2021 IEEE International Conference on Big Data and Smart Computing (BigComp) | 978-1-7281-8924-6/20/$31.00 ©2021 IEEE | DOI: 10.1109/BigComp51126.2021.00023

2021 IEEE International Conference on Big Data and Smart Computing (BigComp)

MP-Boost: Minipatch Boosting via Adaptive Feature and Observation Sampling

Mohammad Taha Toghani and Genevera 1. Allen

Abstract—Boosting methods are among the best general-
purpose and off-the-shelf machine learning approaches, gain-
ing widespread popularity. In this paper, we seek to develop a
boosting method that yields comparable accuracy to popular
AdaBoost and gradient boosting methods, yet is faster compu-
tationally and whose solution is more interpretable. We achieve
this by developing MP-Boost, an algorithm loosely based on
AdaBoost that learns by adaptively selecting small subsets of
instances and features, or what we term minipatches (MP),
at each iteration. By sequentially learning on tiny subsets of
the data, our approach is computationally faster than classic
boosting algorithms. MP-Boost upweights important features
and challenging instances, hence adaptively selects the most
relevant minipatches for learning. The learned probability dis-
tributions aid in interpretation of our method. We empirically
demonstrate the interpretability and comparative accuracy of
our algorithm on a variety of binary classification tasks.

Index Terms—Minipatch Learning, AdaBoost, Adaptive Sam-
pling, Internal Validation.

1. Introduction

Boosting algorithms adaptively learn a series of weak
learners that often yield state-of-the-art predictive accuracy
for certain machine learning tasks. But computationally, they
can be slow for huge datasets. Furthermore, most boosting
algorithms such as the popular AdaBoost [1] and gradient
boosting (GB) [2] are considered as “black-box” models
which often lack transparency and interpretability [3]. In this
paper, our goal is to develop an AdaBoost-based algorithm
that is computationally faster than standard boosting models
and also yields more interpretable solutions.

We propose to achieve boosting-like “slow learning” by
adaptively sampling tiny subsets of both instances and fea-
tures simultaneously, something we refer to as a minipatch
learning. The computational advantages of the ensemble
of uniformly random minipatches have been investigated
in [4]; however, uniform sampling can be modified with an
adaptive procedure to achieve boosting as the importance of

Mohammad Taha Toghani is with the Department of Electrical
and Computer Engineering, Rice University, Houston, TX 77005
USA.(email:mttoghani@rice.edu). Genevera I. Allen is with the Depart-
ments of Electrical and Computer Engineering, Statistics, and Computer
Science, Rice University, Houston, TX 77005 USA, and Jan and Dan
Duncan Neurological Research Institute, Baylor College of Medicine,
Houston, TX 77030 USA (email:gallen@rice.edu). The authors acknowl-
edge support from NSF DMS-1554821, NSF NeuroNex-1707400, and NIH
IROIGM140468.

different observations and features varies. Furthermore, we
can use adaptive sampling to interpret the final model; for
example, the SIRUS algorithm [3] suggests how to leverage
the frequency of splits in random forest [5] trees to generate
an interpretable model with fewer splits. Our method, MP-
Boost, will incorporate the advantages of adaptivity in order
to learn distributions on the observations and features.

Several studies have suggested sampling schemes for
AdaBoost. Works along this line usually target adaptive
subsampling of either features or observations. Methods
like Laminating [6] employ score-based feature selection
techniques where either access all instances or their random
subsets. In contrast, algorithms like FilterBoost [7] suggest
adaptive oracle subsampling of observations, although it
does not subsample features, and the number of selected
samples grows per iteration. A series of algorithms, such
as stochastic gradient boosting [8], have been proposed to
reduce the computational complexity of GB. For example,
XGBoost [9] and its variations employ novel structures for
decision trees as well as multiple training tricks that exten-
sively optimize the runtime of GB. More recently, the min-
imal variance sampling algorithm [10] suggests sampling
of instances proportional to their gradient values; however,
it lacks feature subsampling. Note that all of the existing
boosting techniques that employ subsampling, do so for
computational reasons. In contrast, our method, MP-Boost
which is inspired by AdaBoost, will employ subsampling of
features and observations as the boosting mechanism itself;
the computational advantages are an added bonus to our
approach.

