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The many-body expansion (MBE), where one computes the total energy of a su-

persystem as the sum of the dimer, trimer, tetramer, etc. subsystems, provides a

convenient approach to compute the lattice energies of molecular crystals. We in-

vestigate approximate methods for computing the non-additive three-body contribu-

tions to the crystal lattice energy of the polar molecules acetic acid, imidazole, and

formamide, comparing to coupled-cluster singles, doubles, and perturbative triples

[CCSD(T)] level benchmarks. Second-order Møller–Plesset perturbation theory MP2,

if combined with a properly damped Axilrod-Teller-Muto (ATM) dispersion poten-

tial, displays excellent agreement with CCSD(T) at a substantially reduced cost.

Errors between dispersion-corrected MP2 and CCSD(T) are less than 1 kJ mol−1

for all three crystals. However, the three-body energy requires quite large distance

cutoffs to converge, up to 20 Å or more.
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I. INTRODUCTION

Drug molecules can crystallize in different polymorphic structures, each with different

properties and stabilities.1,2 Thus, successfully predicting and identifying the most stable

polymorphs of a molecule is an important task in drug development.3,4

Recently, our group and others have applied the many-body expansion (MBE),5–7 to

compute the lattice energy of molecular crystals.8–12 The MBE is commonly used to calculate

the energy of molecular clusters; the energy of a molecular system is decomposed into a sum

of the energies of all the constituent monomers, dimers, trimers, etc.:

E =
∑︂
i

Ei +
∑︂
i<j

∆E
(2)
ij +

∑︂
i<j<k

∆E
(3)
ijk + . . . . (1)

∆E
(2)
ij is the two-body interaction energy,

∆E
(2)
ij = Eij − Ei − Ej, (2)

and ∆E
(3)
ijk is the non-additive three-body interaction energy,

∆E
(3)
ijk = Eijk − (∆Eij + ∆Eik + ∆Ejk) − (Ei + Ej + Ek). (3)

The expansion is exact if taken to completion, but in practice it is truncated at some

lower order, typically trimers or tetramers, taking advantage of the observation that the

higher-order terms are usually negligible. The MBE offers two computational advantages:

(1) truncating the expansion at lower orders allows one to use high-scaling wavefunction

methods that would be intractable on the whole supersystem and (2) computing the n-body

terms is pleasantly parallel and can be distributed easily across computing resources. The

MBE is thus a promising method to compute coupled-cluster energies of large supermolecular

systems.

As a crystal is a periodic system, to apply the MBE to a crystal, one must first construct

a finite supercell of the crystal lattice. The lattice energy of a crystal with one unique

monomer in the asymmetric unit (Z = 1) can be computed through a modified MBE as a

sum of the deformation energy of the unique monomer plus (non-additive) two-body, three-

body, etc., interaction energies involving one fixed reference monomer i. The interaction

energies are divided by appropriate factors to yield final results on a per-reference-molecule

(or per mole of reference molecules) basis:13
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Elattice = ∆Edef +
1

2

∑︂
j

E
(2)
ij +

1

3

∑︂
j<k

E
(3)
ijk + . . . . (4)

As many crystal systems have several low-energy polymorphs, all lying within a few

kJ mol−1 of each other,4,14 the crystal lattice energy must be computed as accurately as

possible. The so-called “chemical accuracy” of 1 kcal mol−1 or 4 kJ mol−1 seems to be

the bare minimum target accuracy for studies of crystal polymorphs, and indeed accuracy

of ∼1 kJ mol−1 or better should be greatly preferable. To achieve such accuracy levels

seems challenging, but may be possible with the MBE as discussed below. Certainly one

requirement is that any constituent computations must be carried out at a high level of

quantum mechanical theory. Another requirement is that the MBE treatment must be

carried to sufficiently high order to converge the approximation within the desired target

accuracy.

