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The focal-point approximation can be used to estimate a high-accuracy, slow quan-

tum chemistry computation by combining several lower-accuracy, faster computa-

tions. We examine the performance of focal-point methods combining second-order

Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and

perturbative triples [CCSD(T)] for the calculation of harmonic frequencies, and of

fundamental frequencies using second-order vibrational perturbation theory (VPT2).

In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the

complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster

portion of the computation. The predicted harmonic and fundamental frequencies

were compared to experimental values for a set of 20 molecules containing up to six

atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T+d)Z with CBS-

extrapolated MP2 has mean absolute errors versus experiment of only 7.3 cm−1 for

the fundamental frequencies, which is essentially the same as the mean absolute error

for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q+d)Z and aug-cc-

pV(5+d)Z basis sets. However, for H2O, the focal-point procedure requires only 3%

of the computation time as the extrapolated CCSD(T) result, and the cost savings

will grow for larger molecules.
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I. INTRODUCTION

Wavefunction-based quantum chemistry provides a hierarchy of methods with a fun-

damental trade-off between accuracy and computational cost. A well-established problem

associated with this trade-off is the slow convergence of the correlation energy with increas-

ing basis set size due to the electron cusp condition. This poor convergence can be addressed

using either explicitly-correlated methods or basis set extrapolation techniques. Combining

large basis sets with expensive correlated methods is undesirable, but is seemingly necessary

for high levels of accuracy.

One promising solution to this problem is the focal-point approach,1,2 which approximates

a desired level of theory (method/basis) with a combination of calculations in smaller basis

sets and calculations performed with less correlated methods. Focal-point type methods have

been applied to the calculation of properties such as geometries,3–5 interaction energies,6–8

thermochemical properties,9,10 as well as harmonic vibrational frequencies.11–17

At its core, the focal-point approach assumes that convergence of the correlation energy

to the full configuration interaction limit and of the one-particle basis set to the complete

basis set (CBS) limit are approximately independent and can therefore be accounted for

separately. A popular application of the focal-point approach is the approximation of the

“gold-standard” coupled-cluster singles, doubles, and perturbative triples [CCSD(T)]18 en-

ergy in the CBS limit by combining large-basis (lg) second-order Møller–Plesset perturbation

theory (MP2) with CCSD(T) in some small (sm), incomplete basis set, as shown in Eq. 1.

E(CCSD(T)/lg) ≈E(MP2/lg)+

[(E(CCSD(T)/sm)− E(MP2/sm)]
(1)

The above scheme is written compactly as CCSD(T)/CBS(lg; δ:sm) throughout this

work. The focal-point energy is written as a linear combination of energies; consequently,

the focal-point estimation scheme readily extends to the extrapolation of any quantity that

is a linear function of the energy. Of particular interest in this work are the derivatives of

the energy up to fourth order, used in calculating the fundamental vibrational frequencies.

While the focal-point approach is mathematically simple, its routine use is limited in

practice by the flexibility of quantum chemistry software. In geometry optimizations, for

example, linear combinations of gradients are used to form a focal-point gradient at each it-

eration of the optimization, so the software must contain a focal-point driver or else support
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user-defined gradients with a method-agnostic application programming interface (API). As

meaningful calculation of vibrational frequencies requires a tightly optimized minimum of

the potential energy surface, focal-point frequencies are only readily calculated using soft-

ware that can automate focal-point methods. The Psi4 software program has been improved

to automate such procedures. We recently used Psi4 to perform a systematic study of opti-

mized CCSD(T) focal-point geometries, which we found to be in good agreement with stan-

dard CCSD(T) calculations performed in much larger basis sets.5 In particular, we found

that when CCSD(T) in an (aug-)cc-pVXZ basis set is combined with CBS-extrapolated

MP2, the accuracy in optimized geometries is similar to that using standard CCSD(T) with

a basis set one ζ level higher [i.e., (aug-)cc-pV(X+1)Z], while reducing the computational

cost by an order of magnitude or more. This greatly improves the feasibility of obtaining

benchmark-quality geometries for small molecules. Compared to explicitly-correlated meth-

ods, the focal-point scheme is much simpler to implement. We refer the reader to Ref. 5 for

recommendations on specific combinations of basis sets for the CCSD(T) and MP2 calcula-

tions that optimize cost-accuracy trade-offs, which will be used in the present work. Here

we examine the accuracy of focal-point CCSD(T) for calculating harmonic and fundamental

vibrational frequencies.

Harmonic vibrational frequencies of a molecule are easily calculated using the Hessian

matrix, but these cannot be easily compared to experiment, as the observed fundamental

frequencies include anharmonic effects. A very simple and often-used approach is to scale

the harmonic frequencies by some factor determined by benchmark studies at a given level

of theory.19 Such an approach assumes that the anharmonicity of any mode is always a fixed

fraction of the harmonic frequency, and moreover it provides a limited ability to correct for

systematic errors in the theoretical method used to compute the harmonic frequencies. One

would not expect such a simple correction scheme to provide highly accurate fundamental

frequencies, but recent work by Zapata Trujillo and McKemmish20,21 indicates that explicit

correlation estimates of the CCSD(T)/CBS limit harmonic frequencies can be scaled to

fundamental frequencies with a median absolute deviation of only 15.9 cm−1 and a root

mean squared error (RMSE) of 32 cm−1. These values are reduced to 7.5 and 28 cm−1 if a

different scale factor is used for high-, medium-, and low-freqency modes.