The remainder of the paper is organized as follows. In
Section 2, we present the main algorithm. In Section 3, we
investigate the advantages of adaptive subsampling, inter-
pretability of MP-Boost, and provide numerical experiments.
We end with concluding remarks in Section 4.

2. MP-Boost

Let the data be (X,y)e€ (RV*M RN) for N in-
stances and M features. We focus on binary classifica-
tion tasks where for each sample x; € RM, we observe
a label y; € {—1,+1}. The goal is learning a classifier
y; = sgn (F(x;)). We propose a boosting method by train-
ing weak learners on tiny subsets of instances and features.
We call this tiny subset a minipatch, termed based on the
use of “patches” in image processing, and minibatches as
small subsamples of observations commonly used in ma-
chine learning. Our approach is to take an ensemble of
minipatches, or minipatch learning where each minipatch

2375-9356/21/$31.00 ©2021 IEEE 75
DOI 10.1109/BigComp51126.2021.00023
Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 14,2025 at 23:25:35 UTC from IEEE Xplore. Restrictions apply.

is sampled adaptively. Formally, we define a minipatch by
(XR o yR), where R is a subset of examples with size n,

and C is a subset of features with size m. By minipatch
learning, our algorithm will have major computational ad-
vantages for large N and/or M datasets.

We define H to be the class of weak learners, where each
h € H is a function h:R™ — {—1,+1}. Our algorithm
is generic to the type of weak learners, which can be
either simple or expressive, although we select decision trees
as default weak learners for MP-Boost. We consider both
depth-k trees as well as saturated trees that are split until
each terminal leaf consists of samples from the same class.

The core of our algorithm uses adaptive sampling of
observations to achieve the adaptive slow learning properties
of the AdaBoost algorithm. Similar to [10] for GB, MP-
Boost subsamples observations according to an adaptive
probability distribution. Let p be the probability distribution
on observations (i.e., Zf;l p; = 1) and initially set p to be
uniform (Upy)). We define Sample(N,n,p) as sampling
a subset of [N] of size n according to the probability
distribution p without replacement.

Let F': RM — R be the ensemble function. Our algo-
rithm selects a minipatch, trains a proper weak learner
on it, and computes the summation of weak learn-
ers, F(x;)® =3 _, h*) ((Xi)cm)' Misclassified sam-
ples are more difficult to be learned, so we need to in-
crease their probabilities to be sampled more frequently. Let
L:R xR — RT be a function that measures the similarity
between the ensemble outputs and labels, i.e., positive yF'
yields smaller £(y, F') and vice versa. MP-Boost assigns
a probability proportional to £(y;, F(x;) to the i observa-
tion. The exponential or logistic losses [1], [11] are suitable
options for L.

Full-batch boosting algorithms reweight all of the ob-
servations and train a new weak learner on their weighted
average in each iteration [1], [11]. In contrast, stochastic
algorithms use each sample’s frequency to take the effect of
its weight into account [7], [10]. We update the probability
of the observations similar to FilterBoost [7]. However,
FilterBoost increases n during its progress and uses negative
sampling, and is thus slower than ours.

Another major goal is to increase the interpretability
of boosting methods. To accomplish this, we also propose
to adaptively select features that are effective for learning.
Similar to p, let g be the probability distribution on features.
Our algorithm requires a criterion to compute the importance
of the selected m features based on the structure of /. There
exist several choices for computing features importance
based on H. Some of these inspection techniques are model
agnostic, hence proper for MP-Boost to incorporate weak
learners from different classes. For example, the permutation
importance method [5], [12] shuffling each feature infers
its importance according to the difference in the prediction
score.