Successfully converging the many-body contributions also requires careful consideration

of the cutoff distances used to generate the crystal supercell, which may need to be quite

large to converge to the bulk, periodic limit. Recent studies on the benzene crystal15,16 have

established the success of using the MBE to compute coupled-cluster singles, doubles, and

perturbative triples [CCSD(T)]17 lattice energies of molecular crystals up to sub-kJ mol−1

accuracy. For benzene, truncating the MBE at the trimer level was sufficient to converge

the CCSD(T) lattice energy, which appears to be within 1 kJ mol−1 accuracy or better

of estimates of the experimental 0 K lattice energy, when all appropriate corrections are

applied, such as the zero-point vibrational energy, finite-temperature enthalpy corrections,

and the change in geometry from 0 K to the experimental crystal structure at 138 K.16

However, the steep cost of coupled cluster methods prevents the application of said ap-

proach to larger molecules. In addition, the combinatorics of the many-body expansion,

which can give a huge number of trimer configurations in a supercell, make obtaining con-

verged, high-accuracy MBE results a nearly insurmountable task without a careful selection

of approximate methods and screening protocols for computation of the higher-order bodies

in the MBE. One approach is to screen out contributions to the MBE that are estimated

to be negligible, for example dimers or trimers with large distances between the constituent

monomers.18–20 Another strategy to reduce the computational cost is to use faster, more ap-

proximate methods for the higher-body terms. Both approaches are particularly salient for
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the higher-order terms in the MBE, which dominate the computational cost unless special

steps are taken to mitigate the number of higher-body clusters included.

We have previously identified approximate methods to compute the two-body contribu-

tions accurately and efficiently, comparing to CCSD(T) benchmarks for the X23 dataset.21

We have also studied the role of three-body dispersion in benzene, carbon dioxide, and

triazine;22 all three of these systems have monomers with zero dipole moment, such that one

would expect three-body dispersion to dominate over three-body polarization due to the

lack of dipole-driven polarization terms. We found that the Axilrod-Teller-Muto (ATM)23,24

three-body dispersion formula performed best in recouping the three-body dispersion miss-

ing in MP2, compared to CCSD(T) benchmark values, provided an appropriate damping

function is used; the Tang-Toennies25 damping form worked particularly well. In benzene,

the three-body dispersion [estimated as the difference between CCSD(T) and MP2] was

3.12 kJ mol−1, compared to 0.51 kJ mol−1 for the three-body induction (estimated as the

MP2 non-additive three-body contribution). The total three-body energy in all systems was

converged by a maximum cutoff distance of about 12 Å for the closest interatomic distance

between two monomers.

Klimeš and coworkers recently investigated lattice energies crystalline ethane, ethene,

and acetylene using the MBE including dimers, trimers, and tetramers, comparing MP2

and the random phase approximation (RPA) to CCSD(T) benchmarks.26 The non-additive

three-body energies were converged to within a few tenths of a kJ mol−1 by 20 Å. However,

neither MP2 nor RPA accurately reproduced CCSD(T) values for the non-additive three- and

four-body energies. Other recent approaches to computing crystal lattice energies include

periodic MP2,27 periodic diffusion Monte Carlo,28 and MBE results embedded in periodic

boundary result.29

In this work, expanding upon our previous work on non-polar molecules,22 we investigate

approximate methods to compute the non-additive three-body contributions to the lattice

energies of crystalline systems of three polar molecules: formamide, acetic acid, and imi-

dazole. In contrast to the dispersion-dominated systems studied previously, the three-body

energies in these systems will contain significant contributions from three-body polarization

in addition to three-body dispersion. This, in turn, may mean that three-body contributions

may converge much more slowly with respect to intermolecular distance than in the previous

studies of non-polar molecules.
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Here we present CCSD(T) benchmark values for the non-additive three-body contribution

to the lattice energies of the molecules studied. There have been previous studies of various

approximate methods vs CCSD(T) benchmark values for diverse sets of van der Waals

trimers. Beran and co-workers presented30 the 3B-69 test set, which includes three trimers

from each of the crystals in the X23 data set.31 Gordon and co-workers have presented the

S22(3) test set,32 which includes trimers generated from the S22 test set.33 Ochieng and

Patkowski have presented34 a test set of 20 trimer geometries including various types of

interactions such as π-π, anion-π, cation-π, etc.