Quantum chemistry approaches to explicitly compute the effect of anharmoinicity include

vibrational perturbation theory (VPT2),22,23 vibrational self-consistent field (VSCF),24,25
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and virtual-state configuration interaction (VCI),26,27 among others. VPT2 requires calcu-

lation of the cubic and semi-diagonal quartic derivatives of the energy function, and these

are typically obtained with a finite-difference procedure. The high computational cost of

calculating the higher-order derivatives has limited the application of coupled-cluster anhar-

monic frequency calculations to very small systems. However, focal-point approximations

may make CCSD(T) computations more feasible in this context, as we explore here.

VPT2 is based on non-degenerate perturbation theory and can encounter difficulties when

dealing with nearly degenerate states, the so-called Fermi and Darling–Dennison resonances.

There are many approaches to handle such resonance cases, and the choice can have a large

impact on the calculated fundamental frequencies for some systems.28 We assume that the

accuracy of such schemes is independent from choices of basis set or electron correlation

and that any improvements in treating Fermi resonances can be dealt with separately from

improving basis set convergence.

Only a few studies to date examine the basis set convergence of CCSD(T) harmonic

frequencies. Tew et al. have investigated the basis set convergence of the CCSD(T) harmonic

frequencies of 17 molecules.29 The convergence of frequencies to spectroscopic accuracy is

very slow, requiring either extrapolations with very large basis sets or explicitly-correlated

methods to converge results to within a few cm−1.30

Focal-point methods have already found application in calculating harmonic vibrational

frequencies, typically by direct extrapolation of the frequencies themselves.11–16,31 In partic-

ular, combining focal-point coupled-cluster harmonic frequencies with a more approximate

method for computing anharmonicities has been a popular choice in the literature to calcu-

late fundamental frequencies for larger molecular systems such as uracil,11 glycine,13 glycine

dipeptide,14 pyruvic acid,15 and serine.16 Morgan et al. use a focal-point approach to ap-

proximate the CCSDT(Q)/CBS limit of anharmonic frequencies of formaldehyde, combining

CBS extrapolated CCSD(T) with CCSDT and CCSDT(Q) computations in a smaller basis

set.32 In recent work, Varandas has examined the accuracy of CBS-extrapolated CCSD(T)

for the calculation of harmonic frequencies and found that a focal-point approach combining

MP2 with small basis CCSD(T) produced errors similar to CBS-extrapolated CCSD(T).17

A systematic investigation of the accuracy of focal-point fundamental frequencies has not

yet been performed.

Here we examine the quality of focal-point approximations to CCSD(T)/CBS harmonic
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and fundamental frequencies for a number of small molecules where large-basis extrapo-

lation estimates of the CCSD(T)/CBS frequencies are feasible, and we also compare to

experimental values.

II. METHODOLOGY

CCSD(T) harmonic and fundamental vibrational frequencies were obtained for the twenty

molecules in Table I and the results compared to experimental frequencies. Gas-phase

experimental fundamental frequencies were available for all 20 molecules, for a total of 89

unique vibrational modes. Experimentally deduced harmonic frequencies are available for

14 of the molecules, for a total of 52 unique vibrational modes. All species considered here

are neutral and closed-shell.

The correlation-consistent basis sets of Dunning55,56 [cc-pV(X+d)Z, X ∈ {D,T,Q,5}] are

used in all calculations, abbreviated as XZ throughout this paper. These basis sets can be

additionally augmented with diffuse functions, denoted with the aug- prefix,57 abbreviated

as aXZ throughout this paper. For calculations including core-valence correlation, the aug-

cc-pwC(X+d)Z basis sets58 were used, abbreviated as awCXZ throughout this paper. The

Dunning basis sets are designed to converge smoothly to the CBS limit.

The CBS limit of the correlation energy, which converges much more slowly than the self-

consistent field (SCF) energy, can be approximated by extrapolating from multiple finite-

basis computations. Helgaker and coworkers derived an inverse cubic relationship between

basis set cardinal number X and the correlation energy,59 given in Eq. 2. The CBS correlation

energy can then be approximated with a two-point fit, as shown in Eq. 3.

Ecorr(X) = Ecorr(CBS) + AX−3 (2)

Ecorr(CBS) =
Ecorr(Y )Y −3 − Ecorr(X)X−3

Y −3 −X−3
(3)

The extrapolated correlation energy is then added to the SCF energy calculated with the

largest basis. For compactness, such two-point CBS extrapolations are written here as

(aug-)cc-pV[XY]Z or simply (a)[XY]Z.

