear biochemical transformations are involved. That
is, while one may not be able to write a single governing equation
for the complete solute distribution, one may still superpose numerical
solutions for a strictly passive tracer. We pursue our alternative for-
mulation because the challenge of writing a single governing equation
including pre-asymptotic dispersion for the case of multiple solute
release times and locations remains, doing so gives rise to closed-form
solutions in some cases, such a form will be necessary if one wishes
to include nonlinear reaction kinetics endured by the solute(s), and
solving separately for the solute distribution from each release may
become computationally intensive.

By including an independent variable that keeps track of age
(exposure-time) of solute to the flow field (following the approach
of Ginn (1999) and Ginn and Schreyer (2023)), “»”, we can write the
dispersion coefficient as “D(w)” instead of as D(t). Doing so eliminates
Taylor’s concern both mathematically and conceptually, because the
dispersion coefficient will now be singly defined in time, space and
age. Here we illustrate the structuring of simple 1-D transport equations
on age to accommodate pre-asymptotic dispersion and provide simple
closed-form solutions for both initial and boundary value problems
specified on the space domain —co < x < oo; i.e., when upstream
diffusive transport is allowed. For the case where the space domain
is restricted to 0 < x and upstream migration is not allowed we are so
far unable to find a closed-forms solution, but the same formulation (1)
provides a basis for numerical solution as will be shown.

The paper is organized as follows. In Section 2 we review the
conceptual and theoretical framework of exposure time structured
transport equations. In Section 3 we present the closed-form solutions
for the —o < x < oo case for both initial and boundary value
problems. In Section 4 we introduce the target data of Taghizadeh et al.
(2020) and apply our closed-form solution to simulate that initial value
problem. In Section 5 we demonstrate the numerical solution of our
model to solve a boundary value problem on 0 < x where no upstream
transport is allowed. In Section 6 we discuss the implications of these
results.

2. Age-structured transport

General mass balance expressions for solutes or suspensions un-
dergoing transport in (x,7) can be extended to include an additional
dimension o to keep track of exposure-times of solutes or suspensions
to the transport domain Ginn (1999) including oceans (Delhez et al.,
1999), or to other solutes (Gurung and Ginn, 2020), surfaces (Ginn,
1999), diffusive transport domains (in mobile-immobile mass trans-
fer (Ginn, 2009; Ginn et al.,, 2017)), or to discrete compartments
in general compartment modeling (Ginn and Schreyer, 2023). In the
context of (1) then c(x,t) becomes a distribution c(x,?,w) over w that
represents exposure-time (or simply “age”) of ¢ to the flow field. The
aging of mass in a conservation equation is done by an advection term
with the rate (velocity) of aging given by an age velocity v,,. Doing so
and replacing the time-dependence of D with w-dependence gives

2
L v _pwZl =0 2
x X

Just as the material velocity component in direction x is defined as
v = Ax/At on a physical streamline, the aging velocity in direction
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is defined as v, = Aw/Ar. Throughout this paper the aging velocity
Uy = 1, so the material motion in the  direction obeys Aw = At. Thus
e.g. mass in the flow field ages (moves by advection) by one second 4w
per second 4. In this case of unit aging velocity the age dimension can
be viewed as a local time coordinate, with origin shifted to the start
time of solute exposure to the flow field, 7, = r — w. Non-unity aging
velocities can be specified for useful application in other areas such as
dose kinetics (Sengor et al., 2009) or population dynamics (Ginn and
Loge, 2007). As long as the velocity of aging vy, is not a function of age
itself, transport by a divergence-free velocity field remains divergence
free in the extended coordinate system (Ginn, 1999).