Here our focus is on examining the convergence of the three-body contribution to the

lattice energy with respect to the distances between monomers, and on the ability of ap-

proximate methods to reproduce the three-body energy accurately. In the MBE framework,

this requires not only accurate estimates of the three-body energy in each constituent trimer,

but also the absence of a systematic bias towards over- or under-binding, which would ac-

cumulate and spoil the accuracy of the overall three-body energy.

Non-additive polarization and exchange-repulsion effects are already captured with sim-

ple Hartree–Fock theory, and MP2 allows for corrections to these effects due to electron

correlation.35 However, MP2 does not include any modeling of non-additive three-body

dispersion,36 which in the Møller-Plesset perturbation theory framework requires at least

MP3.35,37 Thus, here we consider two different alternatives to CCSD(T) that are still capable

of including three-body dispersion: MP2.5,38 and Axilrod-Teller-Muto (ATM) models.23,24

MP2.5 is a simple average of MP2 and MP3, and has been found to be more accurate

than standard MP3 for intermolecular interactions.30,38 In particular, MP2.5 shows good

accuracy for non-additive three-body interactions in van der Waals trimers.30 Alternatively,

ATM models have a simple functional form (see below) based on triple-dipole dispersion in

atom trimers, and have been found effective in modeling three-body interactions in van der

Waals trimers when paired with supermolecular MP2.16,22,39

As expected, we do find slower convergence of the three-body contributions to the lattice

energy with respect to the distances between the monomers, compared to our earlier study

of non-polar molecules.22 This slower convergence means that we need to include trimers

with larger intermolecular separations to achieve any given target level of accuracy, and this

leads to an explosion in the number of unique trimers to be included in the computation.

Thus, we also explore strategies for screening out trimers with negligible contributions to
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the three-body energy.

II. METHODS

Generation of Trimer Geometries

A development version of the CrystaLattE40 program was used to generate all trimer

geometries. CrystaLattE generates a supercell of the crystal geometry, then identifies all

symmetry-unique dimers, trimers, etc., containing a reference monomer and satisfying a

cutoff distance criterion.

The crystal structures for acetic acid (ACETAC01),41 formamide (FORMAM02),42 and

imidazole (IMAZOL04)43 were obtained from the Cambridge Structural Database (CSD).44

For each structure, CrystaLattE was used to generate all symmetry-unique trimer geometries

within a specified maximum monomer separation (15 or 20 Å) from a central, reference

monomer. MP2 and MP2.5 results for all three crystals systems and CCSD(T) results for

formamide were obtained out to the 20 Å cutoff. There were 48046, 30546, and 26039

symmetry-unique trimers generated for formamide, acetic acid, and imidazole, respectively

using the 20 Å cutoff value. As the full CCSD(T) results for acetic acid and imidazole at

these cutoff values were deemed unfeasible due to computational limitations, we generated

all the symmetry-unique trimers within a 15 Å maximum monomer separation cutoff: 6253

for acetic acid and 5572 for imidazole.

The trimers can be classified using a number of geometric parameters. Here, we use the

maximum intermonomer separation distance (which we refer to as Rmax throughout), the

minimum intermonomer separation distance (Rmin throughout), as well as the geometric and

harmonic means of the intermonomer separation distances. The intermonomer separation

distance is defined as the closest interatomic distance between two monomers.

Wavefunction Methods

All computations used Psi445 version 1.8 and the aug-cc-pVXZ, X ∈ {D,T,Q}, basis sets

of Dunning and coworkers.46,47 The density fitting and the frozen core approximations were

utilized in all computations. SCF computations used the aug-cc-pVXZ-JKFIT auxiliary

basis sets.48 MPn and CCSD(T) computations used the aug-cc-pVXZ-RI auxiliary basis
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sets.49 SCF results were tightly converged to 10−10 Hartree.

