Journal Name

ARTICLE TYPE

A Physics-Aware Neural Network for Protein-Ligand In-

Cite this: DOI: 00.0000/XXXXXXXXXX

teractions with Quantum Chemical Accuracy’

Zachary L. Glick, Derek P. Metcalf,® Caroline S. Glick, Steven A. Spronk,” Alexios
Koutsoukas,” Daniel L. Cheney,” and C. David Sherrill*@

Received Date
Accepted Date

Quantifying intermolecular interactions with quantum chemistry (QC) is useful for many chemical
B problems, including understanding the nature of protein-ligand interactions. Unfortunately, QC com-
putations on protein-ligand systems are too computationally expensive for most use cases. The
flourishing field of machine-learned (ML) potentials is a promising solution, but it is limited by an
inability to easily capture long range, non-local interactions. In this work we develop an atomic-
pairwise neural network (AP-Net) specialized for modeling intermolecular interactions. This model
benefits from a number of physical constraints, including a two-component equivariant message pass-
ing neural network architecture that predicts interaction energies via an intermediate prediction of
monomer electron densities. The AP-Net model is trained on a comprehensive dataset composed of
paired ligand and protein fragments. This model accurately predicts QC-quality interaction energies
of protein-ligand systems at a computational cost reduced by orders of magnitude. Applications of
the AP-Net model to molecular crystal structure prediction are explored, as well as limitations in
modeling highly polarizable systems.

1 Introduction
compound. This lead compound is then iteratively revised in an

attempt to enhance desired properties. Maximizing favorable in-
termolecular contacts is a critical aspect of the lead optimization
process, and can be aided by in silico models of NCIs.

Non-covalent interactions (NCIs) play a key role in the chemi-
cal sciences. Although they are weaker than covalent bonds, the
presence (or absence) of NCIs can have profound effects on chem-
ical and biomolecular systems. For example, NCIs drive DNA
intercalation-the insertion of a molecule between consecutive
DNA base pairs—which is the mechanism of action in anti-cancer
drugs such as doxorubicin.T2 Not only can an understanding of
NCIs provide mechanistic insights into intercalation and other
small molecule binding modes, careful consideration of NCIs al-
lows one to control the selectivity of reaction catalysts, enhance
electrochemical reaction kinetics,# or optimize the properties of

The strength of a protein-ligand interaction can be rigorously
quantified by using the tools of quantum chemistry to compute
an interaction energy. Quantum chemistry methods, which seek
to solve the many-body Schrdédinger equation, are subject to a
well-established trade-off between computational cost and accu-
racy. Highly accurate interaction energies can be obtained from
wavefunction-based methods such as coupled cluster (CC) the-

nanostructures.”

NCIs play a particularly important role in small molecule drug
design. The efficacy of a drug depends in part on the presence
of strong interactions with the target protein. Often, preliminary
drug design efforts produce a promising but sub-optimal “lead"
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ory, but such calculations are often too expensive for all but the
smallest systems. Less expensive methods like density functional
theory (DFT) yield slightly less robust interaction energies. Sim-
ple, transferable force fields like GAFF are orders of magnitude
faster than any quantum chemistry method, but force field inter-
action energies are only semi-quantitatively accurate.

One quantum chemistry method of particular interest for study-
ing protein-ligand interactions is symmetry-adapted perturbation
theory (SAPT), which yields not only an interation energy, but
also its physically meaningful components: electrostatics, ex-
change repulsion, induction/polarization, and London disper-
sion.©"8 These components provide additional insight to help un-
derstand non-covalent interactions.” The fragment-based parti-
tioning of SAPTIY was used to understand substituent effects
in protein-ligand interactions in factor Xa inhibitors.™ However,
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models of the protein including only nearby residues (~ 200
atoms) still required many hours of CPU time for the SAPT com-
putations.

Recently, advances in machine learning (ML) have led to the
reevaluation of this classic cost-accuracy trade-off. Models like
neural networks (NNs) are capable of expressing arbitrarily com-
plicated non-linear functions such as molecular potential en-
ergy surfaces. 12410 arge datasets of quantum chemical computa-
17H20l make it possible to parameterize general atomistic NN
potentials to quantum chemical accuracy,21723 and these poten-
tials can be evaluated at near force field computational cost. NN
potentials can be used to improve the accuracy of costly alchem-
ical free energy predictions®# or to perform reactive molecular
dynamics simulations.2>

The emergence of NN potentials has also benefited from a
number of architectural developments. The “message passing”
NN (MPNN) framework is tailored to the graph-like structure
of molecular geometries.2® Directional MPNNs additionally ac-
count for the relative orientation between neighboring atoms
in a molecule. The most data-efficient architectures achieve
this by employing locally equivariant representations of atoms
in molecules.27-3131533/ 1) these equivariant models, atomic en-
vironments are represented as tensorial quantities which rotate
with the local coordinate frame.