Previous work on CBS extrapolated vibrational frequencies has typically proceeded by

extrapolating the observed spectroscopic constants and structural parameters from sepa-

rate vibrational calculations for each level of theory involved in the extrapolation,11–17 as
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Unique Refs. This Work: CCSD(T)

Molecule Modes ν ω /CBS(a[Q5]Z) Focal-Point

BH 1 33 33 y y

HF 1 34 34 y y

CO 1 33 33 y y

N2 1 33 33 y y

F2 1 33 33 y y

H2O 3 35 36 y y

HNC 3 37 None y y

HCN 3 38 39 y y

HCP 3 40 41 y y

HNO 3 42, 43 None y y

CO2 3 44 45 y y

SO2 3 46 46 y y

C2H2 5 47 47 - y

HOOH 6 47 None - y

HNCO 6 48 None - y

H2CO 6 49 50 - y

CH2NH 9 47 None - y

C2H2O 9 47 51 - y

C2H4 12 52 53 - y

C2H2F2 10a 54 None - y

Total Modes 89 52 26

a Two modes of C2H2F2 were omitted due to lack of gas-phase experimental data for comparison.

TABLE I. List of molecules studied and references for experimental values for fundamental and

harmonic vibrational frequencies.
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described in Ref. 3. Our approach differs by directly calculating the derivatives of the focal-

point energy function at its minimum geometry. This approach provides not only a more

automated interface for the user, but a more natural way to calculate the frequencies.

High-quality optimized geometries and frequencies were calculated for the diatomic and

triatomic molecules listed in Table I at the CCSD(T)/CBS(a[Q5]Z) level of theory. This

includes a total of 26 unique modes, 20 of which have experimentally deduced harmonic

values. Anharmonic VPT2 calculations with a[Q5]Z on the larger molecules (more than

three atoms) listed in Table I were deemed too computationally expensive to be practicable.

CCSD(T)/CBS(a[Q5]Z) has been found to be converged to within 1 cm−1 of the CBS limit

for CCSD(T),30 and these results are used as reference values for such. Single-basis CCSD(T)

was performed on all molecules using the DZ, aDZ, TZ, and aTZ basis sets. Focal-point

methods of the form CCSD(T)/CBS(large; δ:small) were used according to Eq. 1, where the

δ:small term is the difference between MP2 and CCSD(T) correlation energy in the specified

smaller basis set. For the larger basis, a CBS extrapolation is performed at the MP2 level

following Eqs. 2 and 3. Focal-point CCSD(T) was performed on all molecules using the

following basis set combinations: CCSD(T)/CBS([TQ]Z; δ:DZ), CCSD(T)/CBS(a[TQ]Z;

δ:aDZ), CCSD(T)/CBS([Q5]Z; δ:TZ), and CCSD(T)/CBS(a[Q5]Z; δ:aTZ). These combina-

tions of basis sets for the MP2 and CCSD(T) portions of the focal-point procedure have been

identified in previous work as having ideal cost-accuracy trade-offs.5 Additionally, calcula-

tions including core-valence correlation were performed using the CCSD(T)/CBS(awC[Q5]Z,

δ :awCTZ) focal-point scheme.

All calculations were performed with version 1.4 of the open-source Psi4 software

package.60 All SCF, MP2 and CCSD(T) calculations performed in this work use the density-

fitting approximation. SCF calculations used the (aug-)cc-pV(X+d)Z-JKFIT61 auxiliary

basis sets for calculating the Coulomb and exchange integral matrices. MP2 and CCSD(T)

used the (aug-)cc-pV(X+d)Z-RI62 auxiliary basis sets for density fitting.

All molecular geometries were tightly converged with maximum residual forces less than

2 × 10−6 Hartree au−1 and max residual displacements less than 6 × 10−6 au. All energies

and densities were converged to 1 × 10−12 Hartree and 1 × 10−10 au−3, respectively. All

MP2 and CCSD(T) calculations used the frozen-core (fc) approximation except for those

explicitly denoted as including core-valence correlation by the use of awCXZ basis sets.

Hessians for harmonic frequencies were obtained by finite-difference of analytic gradients
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using a five-point stencil and a displacement size of 0.005 au. The cubic and semi-diagonal

quartic derivatives needed for anharmonic frequencies were obtained by finite-difference of

analytic gradients using displacements along the reduced normal mode coordinates. A dis-

placement size of 0.1 reduced dimensionless units, scaled by the square-root of the harmonic

frequencies,63 was used, which was found to give numerically satisfactory results. For this

study, one of us (P.M.N.) developed an open-source implementation of the VPT2 method de-

scribed in Ref. 23, available on GitHub.64 VPT2 is well known to suffer from issues in dealing

with states involving Fermi resonances. Martin et al. proposed a method to identify resonant

terms in the VPT2 equations, the eponymous Martin’s test, and remove their contributions

to the anharmonicity constants, effectively deperturbing the resonant interactions.65 Identi-

fication of the Fermi resonant terms requires threshold values for energy separation between

states and for the coupling between states, the Martin’s test value. An energy separation

of 200 cm−1 and a Martin’s test value of 1 cm−1 were used in this work to identify Fermi

resonant terms. The interaction between the depertubed states can then be reintroduced

variationally by diagonalizing an effective Hamiltonian between the resonant states. Such

an approach is known as GVPT2 or VPT2+F in the literature.28,66

III. RESULTS AND DISCUSSION

A. Defining target accuracy

Before using the focal-point approach to approximate CCSD(T)/CBS(a[Q5]Z) frequen-

cies, it is necessary to define an acceptable degree of accuracy. One way to bound the

focal-point ‘target accuracy’ is to consider errors in the reference CCSD(T)/CBS(a[Q5]Z)

calculation. Although high quality, these frequencies still contain small errors from a va-

riety of sources: neglected electron correlation, density-fitting, the frozen-core approxima-

tion, relativistic effects, Born–Oppenheimer effects, and remaining basis-set incompleteness.