The MP2 correlation energies were computed by using the two-point formula of Helgaker

and coworkers50 to extrapolate aug-cc-pVTZ and aug-cc-pVQZ correlation energies to the

complete basis set (CBS) limit. The CCSD(T) results were obtained by using a focal-point

approach51 utilizing the difference in MP2 and CCSD(T) correlation energies in a smaller

basis set, in this case aug-cc-pVDZ:

ECCSD(T)/CBS ≈ EMP2/CBS +
[︁
ECCSD(T)/aDZ − EMP2/aDZ

]︁
. (5)

Such approximations are known to be particularly effective for computing interaction

energies.52

The MP2.5 correlation energy is defined as the mean of the MP2 and MP3 correlation

energies.38 The MP2.5 energies were extrapolated in a similar focal-point approach, using

the same basis sets:

EMP2.5/CBS ≈ EMP2/CBS +
[︁
EMP2.5/aDZ − EMP2/aDZ

]︁
. (6)

The Boys-Bernardi counterpoise correction53 was used in all computations, with the

trimer basis set used to calculate all fragment energies for each trimer, as suggested by

Wells and Wilson.54

Axilrod-Teller-Muto Dispersion

While MP2 is known to effectively treat many-body polarization effects, it lacks inclusion

of many-body dispersion effects.35 The Axilrod-Teller-Muto (ATM) three-body potential23,24

may be used to correct the MP2 results for three-body dispersion:

U3b =
∑︂

A<B<C

CABC
9

(︂
1 + 3 cos Â cos B̂ cos Ĉ

)︂
R3

ABR
3
BCR

3
AC

, (7)

where the indices A,B,C run over atoms, CABC
9 are the dipole-dipole-dipole polarizability

coefficients, R are the distances between atom centers, and Â are the angles between atom

centers. The C9 coefficients can be approximated using the pairwise C6 coefficients:55

CABC
9 =

√︂
CAB

6 CAC
6 CBC

6 . (8)

7



The ATM potential diverges at short interatomic distances and must be damped to ensure

proper behavior. We used a Tang-Toennies (TT) damping function,25 specifically, a product

of three two-body TT damping functions appropriate for damping C6 coefficients. In our

previous tests of three-body dispersion in crystals of non-polar molecules, we found that this

damping function performed best of those considered.22

fabc
9 (β) = fab

6 (Rab, β) f bc
6 (Rbc, β) f ca

6 (Rca, β) , (9)

where fab
6 (Rab, β) is a two-body Tang-Toennies damping function,

f6 (R, β) = 1 −
6∑︂

n=0

(︄
(βR)k

k!

)︄
exp−βR, (10)

and the β damping coefficient is given by:

β = −0.31(rvdWa + rvdWb ) + 3.43. (11)

The C6 coefficients used to approximate the C9 coefficients in the ATM potential were ob-

tained using the dftd4 program of Grimme and coworkers.56,57 The damping coefficients for

the Tang-Toennies functions were obtained from the work of von Lillienfeld and Tkatchenko,

based on ab initio computations of vdW radii.58

For imidazole, the largest molecule considered here, an example CCSD(T)/CBS trimer

computation takes 18.3 hours, while MP2/CBS takes 1.4 hours, on a compute node with an

Intel Xeon 6226 processor (using 8 out of 24 cores to accommodate multiple jobs on a single

node), a RAID0 array scratch disk, and 32 GB of RAM used.

III. RESULTS

The convergence of the three-body energy in the formamide crystal with respect to two

geometric parameters, Rmax and Rmin discussed above, is shown in Figure 1a for MP2,

MP2 corrected with undamped (MP2+ATM) and Tang-Toennies damped ATM dispersion

[MP2+ATM(TT)], MP2.5, and CCSD(T). The MP2+ATM(TT) results are in excellent

agreement with the CCSD(T) benchmarks, with a cumulative three-body error of only 0.05

kJ mol−1 at the maximum monomer separation of 20 Å. The Rmin results show that the three-

body energy is converged by a minimum monomer separation of about 12 Å. In contrast,
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FIG. 1. Convergence of the non-additive three-body energy with respect to maximum monomer

separation (Rmax, left panels) and minimum monomer separation (Rmin, right panels) in (a) for-

mamide, (b) acetic acid, and (c) imidazole.

a large maximum monomer separation is needed to converge the total three-body energy,

as can be seen in the Rmax results. At most distances, the overall three-body contribution

is positive for most methods. This is consistent with what one might expect for three-

body dispersion, which tends to be positive. However, at shorter distances, the three-body

contributions are often negative. This is due to favorable three-body polarization terms.