The locality of atomic environments used in NN potentials al-
lows these models to easily describe local interactions, which in-
clude distortions of bonds, angles, and dihedrals, as well as short-
range non-covalent interactions. Unfortunately, a consequence of
this locality is that NN potentials are either indirectly or explicitly
unable to model the long-range interactions that are essential to
protein-ligand interactions.®# The lack of these long-range effects
has been demonstrated to affect the quality of simulated prop-
erties of bulk water and small peptides,2>) and many ML meth-
ods have been developed to capture these long-range interac-
tions. 2938 In a recent work, we proposed an atomic-pairwise NN
framework for modeling NCIs, which we called AP-Net.*4 Extend-
ing this basic proof-of-concept, we now develop a robust, chem-
ically accurate AP-Net model for quantifying arbitrary protein-
ligand interactions. This is accomplished by constraining the AP-
Net architecture to respect the known physics of intermolecular
interactions.

tions

2  Results

2.1 A Physics-Aware Intermolecular Architecture

In this work, we develop a physics-aware neural network archi-
tecture specialized for modeling intermolecular interactions. This
architecture adheres to four physical principles:

1. Intermolecular interactions are fundamentally a function of
molecular properties, some of which, such as the electron
density, can be partitioned into atomic properties.

2. For the most part, intermolecular interactions are atomic-
pairwise additive.

3. Intermolecular interactions are decomposable into different
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types of interactions (electrostatics, exchange-repulsion, in-
duction/polarization, and dispersion).

4. In the dissociative limit, intermolecular interactions obey
simple functional forms of molecular and atomic properties
and smoothly decay to zero.

In reference to the second principle, this physics-aware archi-
tecture is designated AP-Net, short for atomic-pairwise neural net-
work. The AP-Net name was first used in a previous proof-of-
concept study that differs significantly from the current work in
applicability and complexity.*# The previous AP-Net architecture
shares the general paradigm of predicting interaction energies in
an atomic-pairwise framework, but the previous model was lim-
ited by simple, ad hoc atomic feature vectors whereas the model
described in this work featurizes atom pairs with an equivariant
MPNN (2.1.2). The current AP-Net model is additionally differ-
entiated by the inclusion of an electrostatic force field, a related
atomic property module (Section[2.1.1)), and a much larger, more
diverse training set (Section.

A schematic of the current AP-Net architecture is provided in
Figure [1] AP-Net enforces the four physical principles above via
a pair of independently trained NNs, which are respectively re-
ferred to as the atomic property module and the interaction en-
ergy module. These two NNs are used to predict protein-ligand
interaction energies through an intermediate prediction of the
electron density of both molecules via an atom-centered multi-
pole expansion. This physically motivated functional form yields
accurate, generalizable interaction energy predictions for protein-
ligand systems.

2.1.1 Atomic Property Module

The atomic property module (Figure 1A) is trained to pre-
dict properties of an atom within a molecule, in accordance
with the first principle. Specifically, this network predicts an
atomic decomposition of the electron density in the form of an
atom-centered multipole expansion through second order. The
atomic property module is related to our previous Cartesian
MPNN (CMPNN), which was also used to predict atomic multi-
poles.3? Unlike the original CMPNN model, in which predicted
atomic multipoles were approximately rotationally equivariant,
the atomic property module enforces rigorous rotational equiv-
ariance via the directional hidden state scheme of Ref. [27. In this
scheme, the hidden state vectors have an additional Cartesian di-
mension, along which equivariance is preserved by a carefully de-
signed message and update function. The atomic property mod-
ule also conserves the total molecular charge, allowing the model
to handle neutral molecules and ions alike. Y

2.1.2 Interaction Energy Module

The second neural network constituting AP-Net, the interaction
energy module (Figure 1B), is an equivariant graph neural net-
work trained to predict the interaction energy of a molecular
dimer. This interaction energy is predicted as a sum of atom-
pair contributions. Rather than directly predict the total interac-
tion energy, this module predicts the symmetry-adapted perturba-
tion theory (SAPT) decomposition of the interaction energy into



its components of electrostatics, exchange, induction, and disper-
sion. The interaction energy module architecture is described in
detail in Section [3.1.2]

Most notably, instead of operating on only the dimer ge-
ometry, the interaction energy module operates on the out-
put of the atomic property module-atom-centered multipoles
through second order and hidden-state vectors encoding atomic
environments—evaluated separately for each monomer. The out-
put of the atomic property module is used by the interaction en-
ergy module in two ways. First, the learned representation of
each atomic environment from the atomic property module is in-
corporated into the corresponding atomic environment in the in-
teraction energy module. This shared representation allows the
interaction energy module to indirectly utilize the monomer data
used to train the atomic property module. Second, the predicted
atomic multipoles of the atomic property module are used to eval-
uate a multipolar electrostatic energy. The interaction energy
module is then trained to predict the interaction energy as a cor-
rection on top of the multipolar electrostatic energy. Because the
multipolar electrostatic energy captures the leading long-range
behavior of intermolecular interactions, the interaction energy
module is effectively limited to predicting a much more local,
medium- and short-range quantity.

This strategy of combining two different methods is similar to
the correction-based concept of A-learning, in which one refor-
mulates a regression task as a small predicted correction on top
of a computationally affordable baseline result.*!! However, un-
like conventional A-learning use cases in quantum chemistry, the
baseline model, multipole electrostatics via predicted multipoles,
is as computationally affordable as the machine learning correc-
tion.

2.2 Systematically-Generated Protein-Ligand Interactions

The Splinter dataset2 is a collection of approximately 1.7 mil-
lion systematically generated protein-ligand fragment dimers and
interaction energies computed using many-body SAPT based on
a Hartree-Fock (HF) representation of monomers (i.e. SAPTO).
These and all other SAPT computations carried out in this work
are performed in an aug-cc-pV(D+d)Z basis set (abbreviated
aDZ), which yields good error cancellation.#2 The construction
of this dataset is illustrated in Figure 2A. The Splinter dimers are
not only chemically diverse, they also were intentionally gener-
ated in variety of repulsive, optimized, and dissociated configura-
tions. Consequently, the interaction energies associated with the
Splinter dimers span a range of over 500 kcal mol~!.