Writing the boundary and initial conditions for particular instances
is straightforward: in initial value problems the initially present solute
is specified as a function of space, at zero age and time, and in
boundary value problems the influent solute enters the domain as a
function of time, at influent boundaries and at zero age (no matter
whether Dirichlet, Neumann, or Robin boundary condition is specified).
The age-structured solution to this sort of equation, c(x,7,w), is then
integrated over w to recover the final solution ¢y (x, t). That is, solution
of (2) gives the distribution of mass concentration over age w at
any point in the space and time domain, expressed as c(x,?,®). The
concentration that one observes and measures at that point in space
and time, cp(x,t) is the total mass of this distribution, given by the
integration /0°° c(x,t,w)dw. If all initial mass at + = 0 also starts out
at zero age (@ = 0), then this integration is equal to [0[ c(x,t,w)dw.

3. Solutions for the —o < x < co domain

We presume that one-dimensional flow occurs at constant velocity
over the entire line —0 < x < oo and solute is injected at x = 0, as
in one-dimensional approximation of tracer tests in rivers or pipes, and
we include first-order decay with rate coefficient that may also depend
on solute age to the flow field, A(w). Then Eq. (2) becomes

dc dc dc d%c
E+Uw£+ua—x—D(w)E =—AMw)c; —0<x<00,0<t, 0<w, (3)

We now build the boundary and initial conditions in this new (x,?,®)
domain for two cases. First we develop conditions for what has histor-
ically been viewed as an initial value problem wherein mass appears
at + = 0 as a function of x. Second we develop conditions for what has
historically been a boundary value problem wherein mass is injected at
x = 0 as a function of ¢ (Sauty, 1980). It is important to note that we do
not follow the historical context in either case; instead, in both cases
we specify what happens at the age boundary w = 0. For classical initial
value problems we specify the mass occurring at the » = 0 boundary
as a function of space c,(x) multiplied by the Dirac function (), as the
Dirichlet condition

c(x,t,w =0) = c,(x)6(t); —c0 <x <00, 01, (@)

For the classical boundary value problem (Sauty, 1980) specified the
cumulative mass injected by time 7 equal to the total mass contained
in the domain —o0 < x < o0; here we specify the rate of mass injection
into the domain at the w = 0 boundary as equivalent to the flow of
mass entering the domain physically at x = 0:

Ve(x,t,w = 0) = vc,(1)6(x); —co <x < o0, 01

The units of both sides of this equation are mass per volume per time.
Defining c;, (1) = icﬂ(t), we write this boundary condition in Dirichlet
form as

c(x,1,0) = ¢;,(H6(x) —o0 <x <00, 0, 5)

Remaining conditions are conventional. For the limits of the space
domain we have

lim ?(x,t,w):O; 0<t, 0<w, (6)
X

X—=+00

Advances in Water Resources 183 (2024) 104589

and for both cases we adopt a statement of zero mass at initial time,
c(x,0,0) =0; —c0o <x <00, 0<w. ()

The foregoing is a novel formulation of two pre-asymptotic dispersion
problems when upstream diffusion from the source is allowed. We have
recast both the classical initial value and boundary value problems in
an explicit age equation: in the first case, instead of assigning the initial
data ¢,(x) at r = 0, we assign it to age @ = 0 and localize the mass
at zero time via a Dirac function; and 2. in the second case instead
of assigning the boundary influx at the x = 0 boundary we specify it
at the = 0 boundary and localize it at x = 0 via the Dirac function
5(x). This approach gives rise to straightforward development of closed-
form solutions (Appendix), and also resolves Taylor’s complaint. The
solution to the mass conservation equation (3) in the initial value case
with Egs. (4),(6),(7) is (Appendix)

c(x,1,w) = 8(t — w)e~ M@ €L /°° e c, (x —vw + u\/4‘r(w)) du. 8)
NN

where A(w) = fow Mu)du and t(w) = foa) D(u)du. The measurable
concentration is the integral of (8) over w,

