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ABSTRACT
In this article, we investigate the Gaussian graphical model inference problem in a novel setting that
we call erose measurements, referring to irregularly measured or observed data. For graphs, this results
in di!erent node pairs having vastly di!erent sample sizes which frequently arises in data integration,
genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance
using the minimum pairwise sample size, which provides little insights for erosely measured data, and no
existing inference method is applicable. We aim to "ll in this gap by proposing the "rst inference method
that characterizes the di!erent uncertainty levels over the graph caused by the erose measurements, named
GI-JOE (Graph Inference when Joint Observations are Erose). Speci"cally, we develop an edge-wise inference
method and an a#liated FDR control procedure, where the variance of each edge depends on the sample
sizes associated with corresponding neighbors. We prove statistical validity under erose measurements,
thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally,
through simulation studies and a real neuroscience data example, we demonstrate the advantages of our
inference methods for graph selection from erosely measured data. Supplementary materials for this article
are available online.
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1. Introduction

Graphical models have been powerful tools for understand-
ing connection and interaction patterns hidden in large-scale
data (Koller and Friedman 2009), by exploiting the conditional
dependence relationships among a large number of variables.
For instance, graphical models have been applied to learn the
connectivity among tens of thousands of neurons (Vinci et al.
2018), gene expression networks (Dobra et al. 2004; Allen and
Liu 2012), sensor networks (Dasarathy et al. 2016; Dasarathy
2019), among many others. The last decade has witnessed a
plethora of new statistical methods and theory proposed for
various types of models in this area, including the Gaussian
graphical models (Meinshausen and Bühlmann 2006; Yuan and
Lin 2007; Friedman, Hastie, and Tibshirani 2008; Cai, Liu, and
Luo 2011; Ravikumar et al. 2011), graphical models for expo-
nential families and mixed variables (Yang et al. 2014, 2015;
Chen, Witten, and Shojaie 2015), Gaussian copula models (Liu,
La!erty, and Wasserman 2009; Dobra and Lenkoski 2011; Liu
et al. 2012), etc.

Despite the abundant literature in this area, most existing
methods and theory for graphical models assume even measure-
ments over the graph, where either all variables are measured
simultaneously, or they are missing with similar probabilities.
However, many real large-scale datasets usually take the form
of erose measurements, which are irregular over the graph, and
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di!erent pairs of variables may have drastically di!erent sample
sizes. Such datasets frequently arise in genetics, neuroscience,
sensor networks, among many others, due to various technolog-
ical limits.

1.1. Problem Setting and Motivating Applications

Consider the following sparse Gaussian graphical model: x ∼
N (0, !∗), "∗ = (!∗)−1, where "∗ ∈ Rp×p is the sparse
precision matrix. The graph structure is dictated by the nonzero
patterns in "∗: G = (V , E), V = {1, . . . , p}, E = {(i, j) :
"∗

ij &= 0}, where the unknown edge set E is of primary interest.
Suppose that we only have access to the following observations:
{xi,Vi : Vi ⊆ [p]}n

i=1, where Vi is the observed index set of
data point i. Then the joint observation set for node pair (j, k)
is Ojk = {i : j, k ∈ Vi} of size njk = |Ojk|. There are a number of
applications where njk can be drastically di!erent.

Heterogeneous missingness: In a variety of biological experi-
ments, some variables could be missing or have erroneous
zero reads (dropouts) much more than others, for example,
the expression levels of certain genes (Gong et al. 2018; Huang
et al. 2018; Gan, Vinci, and Allen 2020), or the abundance
of some microbes (Williams et al. 2019). Figure 1 shows the
observational patterns and pairwise sample sizes of two real
single-cell RNA sequencing (scRNA-seq) datasets, which is far
from uniform.

© 2023 American Statistical Association
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Figure 1. Two erose measurement patterns in real scRNA-seq datasets (Darmanis et al. 2015; Chu et al. 2016) are presented in (a), (b), including the top 100 genes with the
highest variances. The pairwise sample sizes range from 0 to 1018 (chu data, left) and from 12 to 366 (darmanis, right). (c)–(e) present the graph selection and inference
results for a chain graph, when the data has the darmanis measurement pattern. (c) is selected by our GI-JOE (FDR) approach and is the most accurate; (d) is obtained by
an ad hoc implementation of the debiased graphical lasso (Jankova and Van De Geer 2015) that plugs in the minimum pairwise sample size, which is too conservative and
identi!es no edge at all; (e) is the estimated graph by a baseline approach (Kolar and Xing 2012), which plugs in a covariance estimate into the graphical lasso, and the many
false positives suggest that the graph selection problem with such dataset is nontrivial.

Data integration / size-constrained measurements: Non-
simultaneous and uneven measurements also frequently arise
from data integration and size-constrained measurements.
For instance, to better understand the neuronal circuits from
neuronal functional activities, one promising strategy is to
estimate a large neuronal network (Vinci et al. 2018; Chang and
Allen 2021) from in vivo calcium imaging datasets. However,
to ensure a su"cient temporal resolution of the recording, the
spatial resolution is limited, putting a constraint on the number
of neurons simultaneouly measured (Bae et al. 2021; Zheng,
Rewolinski, and Allen 2022), and neuron pairs that are further
from each other are less likely to be measured together. In
genome-wide association studies (GWAS), it is also desirable to
integrate genomic data across multiple sources due to the limited
sample sizes of each dataset, while these di!erent sources might
have di!erent genomic coverage (Cai, Cai, and Zhang 2016).
Similar measurement constraints also arise in sensor networks
where it is extremely expensive to synchronize a large number
of sensors (Dasarathy et al. 2016; Dasarathy 2019).