Alarge fraction of Splinter dataset was used to train the interac-
tion module of the AP-Net model. The performance of AP-Net on
150K held-out validation dimers, which were not used to fit the
model, is shown in Figure 2B. AP-Net predicts the SAPT interac-
tion energies with a mean absolute error (MAE) of only 0.20 kcal
mol~! and a maximum error of less than 15 kcal mol~!. The in-
teraction energy of over 97% of the validation dimers is predicted
within 1 kcal mol~!, a metric commonly referred to as chemi-
cal accuracy.#¥ The individual SAPT components of the interac-
tion energy are predicted with even greater accuracy than the

total interaction energy. As observed in previous efforts to predict
the SAPT decomposition with ML models, errors in electrostatics
and exchange are largest, followed by induction, and then dis-
persion.24#43 Dispersion is predicted particularly accurately, with
a MAE of only 0.02 kcal mol~!. It should be noted that the er-
ror in this prediction is much smaller than errors inherent in the
SAPTO approximation or even the choice of finite basis set.

2.3 Crystallographic Protein-Ligand Interactions

The ultimate goal of the AP-Net intermolecular potential is to ac-
curately predict interaction energies of realistic models of protein-
ligand systems. Therefore, it would not be sufficient to only eval-
uate the model on dimers sampled from Splinter, which are proce-
durally generated and come from the same chemical space as the
training data. For this reason, we developed a more diverse, real-
istic dataset of dimers, referred to as SAPT-PDB-13K. The 13,216
dimers in SAPT-PDB-13K consist of an entire ligand interacting
with one or two capped amino acids. The protein and ligand ge-
ometries are taken from crystallographic Protein Data Bank (PDB)
entries, making them meaningful and practical test cases. An il-
lustrative dimer from the SAPT-PDB-13K dataset is shown in Fig-
ure[3

The diversity of the SAPT-PDB-13K dataset makes it a useful
test of AP-Net’s generalization ability. Compared to the Splin-
ter dataset, SAPT-PDB-13K contains different, larger ligands that
span more charge states. Regardless, Figure [4|shows that AP-Net
still accurately predicts the SAPTO interaction energy decomposi-
tion with a MAE of 0.74 kcal mol~'. In many ways, the predic-
tion errors on the SAPT-PDB-13K dimers resemble the prediction
errors on the held-out Splinter dimers. One notable difference is
in the prediction of the SAPT induction term. Interestingly, the
induction MAE is larger relative to the other three SAPT compo-
nents. It is also apparent from Figure |4] that the predicted in-
duction energies have a slight positive bias for dimers with large,
negative induction energies. This observation is in line with the
fact that induction is an inherently many-body phenomenon, in
contrast to the atomic-pairwise additivity of AP-Net.® The many-
body nature of induction-which can be thought of as mutual po-
larization between three or more atoms combined with charge
transfer-becomes apparent in a few SAPT-PDB-13K dimers that
contain strongly interacting di- and tri-anions.

2.4 Relative Interaction Energies

AP-Net’s performance on the Splinter and SAPT-PDB-13K datasets
demonstrates the model’s ability to accurately predict interaction
energies (AE;,.) of protein-ligand systems. A derived quantity of
interest is the relative interaction energy (AAE;,), defined as the
difference in interaction energies between two related dimers,
such as those that differ by a change in a single functional group.
An example experiment is illustrated in Figure Such single-
point alchemical computations may be used to guide the drug
design process.

The results of nine AAE;,, experiments are listed in Table
and a breakdown by SAPT component is included in the ESI.{In
each experiment, the AAE;,, of two related protein-ligand dimers
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Fig. 1 An overview of the AP-Net architecture. AP-Net predicts the four physically meaningful components of a protein-ligand interaction:
electrostatics (E,y ), exchange (E.), induction/polarization (Ej,q), and London dispersion (Eys,).
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Fig. 2 (A) Depiction of the Splinter dimer dataset. This dataset was constructed by exhaustively pairing small protein and ligand fragments. Between
50 and 500 dimer configurations were generated for each pair of fragments. (B) Distribution of interaction energies (left) and AP-Net errors with
respect to interaction energies (right) over 150,000 validation dimers of the Splinter dataset, in kcal mol~!. The respective mean absolute interaction
energies and mean absolute errors of the two sets of distributions are labeled.
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Fig. 3 An example dimer from the SAPT-PDB-13K dataset. A small
molecule inhibitor interacts with the nearest amino acid, a tyrosine, of
an Escherichia coli sliding clamp protein. This dimer was extracted from
PDB entry 4PNU.

is calculated using both SAPT and AP-Net. Each pair of dimers is
constructed from an initial protein-ligand complex, taking a por-
tion of the ligand and its surrounding protein environment.4Z The
second dimer of each pair is characterized by a change in a ligand
functional group. In seven of the nine pairs, a chlorine is replaced
with a methyl group, and in 207N, a cyano group is replaced with
a bromine. The ligands of the 2Y5G/2Y5H matched pair differ by
a heterocycle rotation rather than an atomic substitution. In all
nine computational experiments, the sign of the AP-Net AAE;;,
matches the sign of the SAPT-computed AAE;,, meaning the AP-
Net interaction energies are accurate enough to predict whether
each functional group substitution stabilized or destabilized the
protein-ligand interaction. SAPTO computations on some of these
complexes (~200 atoms) required as much as 1.5 days or more,
running on 12 cores, while the AP-Net computations ran in a few
seconds each. This makes in silico ligand design experiments of
this type (with quantum-mechanical accuracy) now feasible for
routine and easy use.