5]
cr(x, 1) = e_’m)% / e_“2c0 (x —uvt+ u\/4r(l)) du. 9
T J—©

In the absence of decay (4 = 0) Eq. (9) is the same solution as Eq.
(7) in Warrick et al. (1972) assuming constant velocity in the latter’s
case. Given multiple occurrences of solute at the @ = 0 boundary at
two sequential times as done in the example from Taghizadeh et al.
(2020) described below, (8) provides the solution by superposition.
For instance given two appearances of c,(x) at + = 0 and at 7 = 4
respectively, then (4) becomes

c(x,t,w = 0) = c,(x)(6(t) + 6(t — 4)) (10)
and then the corresponding solution is Eq. (9) superposed, i.e.,

cr(x, 1) = e_"(’)%/_ /°° e‘”zca (x —ut+ u\/4r(t)) du an

¥
4 e AU-8 % / e, (x — 0t — A) + un/Ae(r — A)) du.
T J—o0

Note that this shows a simple case of successful superposition of a
single-valued pre-asymptotic dispersion coefficient.

The solution to the mass conservation equation (3) in the now re-
vised boundary-value problem case with Egs. (5),(6),(7) is (Appendix)

—A(®)

c(x,t,m) = ¢;,(t — w)e 12)

_ (x — vw)?
4rr(w) )’

exp<
Vért(w)

The total (and observable) concentration is the integral of (12) over
age,

@ _ 1 (x — vw)?
cr(x, 1) = / ¢, (t — @)e~A@ exp<— dw. 13)
g o Vart(w) dxz(w)
that is the pre-asymptotic generalization of the analogous solution
(10.6.13) in Bear (1972) also used in Eq. (13) in Sauty (1980), to which
(13) reduces if 4 =0 and D(w) is constant and equal to the asymptotic
value of the dispersion coefficient.

4. Initial value problem: Numerical experiment by Taghizadeh
et al. (2020)

The purpose of Taghizadeh et al. (2020) (henceforth, “T2020”) is
to address non-uniform (in directions orthogonal to the flow direction)
initial distributions of a solute in 1-D Taylor dispersion, and to ad-
dress Taylor’s criticism that formulations for pre-asymptotic dispersion
utilizing time-dependence as in D(r) can lead to multivalued D(z).
Our approach does not so far address laterally non-uniform initial
distributions but only Taylor’s critique.
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T2020 specifies four tenets to ensure that a theory for dispersion is
well structured: the effective dispersion coefficient should be positive, a
function only of diffusion coefficient and velocity field, should reach an
asymptotic value over time, and solutions to corresponding advection—
dispersion equations should be superposable to avoid Taylor’s critique.
The fourth tenet is that the solutions to the corresponding advection—
dispersion equation should be superposable, which goes directly to
Taylor’s critique of D(r) forms. We will show that our theoretical model
with dispersion as a function of age fits all four of these tenets.

Their approach starts with 3-D advective-diffusive solute transport
in pipe Poiseuille flow. The initial condition is specified as one or more
solute pulses distributed in x (Case A) as well as in radial direction
(Cases B and C). This microscale system is upscaled by a modified
volume averaging method that leads to a 1-D transport equation with
a time-dependent dispersion coefficient D*(t) (Eq. (7).3 in T2020), a
correction term, s*(x, ) that depends on initial conditions.

To show how their approach circumvents Taylor’s criticism, T2020
present Example 2 (§9.2.1) that involves radially-uniform “initial” con-
ditions, as two sequential solute pulses imposed at an upstream location
and at times 0 and 250 min, respectively. Parameter values are given
in Table 1 of T2020 and COMSOL is used to solve the microscale equa-
tions to obtain solute distributions in cylindrical coordinates and time.
The upscaled macroscale model for this example (Eq. (9).6 in T2020)
involves two models, each of the form of (1) with D*(¢) replacing D(r)
and each with a distinct s*(x, ¢) term. The first model is for 0 < 7 < 250
min and the second applies at the onset of the appearance of the second
initial condition, r > 250 min. The initial condition c,(x) for the first
model is a narrow Gaussian distribution over x centered at x = 0.125 m,
and the initial condition for the second model includes both the profile
from the first model at 250 min plus again the reintroduced ¢,(x) initial
condition, as the second pulse.