1.2. Limitations of Existing Works for Erose Measurements

To learn graphical models from erosely measured data, one
might want to leverage the current literature on graphical
models with missing data (Städler and Bühlmann 2012; Kolar
and Xing 2012; Wang et al. 2014; Park, Wang, and Lim

2021). However, most of these works assume the variables
are missing independently with the same missing probability.
While Park, Wang, and Lim (2021) allows for arbitrary missing
probabilities and dependency in their problem formulation,
their theoretical guarantees still hinge on the minimum
observational probability. Using the minimum pairwise sample
size over the whole graph to characterize the performance of
the graph learning result can be too coarse and provides little
insights to erosely measured datasets. Interestingly, one recent
work (Zheng and Allen 2022) provides a localized theoretical
guarantee for neighborhood selection consistency, requiring
only sample size conditions imposed upon the corresponding
neighbors instead of all node pairs. Such theoretical results
suggest that the estimation accuracy should vary over the graph
when measurements are erose, and a coarse characterization
based on the minimum sample size would only provide insights
for the worst part of the graph estimate.

Inspired by this intuition, here arises one natural question:
can we develop a statistical inference method that quanti"es the
di!erent uncertainty levels over the graph arising from the erose
measurements? Over the last decade, signi#cant e!orts have been
devoted to the statistical inference in high-dimensional settings,
including techniques such as the debiased Lasso (Van de Geer
et al. 2014; Zhang and Zhang 2014; Javanmard and Montanari
2014), post-selection inference approaches (Lee et al. 2016; Tib-
shirani et al. 2016), knocko! methods (Barber and Candès 2015;
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Candès et al. 2018), and various other FDR control methods
(Liu 2013; Javanmard and Javadi 2019). These techniques have
been applied in regression or classi#cation problems, as well
as in graphical models. However, these prior works mainly
consider simultaneous measurements across all variables (Liu
2013; Jankova and Van De Geer 2015; Ren et al. 2015; Gu
et al. 2015; Janková and van de Geer 2017; Yu, Gupta, and
Kolar 2020), which, in the context of graphical models, would
result in the same sample size across the entire graph; or they
consider the missing data setting where all variables are miss-
ing independently with the same missing probability (Belloni,
Chernozhukov, and Kaul 2017), still leading to approximately
the same sample sizes. To the best of our knowledge, there is no
applicable statistical inference method for the general observa-
tional patterns and erose measurements that we are considering.
If practitioners want to apply these existing inference methods
with erosely measured data, they have to come up with one
single sample size quantity n to determine the uncertainty levels
for each edge. To ensure the validity of the test, one ad hoc
way might be to plug in the minimum pairwise sample size,
which can be extremely conservative and has no power (see
Figure 1(d)).

The rest of the article is organized as follows. We #rst review
the set-ups and neighborhood selection results from Zheng and
Allen (2022) in Section 2, which serves as an inspiration and
basis of our graph inference method under erose measurements;
Our key contribution, the GI-JOE approach, is introduced in
Sections 3 and 4. In particular, Section 3 is devoted to the edge-
wise inference method, and for any node pair, we characterize
its Type I error and power based on the sample sizes involving
the node pair’s neighbors. Section 4 focuses on the FDR control
procedure, also shown to be theoretically valid under appro-
priate conditions. The synthetic and real data experiments are
included in Sections 5. We conclude with discussion of some
open questions in Section 6.

Notations: For any matrix A ∈ Rp1×p2 , let ‖A‖∞ = maxj,k |Aj,k|,
‖A‖ = sup‖u‖2=1 ‖Au‖2 be its spectral norm, and |||A|||∞ =
maxj=1,...,p1

∑p
k=1 |Aj,k| be the matrix-operator #∞ to #∞ norm.

For any tensor T ∈ Rp1×p2×p3×p4 and matrix A ∈ Rp1,q1 de#ne
the tensor-matrix/vector product T ×1 A ∈ Rq1×p2×p3×p4 as
follows: (T ×1 A)i1,i2,i3,i4 = ∑p1

j1=1 Aj1,i1Tj1,i2,i3,i4 . Similarly we
extend this de#nition of tensor-matrix product to other modes.

2. Graph Selection with Erose Measurements

In this section, we review the set-up and neighborhood selection
theory in Zheng and Allen (2022), as it underpins our own infer-
ence procedure and theory in Section 3. In particular, we follow
Zheng and Allen (2022) and study a variant of the neighborhood
lasso method instead of other graph estimation methods (Yuan
and Lin 2007; Cai, Liu, and Luo 2011), since its form makes it
easier to disentangle the e!ects of di!erent parts of the graph on
each other.

The neighborhood lasso algorithm proposed in Zheng and
Allen (2022) consists of two steps: estimating the true covariance
!∗ and plugging the estimate into a neighborhood lasso estima-
tor. An unbiased estimate !̂ is de#ned as follows: given observa-

tions {xi,Vi}n
i=1, for each entry (j, k), !̂j,k = 1

nj,k

∑
i:j,k∈Vi xi,jxi,k.

However, !̂ is not guaranteed to be positive semide#nite, result-
ing in both optimization and statistical issues in neighborhood
lasso. To ensure convexity and preserve the entry-wise error
bounds for !̂j,k − !∗

j,k, an additional projection step upon the
positive semide#nite cone is considered:

!̃ = arg min
!*0

max
j,k

√nj,k|!j,k − !̂j,k|, (1)

where nj,k is the pairwise sample size associated with node
pair (j, k), de#ned as in Section 1.1. The projection problem
(1) can be solved by the ADMM, and we include the detailed
optimization steps in Section A of the supplementary material.