Table 1 Difference in interaction energies (kcal mol~!) for alchemical
substitutions in nine protein-ligand complexes. The PDB entry of the
crystallographic structures from which each dimer pair was derived is
given.

PDB Entry SAPTO AAE;,;, AP-Net AAE;,;
2CJI —2.07 —1.67
207N +4.16 +4.26
2PR3 —1.03 —1.42
2UZT +0.17 +0.91
2W26 —2.00 —1.00
2Y5(G/H) —-3.47 —3.65
3ENS —4.95 —2.94
4YFF +0.86 +0.38
4YHT —-2.23 —-2.97

Table 2 Mean absolute errors (kcal mol~!') of AP-Net-CC predicted
CCSD(T)/CBS interaction energies from the DES370K dataset. The
AP-Net-CC models are trained on varying amounts of randomly selected
data from the same dataset. Baseline models, which are trained from
scratch, are compared to a transfer learning scheme that starts with an
AP-Net model pre-trained on SAPT0/aDZ interaction energies.

Training Dimers Baseline Pre-Trained
100 1.91 0.48
200 1.64 0.47
500 1.22 0.40
1000 0.80 0.37
2000 0.56 0.33
5000 0.35 0.29
10000 0.26 0.23
20000 0.20 0.18
50000 0.14 0.12

2.5 Transfer Learning to Gold Standard Quantum Chemistry
The SAPTO/aDZ level of theory used in the Splinter dataset has
been extensively benchmarked and strikes a good balance be-
tween computational cost and accuracy.43 A more accurate level
of theory is coupled cluster with singles, doubles, and perturba-
tive triples [CCSD(T)148 in the complete basis set (CBS) limit.
CCSD(T)/CBS is often referred to as the “gold standard” quan-
tum chemistry because of its reliability. Ideally, the AP-Net model
would be trained on CCSD(T)/CBS interaction energies for the
Splinter dimers, but the steep ¢(N7) scaling of this method
makes obtaining many such high-quality interaction energies pro-
hibitively expensive. An appealing solution from the field of ma-
chine learning is the process of transfer learning, in which one
leverages data associated with one task (predicting SAPTO/aDZ
interaction energies) to improve performance at some other sim-
ilar, usually data-limited task (predicting CCSD(T)/CBS interac-
tion energies).“4? Generally, transfer learning is realized by ini-
tially training some NN model on the first large dataset, and then
re-training the same model on the smaller, relevant dataset. This
approach has been successfully used in the development of atomic
potentials.Y

A transfer learning experiment was performed to assess the
practicality and data requirements of training a CCSD(T) qual-
ity AP-Net intermolecular potential. This experiment was per-
formed with the DES370K dimer dataset.”% DES370K is similar
to the Splinter dataset in that it contains many small molecule
dimers. Unlike Splinter, DES370K contains interaction energies
computed at the CCSD(T)/CBS level of theory. Two separate “AP-
Net-CC" models were trained on the DES370K dataset to predict
CCSD(T)/CBS interaction energies. These models are referred
to as AP-Net-CC to differentiate them from the standard AP-Net
model, which is fit to the SAPT decomposition. Because AP-Net
is constructed to separately predict the four SAPT interaction en-
ergy components, all AP-Net-CC models are trained so that the
sum of the four predicted components matches the CCSD(T)/CBS
interaction energy. Therefore, any AP-Net-CC model lacks the
interpretability of an AP-Net model trained to predict the SAPT
decomposition. As a baseline, the first AP-Net-CC model was
constructed with randomly initialized weights in the interaction
energy module. The second “pre-trained" AP-Net-CC model was
constructed with interaction energy module weights taken from
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Fig. 4 Correlation between AP-Net predicted interaction energies and computed SAPTO0/aDZ interaction energies on the 13,216 dimers in the SAPT-

PDB-13K dataset.

Fig. 5 Example of an alchemical AAE;,, experiment. The chlorine group
of the P1 substructure of the Factor Xa inhibitor, BAY 59-7939, is mu-
tated to a methyl. The structure is extracted from PDB entry 2W26.

the original AP-Net model. Both AP-Net-CC models used the same
frozen atomic property module as the original AP-Net model.
The accuracy of the two AP-Net-CC models as a function of
the amount of DES370K training data is shown in Table [2| The
pre-trained AP-Net-CC model outperforms the baseline AP-Net-
CC model, particularly in the low data regime. At 100 training
data points, transfer learning results in a nearly four-fold error
reduction (from 1.91 kcal mol~! to 0.48 kcal mol~!). The ac-
curacy of a pre-trained AP-Net-CC model with only 100 training
data points is similar to that of a baseline AP-Net-CC trained on
a few thousand data points. Transfer learning provides diminish-
ing returns when more CCSD(T)/CBS data is available. The pre-
trained model is nearly equivalent to the baseline model when
50K training points are used. These results demonstrate that
transfer learning is an economical approach for leveraging the
original AP-Net model, which was trained on the SAPT decompo-
sition of over 1.5M dimers, to predict interaction energies at more
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computationally expensive levels of theory. A minimal amount of
expensive, high accuracy CCSD(T)/CBS data is required to fine-
tune AP-Net from SAPT to this gold standard quantum chemistry
method.