In the first model D*(r) is given by Eq. (7.3) in T2020 for ¢ > 0 and
s’l‘(x, t) is zero due to the radial uniformity of the first initial condition
pulse. The second model for ¢ > 250 min is in terms of ¢ = r — 250
min that resets D*(¢') to its initial value equal to the molecular diffu-
sion coefficient. The second model properly times the pre-asymptotic
dispersion of the second pulse, but not that of the first pulse which
has already undergone 250 min of pre-asymptotic dispersion. This is
corrected by the incorporation of sj(x,7) in the second model that
treats the first pulse as a non-uniform initial condition at # = 0. This
construction allows D*(¢) to be “single valued everywhere in space,
including locations where the two solute injections overlap. ...even
though the residence times for the two solute injections are not equal,
they are described by a single upscaled dispersion coefficient”. The
s’z‘(x, t) and D*(r) functions are calculated in MATLAB, then imported
into COMSOL that is used to solve the upscaled macroscale models.
Figure 16 in T2020 gives the laterally-integrated microscale (solid
lines) and macroscale (dots) simulation results, the former of which
make up our target data.

We simulated the target data using our Eq. (11) with parameters
from T2020’s Table 1 as: pipe radius ¢ = 0.01 m, mean velocity v =
1075 m/s, diffusion coefficient D,, = 10™° m/s, and D*(w) is T2020’s
Eq. (7.3) but with w replacing ¢ (in our age-explicit solution Eq. (8);
only after integration over age does the variable ¢ replace w in (11)).
Thus we introduce no fitting parameters. We apply the specified initial
value pulse at + = 0 and again at 7 = 250 min, via Eq. (10) with the
T2020 (Eq. 7.11a) initial condition c,(x) = c,aexp(—(x — f;)? /o‘%) with
¢,=1,a=11, # =0.125m, and o, = 0.03, and with 4 =250 min.

Fig. 1 shows a good match between our model and the laterally-
averaged microscale simulations of T2020, within the confines of up-
scaled approximate 1D advection-dispersion with pre-asymptotic dis-
persion coefficient. The perfect match between T2020’s macroscale
model and the microscale simulation at 250 min results from their
accidental use of the latter (microscale averaged solution) as the initial
condition for their second macroscale model (personal communica-
tion), that also beneficially influenced their subsequent results at 350
and 500 min.
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The meticulous study by T2020 to address non-uniform initial
conditions illuminates the contradictions inherent in specifying time-
dependent dispersion coefficients and achieves a path to superposing
solutions for sequential imposed pulses. However, their complex ma-
chinery that includes separate macroscale models for each sequential
solute injection, each of which is fitted with correction functions that
must be numerically computed, involving infinite series of algebraic
expressions in Bessel functions, is not needed for approximate solution
in those cases where initial conditions vary only in the longitudinal
dimension and are otherwise uniform. Our approach serves as a simple
means to model pre-asymptotic dispersion while resolving Taylor’s
critique, using conventional advective-dispersive tooling in a relatively
simple single macroscopic equation without correction functions.

