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The many-body expansion (MBE), where one computes the total energy of a su-
persystem as the sum of the dimer, trimer, tetramer, etc. subsystems, provides a
convenient approach to compute the lattice energies of molecular crystals. We in-
vestigate approximate methods for computing the non-additive three-body contribu-
tions to the crystal lattice energy of the polar molecules acetic acid, imidazole, and
formamide, comparing to coupled-cluster singles, doubles, and perturbative triples
[CCSD(T)] level benchmarks. Second-order Mgller—Plesset perturbation theory MP2,
if combined with a properly damped Axilrod-Teller-Muto (ATM) dispersion poten-
tial, displays excellent agreement with CCSD(T) at a substantially reduced cost.
Errors between dispersion-corrected MP2 and CCSD(T) are less than 1 kJ mol™!
for all three crystals. However, the three-body energy requires quite large distance

cutoffs to converge, up to 20 A or more.
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I. INTRODUCTION

Drug molecules can crystallize in different polymorphic structures, each with different
properties and stabilities™ Thus, successfully predicting and identifying the most stable
polymorphs of a molecule is an important task in drug development .

Recently, our group and others have applied the many-body expansion (MBE)”>* to
compute the lattice energy of molecular crystals®42 The MBE is commonly used to calculate
the energy of molecular clusters; the energy of a molecular system is decomposed into a sum
of the energies of all the constituent monomers, dimers, trimers, etc.:
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AE;;" is the two-body interaction energy,
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and AES’,g is the non-additive three-body interaction energy,
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The expansion is exact if taken to completion, but in practice it is truncated at some
lower order, typically trimers or tetramers, taking advantage of the observation that the
higher-order terms are usually negligible. The MBE offers two computational advantages:
(1) truncating the expansion at lower orders allows one to use high-scaling wavefunction
methods that would be intractable on the whole supersystem and (2) computing the n-body
terms is pleasantly parallel and can be distributed easily across computing resources. The
MBE is thus a promising method to compute coupled-cluster energies of large supermolecular
systems.

As a crystal is a periodic system, to apply the MBE to a crystal, one must first construct
a finite supercell of the crystal lattice. The lattice energy of a crystal with one unique
monomer in the asymmetric unit (Z = 1) can be computed through a modified MBE as a
sum of the deformation energy of the unique monomer plus (non-additive) two-body, three-
body, etc., interaction energies involving one fixed reference monomer ¢. The interaction
energies are divided by appropriate factors to yield final results on a per-reference-molecule

(or per mole of reference molecules) basis:'
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As many crystal systems have several low-energy polymorphs, all lying within a few
kJ mol™! of each other,* the crystal lattice energy must be computed as accurately as
possible. The so-called “chemical accuracy” of 1 kcal mol™! or 4 kJ mol~! seems to be
the bare minimum target accuracy for studies of crystal polymorphs, and indeed accuracy
of ~1 kJ mol™! or better should be greatly preferable. To achieve such accuracy levels
seems challenging, but may be possible with the MBE as discussed below. Certainly one
requirement is that any constituent computations must be carried out at a high level of
quantum mechanical theory. Another requirement is that the MBE treatment must be
carried to sufficiently high order to converge the approximation within the desired target
accuracy.

Successfully converging the many-body contributions also requires careful consideration
of the cutoff distances used to generate the crystal supercell, which may need to be quite
large to converge to the bulk, periodic limit. Recent studies on the benzene crystal’®® have
established the success of using the MBE to compute coupled-cluster singles, doubles, and
perturbative triples [CCSD(T)J*” lattice energies of molecular crystals up to sub-kJ mol™!
accuracy. For benzene, truncating the MBE at the trimer level was sufficient to converge
the CCSD(T) lattice energy, which appears to be within 1 kJ mol™! accuracy or better
of estimates of the experimental 0 K lattice energy, when all appropriate corrections are
applied, such as the zero-point vibrational energy, finite-temperature enthalpy corrections,
and the change in geometry from 0 K to the experimental crystal structure at 138 K10