2.6 Predicting Interaction Energy Surfaces

The transfer learning approach applies not just between differ-
ent levels of quantum chemical theory, but also between different
regions of chemical space. In particular, one might want to re-
purpose the AP-Net potential, which is parameterized to model
protein-ligand interactions in general, into an interaction energy
model specialized for a particular dimer, which may not even be a
protein-ligand system. To explore the usefulness of such a model,
we examined the performance of the previously described AP-Net-
CC models on the interaction energy surface of the hydrogen-
bonded N-methylacetamide (NMA) dimer. This dimer is a model
system for peptide bonding. SAPT0/aDZ and CCSD(T)/CBS in-
teraction energies were computed along a two-dimensional scan
of the intermolecular hydrogen bond length and angle of this
dimer. The intermolecular O...H bond length was varied from
1.5At0 3.0 Ain 0.1 A increments and the intermolecular O... HN
bond angle from -90° to +90° in 1.5° increments. Figure[f]shows
these reference interaction energy surfaces compared to predic-
tions of the AP-Net and two AP-Net-CC models. An additional
one-dimensional visualization of this surface is available in the
ESI. ¥The computed SAPTO/aDZ and CCSD(T)/CBS surfaces dif-
fer by a small amount: the SAPTO/aDZ surface is overall lower
in energy than the gold standard reference method, with a min-
imum energy of -8.43 kcal mol~! at a hydrogen bond length of
2.0 A. The CCSD(T)/CBS surface has a minimum energy of -7.28
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Fig. 6 (Top Right) Visualization of a two-dimensional interaction energy scan (kcal mol™!) for the NMA dimer, varying the hydrogen bond distance
(r) and angle (0). (Top Left) The NMA dimer interaction energy surface computed at the cheaper SAPTO0/aDZ level of theory. (Bottom Left) The
NMA dimer interaction energy surface computed at the expensive CCSD(T)/CBS level of theory. (Top Center) The NMA dimer interaction energy
surface predicted by an AP-Net model trained on ~1.7 million SAPT0/aDZ data points. (Bottom Center) The NMA dimer interaction energy surface
predicted by an AP-Net model trained on one hundred CCSD(T)/CBS data points. (Bottom Right) The NMA dimer interaction energy surface
predicted by an AP-Net model trained on ~1.7 million SAPT0/aDZ data points and then re-trained with one hundred CCSD(T)/CBS data points.

All energies in kcal mol~!.

keal mol~! at 2.0 A.

The AP-Net predicted surface agrees with with the reference
SAPT surface. This is expected given the quantity and diversity
of data used to train the model. The baseline AP-Net-CC model
trained on only 100 data points poorly predicts the CCSD(T)/CBS
surface. This predicted interaction energy surface lacks both a re-
pulsive wall and a reasonable minimum. However, using the same
100 points to repurpose the AP-Net model to the CCSD(T)/CBS
theory with transfer learning results in an excellent prediction of
the interaction energy surface. It’s particularly notable that these
100 dimers are randomly selected from the DES370K dataset, and
do not include NMA.

2.7 Ranking Molecular Crystal Polymorphs

Intermolecular interactions largely govern the structure of molec-
ular crystals and other clusters, making these systems a promis-
ing application of AP-Net outside of protein-ligand interactions. A
vast majority of molecular crystals are polymorphic, meaning that
they can exist in multiple stable crystalline forms, with potentially
different physical properties like density, solubility, hygroscopic-
ity, melting point, etc.> In drug development, thoroughly deter-
mining all polymorphs of a drug candidate is a necessary proce-
dure that is routinely guided by computation. A common crystal
structure prediction (CSP) task is to screen and rank the most
energetically stable putative polymorphs of a target molecule.52
Using the many body expansion (MBE), the energy of a crystal
lattice can be recast as approximately a sum of many dimer inter-

action energies.>3 This two-body contribution to the crystal lat-
tice energy, hereafter referred to as the crystal lattice energy, can
therefore be computed with any quantum chemistry method used
for interaction energies or predicted with AP-Net. Note that poly-
morph ranking must also account for monomer strain, zero-point
vibrational energy, and finite temperature and pressure.

We performed a preliminary experiment to assess AP-Net at
ranking polymorphs of the 5-fluorouracil crystal. 61 low-lying 5-
fluorouracil crystal structures, one of which is the experimentally
observed Form II, were taken from the work of Price.® The Crys-
taLattE program®3 was used reduce each crystal structure into
a set of unique dimers, from which the crystal lattice energies
was computed at the SAPTO/aDZ level of theory and predicted
with AP-Net. An intermolecular closest contact cutoff of 15 A was
used to generate the dimers. The computed and predicted crystal
lattice energies are compared in Figure[7] Importantly, AP-Net re-
produces the approximate ranking of the polymorphs. Form II is
correctly predicted to be among the lowest energy structures. The
AP-Net ranking of Form II happens to be slightly better than that
of SAPT0/aDZ due to fortuitous errors in the interaction energies.
The MAE of the AP-Net predicted crystal lattice energies relative
to SAPTO is 1.18 kJ mol~!, which is smaller than the disagree-
ment between many quantum chemistry methods.5® Note that
this result is in spite of the fact that AP-Net was trained specif-
ically on protein-ligand data, not 5-fluorouracil homodimers or
even ligand-ligand dimers.