Therefore, a focal-point method that reproduces CCSD(T)/CBS(a[Q5]Z) frequencies within

this average margin of error is very satisfactory.

For vibrational frequencies, ‘spectroscopic accuracy’ is usually considered to mean that

errors are within 1 cm−1. Achieving this level of accuracy compared to experiment in cal-

culated vibrational frequencies typically requires inclusion of effects beyond fc-CCSD(T).
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Excluding such corrections, accuracy of around 5 cm−1 versus experimentally deduced har-

monic frequencies can be expected. For example, Rauhut et al. report mean errors of 4.2

cm−1 for explicitly-correlated CCSD(T)-F12a/aTZ harmonic frequencies relative to exper-

imentally deduced values.47 CCSD(T)-F12a/aTZ can be expected to closely approach the

basis set limit; these results provide a good estimate of what level of accuracy should be

expected from CCSD(T)/CBS frequencies. We expect that the accuracy of CCSD(T)/CBS

fundamental frequencies should be within nearly the same range, ignoring any errors from

the treatment of anharmonic terms to obtain the fundamental frequencies, that is in the

VPT2 treatment itself.

As noted above, in this work we compare theoretical values to both experimental fun-

damental vibrational frequencies and also to experimentally deduced harmonic vibrational

frequencies. Unlike bond lengths, for which there is relatively plentiful experimental data

against which to judge CCSD(T)/CBS values, experimentally deduced harmonic frequencies

are difficult to acquire. Measured experimental frequencies incorporate the anharmonicity

of vibrational modes, which must be accounted for to make a fair comparison. It is not

trivial to separate the harmonic and anharmonic components of the frequency. According

to Bartlett and Stanton, “the difficulty of obtaining harmonic frequencies experimentally

is not as widely appreciated among the quantum chemical community as it should be.”67

Experimental values for harmonic frequencies are thus typically lacking for most polyatomic

molecules.

For a selection of diatomic molecules and H2O, experimental and calculated harmonic vi-

brational frequencies are compared in Table II. F2 is a clear outlier; F has notoriously poor

one-particle basis-set convergence.68 Based on the results from Table II and the preceding dis-

cussion, we will assert that an ideal focal-point approximation to CCSD(T)/CBS should pro-

duce harmonic vibrational frequencies within approximately 5 cm−1 of the CCSD(T)/CBS

value.

For the fundamental frequencies, the theoretical values can be directly compared to exper-

iment. However, VPT2 is not an exact treatment of vibrational anharmonicity. Higher-order

vibrational couplings not included in VPT2,32 the aforementioned Fermi resonances, and nu-

merical error in the finite-difference calculation of cubic and quartic derivatives are all likely

sources of error. Nevertheless, the results in Table II show that the magnitude of errors

versus experiment is generally consistent between the harmonic and VPT2 fundamental fre-
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quencies. Thus, our target accuracy of 5 cm−1 for the focal point procedure, proposed above

after consideration of the typical errors from harmonic frequencies at the CCSD(T)/CBS

level, also seems appropriate for the computation of fundamental frequencies at this level.

TABLE II. Comparison of fundamental and harmonic frequencies (cm−1) from experiment and

theory [CCSD(T)/CBS(a[Q5]Z)]

Mol. Fundamentals Harmonics

Expt. Theory Error Expt. Theory Error

BH 2269.2 2361.4 −6.7 2366.9 2361.4 −5.5

HF 3961.4 3962.9 +1.5 4138.3 4141.9 +3.6

CO 2143.2 2140.7 −2.5 2169.8 2166.9 −2.9

N2 2329.9 2335.0 +5.1 2358.6 2363.0 +4.5

F2 893.9 907.7 +13.8 916.6 930.7 +14.1

H2O

ω1 1594.7 1596.3 +1.6 1649.3 1647.8 −1.5

ω2 3657.1 3660.3 +3.2 3836.0 3831.9 −4.1

ω3 3755.9 3758.1 +2.2 3947.3 3942.4 −4.9

B. Convergence to the CBS limit

As focal-point CCSD(T) is an approximation to complete basis set CCSD(T), we first

establish its rate of convergence to the CBS limit and compare its convergence to that of

standard CCSD(T) using single basis sets. Second, we analyze its performance in repro-

ducing experimental vibrational frequencies, and we compare that performance to that of

extrapolated CCSD(T)/CBS estimates.