Although two-body polarization is always negative, three-body polarization can be positive

or negative. MP2, which includes three-body polarization but not three-body dispersion,

shows both positive and negative three-body energies, depending on the cutoff distance

and criterion used (Rmin or Rmax). In the right-hand panel for Rmin, the cumulative three-
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body contributions for MP2 are slightly positive for intermediate and larger cutoff distances

(around 1-2 kJ mol−1). When three-body dispersion is included via CCSD(T) or ATM, the

three-body energies are shifted higher on the graph compared to the MP2 curves.

The convergence of the three-body energy in the acetic acid crystal is shown in Figure

1b. For acetic acid and imidazole (below), CCSD(T) trimers beyond an Rmax cutoff of 15 Å

were not computed due to the prohibitive cost. MP2+ATM(TT) results are again in good

agreement with the CCSD(T) benchmarks, with a total error of 0.36 kJ mol−1 at the 15 Å

cutoff.

The convergence of the three-body energy in the imidazole crystal is shown in Figure 1c.

At the 15 Å cutoff distance, the error for MP2+ATM(TT) versus the CCSD(T) benchmark

was 0.81 kJ mol−1. The larger error correlates with the larger magnitude of the three-body

energy in imidazole, around -4.87 kJ mol−1 vs 2.92 and 0.59 kJ mol−1 in formamide and acetic

acid, respectively. As in the case of formamide, the cumulative three-body energy plots for

acetic acid and imidazole tend to track the behavior of MP2, but they are shifted to higher

(more positive or less negative) values, reflecting their inclusion of three-body dispersion

absent in MP2. However, in the case of the latter two crystals, the MP2 three-body energies

are uniformly negative.

As expected, without any ATM three-body dispersion correction, the MP2 three-body

energies are significantly more negative than CCSD(T). MP2 with the undamped ATM dis-

persion correction overcorrects (too positive) as the dispersion energy becomes too repulsive

for very close contacts without correctly damping the ATM potential. However, using the

Tang-Toennies damped three-body dispersion results in excellent agreement with CCSD(T)

results.

For the formamide and acetic acid crystals, the MP2.5 results underestimate the three-

body contribution to the lattice energy, resulting in errors larger than those for MP2+ATM(TT).

However, for imidazole, MP2.5 very slightly outperforms the MP2+ATM(TT) method.

Given that MP2+ATM(TT) is a much faster method than MP2.5, and gives more accu-

rate results for two out of three crystal systems here, it remains the preferred approximate

method for computing three-body energies.

The frustratingly slow convergence of the three-body contribution to the many body en-

ergy for the systems presented here, substantially slower than the non-polar crystals studied

in Ref. 22, highlights the importance of establishing approximate methods and screening
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procedures for computing crystal lattice energies of polar molecules using the MBE. In con-

trast to the benzene, carbon dioxide, and triazine crystals,22 the polar molecules studied

here require longer ranges in both Rmax and Rmin to converge the three-body energy. For

benzene for example, the three-body energy was converged by a Rmax cutoff value of about

12 Å and an Rmin cutoff value of 7 Å, while formamide is apparently still not well converged

by an Rmax cutoff of 20 Å. This can be attributed to the three-body polarization persisting at

longer ranges than the three-body dispersion. Consistent with this interpretation, it is clear

that convergence with respect to Rmin and Rmax is essentially the same for MP2 (lacking

three-body dispersion but including three-body polarization) as it is for other methods.

It is obvious that one can apply a much stricter (shorter) Rmin cutoff to the trimer config-

urations than Rmax. Unfortunately, however, screening out trimers by using an appropriate

Rmin cutoff does not eliminate enough to make large Rmax cutoffs feasible. The configura-

tions with a small Rmin and large Rmax, corresponding to trimers with two close monomers

and one far away, contribute non-negligibly to the total three-body energy. This results

in a large number of configurations that cannot be screened out, and one must extend the

supercell to include large Rmax in order to converge the MBE energy. Similarly large cutoff

distances were required to converge the two-body energy contributions for the same systems.