Nevertheless, specific metrics like impurity reduction
score [13] are defined for decision trees. We utilize this
quantity to define our probability distribution over the fea-

76

Algorithm 1 MP-Boost

MP-Boost (X, y,n,m,)
Initialization (¢ = 0):

pM) = Uny // observation probabilities

g = Uy // feature probabilities

F(x;) =0, Vic[N] // ensemble output
GM(x;) =0, Vi€[N] // out-of-patch output

while Stopping — Criterion(oop®)) not met do ¢ + t + 1
1) Sample a minipatch:
a) R = Sample(N,n, p®)
b) € = Sample(M,m,q®)
<) (X(t)’y(t)) = (Xnm,c(twymt)
2) Train a weak learner on the minipatch:
a) h(®) € H: weak learner trained on X(®), y(*)
3) Update outputs:

2) FO(x;) = FO-D (x,)+ O ((Xi)cm), Vi € [N]

4) Update probability distributions:

(t+1) _ L(y:, FM (x:)) :
a) p; Tl Ly, FO (xk)) Vi € [N]

/] select n instances
/1 select m features

// minipatch

B ¢V =1 - @ +wzr, jec®
where, r = Z qgt)
jec®
5) Out-of-Patch Accuracy:
a) GO (x;) = GUV (x) +h) ((xi)e) s

N

B) 00p = & 3701 L san(a (x)) =i}
end while
Return sgn(F (™)), p(T) (™)

Vig RW

tures. Let Z" denote the normalized feature importance vec-
tor for a weak learner h, wherein each entry determines the
relative importance of the corresponding feature compared
to other features in the minipatch. In each iteration, q is
updated through computing the weighted average of g and Z
according to a momentum /. The hyperparameter i € (0, 1)
determines the ratio of exploration vs. exploitation. MP-
Boost only modifies the probability of features inside the
minipatch, in each iteration.

Finally, many boosting algorithms are designed to run
for a fixed number of iterations [2] or use a validation
criterion [7] in order to determine when to stop. Internal
validation approaches often have better performance and
are computationally much faster. For instance, consider the
out-of-bag criterion [14] in bagging and random forest
that uses internal validation properties without incurring
any additional computational cost. Similar to bagging, our
MP-Boost has access to out-of-patch instances, which we
can use for internal validation. Therefore, for each sample
i € [N], we accumulate the output of weak learners that
don’t observe it in their minipatch. We also quantify the out-
of-patch accuracy, oop, which is a conservative estimate of
the test accuracy. Hence it can assist MP-Boost in tracking
the progress of the generalization (test) performance inter-

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 14,2025 at 23:25:35 UTC from IEEE Xplore. Restrictions apply.

Random
Adaptive Sampie

- Adaptive Feature
— Adagtive Sample & Feature

Teest Accuracy
@
&

&

150
Iterations

(a) effect of adaptive sampling on test data

100.0 It
'

— Dut-of-Patch

(b) oop curve and the stopping criterion

Figure 1: MNIST (3 vs. 8) trained by MP-Boost. (a) Ad-
vantages of adaptive observation and feature selection.
(b) Comparison of train, test, and oop curves.

nally. In a nutshell, observing the oop value, the algorithm
finds where it is saturated. Stopping criterion is a heuristic
algorithm that takes oop(*) and compares it with its previous
values, thus decides when to stop. In fact, the stopping
algorithm follows a general rule; if the current value of oop
increases with some margin, then the algorithm needs more
time to improve; otherwise, the generalization performance
is saturated.

We put all of this together in a summary of our MP-
Boost algorithm in Algorithm 1. Notice here that selecting
minipatches (step 1) reduces the computational complexity
imposed per iteration, thus improves the scalability. Other
variations of AdaBoost usually subsample either features or
observations while ours exploits both. Therefore, in addition
to the predictive model F', our algorithm learns probabil-
ity distributions p and q that express the importance of
observations and features, respectively. Since learning p, q
is a part of the iterative procedure, it doesn’t incur an
extra computational cost. In addition, MP-Boost exploits an
internal validation that yields an automatic stopping criterion
when the algorithm ceases to learn. Hence, steps (4) and (5)
of Algorithm 1 highlight the main differences of MP-Boost
with other sampling-based boosting algorithms.