Given the covariance estimate !̃, for any target node a of
which we want to estimate the neighborhood, consider the
following neighborhood regression problem:

θ̂ (a) = arg min
θ∈Rp,θa=0

1
2
θ+!̃θ − !̃a,:θ +

p∑

j=1
λ

(a)
j |θj|, (2)

where λ(a) = (λ
(a)
1 , . . . , λ(a)

p )+ ∈ Rp is a vector of tuning
parameters, with each entry λ

(a)
j corresponding to a potential

edge connecting node j and a. The solution θ̂ (a) serves as an
estimate for θ (a)∗ = arg minθ∈Rp,θa=0

1
2θ+!∗θ − !∗

a,:θ , which
satis#es θ

(a)∗
\a = (!∗

\a,\a)
−1!∗

\a,a = 1
"∗a,a

"∗
\a,a, and hence the

support set of θ (a)∗ equals the true neighborhood of node a:
Na = {j &= a : "∗

a,j &= 0}. Then one can estimate Na by the
support of θ̂ (a): N̂a = {j &= a : θ̂ (a) &= 0}. It was shown in Zheng
and Allen (2022) that the neighborhood selection consistency is
guaranteed with sample size conditions involving the neighbors
of node a. Here, we present a similar theoretical result, with
only a slight modi#cation on the tuning parameter choice. Let

γa =
max
j∈N c

a
min

k
nj,k

min
j∈Na

min
k

nj,k
be the sample size ratio between a’s non-

neighbors and neighbors.

Theorem 1 (Neighborhood Selection Consistency, Similar to Zheng
and Allen 2022). Consider the Gaussian graphical model with
erose measurement setting described in Section 1.1 and the
estimator θ̂ (a) de#ned in (2). Suppose Assumption B.1 in the
Supplementary material (the mutual incoherence condition)
holds, and the tuning parameters λ

(a)
j ’s in (2) satisfy λ

(a)
j ,

‖!∗‖∞
‖"∗

:,a‖1
"∗a,a

√
log p

min
k

nj,k
. If γa ≤ C for some C > 0 depending

on the incoherence parameter,

min
j∈Na

min
k

nj,k ≥ C(!∗)‖!∗‖2
∞

[
d2

a + (θ
(a)
min)−2

]
log p, (3)

where the constant C(!∗) depends on !∗, then N̂a = {j :
θ̂

(a)
j &= 0} = Na with probability at least 1 − p−c for some

absolute constants c > 0.

The complete version of Theorem 1, additional #1 and #2 error
bounds for θ̂ (a) − θ (a)∗, a pictorial illustration of the sample size
condition (3), and the proofs can be found in Section B and G
of the supplementary material. The localized characterization
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of the graph estimation performance in Theorem 1 inspires
us to develop an inference method that quanti#es the uneven
uncertainty levels over the graph.

3. Edge-wise Inference: Quantifying Uncertainties
from Erose Measurements

In this section, we propose our GI-JOE method for edge-wise
inference with erose data. The key idea follows the debiased
lasso (Van de Geer et al. 2014), while the main challenge and
innovation is characterizing the uncertainty level associated
with each edge-wise statistic. We #rst introduce our edge-wise
debiased statistic θ̃

(a)
b in Section 3, and characterize its asymp-

totic distribution in Section 3.2; We further propose a consistent
estimator of its variance and establish statistical validity of edge-
wise inference in Section 3.3.

3.1. Debiased Neighborhood Lasso

First we introduce the key idea and intuition behind how we
construct our debiased test statistic. Recall that our neighbor-
hood regression estimator θ̂ (a) was de#ned as in (2), and by
the Karush–Kuhn–Tucker (KKT) condition, we know that it
satis#es

!̃\a,\aθ̂
(a)
\a − !̃\a,a + (λ(a) ◦ Ẑ)\a = 0,

where ◦ represents element-wise multiplication, and Ẑ ∈ Rp

satis#es that ‖Ẑ‖∞ ≤ 1 and Ẑj = sgn(θ̂
(a)
j ) if θ̂

(a)
j &= 0. Noting

the fact that !∗θ (a)∗ − !∗
:,a = 0, and the relationship between

θ (a)∗ and "∗
:,a, we can use some rearrangements to obtain the

following:

!̃\a,\a(θ̂
(a) − θ (a)∗)\a + (λ(a) ◦ Ẑ)\a

= ("∗
a,a)

−1(!̃ − !∗)\a,:"
∗
:,a,

!̃\a,\a(θ̂
(a) − θ (a)∗)\a + !̃\a,a − !̃\a,\aθ̂

(a)
\a

= ("∗
a,a)

−1(!̃ − !∗)\a,:"
∗
:,a.