5. Boundary value problems on 0 < x domains

As noted in the Introduction, the solution of the 1D advection—
dispersion equation with time-dependent dispersion coefficient on the
half-line 0 < x as a boundary value problem with solute condition spec-
ified at x = 0 has not been found, leading to approximation as an initial
value problem on —o < x < oo that involves error that increases with
decreasing Péclet number. Thus for moderate to small Péclet number
cases it is currently necessary to solve boundary value formulations
on 0 < x with D = D(t) numerically. Further, the case involving
pre-asymptotic dispersion cannot be treated using a time-dependent
dispersion coefficient because solute enters the domain continuously
over increasing (start-) times. In order to show the utility of our
approach we demonstrate how it is used to solve a boundary value
problem with pre-asymptotic dispersion, based loosely on the foregoing
example from T2020. We simulate transport of two sequential influent
pulses in a 1.2 m long pipe of 0.2 m radius at mean velocity 2-107 m/s,
with a simplified pre-asymptotic dispersion coefficient D(w) = (D, —
D,)(1 — exp(-/2w,)) + D,, where D,, is 2 - 1078 m?/ s and D, is
2. 107 m?/ s. This exponential model for pre-asymptotic dispersion
is suggested with time as independent variable in hydrogeology (e.g.,
Pickens and Grisak, 1981; Gelhar, 1993; Yates, 1992; Jose and Cirpka,
2004), where w,, is an advective age scale proportional to characteristic
length of flow heterogeneity divided by mean velocity, here taken to be
pipe diameter/mean velocity. These values result in a Péclet number
advection per diffusion length scales, Pe = v - a/D,, Pe = 200 and
®, = 333.33 min, so that pre-asymptotic dispersion conditions prevail
for much of the transport time. The duration of the first pulse is 300 min
and after an interval of 100 min a second pulse of duration 200 min
is added to the influent. Both of these boundary pulses are specified as
Dirichlet boundary conditions of unit concentration ¢, = 1, as (with ¢
in minutes here)

c(x,1,0) = ¢,(1)((@(t) — (1t — 300)) + (D(t — 400) — &(t — 600))) 0<t (14)

where @(r) is the Heaviside step function. To obtain the solution
c(x, 1, w) (2) with (14) is solved by standard implicit finite differences in
Matlab, resulting in solute density over space, time, and age, and this
solution is numerically integrated in w to obtain ¢y (x, ). The resulting
profiles are shown in Fig. 2. For the boundary value problem, the
characteristic plots of age, space and density are much more interesting
than in the initial value problem case. Here one can observe and keep
track of age distributions of solute within the flow field.

The impact of pre-asymptotic dispersion at times comparable to
the characteristic time to asymptotic conditions w, = 333 min, and
the legacy of the pre-asymptotic dispersion at later times, are both
apparent in the comparison of our calculated profiles (top row of Fig. 2,
solid line) and those calculated with a constant dispersion coefficient
(dotted line), even at the moderate Péclet value of 200. The contour
and surface plots illustrate how our additional advection in the age
dimension distributes the solute emanating from a boundary influx over
age, allowing the dispersive flux to be computed differently per every
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Fig. 1. Simulations of Example 2 of T2020 Section 9.2.1 showing solute profiles at four times. In silico data (blue line) represent the laterally-averaged microscopic simulation
and is the target. Green circles show simulation by T2020 macroscopic model equation 9.6. Simulation using superposed solution (11) of age-structured advection—dispersion ((2)

with initial and boundary conditions described in Section 4) is in red.
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Fig. 2. Illustrated solution to 1-D advective-dispersive transport with age as independent variable (2). Transport occurs at Pe = 200 in a 120 cm long column at steady mean
velocity 0.12 cm/min, with characteristic age w, = 333 min; other properties described in text. Panel columns show solute distribution at 300, 600, 900, and 1200 min respectively.
Top row: concentration profiles c;(x,7) (solid line, (2) integrated over w), with constant D = D case (dotted line, solution in Ogata and Banks (1961)) for comparison. Middle
row: contour plots of ¢(x,7,w) (inset is heatmap scale, truncated at 0.025 to accommodate color differentiation at later times). Bottom row figures are surface plots of c(x,?, ).
The blue arrow in the 300 min contour plot in the second row shows the point of view for the surface plots at the bottom.

age value w. This construction allows solutes that overlap in space at
any given time to be assigned different dispersion coefficient values
depending on the solute age. The two pulses in this example overlap
considerably in space as can be seen from the contour plots, and the
different extent of dispersion for solute in either pulse is apparent in the
nonuniform solute distributions over age shown in the surface plots.