The 61 AP-Net crystal lattice energy predictions required less
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Fig. 7 (Left) The experimentally observed Form Il of the 5-fluorouracil crystal. (Center) Comparison between computed and predicted relative crystal
lattice energies. (Right) Relative crystal lattice energies as a function of density.

than two CPU minutes, a nearly 30,000-fold savings over the cor-
responding SAPTO/aDZ cost of 980 CPU hours. Because the cost
of quantum chemistry computations scales poorly with system
size, AP-Net predicted crystal lattice energies of a larger drug-like
molecule would result in even more pronounced savings relative
to SAPTO/aDZ.

3 Materials and Methods

3.1 Implementation

The AP-Net model was implemented using version 2.3 of the Ten-
sorFlow Python package.Z The implementation and architectural
details of the two constituent modules of the AP-Net model are
described below.

3.1.1 Atomic Property Module

The atomic property module predicts charges, dipoles, and Carte-
sian quadrupoles of all atoms in a molecule from the identities
and coordinates of the atoms and the total charge of the molecule
via an equivariant MPNN. Reference and predicted multipoles are
written as (g, i, ) and (g, 1, 0) respectively.

The initial environment of atom i in the MPNN is a simple map-
ping or embedding of the integer nuclear charge (Z;) to a vector
(h?) as was proposed in SchNet.?2' The mappings are generated
at uniform random for all Z corresponding to atomic elements of
interest: H, C, N, O, F, Na, P, S, Cl, and Br. An edge between
atoms i and j exists if the distance between the atoms is less than
a cutoff distance, r., which is set to 5.0 . The edge feature vector
e, is a simple encoding of the scalar distance |r;;| using a set of
Bessel functions as described in the work of Gasteiger, et al.:2

e =leij1, " ,eijN], e

2 sin (% |rj1)

re |l

2

€ijn =

The message sent from atom i to atom j at time step ¢ > 0 is an
outer product between concatenated hidden state vectors and the

8| Journal Name, [year], [vol.], 1

edge vector:

0 pt 10
= (h; hf7hl,hz])

(17eij). (3)

The total, directionless message received by atom i at time-step ¢
is a sum over individual messages from all neighbors j:

= )y mj, @

IEJV

and this quantity is used to update the total, directionless hidden
state of atom i:
W = U’ (m}), (5)

where U’ is a dense, feed-forward neural network. The predicted
charge of atom i, §; is determined from the hidden states through
all T time steps and a set of dense, feed-forward neural networks:

g;= ), R'(n}). 6)

0<t<T

We set T = 3 in this work.

The displacement vector and displacement unit vector between
atoms i and j are simply:

rjj=1r;—Tr; (7

R -
=L ®
Irij

A directional hidden state, x!, for predicting atomic dipoles is de-
termined, analogous to charges:

Z f',‘j ><D’(mij), (9)
JEN (i)

using a directional update function, D. Note that D itself has no
directional properties as it operates on the rotational invariant
(m;;). The functional is named so because it is used to predict
a directional hidden state, x! which differs from h! in that is has
an additional Cartesian dimension. The Cartesian dimension of
the directional hidden state inherits the rotational equivariance



of the displacement vector f;;, which is then used to predict a
rotationally equivariant dipole vector:

fi= ) Ru(xip). 1o
1<t<T
The dipole readout function R}, is made to be a simple linear layer.
This ensures rotationally equivariant atomic dipoles; a readout
function with non-linearites, such as a dense feed-forward neural
network, would not preserve the equivariance of the hidden state
vector x!. Also, the dipole hidden state at 1 = 0 isn’t incorporated
into the readout because a non-interacting atom has no dipole.
Quadrupoles are predicted analogously to dipoles, with separate
quadrupole hidden states, update functions, and readout func-
tions.
Lastly, the network architecture enforces conservation of total
molecular charge, Q:

44+ 2R (11)

and also that the Cartesian quadrupoles are symmetric and trace-

less:
ess |

®e§@+@L (12)
A 0,+6,+06..
®e®—4ﬁi%ﬂ;if. (13)

3.1.2 Interaction Energy Module

The interaction energy module predicts the SAPT decomposition
of the interaction energy (electrostatics, exchange, induction, and
dispersion) from a molecular dimer, which consists of two sets of
atomic identities and coordinates and two molecular charges. The
characters q, a’, b, and b’ will be used to index atoms in monomers
o/ and 4, respectively. The interaction energy components are
predicted through learned, intermolecular, atomic-pairwise parti-
tion:

Eeist Eup elst

A Ej = Eexch _ Eab,exch ) (1 4)
Eina ac.ol be B Eab,ind
Edisp Eab,dixp

The interaction energy module uses an MPNN architecture sim-
ilar to that of the atomic property module. Specifically, the mes-
sage and update functions in this module are identical, but have
different weights.

mtaa’ = (h27h2>h2f7h;/) X (1:eaa’)~, (15)

m= ) my,, (16)
deN(a)

b = U (my). (17)