3. Experiments

We begin with an illustrative case study to show how
our method works and how it aids the interpretability. Next,
we compare our algorithm to other popular boosting and
tree-based methods, focusing on accuracy and scalability.

Ilustrative Case Study: We use a series of experiments
to demonstrate how our algorithm works and show how to

77

interpret the results. We focus our investigations on an expli-
cable binary classification task: detecting digit 3 versus 8 in
MNIST [15]. This dataset includes handwritten digits as im-
ages of size 28 x 28. The training data is huge (N > 10000)
and high-dimensional (M = 784). We use cross-validation
to tune all hyperparameters, yielding n = 500, m = 30, and
p = 0.5 as well as logistic loss function.

To measure the effect of adaptive observation and/or
feature selection, we turn off adaptive updating for p and/or
q by replacing them with uniform distributions. We train
MP-Boost under the mentioned on MNIST(3, 8) and repeat
each experiment 5 times. Figure la shows the superiority
of joint adaptive sampling of both instances and features in
terms of performance on the test data. Further, we compare
the training, out-of-patch, and test accuracy curves for MP-
Boost in Figure 1b. The dashed line indicates the stopping
time of our algorithm based on the oop curve. To observe the
behavior of the three curves, we let MP-Boost progresses af-
ter the stopping criterion is satisfied. As shown in Figure 1b,
and unlike the train curve, the trend in the out-of-patch curve
is similar to the test curve. These results demonstrate the
power of minipatch learning as well as the advantages of
oop curve for internal validation.

Next, we illustrate how to use p and q for the interpre-
tation of instances and features where difficult observations
are upweighted in p. Hence, we can use p to identify
the most challenging samples, yielding a similar type of
interpretation commonly employed in support vector ma-
chines [16]. As shown in Figure 2a, we project instances on
a two-dimensional space using PCA with sizes proportional
to p. We display four instances with large p values that
complied to our expectation are challenging to be classified.

Finally, we show how to use g to find the most im-
portant features, and also illustrate how MP-Boost learns
these features probability in Figure 2b. Here, the color of
each pixel (feature) is proportional to its probability, with
darker pixels indicating the feature has been upweighted. We
expect a sparse representation for ¢ which matches with
our result. Moreover, this example clearly shows how to
interpret the most relevant features; in Figure 2b, two regions
are darker compared to other pixels corresponding with the
complementary area for digit 3 versus 8.

Comparative Empirical Results: Here, we compare the
speed and performance of our algorithm with AdaBoost,
gradient boosting, and random forest on multiple binary
classification tasks. To this end, we select large datasets from
UCT machine learning repository [17] and MNIST [15]. As
well, we generate a sparse synthetic dataset of two high-
dimensional cones.

To be fair, we choose the oracle hyperparameters for
every method. To this end, we pick decision trees with
different maximum depths (depth € {1,2,3,4,5,6,7})
or depth-saturated trees as weak learners. Note that we
use scikit-learn [18] modules to implement our algorithm
and all competitors so that all time-based comparisons
are fair. For our method, we select from the follow-
ing choices of hyperparameters: n € {50, 100, 200, 500},
m € {5,10,15,20,v/M}, and p € {0.1,0.3,0.5,0.7,0.9}.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 14,2025 at 23:25:35 UTC from IEEE Xplore. Restrictions apply.

& digit3 e digit8

2

%

PC2

(a) final probability of instances: p

& "
-

. i

(b) evolution of features importance: q

Figure 2: Probability distribution of MNIST (3 vs. 8)
instances and features, trained by MP-Boost. (a) The size
of each sample indicates its relative probability where those
close to the boundary have higher probabilities. (b) The
color of each pixel (feature) indicates the probability with
respect to which the feature is selected. With the progress
of MP-Boost, the probability of efficient features increases.