The derivation above follows similar arguments for the debiased
lasso in Van de Geer et al. (2014), and ideally, we would hope
the RHS of the equation above has (asymptotically) normal
distribution and can serve as a basis for our inference. However,
since !̃ is the solution of a weighted #∞ projection onto the
positive semi-de#nite cone, the CLT is not directly applicable.
Instead, we want to change it to a function of !̂, whose entries
can be written as independent sums. As will be shown in our
proofs, substituting !̃ by !̂ in the debiasing terms above can
help us achieve this goal: !̃\a,\a(θ̂ (a) − θ (a)∗)\a + !̂\a,a −
!̂\a,\aθ̂

(a)
\a ≈ ("∗

a,a)
−1(!̂ − !∗)\a,:"∗

:,a. Furthermore, to invert
the factor !̃\a,\a, we need a good approximation of (!∗

\a,\a)
−1 ∈

R(p−1)×(p−1). De#ne the debiasing matrix "(a)∗ ∈ Rp×p, which
satis#es "

(a)∗
a,: = 0, "

(a)∗
:,a = 0, and "

(a)∗
\a,\a = (!∗

\a,\a)
−1. Then

suppose we have a good estimate "(a), one would be able to show

θ̂ (a) − θ (a)∗ + "(a)(!̂:,a − !̂:,\aθ̂
(a)
\a )

≈ ("∗
a,a)

−1"(a)∗(!̂ − !∗)"∗
:,a. (4)

Given a node pair (a, b) for a &= b, this motivates us to con-
sider an edge-wise test statistic of the form θ̂

(a)
b + "

(a)
b,: (!̂:,a −

!̂:,\aθ̂
(a)
\a ), where "

(a)
b,: is an appropriate estimate for "

(a)∗
b,: .

Throughout the rest of this section, suppose that we are
interested in testing whether there is an edge between node a &=
b. Now we introduce our estimates for "

(a)∗
b,: . Denote by N (a)

b
the support set of "

(a)∗
b,: and N (a)

b = N (a)
b ∪ j. By block matrix

inverse formula, "
(a)∗
b,: = "∗

b,: − ("∗
a,a)

−1"∗
b,a"

∗
a,: and hence

is also sparse with d(a)
b := |N (a)

b | ≤ da + db. Therefore, we can
estimate "

(a)∗
b,: by performing another neighborhood regression.

Let

θ̂ (a,b) = arg min
θ∈Rp,θa=θb=0

1
2
θ+!̃θ − !̃b,:θ +

p∑

k=1
λ

(a,b)
k |θk|,

θ̂
(a,b)

b =1, θ̂
(a,b)

\b = −θ̂
(a,b)
\b ,

(5)

where λ
(a,b)
k ’s are tuning parameters depending on the pair-

wise sample sizes min
i∈[p]

ni,b. Then θ̂
(a,b)

serves as an estimate of

("
(a)∗
b,b )−1"(a)∗

b,: . To estimate "
(a)∗
b,b , we note the fact that "

(a)∗
b,b =

[!∗
b,:("

(a)∗
b,b )−1"(a)∗

:,b ]−1 = [("(a)∗
b,b )−2"(a)∗

b,: !∗"(a)∗
:,b ]−1. Hence,

either of the following two estimators can serve appropriately for
estimating "

(a)∗
b,: :

"̂
(a)
b,b =(!̃b,:̂θ

(a,b)
)−1, "̂

(a)
b,: = "̂

(a)
b,b θ̂

(a,b)
,

"̃
(a)
b,b =(̂θ

(a,b)+
!̃θ̂

(a,b)
)−1, "̃

(a)
b,: = "̃

(a)
b,b θ̂

(a,b)
.

(6)

As we will show in Theorem G.2 in the supplementary material,
both estimators are consistent and lead to su"ciently good
statistical error bounds. Based on some empirical investigation
(details presented in Section F), we propose to use "̂

(a)
b,: for the

debiasing step, but would revisit "̃
(a)
b,: for variance estimation in

Section 3.3. Then the debiased neighborhood lasso estimator for
node pair (a, b) is

θ̃
(a)
b = θ̂

(a)
b − "̂

(a)
b,: (!̂θ̂ (a) − !̂:,a). (7)

3.2. Normal Approximation of Debiased Edge-wise
Statistic

Although the edge-wise statistic θ̃
(a)
b de#ned in (7) is similar to

the debiased lasso in the literature, its asymptotical normality is
not readily present due to the erose measurement setting we are
concerned with. In the following, we present a novel characteri-
zation of θ̃

(a)
b that consists of a bias term and an asymptotically

normal error term, each term depending on one pairwise sample
size quantity, respectively. Before presenting the main theorem,
we #rst de#ne and discuss these two key sample size quantities.

Given the target node pair (a, b), de#ne two sets of node
pairs involving a, b’s neighbors: S1(a, b) = {(j, k) : j or k ∈
Na ∪ N (a)

b }, S2(a, b) = {(j, k) : "
(a)∗
j,b "∗

k,a + "
(a)∗
k,b "∗

j,a &=
0}, where N (a)

b and matrix "(a)∗ are de#ned in the beginning
of Section 3. Here the order of a and b matters since we #rst
apply neighborhood lasso for node a and then debias its entry
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Figure 2. An illustration of the set S1(a, b) and S2(a, b) in a chain graph, when a = 1 and b = 3. The minimum sample size in S1(a, b) determines the bias for estimating
edge (a, b), while the minimum sample size in S2(a, b) determines the variance for estimating edge (a, b).