However, the steep cost of coupled cluster methods prevents the application of said ap-
proach to larger molecules. In addition, the combinatorics of the many-body expansion,
which can give a huge number of trimer configurations in a supercell, make obtaining con-
verged, high-accuracy MBE results a nearly insurmountable task without a careful selection
of approximate methods and screening protocols for computation of the higher-order bodies
in the MBE. One approach is to screen out contributions to the MBE that are estimated
to be negligible, for example dimers or trimers with large distances between the constituent
monomers. 2% Another strategy to reduce the computational cost is to use faster, more ap-

proximate methods for the higher-body terms. Both approaches are particularly salient for



the higher-order terms in the MBE, which dominate the computational cost unless special
steps are taken to mitigate the number of higher-body clusters included.

We have previously identified approximate methods to compute the two-body contribu-
tions accurately and efficiently, comparing to CCSD(T) benchmarks for the X23 dataset.*!
We have also studied the role of three-body dispersion in benzene, carbon dioxide, and
triazine;** all three of these systems have monomers with zero dipole moment, such that one
would expect three-body dispersion to dominate over three-body polarization due to the
lack of dipole-driven polarization terms. We found that the Axilrod-Teller-Muto (ATM )%+
three-body dispersion formula performed best in recouping the three-body dispersion miss-
ing in MP2, compared to CCSD(T) benchmark values, provided an appropriate damping
function is used; the Tang-Toennies® damping form worked particularly well. In benzene,
the three-body dispersion [estimated as the difference between CCSD(T) and MP2] was
3.12 kJ mol™!, compared to 0.51 kJ mol™! for the three-body induction (estimated as the
MP2 non-additive three-body contribution). The total three-body energy in all systems was
converged by a maximum cutoff distance of about 12 A for the closest interatomic distance
between two monomers.

Klimes and coworkers recently investigated lattice energies crystalline ethane, ethene,
and acetylene using the MBE including dimers, trimers, and tetramers, comparing MP2
and the random phase approximation (RPA) to CCSD(T) benchmarks.“® The non-additive
three-body energies were converged to within a few tenths of a kJ mol~! by 20 A. However,
neither MP2 nor RPA accurately reproduced CCSD(T) values for the non-additive three- and
four-body energies. Other recent approaches to computing crystal lattice energies include
periodic MP2 /%Y periodic diffusion Monte Carlo,*® and MBE results embedded in periodic
boundary result.*

In this work, expanding upon our previous work on non-polar molecules,*? we investigate
approximate methods to compute the non-additive three-body contributions to the lattice
energies of crystalline systems of three polar molecules: formamide, acetic acid, and imi-
dazole. In contrast to the dispersion-dominated systems studied previously, the three-body
energies in these systems will contain significant contributions from three-body polarization
in addition to three-body dispersion. This, in turn, may mean that three-body contributions
may converge much more slowly with respect to intermolecular distance than in the previous

studies of non-polar molecules.



Here we present CCSD(T) benchmark values for the non-additive three-body contribution
to the lattice energies of the molecules studied. There have been previous studies of various
approximate methods vs CCSD(T) benchmark values for diverse sets of van der Waals
trimers. Beran and co-workers presented®” the 3B-69 test set, which includes three trimers

from each of the crystals in the X23 data set.®!

Gordon and co-workers have presented the
S22(3) test set,** which includes trimers generated from the S22 test set.*¥ Ochieng and
Patkowski have presented®® a test set of 20 trimer geometries including various types of
interactions such as m-7, anion-m, cation-m, etc.

Here our focus is on examining the convergence of the three-body contribution to the
lattice energy with respect to the distances between monomers, and on the ability of ap-
proximate methods to reproduce the three-body energy accurately. In the MBE framework,
this requires not only accurate estimates of the three-body energy in each constituent trimer,
but also the absence of a systematic bias towards over- or under-binding, which would ac-
cumulate and spoil the accuracy of the overall three-body energy.