In addition to the rotational invariant hidden state vector (h €
Z7), a directional, rotationally equivariant hidden state vector
(x € %) is also updated throughout the message passing:

xffl = Z faa X D' (m;a,), (18)
aeN(a)

using another feed-forward neural network, D'. The hidden states

from each iteration are concatenated, and a pair feature vector is
then created from all hidden state vectors for each intermolecular
(a,b) pair:

ha: (h(a)7"'7h§)7 (19)
X = (xg,...,xg), (20)
Pab = (@a7@b7havhb7f‘ab ‘me'ba 'Xb)' (21)

Note that this pair feature vector uses the predicted atomic
charges from the atomic property module, which is separately
applied to both monomers in the dimer. Also, the rotationally
equivariant vectors x are incorporated in a rotationally invariant
way by projection onto the intermolecular unit vector. Four dense
feed-forward NNs are used to predict the four SAPT components
from the pair feature vectors:

EubA,comp = ‘rablip [Rcomp (pab) +RMP (pbu)L (22)

where comp is one of the four SAPT components (electrostatics,
exchange, induction, dispersion). The pair energies are inversely
scaled by the interatomic distance raised to the p power, where p
is fixed at 3 across all interaction types; the key consideration was
to enforce asymptotic decay of the interaction energy. The output
is also symmetrized over the order of the two atoms. Finally, in
the case of electrostatic energies, the neural network predictions
are corrections on top of multipolar electrostatics computed from
the charges, dipoles, and quadrupoles predicted by the atomic
property module:

Eab.elst — Eab,elst +Eab,mtp~ (23)

The predicted interaction energy, though defined as a sum
of atom-pair interaction energies, is still a many-body quantity
(where “body” refers to atoms). This is a consequence of using a
MPNN to featurize each atom with its local atomic environment.
In contrast, AP-Net produces a strictly two-body dimer interaction
energy (where “body“ refers to molecules).

3.2 Training Data and Procedure

The AP-Net model is trained in a two step procedure. All code
used to train this model is present in the AP-Net GitHub reposi-
tory.>® First, the atomic property module is trained on a dataset
of molecular monomers and computed atomic multipoles. This
was done with our previous dataset of 46,623 mostly drug-like
fragments and corresponding atomic multipoles computed from
HF/cc-pVDZ wavefunctions and partitioned with the minimal ba-
sis iterative stockholder (MBIS) scheme.”? Because the dataset
lacks non-neutral monomers and monomers representing protein
systems, it was further expanded to include monomers present
in the Splinter dataset. 6,550 additional computations were
performed on randomly selected monomers from the Splinter
dataset, totaling 53,173 monomers. The 53,173 monomers were
then randomly split into training and validation subsets of 47,855
and 5,318 monomers.

The atomic property module was constructed with three mes-
sage passing iterations. Each dense feed-forward neural network
in the module is composed of three hidden layers with 256, 128,
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and 64 neurons. The ReLU activation function is applied after
each hidden layer, followed by an appropriately sized linear op-
eration after the last hidden layer. The edge feature vectors are
constructed from 8 Bessel functions and a radial cutoff of 5 A.
Training was performed to minimize the sum of the mean squared
errors of the atomic charges, dipoles, and quadrupoles:
1 N

-ff:E;(qf@a)2+\ua*ﬂa\2+|9a*9a|2 24
where a indexes atoms in a batch of molecules. The atomic prop-
erty module was trained for 500 epochs with a batch size of 16
molecules. Weights were optimized with the Adam optimizer us-
ing a learning rate of 5 x 10~%. The weights of the epoch with the
lowest validation MSE are used in the final AP-Net model.

In the second step of training, the interaction energy module
is trained on the Splinter dimer dataset to predict SAPT decom-
posed interaction energies. The interaction energy module re-
quires atomic multipoles as an input, which were obtained from
the atomic property module. The architecture of the MPNN in this
module is identical to that of the atomic property module. Inter-
molecular atom pair readouts are performed with an 8 A cutoff.
This means that the interaction energy of atom pairs within this
cutoff is predicted with a full neural network inference; the inter-
action energy of atom pairs outside of this cutoff is only accounted
for by multipolar electrostatics. The asymptotic decay coefficient
(p) was set to three. Random training and validation subsets of
1.5M and 150K dimers are taken from the 1.66M dimers in the
Splinter dataset. The module is optimized to minimize the MSE
of the individual SAPT components:

1 Na 4 .
L=y Y(Eea—Eea), (25)

d g ¢
where ¢ is one of four SAPT components (electrostatics, ex-
change, induction, and dispersion) and d indexes dimers in the
batch. The MPNN was trained using a batch size of 16 dimers
and the Adam optimizer with a learning rate of 5 x 10~*. Training
was performed for 50 epochs, and the weights of the epoch with
the lowest validation MSE are used in the final AP-Net model. An
ensemble of five randomly initialized AP-Net models were trained
on the same data to reduce uncertainty, and all predictions pre-
sented in this work are the average prediction of the ensemble.