θ̂
(a)
b . Proposition 1 characterizes the index set S2(a, b) and N (a)

b
through their relationships with N a and N b. Figure 2 also
gives a pictorial illustration of S1(a, b) and S2(a, b) for a chain
graph. The two key sample size quantities are then de#ned as the
minimum pairwise sample sizes within these two sets: n(a,b)

1 =
min

(j,k)∈S1(a,b)
nj,k, n(a,b)

2 = min
(j,k)∈S2(a,b)

nj,k, which will be shown to

determine the bias and variance of the edge-wise statistic. The
intuition behind these two node pair sets can be traced back to
our main idea for constructing the debiased edge-wise statistic
in Section 3. As shown in (4), our debiased test statistic for
(a, b) can be well approximated by 〈!̂ − !∗, "∗

:,a"
(a)∗
b,:

"∗a,a
〉 = 〈!̂ −

!∗, "∗
:,a"

(a)∗
b,: +"

(a)∗
:,b "∗

a,:
2"∗a,a

〉, which can be intuitively understood as
a #rst order Taylor’s expansion of the estimation error around
!∗. The approximation errors constitute our bias term, which
mainly depends on how well we estimate θ (a)∗ and "

(a)∗
b,: using

neighborhood regression. Similar to the neighborhood selection
theory presented in Section 2, we can show that the estimation
error for θ (a)∗ and "

(a)∗
b,: depend on the pairwise sample sizes nj,k

for j or k in the neighborhood sets Na and N (a)
b , respectively,

and hence this leads to our de#nition of set S1(a, b). On the
other hand, since the matrix "∗

:,a"
(a)∗
b,: + "

(a)∗
:,b "∗

a,: has support

set S2(a, b), the variance of 〈!̂ − !∗, "∗
:,a"

(a)∗
b,: +"

(a)∗
:,b "∗

a,:
2"∗a,a

〉 is then
dominated by the minimum sample sizes in S2(a, b).

Proposition 1. For any given support set E ⊆ [p] × [p], the
following holds except when "∗

E ∈ R|E| falls in a measure zero
set: (i) S2(a, b) = (N a × N (a)

b ) ∪ (N (a)
b × N a). (ii) If b ∈ Na,

N (a)
b = N a ∪ N b; otherwise, N (a)

b = N b.

Similar to the support recovery guarantee in Theorem 1, here
we also de#ne the sample size ratio for node b here by γ

(a)
b =

max
j∈N (a)c

b
mink nj,k

min
j∈N (a)

b
mink nj,k

. T he following covariance parameters are also

useful: let T ∗, T (n)∗ ∈ Rp×p×p×p satisfy

T ∗
j,k,j′,k′ = Cov(XjXk, Xj′Xk′) = !∗

j,j′!
∗
k,k′ + !∗

j,k′!
∗
k,j′

for 1 ≤ j, k, j′, k′ ≤ p, and (T (n)∗)j,k,j′,k′ = T ∗
j,k,j′,k′

nj,k,j′ ,k′
nj,knj′ ,k′

,
where nj,k,j′,k′ = |{i : j, k, j′, k′ ∈ Vi}| is the number of joint
measurements for j, k, j′, k′.

Assumption 1 (Sample size condition for accurate estimation).

n(a,b)
1 ≥ C ‖!∗‖2

∞
λ2

min(!∗)
(κ2

!∗ + γa + γ
(a)
b )(da + db + 1)2 log p,

Assumption 1 is similar to the sample size condition in The-
orem 1, while the only di!erence lies that here mink nj,k needs
to be large as long as j ∈ Na ∪ N (a)

b instead of Na only, so that
both θ̂ (a) and "̂

(a)
b,: are accurate estimators for θ (a)∗ and "

(a)∗
b,: .

Assumption 2 (Sample size condition for normal approximation).
C((!

∗)(da + db + 1)2+( = o(n(a,b)
2 ) for some constant ( > 0,

where C((!
∗) =

(
C(1+2/))‖!∗‖∞

λmin(!∗)

)2+)
.

Due to the erose measurements, establishing the Lyapunov
condition is much more complicated than the same sample size
setting. Assumption 2 is a technical assumption we need in
this step so that the CLT can be applied to derive asymptotic
normality results.

Assumption 3 (Sample size condition for controlling bias).

n(a,b)
1 5 C2("∗; a, b)(κ4

"∗+γa+γ
(a)
b )[(da+db+1) log p]2 n(a,b)

2

n(a,b)
1

,

(8)
where C("∗; a, b) = Cκ3

"∗‖"∗
:,a‖1‖"(a)∗

:,b ‖1

min
(j,k)∈S2(a,b)

∣∣∣"(a)∗
b,j "∗

a,k+"
(a)∗
b,k "∗

a,j

∣∣∣
.

Remark 1. Rearranging (8), we can also write the this sample
size condition as

n(a,b)
1 5 C("∗; a, b)(κ2

"∗ + √
γa +

√
γ

(a)
b )

× [(da + db + 1) log p]
√

n(a,b)
2 .

Remark 2. One may be confused when seeing n(a,b)
1 both on the

le$- and right-hand side of (8). In fact, we present it this way in
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order to connect it to the same sample size setting where n(a,b)
2 =

n(a,b)
1 = n, and thus (8) becomes n 5 C2("∗; a, b)κ4

"∗ [(da +
db +1) log p]2. This is similar to the requirement in prior results
on debiased lasso and debiased graphical lasso (Van de Geer et al.
2014; Zhang and Zhang 2014; Jankova and Van De Geer 2015)
with the same sample sizes, which requires n 5 d2 log2 p. The
additional price we paid for uneven sample sizes is re%ected in
the sample size ratios γa, γ (a)

b and n(a,b)
2

n(a,b)
1

.

Remark 3 (E!ect of γa, γ
(a)
b and n(a,b)

2
n(a,b)

1
). γa, γ

(a)
b are the sample

size ratios between the most well measured non-neighbor and
the worst measured neighbor of a and b. These two quantities
have a negative e!ect on our theory, as when the sample sizes
for the non-neighbors are all much larger than the neighbors, the
neighbors would su!er from much stronger regularization than
non-neighbors. While for the sample size ratio n(a,b)

2
n(a,b)

1
, note that

when n(a,b)
2 grows too much more quickly than n(a,b)

1 , the bias
term would dominate the variance term and then the normal
approximation of θ̃

(a)
b would not hold.