Non-additive polarization and exchange-repulsion effects are already captured with sim-
ple Hartree-Fock theory, and MP2 allows for corrections to these effects due to electron
correlation.®® However, MP2 does not include any modeling of non-additive three-body
dispersion,®® which in the Mgller-Plesset perturbation theory framework requires at least
MP3.223% Thus, here we consider two different alternatives to CCSD(T) that are still capable
of including three-body dispersion: MP2.52% and Axilrod-Teller-Muto (ATM) models %4
MP2.5 is a simple average of MP2 and MP3, and has been found to be more accurate
than standard MP3 for intermolecular interactions®"® In particular, MP2.5 shows good
accuracy for non-additive three-body interactions in van der Waals trimers.®" Alternatively,
ATM models have a simple functional form (see below) based on triple-dipole dispersion in
atom trimers, and have been found effective in modeling three-body interactions in van der

Waals trimers when paired with supermolecular MP2 10:22559

As expected, we do find slower convergence of the three-body contributions to the lattice
energy with respect to the distances between the monomers, compared to our earlier study
of non-polar molecules.*® This slower convergence means that we need to include trimers
with larger intermolecular separations to achieve any given target level of accuracy, and this
leads to an explosion in the number of unique trimers to be included in the computation.

Thus, we also explore strategies for screening out trimers with negligible contributions to



the three-body energy.

II. METHODS
Generation of Trimer Geometries

A development version of the CrystaLattE% program was used to generate all trimer
geometries. CrystalattE generates a supercell of the crystal geometry, then identifies all
symmetry-unique dimers, trimers, etc., containing a reference monomer and satisfying a
cutoff distance criterion.

The crystal structures for acetic acid (ACETACO01),*! formamide (FORMAMO02),** and
imidazole (IMAZOL04)** were obtained from the Cambridge Structural Database (CSD).**
For each structure, CrystaLattE was used to generate all symmetry-unique trimer geometries
within a specified maximum monomer separation (15 or 20 A) from a central, reference
monomer. MP2 and MP2.5 results for all three crystals systems and CCSD(T) results for
formamide were obtained out to the 20 A cutoff. There were 48046, 30546, and 26039
symmetry-unique trimers generated for formamide, acetic acid, and imidazole, respectively
using the 20 A cutoff value. As the full CCSD(T) results for acetic acid and imidazole at
these cutoff values were deemed unfeasible due to computational limitations, we generated
all the symmetry-unique trimers within a 15 A maximum monomer separation cutoff: 6253
for acetic acid and 5572 for imidazole.

The trimers can be classified using a number of geometric parameters. Here, we use the
maximum intermonomer separation distance (which we refer to as Rya.y throughout), the
minimum intermonomer separation distance (R, throughout), as well as the geometric and
harmonic means of the intermonomer separation distances. The intermonomer separation

distance is defined as the closest interatomic distance between two monomers.

Wavefunction Methods

All computations used Psi4*” version 1.8 and the aug-cc-pVXZ, X € {D,T,Q}, basis sets
of Dunning and coworkers.4%#” The density fitting and the frozen core approximations were
utilized in all computations. SCF computations used the aug-cc-pVXZ-JKFIT auxiliary
basis sets.*® MPn and CCSD(T) computations used the aug-cc-pVXZ-RI auxiliary basis
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sets4) SCF results were tightly converged to 1071 Hartree.