3.3 SAPT-PDB-13K Dataset Preparation

The SAPT-PDB-13K test set of 13,216 dimers was prepared to con-
sist of diverse, drug-like molecules paired with mono- and dipep-
tides extracted from crystallographic structures deposited in the
PDB. The following procedure was followed to ensure that lig-
ands were structurally diverse and drug-like: ligand molecules
were extracted from the PDBbind 2019 refined set of 4852 com-
plexes, 0961 jmported into Maestro 2021-3,92 assigned charges
and bond orders with LigPrep® and clustered using the spec-
tral clustering utility with default settings, which provided 133
representative ligands. An additional 600 ligands were visually
selected which further added structural diversity and represented
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the full range of elements compatible with the AP-Net model (H,
C, N, O, F, Na, P, S, Cl, and Br). The corresponding 733 PDB
protein / ligand complexes were subjected to refinement using
the Schrodinger Protein Prep®# tool with default settings. Dimers
consisting of ligands and proximal mono- and dipeptides were
created, wherein the N- and C-termini were capped with acetyl
and N-Me groups, respectively. Visual inspection led to removal
of erroneous structures (e.g., presence of hypervalent carbons or
otherwise non-physical geometries) and duplicates. SAPTO/aug-
cc-pV(D+d)Z interaction energies of the 13,216 dimers were
computed with Psi4 and made available in the ESL.{

4 Discussion

The AP-Net potential developed in this work is a robust,
physically-motivated NN intermolecular interaction model. In
contrast to the many general purpose ML potentials which pre-
dict a total energy, the AP-Net potential predicts interaction en-
ergies. As a consequence of this specialization, AP-Net is con-
structed to adhere to known physical priors of intermolecular
interactions, such as their approximate atomic pairwise nature
and distance decay. An additional physical prior is captured by
AP-Net’s unique two-component architecture. Rather than simply
predict atom-pair contributions to the interaction energy, AP-Net
is constructed to predict monomer electron densities (in the form
of atom-centered multipoles), evaluate a long-range electrostatic
interaction energy from the predicted multipoles, and then pre-
dict atom-pair corrections to this evaluated energy.

This two-component architecture confers a number of advan-
tages to the AP-Net model. Because of the multipolar electrostatic
force field, the AP-Net model produces electrostatic interaction
energies that are asymptotically exact at the target level of the-
ory using a relatively small amount of multipole training data.
An analogous pure-NN model would need to be trained on an in-
tractable number of dimer interaction energies to reach the same
level of accuracy. This case of long-range electrostatics illustrates
a weakness of NN models, which is that unnecessary flexibility
can be a detriment to data efficiency. AP-Net’s architecture ef-
fectively limits the flexibility of the functional form at long-range
where the physics is known, allowing the modeling capacity to
be applied to the more difficult short-range interactions. In addi-
tion to improving the data efficiency of the model, concentrating
on short-range intermolecular interactions improves the compu-
tational efficiency of the AP-Net model. Neural network infer-
ences, which are more expensive than force field evaluations, are
only required for pairs of interaction atoms within a relatively
short distance threshold (8 A).

This physically-motivated AP-Net is applied to the challeng-
ing and consequential problem of modeling protein-ligand in-
teraction energies. A useful AP-Net model is made possible by
the Splinter dataset: a comprehensive and diverse collection of
1.66M protein-ligand dimers and SAPTO interaction energies.
The trained AP-Net accurately reproduces the SAPT decompo-
sition of interaction energies well within chemical accuracy in
the great majority of cases. More importantly, generalizability
to larger models of protein-ligand dimers is observed, with good
agreement between AP-Net and SAPTO for substituent effects for



~200-atom model systems where SAPTO results can still be ob-
tained. While the SAPTO computations require many hours, the
AP-Net results run in seconds. These findings suggest that the
AP-Net model is an immediately practical tool for drug design re-
search when quantum-level accuracy is desired for protein-ligand
interaction energies, as was helpful in previous studies by our
group on factor Xa inhibitors. .

This AP-Net model is not without shortcomings. One appar-
ent deficiency is the underestimation of strong induction interac-
tions, which occurs for a few select realistic protein-ligand dimers
of the SAPT-PDB-13K dataset. These dimers represent an edge
case where the non-local, many-body nature is poorly captured
by the atomic-pairwise architecture of AP-Net. Efficiently model-
ing this non-pairwise additivity likely requires a model architec-
ture with an appropriate inductive bias. In the same way that the
current AP-Net model fuses classical long-range multipole elec-
trostatics with a NN-predicted short-range correction, a future AP-
Net model might benefit from incorporating a classical Thole-type
induction model as is done in polarizable ab initio force fields like
AMOEBA . 0268 This could be incorporated by training the atomic
property module to predict atomic polarizability tensors. Another
potential limitation arises from using a framework of interacting
monomers to predict intermolecular interaction energies. This
framework is largely incompatible with reactive chemistry, where
the formation or dissolution of bonds changes the definition of
monomers. Modeling reactive chemistry with an intermolecular
potential can be done with the empirical valence bond (EVB) ap-
proach, 22107 byt it might be easier to simply train a NN potential
to the total system energy.

Because of the high accuracy of AP-Net relative to SAPTO, the
development of future models will likely target training data com-
puted at a higher level of quantum chemistry theory. Additional
AP-Net model development, whether targeting new levels of the-
ory or new types of dimers, can benefit from transfer learning
from the current, general, protein-ligand model. This approach
greatly reduces training data requirements. Surprisingly, the
protein-ligand AP-Net model can be used for modeling ligand-
ligand interaction energies accurately enough to rank polymorphs
of the 5-fluorouracil crystal, an application far outside of the orig-
inal intention of the AP-Net model. This result illustrates one of
many potential future AP-Net use cases, and it also points towards
the possibility of a universal interaction energy potential.
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