Figure 1(a) displays the errors for fundamental and harmonic frequencies for the 5 di-

atomic and 7 triatomic molecules compared to CCSD(T)/CBS(a[Q5]Z) reference values.

The corresponding error statistics are shown in Table III. While standard CCSD(T)/DZ

results have large basis set incompleteness errors, increasing the basis set to TZ reduces

the mean absolute errors by a factor of 3. The focal-point method using CCSD(T)/DZ

decreases errors by a similar factor, but at a substantially reduced computational cost. The
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FIG. 1. (a) Comparison of error distributions for fundamental frequencies (left) and harmonic

frequencies (right) versus CCSD(T)/CBS(a[Q5]Z) reference values. (b) Comparison of error dis-

tributions for fundamental frequencies (left) and harmonic frequencies (right) with respect to gas-

phase experimental results. Data set includes 5 diatomic and 7 triatomic molecules, 26 modes

total. Experimentally deduced harmonics include 20 modes. Boxes show the interquartile range,

horizontal lines extend to the 1.5 interquartile range. Outlying data points shown as dots.

focal-point method using CCSD(T)/TZ further reduces errors by a factor of 2. Inclusion

of diffuse functions in the basis set improves convergence to the CBS(a[Q5]Z) results for all

focal-point methods.

The largest-basis focal-point procedure here, CCSD(T)/CBS(a[Q5]Z; δ:aTZ), reproduces

the CCSD(T)/CBS(a[Q5]Z) harmonic frequencies with outstanding quantitative accuracy;

the mean absolute error (MAE) is just 3.5 cm−1. The fundamental frequencies for this

focal-point procedure also have a MAE of 3.5 cm−1.
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TABLE III. Error of fundamental and harmonic frequencies with respect to CCSD(T)/CBS(a[Q5]Z)

extrapolation for 5 diatomic and 7 triatomic molecules, 26 modes total. Included are median

absolute deviation (MAD), mean absolute error (MAE), mean signed error (MSE), root mean

squared error (RMSE), and largest absolute error (Max), all in cm−1.

CCSD(T) Fundamental Errors Harmonic Errors

Basis Set MAD MAE MSE RMSE Max MAD MAE MSE RMSE Max

DZ 23.6 31.8 −28.0 47.0 149.1 20.4 32.0 −27.1 47.5 147.1

aDZ 42.1 48.3 −48.3 55.4 118.4 41.5 46.8 −46.8 53.8 119.1

TZ 7.4 9.3 −3.0 12.2 37.6 10.4 10.6 −1.8 13.1 36.5

aTZ 15.1 13.7 −13.6 15.8 25.6 16.1 15.3 −14.1 16.8 27.6

estimated CBS

[TQ]Z; δ:DZ 7.0 11.1 −10.8 15.8 56.9 8.5 10.4 −10.2 15.0 55.9

a[TQ]Z; δ:aDZ 8.3 8.8 −8.8 9.7 15.4 6.9 7.7 −7.4 8.7 15.2

[Q5]Z; δ:TZ 3.4 5.5 −5.4 7.4 21.5 3.6 4.8 −4.2 6.4 20.2

a[Q5]Z; δ:aTZ 3.5 3.7 −3.7 4.3 9.7 3.8 3.7 −3.7 4.6 15.1

Smaller-basis results tend to systematically underestimate the vibrational frequencies

compared to the CBS(a[Q5]Z) results. As is typical, computations in the smaller basis sets

result in bond distances that are too long and thus predict lower vibrational frequencies. As

the basis set size is increased the bond lengths contract, driving the predicted frequencies

up.

Figure 1(b) shows error distributions for fundamental and harmonic frequencies compared

to experiment for the diatomic and triatomic molecules. The corresponding error statistics

are shown in Table IV. The errors for finite-basis CCSD(T) methods and focal-point approx-

imations are similar to but somewhat larger than those in 1(a), where the reference values

were the two-point extrapolations CCSD(T)/CBS(a[Q5]Z). This indicates that the errors of

CCSD(T)/CBS(a[Q5]Z) versus experiment are not large. Indeed, those errors are provided

in Figure 1(b) and Table IV.

As both finite-basis CCSD(T) and focal-point CCSD(T) are approximations to the

CCSD(T)/CBS limit, the accuracy of the latter is the limit of what one can expect for

reproducing experimental frequencies, barring any fortuitous error cancellations. Higher
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TABLE IV. Error of fundamental and harmonic frequencies with respect to experiment for 5

diatomic and 7 triatomic molecules, 26 fundamental and 20 harmonic modes total. Included are

median absolute deviation (MAD), mean absolute error (MAE), mean signed error (MSE), root

mean squared error (RMSE), and largest absolute error (Max), all in cm−1.