The MP2 correlation energies were computed by using the two-point formula of Helgaker
and coworkers® to extrapolate aug-cc-pVTZ and aug-cc-pVQZ correlation energies to the
complete basis set (CBS) limit. The CCSD(T) results were obtained by using a focal-point
approach®! utilizing the difference in MP2 and CCSD(T) correlation energies in a smaller

basis set, in this case aug-cc-pVDZ:

Ecesp(ry/css & Ewmpzjcps + [Ecosp(r)janz — Enpajanz] - (5)

Such approximations are known to be particularly effective for computing interaction
energies.”*

The MP2.5 correlation energy is defined as the mean of the MP2 and MP3 correlation
energies®® The MP2.5 energies were extrapolated in a similar focal-point approach, using

the same basis sets:

Ewnpas/cBs & Eapa/css + [EMPQ.E)/aDZ - EMPQ/aDZ} . (6)

3

The Boys-Bernardi counterpoise correction® was used in all computations, with the

trimer basis set used to calculate all fragment energies for each trimer, as suggested by

Wells and Wilson 2%

Axilrod-Teller-Muto Dispersion

While MP2 is known to effectively treat many-body polarization effects, it lacks inclusion
of many-body dispersion effects®® The Axilrod-Teller-Muto (ATM) three-body potential®#24
may be used to correct the MP2 results for three-body dispersion:

<1 + 3 cos A cos B cos C’)

3 3 3 ?
RABRBCRAC

U= > CyP¢ (7)

A<B<C
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&

where the indices A, B, C' run over atoms, are the dipole-dipole-dipole polarizability

coefficients, R are the distances between atom centers, and A are the angles between atom

centers. The Cy coefficients can be approximated using the pairwise Cg coefficients:*”

CABC = | | CABCACCEC, (8)
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The ATM potential diverges at short interatomic distances and must be damped to ensure
proper behavior. We used a Tang-Toennies (TT) damping function,*” specifically, a product
of three two-body TT damping functions appropriate for damping Cy coefficients. In our
previous tests of three-body dispersion in crystals of non-polar molecules, we found that this

damping function performed best of those considered s

57 (8) = f&" (Rav, B) f¢° (Roe, B) f§* (Rea, B) (9)

where f& (Rg, 3) is a two-body Tang-Toennies damping function,

foR =13 (@) S (10)

n=0

and the [/ damping coefficient is given by:

B =—0.31(ry"™" 4 ryIW) + 3.43. (11)

The C§ coefficients used to approximate the Cy coefficients in the ATM potential were ob-
tained using the DFTD4 program of Grimme and coworkers ***? The damping coefficients for
the Tang-Toennies functions were obtained from the work of von Lillienfeld and Tkatchenko,
based on ab initio computations of vdW radii.”®

For imidazole, the largest molecule considered here, an example CCSD(T)/CBS trimer
computation takes 18.3 hours, while MP2/CBS takes 1.4 hours, on a compute node with an
Intel Xeon 6226 processor (using 8 out of 24 cores to accommodate multiple jobs on a single

node), a RAIDO array scratch disk, and 32 GB of RAM used.

III. RESULTS

The convergence of the three-body energy in the formamide crystal with respect to two
geometric parameters, Ry.x and R, discussed above, is shown in Figure la for MP2,
MP2 corrected with undamped (MP24+ATM) and Tang-Toennies damped ATM dispersion
[IMP2+ATM(TT)], MP2.5, and CCSD(T). The MP2+ATM(TT) results are in excellent
agreement with the CCSD(T) benchmarks, with a cumulative three-body error of only 0.05
kJ mol~! at the maximum monomer separation of 20 A. The Ry, results show that the three-

body energy is converged by a minimum monomer separation of about 12 A. In contrast,
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FIG. 1. Convergence of the non-additive three-body energy with respect to maximum monomer
separation (Rmax, left panels) and minimum monomer separation (Rmin, right panels) in (a) for-

mamide, (b) acetic acid, and (c) imidazole.

a large maximum monomer separation is needed to converge the total three-body energy,
as can be seen in the Ry, results. At most distances, the overall three-body contribution
is positive for most methods. This is consistent with what one might expect for three-
body dispersion, which tends to be positive. However, at shorter distances, the three-body
contributions are often negative. This is due to favorable three-body polarization terms.
Although two-body polarization is always negative, three-body polarization can be positive
or negative. MP2, which includes three-body polarization but not three-body dispersion,
shows both positive and negative three-body energies, depending on the cutoff distance

and criterion used (R, Or Rpyax). In the right-hand panel for R,;,, the cumulative three-
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body contributions for MP2 are slightly positive for intermediate and larger cutoff distances
(around 1-2 kJ mol™!). When three-body dispersion is included via CCSD(T) or ATM, the
three-body energies are shifted higher on the graph compared to the MP2 curves.