6. Summary and conclusions

Local forms of mathematical models for advective-dispersive trans-
port including pre-asymptotic regimes has to date been addressed by
use of a dispersion coefficient that depends in general on time for
initial value problems or on spatial scale for boundary value problems.
Analyses of superposition for both formulations leads to problematic
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multi-valued nature of the dispersion coefficient as noted for the time-
dependent case in Taylor (1959). Following Gurung and Ginn (2020)
we address this issue by including exposure time to flow (age) as
an independent variable in the transport equation. Incorporating age
explicitly and treating the dispersion coefficient as a function of age
honors the dispersive flux and inherently retains superposition of solute
densities distributed in age via a posteriori integration over the age
dimension. In our example from T2020 we show how this works,
without introduction of any fitting parameters. Our second example
demonstrates numerical solution feasibility given the expression for the
dispersion coefficient that itself may involve fitting parameters. New
closed-form solutions are found for the 1-D initial value (Eq. (8)) and
boundary value (Eq. (13) problems.

The only approaches to the pre-asymptotic dispersion problem that
are local and that address Taylor’s critique are the method presented
here and that of T2020. These begin with a fluid mechanical setting
and known D(w), and develop solutions to the advective-dispersive
transport problem. The complexity in the approach of T2020 derives
from the need to use a single-valued D(r) function when considering
the profiles emanating from sequential imposed pulses in the same
simulation. This can be seen by noting (cf. Section 1) that one could in
fact solve the example without s*(x,?) terms by separately calculating
the profiles from the first (at + = 0) and second (at ¥ = 0) imposed
initial pulses, and superposing the obtained solutions on the same ¢-
axis. (In the T2020 example used here, the role of s;(x, t) is to undo
the impact of the inclusion of the ¢ = 250s solution for the first profile
in the initial condition for the second model at ' = 0). The approach of
T2020 to address non-uniform initial conditions in 3-D (the authors’
main purpose) do indeed provide a path to dealing with sequential
imposed pulses, but this machinery is not needed for the superposition
problem if true initial conditions vary only in the axial dimension and
if one includes age.

Celebrated among nonlocal methods are the CTRW (Dentz et al.,
2004) and correlated CTRW (Le Borgne et al.,, 2011) approaches,
that begin with a fluid mechanical-based specification of usually inde-
pendent particle jump time and space interval frequency distribution
functions independent of time or space. The resulting random walk
model gives rise to particle tracking schemes or to integrodifferential
advection—dispersion equations wherein the advection and dispersion
terms are both involved in a convolution with a memory function
(e.g., (Boano et al., 2007)). These approaches can be configured with
sufficiently truncated power-law time interval distributions so that
resulting effective dispersion coefficients reach asymptotic constant
values (e.g., (Dentz et al., 2004; Talon et al., 2023)) but the method has
not yet been configured for a pre-specified D(w), nor to address Taylor’s
critique, to the authors’ knowledge. Separately, the CTRW particle jump
interval frequency distribution function generally combines transport
with non-transport, that is, trapping time intervals, a feature common
to all the above. In the case of Boano et al. (2007) when these trapping
events are removed, the resulting model is the asymptotic (constant D)
advection—dispersion equation.

Here we use age to design a local, Eulerian-frame, deterministic
modeling of Fickian transport through both the transition from pre-
asymptotic to asymptotic regimes the dispersion coefficient expression.
In principle the use of age as independent variable allows such con-
structions generally in a way that solves Taylor’s complaint and affords
superposition. The incorporation of reactions and multiple components
can in principle be done following the usual approaches for Eulerian
transport models. The approach also affords distinction between pre-
asymptotic dependence of dispersion coefficient on age and genuine
dependence of dispersion on time through transience in velocity met-
rics. For instance, in the context of transport in a porous medium
where D is often expressed as the product of a dispersivity « and
a function of the velocity (e.g. in 1D homogeneous media, where
D = af(v(1))), the age dependence would be assigned to a alone.
Incorporation of age in transport in the present context honors the
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four tenets proposed in T2020: the effective dispersion coefficient re-
mains positive, depends only on diffusion coefficient and velocity field,
reaches an asymptotic value over time (here, age); and the solution
to the advection—dispersion equation is superposable, here through
integration of the realized solution over the age dimension.