The following theorem establishes the asymptotic normality
of θ̃

(a)
b + "∗

a,b
"∗a,a

under these three sample size assumptions, and
Corollary 1 presents its direct consequence when all pairwise
sample sizes are equal (ni,j = n), with simpli#ed sample size
assumptions that is comparable to prior literature (Van de Geer
et al. 2014; Jankova and Van De Geer 2015).

Theorem 2 (Asymptotic Normality). Consider the Gaussian
graphical model with erose measurement setting described in
Section 1.1 and the debiased edge-wise statistic θ̃

(a)
b de#ned in

(7). Suppose that λ(a) in (2) is chosen as in Theorem 1, and λ(a,b)

in (5) satis#es λ
(a,b)
k , ‖!∗‖∞

‖"(a)∗
b,: ‖1

"
(a)∗
b,b

√
log p

min
j∈[p]

nj,k
. Then we have

the following decomposition:

θ̃
(a)
b = −

"∗
a,b

"∗
a,a

+ B + E. (9)

If Assumption 1 holds, then with probability at least 1 − Cp−c,
|B| ≤ C("∗, γa, γ (a)

b )
(da+db+1) log p

n(a,b)
1

, where C("∗, γa, γ (a)
b ) =

Cκ!∗(κ2
!∗ +√

γa +
√

γ
(a)
b )‖!∗‖2

∞‖"∗
:,a‖1‖"(a)∗

:,b ‖1. If Assump-

tion 2 holds, σ−1
n (a, b)E d→ N (0, 1) with σ 2

n (a, b) =
1

"∗2aa
T (n)∗ ×1 "

(a)∗
:,b ×2 "∗

:,a ×3 "
(a)∗
:,b ×4 "∗

:,a. Furthermore,
if Assumptions 1–3 hold,

σ−1
n (a, b)

(
θ̃

(a)
b +

"∗
a,b

"∗
aa

)
d→ N (0, 1).

The proof of Theorem 2 is deferred to Section G of the supple-
mentary material.

Remark 4 (Bias-Variance decomposition). As suggested by (9),
the error of the debiased lasso estimator can be decomposed
into a bias term (B) and a variance term (E), where B depends

on the minimum pairwise sample size n(a,b)
1 between any nodes

and the neighbors of nodes a, b, while E depends only on the
sample size n(a,b)

2 for nodes within the neighborhoods of a, b (See
Figure 2). When C("∗, γa, γ (a)

b ) is viewed as a constant, then
|B| , (da+db+1) log p

n(a,b)
1

, and the term E scales as the asymptotic
standard deviation σn(a, b), which is further characterized by
Proposition 2.

Proposition 2 (Variance characterization). The variance term
σ 2

n (a, b) satis#es

σn(a, b) ≤
√

2λmax(!∗)‖"(a)∗
:,b ‖2‖"∗

:,a‖2

"∗
a,a

(n(a,b)
2 )−

1
2

≤
√

2κ2
!∗(n(a,b)

2 )−
1
2 ,

σn(a, b) ≥

√
2λmin(!∗) min

(j,k)∈S2(a,b)

∣∣∣"(a)∗
b,j "∗

a,k + "
(a)∗
b,k "∗

a,j

∣∣∣

2"∗
a,a

× (n(a,b)
2 )−

1
2 .

When C1 ≤
λmin(!∗) min

(j,k)∈S2(a,b)

∣∣∣"(a)∗
b,j "∗

a,k+"
(a)∗
b,k "∗

a,j

∣∣∣

"∗a,a
≤ κ2

!∗ ≤ C2,

Proposition 2 suggests that σn(a, b) , (n(a,b)
2 )−1/2.

Corollary 1 (Normal Approximation with the Same Sample
Size). Consider the same model, edge-wise statistic and tuning
parameters as in Theorem 2. When the pairwise sample sizes
are all equal: nj,k = n, then if for some ) > 0,n 5
C2("∗; a, b)κ4

"∗(da+db+1)2 log2 p+C)(!
∗)(da+db+1)2+) , we

have σ−1
n (a, b)

(
θ̃

(a)
b + "∗

a,b
"∗aa

) d→ N (0, 1), where C("∗; a, b) and
C)(!

∗) are as de#ned in Assumptions 2 and 3, depending only
on !∗ and "∗. In addition, if the sample size of all quadrupples
nj,k,j′,k′ = n, σ 2

n (a, b) = 1
n

"∗
a,a"

∗
b,b−("∗

a,b)
2

("∗a,a)2 .

Remark 5. Corollary 1 is a direct consequence of Theorem 2.
If da + db + 1 ≤ (log p)c for some c > 0, the sample size
condition is the same as the prior literature on debiased lasso
and debiased graphical lasso (Van de Geer et al. 2014; Jankova
and Van De Geer 2015). Note that Corollary 1 does not require
all variables are measured simultaneously, and hence we can also
apply it to the settings where only pairwise measurements or
general size-constrained measurements are available (Dasarathy
2019).

3.3. Variance Estimation and Edge-Wise Inference

In this section, we propose our GI-JOE method for edge-wise
statistical inference. That is, we test the null hypothesis: H0 :
"∗

a,b = 0 against H1 : "∗
a,b &= 0. With the aid of Theorem 2,

we still need to estimate the unknown variance σ 2
n (a, b) so

that we can construct a test statistic with known distribution
under H0.