The two-body energies for formamide, acetic acid, and imidazole were converged to within

0.5 kJ mol−1 of their asymptotic limit by 29.5, 17.9, and 22.0 Å, respectively.13

In Figure 2a, the formamide trimers are classified based on their Rmax and Rmin distances.

For each bin, the number of trimers and contribution to the three-body energy are shown,

using the CCSD(T) values. It can be seen that the closest trimers (Rmin < 4 Å and Rmax < 10

Å) contribute by far the most to the three-body energy, despite their comparatively very

small number. The dramatic increase in trimers for large Rmax values can clearly be seen.

A cutoff value to minimize the number of trimers while keeping errors as small as possible

thus requires a dual cutoff, leveraging both Rmin and Rmax values, so that the short-long

trimers (Rmin < 4 Å and Rmax > 10 Å) are not neglected, while keeping the total number

of long range trimers under control.

Figure 2a also shows the errors of MP2+ATM(TT) versus CCSD(T) benchmarks classi-

fied based on their geometric parameters. The errors versus the CCSD(T) benchmarks are

largest for the trimers with Rmin < 4 Å and Rmax < 10 Å. In fact, the accumulated errors

for all other trimers are essentially negligible. The former number on the order of just a few
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FIG. 2. Left side: contribution to the non-additive three-body lattice energy (top numbers) and

number of unique trimers (bottom numbers) for each bin of trimers, partitioned according to the

values of Rmin and Rmax. Right side: Similar figure, but energy values are now MP2+ATM(TT)

error vs CCSD(T) benchmarks. Results provided for A) formamide, B) acetic acid, and C) imi-

dazole. For acetic acid and imidazole, values on the left are CCSD(T) where available, otherwise

MP2+ATM(TT). Energies in kJ mol−1.

hundred trimers, making a multi-level approach, where one computes this subset of trimers

with CCSD(T) and the remaining with MP2+ATM(TT), a feasible option for obtaining the
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three-body energy of crystal systems within benchmark level accuracy. However, due to

favorable error cancellation, in this particular case, even if all trimers are computed with

MP2+ATM(TT), the total error is only 0.05 kJ mol−1.

The geometric binning of trimers in the acetic acid and imidazole crystals is shown

in Figures 2b and 2c. For both, the energy values shown are CCSD(T) where available

(Rmax < 15 Å) and MP2+ATM(TT) elsewhere. The imidazole and acetic acid results are

similar to those of formamide. The three-body energy is dominated by the closest trimers,

yet close-long geometries still contribute significantly. However, the errors versus CCSD(T)

are driven by the closest geometries.

If one computes the closest (Rmin < 4 Å and Rmax < 10 Å) geometries with CCSD(T) and

the rest with MP2+ATM(TT), the resulting errors compared to the full CCSD(T) results

are just 0.05 and 0.03 kJ mol−1 for acetic acid and imidazole, requiring only 434 out of 30546

and 438 out of 26039 trimers for each. While some error remains unknown in acetic acid

and imidazole due to missing CCSD(T) benchmark values at longer ranges (Rmax > 15 Å),

we expect these errors to be minimal.

A. Comparison of long-range screening methods

As mentioned above, a multi-level approach can help reduce computational cost while

minimizing errors. However, as observed above, there are a large number of long-range

trimers whose contributions to the three-body lattice energy are not negligible. We find

it advisable to screen out the trimer configurations with negligible contributions to reduce

the overall cost, which is overwhelmingly dominated by the growth of long range trimer

configurations for large supercell sizes. In addition to the Rmin parameter discussed above,

we consider here using the geometric mean of the intermonomer distances Rgeom, and the

harmonic mean of the intermonomer distances Rharm as screening parameters. The conver-

gence plot of the three-body energies of formamide, acetic acid, and imidazole with respect

to the geometric mean Rgeom and harmonic mean Rharm can be found in the Supplemental

Information.