CCSD(T) Fundamental Errors Harmonic Errors

Basis Set MAD MAE MSE RMSE Max MAD MAE MSE RMSE Max

DZ 21.5 28.3 −24.0 44.2 135.3 19.1 24.9 −17.2 37.9 133.0

aDZ 43.6 42.8 −42.8 47.5 91.6 37.9 40.2 −40.2 44.3 90.4

TZ 6.1 9.2 −1.8 12.9 39.1 10.8 10.9 −1.5 14.3 39.0

aTZ 11.3 12.1 −12.0 14.1 25.3 13.8 14.1 −14.1 15.7 25.9

estimated CBS

[TQ]Z; δ:DZ 9.4 11.6 −9.6 14.9 43.1 8.6 10.4 −10.0 14.0 41.8

a[TQ]Z; δ:aDZ 8.9 8.7 −7.7 10.4 22.3 6.9 6.5 −5.6 7.7 13.9

[Q5]Z; δ:TZ 7.2 6.4 −4.6 7.5 11.7 4.5 4.0 −3.8 4.8 9.5

a[Q5]Z; δ:aTZ 4.1 5.4 −2.9 7.2 19.7 1.5 3.4 −1.7 4.8 9.2

a[Q5]Z 4.0 4.8 0.7 6.3 15.8 3.7 4.0 1.5 4.9 14.1

excitations up to quadruples and pentuples (CCSDTQP) and core-correlation are known

to have significant contributions to harmonic frequencies relative to fc-CCSD(T).29 Har-

monic frequencies accurate to within 1 cm−1 may require the inclusion of core-valence

correlation, excitations up to quintuples, and scalar relativistic corrections. Corrections to

the Born–Oppenheimer approximation may also be relevant in some systems. However, it

appears that the corrections to harmonic frequencies for higher order excitations and for

core-correlation tend to have opposite signs and are generally close in magnitude, resulting

in good error cancellation for fc-CCSD(T).68 It is worth noting that the maximum error in

the CCSD(T)/CBS(a[Q5]Z) harmonic frequencies, around 14 cm−1, corresponds to F2, for

which Tew et al. found that including explicit triples and quadruples provides a 12 cm−1

correction.29 In contrast to other systems here, the core-correlation contributions do not

cancel out this correction, so higher order excitations are necessary for accuracy approaching

the experimental value for F2.

Additionally, the density-fitting approximation used here is also known to incur some
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very small errors in harmonic frequencies, typically less than 1 cm−1.69 Below, we explore

the importance of including core-valence correlation in the focal-point procedure.

Curiously, basis sets with diffuse functions tend to notably degrade the agreement with ex-

perimental and CCSD(T)/CBS results for single-basis CCSD(T). In contrast, using diffuse

functions in the focal-point procedure improves accuracy for both fundamental and har-

monic results. This behavior is consistent with previous studies of focal-point geometries,

where including diffuse functions in both the MP2 and CCSD(T) portions of the focal-point

procedure consistently improved results.5

CCSD(T)/CBS(a[Q5]Z; δ:aTZ) is converged closely enough to the CBS limit so as to

reproduce experimental values to the same level of accuracy, but at a substantially reduced

computational expense (see below). Due to CCSD(T)/CBS(a[Q5]Z; δ:aTZ) systematically

underestimating the frequencies at the CBS limit (see above), the method tends to slightly

underestimate experimental frequencies while CCSD(T)/CBS(a[Q5]Z) tends to slightly over-

estimate them.

The focal-point extrapolated CCSD(T) results improve agreement with experiment sig-

nificantly compared to the single-basis CCSD(T) results using the same basis set as used in

the CCSD(T) portion of the focal-point procedure. For the (a)DZ results, the focal-point

extrapolation reduces the MAEs versus experiment by up to a factor of 4. For the (a)TZ

results, the MAEs are reduced by a factor of 2.

C. Comparison to experiment

In summary, at this point we have shown that focal-point methods combining MP2 in

large basis sets with CCSD(T) in small or modest basis sets are very effective at approximat-

ing the CCSD(T)/CBS limit for both harmonic and fundamental vibrational frequencies.

We have further shown that fc-CCSD(T)/CBS typically exhibits small errors versus ex-

perimental values (MAE of just a few cm−1, although maximum errors can be larger in

some cases). Given all this, we now turn to examining the accuracy versus experiment of

focal-point methods [and single-basis CCSD(T)] for a larger set of molecules. We omit the

highest-level CCSD(T)/CBS(a[Q5]Z) reference computations at this point due to the very

high computational cost.
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FIG. 2. Comparison of error distributions for fundamental frequencies (left) and harmonic fre-

quencies (right) with respect to gas-phase experimental results. Fundamental data set includes 20

molecules, 89 modes total; harmonic data set includes 14 molecules, 52 modes total. Boxes show

the interquartile range, horizontal lines extend to the 1.5 interquartile range. Outlying data points

shown as dots.

TABLE V. Error of fundamental and harmonic frequencies with respect to experiment for full data

set of 20 molecules. Included are median absolute deviation (MAD), mean absolute error (MAE),

mean signed error (MSE), root mean squared error (RMSE), and largest absolute error (Max), all

in cm−1.