In this work we are implementing existing formulations of models
that use a pre-asymptotic one-dimensional dispersion coefficient, in
which we suggest replacement of time ¢ with age , in general. The
limitations of the present approach as noted earlier are the restriction
to steady flow, and the requirement for an upscaled one-dimensional
D(t) that adequately describes longitudinal dispersion in the upscaled
transport model. This in turn requires explicit expressions for the
full-dimensional (“microscopic”) flow field as well as additional as-
sumptions involved in the particular upscaling of the transport process
from the original full-dimensional representation to the effective one-
dimensional model. For instance, various D(r) forms are available
for pipes (Gill and Sankarasubramanian, 1970), conduits with un-
steady flow (Vedel and Bruus, 2012), rivers (Wang et al., 2012), some
aquifers (Dentz et al., 2000; Dentz and Carrera, 2007); and each of
these results are attached to assumptions about the flow field that can
limit accurate application (e.g. Wang et al. (2012) require Poiseuille
flow). Additional assumptions associated with the mathematical upscal-
ing appear in these particular cases and more cited in the Introduction,
where developers have derived D(r) expressions on which we here
rely. Finally we have paid for locality by invention of an additional
dimension, that of age w, and so problems involving N space dimen-
sions will result in numerical schemes involving N + 1 dimensions
in addition to time (e.g., (Woolfenden and Ginn, 2009)), that may
encounter computational limits.
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Appendix. Details of the closed-form solutions

Here we show details of the solution of Eq. (3), for the case where
the space domain is —co < x < oo, first for the ‘Age-initial value prob-
lem’ where the distribution of solute concentration over x is specified
at time ¢+ = 0 and age w = 0, and then for the ‘age-boundary value
problem’ where solute is injected as a function of time at x = 0 and at
age w =0.

A.1. Age-initial value problem

For completeness we restate the model. The conservation of mass
over space, time and age is

dc  dc , dc 0% .
vw%+E+U$—D(a))ﬁ =—-AMw)c; —0<x<00,0<t, 0<w (A1)

where v, = 1, with age-initial (Dirichlet-type) condition
c(x,t,w=0) =c,(x)6(t); —0 <x <0, 0L w, (A.2)

boundary conditions in space

lim g—c(x, t,w)=0;, 0<t, 0 < w, (A.3)
X

X—>+00

and initial condition

¢(x,0,0) =0; —0<x <00, 0<w. (A.4)
Making the change of variables

x=x+v' X =x-vo
w="1 =w
t=1+ao o =t-w

leads to a family of equations in ' for c¢(x’,;®’) governed by

2
2 ) 2C = _ihe: —co<x <o, 0<t,0<a, (A.5)
or ox'?
with
c(x',0;0) = 0; —0 < x' < o0,

c(x',0,0") = co(x’)ﬁ(w’); —0<x' <, 0< &,
dc

lim ,(x',t',co') =0; 0<?,0<da.

X' >xo0 OX

Applying the integration factor method with ¢ = f e=A) where A(t') =
/0' AMu)du converts this system to

0 02
—f—D(t’)—fz(); —o<x <00, 0<t,0<a, (A.6)
o' ox'?
f('.0:0) =0; —0 < x < o0,
f(&x'0;0) = co(x’)é(a)’); —o<x' <o, 0< o,
d
lim —f(X’,t’;w’) =0; 0<?, 0<a.
x—+o0 gx’/

The further change of variables

!

t
T= / D(u)du (A.7)
0
yields
2
%—ﬂ=0; —0<x' <00,0<7,0<a, (A.8)
ot 9x'?

f(x',t=0;0) =0;

f(&x'0;0)) = cg(x’)é(a)’) —o<x <, 0<o.