Figure 3 shows the errors incurred versus the number of trimers screened out for the

three geometric screening parameters considered here: Rmin, Rgeom, and Rharm. For all three

crystals, a substantial number of trimers in the supercell can be screened out while keeping
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FIG. 3. Errors incurred versus number of trimers screened out for the Rmin, Rgeom, and Rharm

screening parameters for the (a) formamide, (b) acetic acid, and (c) imidazole crystals. Errors are

in kJ mol−1 at the MP2+ATM(TT) level of theory versus unscreened results at the same level of

theory.

the errors negligible (under 0.1 kJ mol−1). Until a large fraction of the trimers are discarded,

all three parameters perform similarly. While the Rgeom and Rharm parameters incur larger

errors in the formamide crystal for similar numbers of trimer geometries discarded, they

appear to give a more stable error with respect to number of trimers screened in all three

crystals, suggesting they may be preferable over Rmin as a general screening parameter.

B. Best estimates of the crystal lattice energies

Table I shows the best estimates of the two-body and three-body energies for the acetic

acid, formamide, and imidazole crystals, in addition to the three non-polar crystals studied

in Ref. 22, benzene, carbon dioxide, and triazine. The two-body energies are CCSD(T)/CBS

level results from Ref. 21. The best estimate of the three-body energies is CCSD(T)/CBS

where available, otherwise MP2+ATM(TT) results were used. To discriminate among poly-

morphs, which often lie very close to each other in energy, it is evidently necessary to include

three-body terms in the lattice energies, which range in importance from 0.59 to -4.87 kJ

mol−1 for crystals of the three polar molecules considered here, and 1.43 to 4.75 kJ mol−1

for the dispersion bound crystals. Computing the three-body energies with MP2 results in

substantial errors in all cases, up to 3.46 kJ mol−1 for the imidazole crystal.
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TABLE I. Best estimates for the two-body and three-body contributions to the crystal lattice ener-

gies of acetic acid, formamide, and imidazole, in kJ mol−1. Two-body energies are CCSD(T)/CBS

results from Ref. 21 and three-body energies for benzene, carbon dioxide, and triazine are from

Ref. 22. Three-body energies are CCSD(T)/CBS where available, otherwise MP2+ATM(TT).

Crystal 2-body energy 3-body energy

Best estimate Best estimate MP2

Acetic acid −75.51 0.59 (-0.8 %) −1.44

Formamide −76.76 2.92 (-4.0 %) 1.01

Imidazole −93.30 -4.87 (5.0 %) −8.33

Benzene −57.99 3.63 (-6.7 %) 0.51

Carbon dioxide −30.11 1.43 (-5.0 %) 0.42

Triazine −58.36 4.75 (-8.9 %) 2.16

IV. CONCLUSION

We have computed the non-additive three-body crystal lattice contributions for crystalline

formamide, acetic acid, and imidazole using CCSD(T), MP2, dispersion-corrected MP2, and

MP2.5. Our results show that MP2 with Axilrod-Teller-Muto three-body dispersion can

achieve excellent agreement with CCSD(T) benchmarks for the three-body contributions to

the crystal lattice energy. The MP2.5 results, however, have larger errors compared to the

CCSD(T) benchmarks, despite the greater computational cost.

Importantly, we find contributions from long-range trimer geometries beyond even 15 Å

are apparently non-negligible for crystals of polar molecules. However, a substantial portion

of the long-range contributions can be screened out while keeping errors small. A combina-

tion of long-range screening and approximate methods like MP2 corrected with a damped

ATM dispersion potential can drastically reduce the computational cost of obtaining high ac-

curacy three-body contributions to the crystal lattice energies. In addition, or alternatively,

one could perform an inexpensive periodic boundary condition computation to fully capture

many-body polarization effects, and the correct this baseline by higher-level computations

on select dimers and trimers.
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SUPPLEMENTAL MATERIAL

The supplemental material contains Cartesian coordinates and energetics for all trimers

in the study, at each level of theory considered. Also provided is a figure of the convergence

of the cumulative three-body energies with respect to geometric and harmonic mean cutoff

criteria.
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