CCSD(T) Fundamental Errors Harmonic Errors

Basis Set MAD MAE MSE RMSE Max MAD MAE MSE RMSE Max

DZ 13.4 21.7 −18.0 34.0 135.3 16.1 20.7 −13.3 31.1 133.0

aDZ 26.5 37.3 −27.8 55.1 359.5 26.4 33.7 −32.5 51.4 255.7

TZ 4.8 7.8 −2.2 13.4 73.4 6.6 8.6 −0.5 12.3 43.9

aTZ 9.8 12.3 −9.1 17.4 77.8 10.1 11.4 −9.5 13.9 29.6

estimated CBS

[TQ]Z; δ:DZ 7.3 10.5 −8.0 15.8 64.9 7.8 9.8 −6.5 12.9 44.8

a[TQ]Z; δ:aDZ 7.5 9.6 −8.7 14.1 64.5 7.0 7.4 −3.9 9.1 29.3

[Q5]Z; δ:TZ 4.5 6.7 −4.9 11.7 61.1 4.6 5.5 −0.8 6.9 18.6

a[Q5]Z; δ:aTZ 4.0 7.4 −1.4 13.2 59.6 4.1 5.2 0.1 7.1 22.4

awC[Q5]Z; δ:awCTZ 4.7 9.4 4.8 15.4 59.9 5.8 7.0 5.7 9.6 33.9
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Figure 2 shows the error distribution of fundamental and harmonic frequencies compared

to experiment for all 20 molecules (14 with experimental harmonic values) listed in Table I.

The corresponding error statistics are shown in Table V.

There is a rather extreme outlier that has been omitted from Fig. 2 for legibility, corre-

sponding to the C-H bending mode of C2H2, with an experimental fundamental frequency

observed at 612.6 cm−1 and an experimentally deduced harmonic frequency at 621.5 cm−1.

CCSD(T)/aDZ produces large errors of 359.5 cm−1 and -255.7 cm−1 for the fundamental

and harmonic frequencies, respectively. This mode is known to be problematic47 and the

error stems from a poor description of carbon-carbon bonding in the out-of-plane bend-

ing modes when using correlated methods.70 While the other levels of theory produce rather

large errors for this mode, e.g., 44.5 cm−1 for CCSD(T)/CBS(a[Q5]Z; δ:aTZ), none have such

catastrophic errors as CCSD(T)/aDZ. This is consistent with the observation by Fortenberry

et al. that the poor description of the out-of-plane bending modes is particularly exacerbated

by “saturation of the spd one-particle basis without inclusion of higher angular momentum

functions.”70

The impact of including core-valence effects is demonstrated by the focal-point method

CCSD(T)/CBS(awC[Q5]Z; δ:awCTZ). The inclusion of core-valence correlation here does

not provide systematic improvement to the predicted fundamental or harmonic vibrational

frequencies. The overall accuracy remains nearly the same as the frozen-core focal-point ap-

proach with corresponding basis sets. Considering that the core-valence effects can add quite

substantially to the computational cost, the frozen-core approximation to CCSD(T) would

appear to be justified for the systems considered here, and improved accuracy would require

inclusion of other effects, particularly higher excitations in the coupled-cluster treatment.

Previous studies have demonstrated that higher-order electron correlation effects beyond

CCSD(T) can affect vibrational frequencies by several cm−1.71 Additional improvements

may also be afforded by increasing the basis sets in the CCSD(T) portion of the focal-point

methods to quadruple-ζ, but the maximum errors in the harmonic frequencies for the focal-

point methods based on valence triple-ζ basis sets, around 20 cm−1, are not much larger

than the maximum error for CCSD(T)/CBS(a[Q5]Z) in Table IV, around 14 cm−1.

Note the presence of a few larger error modes (around ±60 cm−1) in the fundamental

frequencies, even for the largest basis set methods presented here. In contrast, the harmonic

modes have much tighter error distributions and smaller mean errors. The largest errors in
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the fundamental frequencies correspond to the previously discussed C-H bending mode of

C2H2 (experimental fundamental value of 612 cm−1) and the torsional mode of HOOH (371

cm−1).

As mentioned above, we do not believe that further basis set improvements beyond

CCSD(T)/CBS(a[Q5]Z; δ:aTZ) are likely to provide a systematic improvement in the agree-

ment with experimental values. Accuracy beyond this level would likely need to include off-

diagonal quartic terms (or higher) in the vibrational treatment,32 explicit triples and approx-

imate quadruples in the coupled-cluster computation, and potentially Born-Oppenheimer

diagonal corrections. We do not expect relativistic effects to have a significant impact on

systems containing first row elements.71

Finally, we may compare the accuracy (vs experiment) of the VPT2 focal-point CCSD(T)/CBS

fundamental frequencies to that of the CCSD(T)/CBS fundamental frequencies obtained by

simple scaling of explicitly correlated CCSD(T) harmonic frequencies, explored by Zapata

Trujillo and McKemmish.20 As mentioned in the Introduction, simple scaling with one fitted

scale factor gives a median absolute deviation of 15.9 cm−1 and a root mean squared error

of 32 cm−1, and these values decrease to 7.5 and 28 cm−1 upon dividing the frequencies

into three regions and using a separate fitted scale factor for each. According to Table V,

the focal-point VPT2 approach using valence basis sets gives median absolute deviations in

the range of 4-8 cm−1 depending on the particular focal-point method used; those perform-

ing the CCSD(T) portion of the computation with a triple-ζ quality basis are in the 4-5

cm−1 range. The RMSE values range from 11.7–15.8 cm−1 (11.7–13.2 cm−1 for focal-point

approaches using triple-ζ basis sets for the CCSD(T) portion). For the interested reader,

the Supplemental Material presents additional graphs and tables of the absolute errors in

fundamental and harmonic frequencies, and their quartiles. Our interquartile ranges for

the valence triple-ζ CCSD(T) based focal point approaches are 5.8 and 7.1 cm−1, compared

to 14.4 cm−1 using scaling with one scale factor, or 12.1 cm−1 using three scale factors.