Recall the de#nition of σ 2
n (a, b) in Theorem 2, and the

fact that T ∗
j,k,j′,k′ = !∗

j,j′!
∗
k,k′ + !∗

j,k′!
∗
k,j′ , (T (n)∗)j,k,j′,k′ =

T ∗
j,k,j′,k′

nj,k,j′ ,k′
nj,knj′ ,k′

, here we de#ne an estimator σ̂ 2
n (a, b) as follows:
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Algorithm 1: GI-JOE: edge-wise inference
Input: Dataset {xi,Vi : Vi ⊂ [p]}n

i=1, pairwise sample
sizes {nj,k}p

j,k=1, node pair (a, b) for testing with a &= b,
signi#cant level α

1. Compute the entry-wise estimate of the covariance
matrix !̂ ∈ Rp×p: !̂j,k = 1

nj,k

∑
j,k∈Vi xi,jxi,k

2. Project !̂ onto the positive semi-de#nite cone: compute
!̃ as in (1).

3. Perform neighborhood regression for node a: compute
θ̂ (a) as in (2)

4. Estimate the debiasing matrix by performing
neighborhood regression for node b upon nodes
[p]\{a, b}: compute "̂

(a)
b,: as in (5) and (6).

5. Debias the neighborhood lasso estimate:
θ̃

(a)
b = θ̂

(a)
b − "̂

(a)
b,: (!̂θ̂ (a) − !̂:,a).

6. Estimate the variance:
σ̂ 2

n = T̂ (n) ×1 "̃
(a)
b,: ×2 θ̂

(a)
×3 "̃

(a)
b,: ×4 θ̂

(a)
, where

(T̂ (n))j,k,j′,k′ = (!̃j,j′!̃k,k′ + !̃j,k′!̃k,j′)
nj,k,j′,k′

nj,knj′,k′
,

θ̂
(a)

is de#ned as θ̂
(a)

a = 1 and θ̂
(a)

\a = −θ̂
(a)
\a , and "̃

(a)
b,: is

computed as in (5) and (6).
7. Compute p-value pa,b = 2(1 − ,(

θ̃
(a)
b

σ̂n(a,b) )) where ,(·)
is the distribution function of standard Gaussian;
con#dence interval
Ĉa,b

α = [θ̃ (a)
b − zα/2σ̂n(a, b), θ̃ (a)

b + zα/2σ̂n(a, b)]
Output: p-value pa,b, con#dence interval Ĉa,b

α for
θ

(a)∗
a,b − "∗

a,b
"∗a,a

.

σ̂ 2
n (a, b) = T̂ (n) ×1 "̃

(a)
b,: ×2 θ̂

(a)
×3 "̃

(a)
b,: ×4 θ̂

(a)
, (10)

where T̂ (n) is an estimator for T (n)∗: (T̂ (n))j,k,j′,k′ = (!̃j,j′!̃k,k′ +
!̃j,k′!̃k,j′)

nj,k,j′ ,k′
nj,knj′ ,k′

; θ̂
(a)

∈ Rp serves as an estimate for "∗
:,a

"∗a,a
and it

satis#es θ̂
(a)

a = 1 and θ̂
(a)

\a = −θ̂
(a)
\a ; "̃(a)

b,: is de#ned in Section 3.1
and serves an estimate for "

(a)∗
b,: .

Assumption 4 (Sample size condition for variance estimation).

n(a,b)
1 5 C4("∗; a, b)

κ4
"∗

(da + db + 1)2 log p
(

n(a,b)
2

n(a,b)
1

)2

,

where C("∗; a, b) is de#ned as in Assumption 3.

Proposition 3 (Estimation consistency of variance). Under
Assumptions 1, 3, and 4, if the tuning parameters are as speci#ed
in Theorem 2, then (10) satis#es σ̂−1

n (a,b)

σ−1
n (a,b)

p→ 1.

Theorem 3 (Normal approximation with unknown variance).
With appropriately chosen tuning parameters as in Theorem 2,
if Assumptions 1–4 hold, σ̂−1

n (a, b)(θ̃
(a)
b − θ

(a)∗
b )

d→ N (0, 1) for
σ̂ 2

n (a, b) de#ned in (10) and θ̃
(a)
b de#ned in (7).

The proof of Theorem 3 can be found in Section G of the
supplementary material. Theorem 3 suggests us to construct the
test statistic ẑ(a, b) = σ̂−1

n (a, b)θ̃
(a)
b , and for a desired Type I

error α, wereject H0 : "∗
a,b = 0 if |̂z(a, b)| ≥ zα/2, where zα/2

is the 1 − α
2 quantile of standard Gaussian distribution. Our

full GI-JOE (edge-wise inference) procedure is summarized in
Algorithm 1, with its Type I error and power characterized by
the following theorem.

Theorem 4 (Type I error and Power Analysis). Consider the
Gaussian graphical model with erose measurement setting
described in Section 1.1 and let pa,b be the p-value given by
Algorithm 1 for node pair (a, b). If all conditions in Theorem 3
hold so that as n, p → ∞, p, da, db, n(a,b)

1 , n(a,b)
2 scale as in

Assumptions 3 and 4, then the following holds:

1. Under the null hypothesis H0 : "∗
a,b = 0, limn,p→∞ P(pa,b ≤

α) = α;
2. Under the alternative hypothesis H1 : "∗

a,b
"∗a,a

= δn,

(a) if limn,p→∞ δn
σn(a,b) = 0, limn,p→∞ P(pa,b ≤ α) = α;

(b) if limn,p→∞ δn
σn(a,b) = δ for δ &= 0, limn,p→∞ P(pa,b ≤

α) ≥ ,(|δ| − zα/2), where ,(·) is the distribution
function of standard Gaussian N (0, 1);

(c) if limn,p→∞ δn
σn(a,b) = +∞, limn,p→∞ P(pa,b ≤ α) = 1.