—o0 < x' < o0,

lim L()c’,‘r;au’) =0;

P 0<7, 0<&,
X—==+00 gXx'

The solution can be adapted following Warrick et al. (1972) (follow-
ing Carslaw and Jaeger (1959) p. 53), to write

FOd ) = 5(w’)L\/_ / T, (x’ + u\/4‘r(t’)) du. (A.9)

v oo
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Reversing the integration factor change of variables, we obtain

© 2
c(x', ' 0)) = 5(w')e"‘(")% / e e, (x’ + u\/W) du.
—00

V4

and reversing the original change of variables yields
c(x,t,w) = 6(t — a))e_A(w)% / e_"zco (x —vw + u\/4r(a))) du. (A.10)
T J—

where A(w) = fow AMu)du and 7(w) = /060 D(u)du. Finally, the measurable
concentration is the integral of (A.10) over w,

(o]
cr(x, 1) = e‘A(’)L\/_ / e_“zco (x — vt + u\/4r(t)) du.

V4

(A11)

A.2. Age-boundary value problem

This system is identical to (A.1)-(A.5) above but we replace the
Dirichlet condition at w = 0 (A.2) with the Neumann condition
Vge(x,1,0) = ve, (1)6(x); —o0 < x < o0, 0Lt

The units of both sides of this equation are mass per volume per time.
Defining c;, (1) = Uico(t), we write this boundary condition in Dirichlet
form as ¢

c(x,1,0) = ¢;,(1)6(x) —c0 <x <00, 01 (A.12)

Making the same change of variables as above leads to again (A.5)
but now with

c(x',0,0) = 0; —0 < x' < oo,
c(x',0,0") = c,-,,(w')&(x'); —0<x' <o, 0<,
fim 251, = 0; 0<r, 0<a.

x'—>+o0 OX'

Applying the same integration factor method with ¢ = fe=4(") yields

a 02
—f—D(t’)—f =0; —o<x <0, 0<?,0<a, (A.13)
ot 9x'?
f(x',0;0) =0; —0 < x' < oo,
f(x'0;0) = c,-,,(w’)&(x'); —0<x' <o, 0<a,
17}

liT a—f,(x',t’;w/) =0; 0</,0<d,
X—+00 X’
and the same further change of variables

f/
T= / D(u)du (A.14)
0

gives in this case
a 02
0—f—a—/j;=0; —0<x <00, 0<7,0<a, (A.15)

T X

f(&! 7t =0,0) =0; —00 < x' < o0,
F&,0;0") = ¢p(@)d(x) —o0<x <00, 0< .

tim 2wty =0, 0<r 0%,
xX—+00 JX
Then the solution

(A.16)

o]

f(&' 10 = c,-,,(a)’)%/_ / s (x' + u\/4r(l’)) du.
T J—o

is obtained. Reversing the integration factor variable change, we obtain

c(x" t’;a)’) = cin((o,)e*"(’/)% / 97"25 (x' + u\/m) du.
T J—c0
and reversing the original change of variables yields

c(x,t,w) = c;,(t — a))e_A(w)L\/_ / e_“25 (x —vo + u\/4‘r(a))) du.

T
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Using the rules for Dirac functions of functions,

— p)?
c(x,t,w) = c;,(t — w)e‘A(w) ! exp(— (x — vw) >
Vart(w) 4rz(w)
® ® .
where A(w) = [, Awdu and t(w) = f;° D(u)du. Integration of (A.17)
over w from 0 to ¢ yields the measurable concentration c;(x, t). Note that

in the case where c () = ¢,®(r) where @(r) is the Heaviside function,
and where A = 0 this integration yields

(- vw)? )

(A.17)

(A.18)

er(x.n) = 4rt(w)

t
Lco / ! exp(
Ve 0 +4rr(w)
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