Thus, the focal-point VPT2 results are more reliable than the scaling approaches, as one

would expect, but they come at a dramatically increased computational expense compared

to computing only the harmonic terms and scaling them.

17



TABLE VI. Timings for H2O VPT2 routine for various levels of theory.

CCSD(T) Wall Time

Basis Set (minutes)

DZ 8.0

aDZ 8.8

TZ 10.3

aTZ 19.8

estimated CBS

[TQ]Z; δ:DZ 12.5

a[TQ]Z; δ:aDZ 15.6

[Q5]Z; δ:TZ 23.4

a[Q5]Z; δ:aTZ 44.9

awC[Q5]Z; δ:awCTZ 67.8

a[Q5]Z 1334.2

IV. TIMINGS

Table VI shows the total wall time required for the anharmonic VPT2 calculation on H2O,

using an (older) Intel Core i7-3930K central processing unit (CPU) @ 3.20GHz with 32GB of

random-access memory (RAM) and a redundant array of independent disks (RAID 0) volume

for scratch files. Inclusion of the MP2 calculation for the focal-procedure does increase the

computational cost significantly beyond the time required for the CCSD(T) portion for this

small molecule, but the cost-accuracy trade-off is very favorable: CCSD(T)/CBS(a[TQ]Z;

δ:aDZ) for example achieves greater accuracy than CCSD(T)/aTZ at a lower cost. We

note that the steeper scaling of CCSD(T) relative to MP2 means the proportion of time

spent on MP2 in the focal-point calculation will steadily decrease for systems larger than

H2O. CCSD(T)/CBS(a[Q5]Z; δ:aTZ), which predicts harmonic and fundamental frequencies

nearly equivalent to CCSD(T)/CBS(a[Q5]Z) results, requires just a fraction of the wall time,

about 3%, for H2O. The accuracy of this procedure at a comparatively low cost provides an

option for the calculation of reliable vibrational properties of small molecules with multiple

heavy atoms.
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V. CONCLUSIONS

Focal-point approaches for extrapolating the costly gold-standard CCSD(T) are popular

for estimating high quality energies at a reduced cost. However, focal-point methods have

not yet been widely adopted for anharmonic vibrational frequency analysis. Focal-point

approximations to large-basis CCSD(T) gradients have already been shown to work well in

geometry optimizations;5 this work examines their performance in calculating harmonic and

fundamental vibrational frequencies.

We have examined focal-point approximations to CCSD(T)/CBS vibrational frequencies,

and how they converge towards the CBS limit as the basis sets are increased, for a set

of 12 molecules. We have also assessed their performance in reproducing experimental

vibrational frequencies in a larger set of 20 molecules. Focal-point CCSD(T) using a triple-

ζ basis set for the CCSD(T) portion of the computation is nearly at the CBS limit for

harmonic and fundamental frequencies, and any further increase in the basis set is not

expected to improve agreement with experiment. The best performing focal-point method,

CCSD(T)/CBS(a[Q5]Z; δ:aTZ) has MAEs of 7.3 and 5.3 cm−1 in the fundamental and

harmonic frequencies, respectively. In contrast, we find that single-basis CCSD(T) does

not achieve comparable accuracy for harmonic or fundamental vibrational frequencies with

double- or triple-ζ basis sets. Large basis set extrapolations, focal-point approximations,

or explicitly-correlated methods are evidently necessary for benchmark levels of accuracy.

The focal-point procedure requires only a very small fraction of the computational cost

of a large basis set extrapolation like CCSD(T)/CBS(a[Q5]Z), 3% for H2O, and has the

same level of accuracy versus experiment for harmonic and fundamental frequencies. We

recommend the use of focal-point coupled-cluster methods for the calculation of vibrational

frequencies of benchmark accuracy as opposed to large basis set extrapolations, or as an

alternative to explicitly-correlated methods. Of course, the computational cost of VPT2

CCSD(T)/CBS fundamental frequencies would be reduced further if the anharmonic terms

only were computed at a lower level of theory, as has been done in some applications.11,13–16
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SUPPLEMENTARY MATERIAL

The Supplementary Material contains Cartesian coordinates of all optimized geometries

used in the present study (.xyz format), and all computed vibrational frequencies (.csv

format). A PDF file provides quartile data for errors vs experimental fundamental and

harmonic frequencies and an analog of Figure 2 showing unsigned errors.
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