For each dataset, we select the best performance of
MP-Boost, versus that of AdaBoost, gradient boosting, and
random forest constrained to the runtime of MP-Boost.
Table 1 shows the best performance of each algorithm within
the training runtime of MP-Boost (fixed). Results indicate
that MP-Boost achieves a better performance faster than
the other three algorithms. As well, without any runtime
constraint, MP-Boost is much faster with a comparable
accuracy across a wide variety of datasets'.

4. Discussion

In this work, we proposed an interpretable boosting
approach using adaptive minipatch learning. We showed that
our method outperforms standard boosting algorithms in
a fixed runtime. Our approach will be particularly useful
for huge datasets where both instances and features are
large. Further, our MP-Boost algorithm can be used with
datasets with sparse or noisy features. In future work, we
plan on using the minipatch learning scheme in gradient-
based boosting algorithms. Moreover, one could explore
other updating schemes for the probability of instances and
features. Theoretical analysis of MP-Boost would help to
interpret the performance of our algorithm and its properties.
Efficient implementations can improve the speed of current
MP-Boost for different schemes.

1. Additional results: https://arxiv.org/pdf/2011.07218v1.pdf

78

TABLE 1: Best test accuracy (%) of MP-Boost, AdaBoost,
Random Forest, and Gradient Boosting on binary classifica-
tion tasks within fixed runtimes.

Dataset MP-Boost AdaBoost RF GB

Cones 100.0 85.56 95.89 94.01
Hill-Valley 99.45 96.28 98.76 96.69
Christine 74.27 69.28 73.75 70.27
Jasmine 80.03 79.53 79.47 79.47
Philippine 71.01 69.64 70.07 69.98
SensIT Vehicle 86.23 83.69 85.98 84.24
Higgs Boson 83.42 82.52 83.57 81.44
MNIST (3,8) 99.31 97.49 98.84 96.81
MNIST (O,E) 98.15 93.78 97.74 93.23
GAS Drift 99.76 96.54 99.64 96.54
DNA 97.44 96.86 97.44 96.81
Volkert 74.14 71.54 77.95 71.9

References

[1] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119-139, 1997.

[2]

J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189-1232, 2001.

C. Bénard, G. Biau, S. Da Veiga, and E. Scornet, “Interpretable
random forests via rule extraction,” arXiv preprint arXiv:2004.14841,
2020.

G. Louppe and P. Geurts, “Ensembles on random patches,” in Joint
European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pp. 346-361, Springer, 2012.

[3]

[4]

[51

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp- 5-32, 2001.

C. Dubout and F. Fleuret, “Adaptive sampling for large scale boost-
ing,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1431-1453, 2014.

J. K. Bradley and R. E. Schapire, “Filterboost: Regression and
classification on large datasets,” in Advances in neural information
processing systems, pp. 185-192, 2008.

[6]

[71

[8]

J. H. Friedman, “Stochastic gradient boosting,” Computational statis-
tics & data analysis, vol. 38, no. 4, pp. 367-378, 2002.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785-794, ACM, 2016.

B. Ibragimov and G. Guseyv, “Minimal variance sampling in stochastic
gradient boosting,” in Advances in Neural Information Processing
Systems, pp. 15061-15071, 2019.

J. Friedman, T. Hastie, R. Tibshirani, et al., “Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder
by the authors),” The annals of statistics, vol. 28, no. 2, pp. 337-407,
2000.

A. Altmann, L. Tolosi, O. Sander, and T. Lengauer, “Permutation
importance: a corrected feature importance measure,” Bioinformatics,
vol. 26, no. 10, pp. 1340-1347, 2010.

S. Nembrini, I. R. Konig, and M. N. Wright, “The revival of the gini
importance?,” Bioinformatics, vol. 34, no. 21, pp. 3711-3718, 2018.

[9]

[10]

[11]

[12]

[13]

[14]
[15]

L. Breiman, “Out-of-bag estimation,” 1996.

Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273-297, 1995.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[16]

[17]
[18] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Jour-

nal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 14,2025 at 23:25:35 UTC from IEEE Xplore. Restrictions apply.