The convergence of the three-body energy in the acetic acid crystal is shown in Figure
1b. For acetic acid and imidazole (below), CCSD(T) trimers beyond an Ry cutoff of 15 A
were not computed due to the prohibitive cost. MP2+ATM(TT) results are again in good
agreement with the CCSD(T) benchmarks, with a total error of 0.36 kJ mol~' at the 15 A
cutoff.

The convergence of the three-body energy in the imidazole crystal is shown in Figure lc.
At the 15 A cutoff distance, the error for MP2+ATM(TT) versus the CCSD(T) benchmark
was 0.81 kJ mol™!. The larger error correlates with the larger magnitude of the three-body
energy in imidazole, around -4.87 kJ mol ™! vs 2.92 and 0.59 kJ mol ! in formamide and acetic
acid, respectively. As in the case of formamide, the cumulative three-body energy plots for
acetic acid and imidazole tend to track the behavior of MP2, but they are shifted to higher
(more positive or less negative) values, reflecting their inclusion of three-body dispersion
absent in MP2. However, in the case of the latter two crystals, the MP2 three-body energies
are uniformly negative.

As expected, without any ATM three-body dispersion correction, the MP2 three-body
energies are significantly more negative than CCSD(T). MP2 with the undamped ATM dis-
persion correction overcorrects (too positive) as the dispersion energy becomes too repulsive
for very close contacts without correctly damping the ATM potential. However, using the
Tang-Toennies damped three-body dispersion results in excellent agreement with CCSD(T)
results.

For the formamide and acetic acid crystals, the MP2.5 results underestimate the three-
body contribution to the lattice energy, resulting in errors larger than those for MP2+ATM(TT).
However, for imidazole, MP2.5 very slightly outperforms the MP2+ATM(TT) method.
Given that MP2+ATM(TT) is a much faster method than MP2.5, and gives more accu-
rate results for two out of three crystal systems here, it remains the preferred approximate
method for computing three-body energies.

The frustratingly slow convergence of the three-body contribution to the many body en-
ergy for the systems presented here, substantially slower than the non-polar crystals studied

in Ref. 22| highlights the importance of establishing approximate methods and screening
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procedures for computing crystal lattice energies of polar molecules using the MBE. In con-
trast to the benzene, carbon dioxide, and triazine crystals*? the polar molecules studied
here require longer ranges in both R« and R, to converge the three-body energy. For
benzene for example, the three-body energy was converged by a R,.x cutoff value of about
12 A and an Ry, cutoff value of 7 A, while formamide is apparently still not well converged
by an Ruyax cutoff of 20 A. This can be attributed to the three-body polarization persisting at
longer ranges than the three-body dispersion. Consistent with this interpretation, it is clear
that convergence with respect to Rpy, and Ry, is essentially the same for MP2 (lacking
three-body dispersion but including three-body polarization) as it is for other methods.

It is obvious that one can apply a much stricter (shorter) R, cutoff to the trimer config-
urations than R,,... Unfortunately, however, screening out trimers by using an appropriate
Ryin cutoff does not eliminate enough to make large R,.. cutoffs feasible. The configura-
tions with a small R, and large R,,.., corresponding to trimers with two close monomers
and one far away, contribute non-negligibly to the total three-body energy. This results
in a large number of configurations that cannot be screened out, and one must extend the
supercell to include large R,.x in order to converge the MBE energy. Similarly large cutoff
distances were required to converge the two-body energy contributions for the same systems.
The two-body energies for formamide, acetic acid, and imidazole were converged to within
0.5 kJ mol~! of their asymptotic limit by 29.5, 17.9, and 22.0 A, respectively™

In Figure 2a, the formamide trimers are classified based on their Ry, and R, distances.
For each bin, the number of trimers and contribution to the three-body energy are shown,
using the CCSD(T) values. It can be seen that the closest trimers (R, < 4 Aand Ry, < 10
A) contribute by far the most to the three-body energy, despite their comparatively very
small number. The dramatic increase in trimers for large R, values can clearly be seen.
A cutoff value to minimize the number of trimers while keeping errors as small as possible
thus requires a dual cutoff, leveraging both R, and Ry.x values, so that the short-long
trimers (R, < 4 A and Ry > 10 A) are not neglected, while keeping the total number
of long range trimers under control.

Figure 2a also shows the errors of MP24+ATM(TT) versus CCSD(T) benchmarks classi-
fied based on their geometric parameters. The errors versus the CCSD(T) benchmarks are
largest for the trimers with Ry, < 4 A and Ry < 10 A. In fact, the accumulated errors

for all other trimers are essentially negligible. The former number on the order of just a few
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FIG. 2. Left side: contribution to the non-additive three-body lattice energy (top numbers) and

number of unique trimers (bottom numbers) for each bin of trimers, partitioned according to the

values of Ry,in and Rpq.. Right side: Similar figure, but energy values are now MP2+ATM(TT)

error vs CCSD(T) benchmarks. Results provided for A) formamide, B) acetic acid, and C) imi-

dazole. For acetic acid and imidazole, values on the left are CCSD(T) where available, otherwise

MP2+ATM(TT). Energies in kJ mol~*.

hundred trimers, making a multi-level approach, where one computes this subset of trimers

with CCSD(T) and the remaining with MP2+ATM(TT), a feasible option for obtaining the
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three-body energy of crystal systems within benchmark level accuracy. However, due to
favorable error cancellation, in this particular case, even if all trimers are computed with
MP2+ATM(TT), the total error is only 0.05 kJ mol™.

The geometric binning of trimers in the acetic acid and imidazole crystals is shown
in Figures 2b and 2c. For both, the energy values shown are CCSD(T) where available
(Ruax < 15 A) and MP2+ATM(TT) elsewhere. The imidazole and acetic acid results are
similar to those of formamide. The three-body energy is dominated by the closest trimers,
yet close-long geometries still contribute significantly. However, the errors versus CCSD(T)
are driven by the closest geometries.

If one computes the closest ( Ry, < 4 A and Ry, < 10 A) geometries with CCSD(T) and
the rest with MP2+ATM(TT), the resulting errors compared to the full CCSD(T) results
are just 0.05 and 0.03 kJ mol~! for acetic acid and imidazole, requiring only 434 out of 30546
and 438 out of 26039 trimers for each. While some error remains unknown in acetic acid
and imidazole due to missing CCSD(T) benchmark values at longer ranges (Rpax > 15 A),

we expect these errors to be minimal.

A. Comparison of long-range screening methods

As mentioned above, a multi-level approach can help reduce computational cost while
minimizing errors. However, as observed above, there are a large number of long-range
trimers whose contributions to the three-body lattice energy are not negligible. We find
it advisable to screen out the trimer configurations with negligible contributions to reduce
the overall cost, which is overwhelmingly dominated by the growth of long range trimer
configurations for large supercell sizes. In addition to the R, parameter discussed above,
we consider here using the geometric mean of the intermonomer distances Rgeom, and the
harmonic mean of the intermonomer distances Ry.., as screening parameters. The conver-
gence plot of the three-body energies of formamide, acetic acid, and imidazole with respect
to the geometric mean Rgeom and harmonic mean Rpam can be found in the Supplemental
Information.

Figure 3 shows the errors incurred versus the number of trimers screened out for the
three geometric screening parameters considered here: Ry, Rgeom, and Rpamm. For all three

crystals, a substantial number of trimers in the supercell can be screened out while keeping
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FIG. 3. Errors incurred versus number of trimers screened out for the Ry, Rgeom, and Rparm
screening parameters for the (a) formamide, (b) acetic acid, and (c) imidazole crystals. Errors are
in kJ mol™! at the MP2+ATM(TT) level of theory versus unscreened results at the same level of

theory.

the errors negligible (under 0.1 kJ mol™!). Until a large fraction of the trimers are discarded,
all three parameters perform similarly. While the Rgeom and Rpam parameters incur larger
errors in the formamide crystal for similar numbers of trimer geometries discarded, they
appear to give a more stable error with respect to number of trimers screened in all three

crystals, suggesting they may be preferable over R, as a general screening parameter.

B. Best estimates of the crystal lattice energies

Table I shows the best estimates of the two-body and three-body energies for the acetic
acid, formamide, and imidazole crystals, in addition to the three non-polar crystals studied
in Ref. 22 benzene, carbon dioxide, and triazine. The two-body energies are CCSD(T)/CBS
level results from Ref. 21l The best estimate of the three-body energies is CCSD(T)/CBS
where available, otherwise MP24+ATM(TT) results were used. To discriminate among poly-
morphs, which often lie very close to each other in energy, it is evidently necessary to include
three-body terms in the lattice energies, which range in importance from 0.59 to -4.87 kJ
mol~! for crystals of the three polar molecules considered here, and 1.43 to 4.75 kJ mol~!
for the dispersion bound crystals. Computing the three-body energies with MP2 results in

substantial errors in all cases, up to 3.46 kJ mol~! for the imidazole crystal.
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TABLE I. Best estimates for the two-body and three-body contributions to the crystal lattice ener-
gies of acetic acid, formamide, and imidazole, in kJ mol~!. Two-body energies are CCSD(T)/CBS
results from Ref. 21l and three-body energies for benzene, carbon dioxide, and triazine are from

Ref. 22, Three-body energies are CCSD(T)/CBS where available, otherwise MP2+ATM(TT).

Crystal 2-body energy 3-body energy

Best estimate Best estimate MP2
Acetic acid —75.51 0.59 (-0.8 %) —1.44
Formamide —76.76 2.92 (-4.0 %) 1.01
Imidazole —93.30 -4.87 (5.0 %) —8.33
Benzene —57.99 3.63 (-6.7 %) 0.51
Carbon dioxide —30.11 1.43 (-5.0 %) 0.42
Triazine —58.36 4.75 (-8.9 %) 2.16

IV. CONCLUSION

We have computed the non-additive three-body crystal lattice contributions for crystalline
formamide, acetic acid, and imidazole using CCSD(T), MP2, dispersion-corrected MP2, and
MP2.5. Our results show that MP2 with Axilrod-Teller-Muto three-body dispersion can
achieve excellent agreement with CCSD(T) benchmarks for the three-body contributions to
the crystal lattice energy. The MP2.5 results, however, have larger errors compared to the

CCSD(T) benchmarks, despite the greater computational cost.

Importantly, we find contributions from long-range trimer geometries beyond even 15 A
are apparently non-negligible for crystals of polar molecules. However, a substantial portion
of the long-range contributions can be screened out while keeping errors small. A combina-
tion of long-range screening and approximate methods like MP2 corrected with a damped
ATM dispersion potential can drastically reduce the computational cost of obtaining high ac-
curacy three-body contributions to the crystal lattice energies. In addition, or alternatively,
one could perform an inexpensive periodic boundary condition computation to fully capture
many-body polarization effects, and the correct this baseline by higher-level computations

on select dimers and trimers.
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SUPPLEMENTAL MATERIAL

The supplemental material contains Cartesian coordinates and energetics for all trimers
in the study, at each level of theory considered. Also provided is a figure of the convergence
of the cumulative three-body energies with respect to geometric and harmonic mean cutoff

criteria.
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