The proof of Theorem 4 is deferred to Section G of the supple-
mentary material. Theorem 4 suggests that when all conditions
of Theorem 3 hold, the Type I error of this test is asymptotically
α. Furthermore, as long as the signal strength "∗

a,b
"∗a,a

shrinks no

faster than σn(a, b) , (n(a,b)
2 )−1/2, we can still reject the null

with constant or high probability. Other than hypothesis testing,
we can also construct asymptotically valid con#dence intervals
for each entry of the precision matrix ("∗

a,b), under similar
assumptions to Theorem 3. More details can be found in Section
F of the supplementary material.

4. FDR Control for Graph Inference with Erose
Measurements

In many application scenarios, the inference of the full graph
may be of more interest than the inference of one particular
edge. Confronted with a multiple testing problem, we can simply
apply Holm’s correction upon the p-values of all p(p−1)

2 node
pairs (a, b) for a < b, and hence control the family-wise error
rate. However, as this approach can be too conservative, here
we also propose an FDR control procedure. We leverage the
ideas from Javanmard and Javadi (2019) and Liu (2013) which
consider the FDR control for the debiased lasso and Gaussian
graphical models. In particular, for any 0 ≤ . ≤ 1, let R(.) =∑

i<j 1{pi,j≤.} be the number of signi#cant edges when . is the
threshold for p-values. Also de#ne tp = (2 log(p(p − 1)/2) −
2 log log(p(p − 1)/2))

1
2 , and if there exists 2(1 − ,(tp)) ≤ . ≤

1 such that p(p−1).
2R(.)∨1 ≤ α, the nominal level, then we would

de#ne .0 = sup2(1−,(tp))≤.≤1

{
. : p(p−1).

2(R(.)∨1) ≤ α
}

; otherwise,
.0 = 2(1 − ,(

√
2 log(p(p − 1)/2))). The signi#cant edge set is
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then de#ned as Ẽ = {(j, k) : pj,k ≤ .0}. This is similar to the
Benjamini-Hochberg procedure with only an extra truncation
step. The full procedure is summarized in Algorithm 2 in the
supplementary material.

In the following, we provide theoretical guarantees for our
GI-JOE (FDR) approach. De#ne )i(a, b) = ∑

j,k(xi,jxi,k −

!∗
j,k)

δ
(i)
j,k

nj,k

"
(a)∗
j,b "∗

k,a+"
(a)∗
k,b "∗

j,a
2"∗a,a

as the error for estimating edge (a, b),
contributed by the ith sample; /i(a, b) is the normalized error:
/i(a, b) = )i(a,b)

σn(a,b) . One technical quantity that is useful in our

proofs is α("∗, {Vi}n
i=1) = sup(a,b),(a′,b′)

‖/i(a,b)‖2
ψ1 ∨‖/i(a′,b′)‖2

ψ1
λmin(Cov((/i(a,b),/i(a′,b′))) .

We want α("∗, {Vi}n
i=1) to be not too large, similar to assum-

ing (/i(a, b), /i(a′, b′)) to be far from degenerate. Also de#ne
the covariance between the test statistics of di!erent edges:
σ 2

n (a, b, a′, b′) = 1
"∗a,a"

∗
a′ ,a′

1(n)∗ ×1 "
(a)∗
:,b ×2 "∗

:,a ×3 "
(a′)∗
:,b′ ×4

"∗
:,a′ , and the correlation .n(a, b, a′, b′) = σ 2

n (a,b,a′,b′)
σn(a,b)σn(a′,b′) .

Assumption 5. For any edge (a, b) ∈ [p] × [p], n(a,b)
2 ≥

C‖!∗‖6∞α2("∗,{Vi}n
i=1)

λ6
min(!∗)

(d + 1)6(log p)6, and n(a,b)
1 5 Cd2(log p)5

log log p
(

n(a,b)
2

n(a,b)
1

)2
, where d = maxa∈[p] da.

Assumption 5 is stronger than the sample size requirements in
Assumptions 3 and 4 for edge-wise inference, since the proof
for asymptotically valid FDR control needs stronger normal
approximation guarantees, especially at the tail.

Remark 6. When all variables are simultaneously measured with
sample size n, Assumption 5 reduces to n ≥ C(d + 1)6(log p)6.
This is much weaker than the condition in the literature of the
graphical model FDR control (Liu 2013): p ≤ nr for some
constant r > 0. They used this assumption to show the tail
probability of the test statistics can be well approximated by the
Gaussian tail, while we use a di!erent proof that exploits the sub-
exponential properties of !̂j,k (second moments of Gaussian
variables are sub-exponential).

Assumption 6. For any 0 < . < 1, γ > 0, let A1(.) =
{(a, b, a′, b′) ∈ [p] × [p] : "∗

a,b = "∗
a′,b′ = 0, |.n(a, b, a′, b′)| >

.}, and A2(., γ ) = {(a, b, a′, b′) ∈ [p] × [p] : "∗
a,b =

"∗
a′,b′ = 0, (log p)−2−γ < |.n(a, b, a′, b′)| ≤ .}. There exist 0 <

.0 < 1 and γ > 0 such that, |A1(.0)| ≤ Cp2, |A2(.0, γ )| :
p

4
1+.0 (log p)

2.0
1+.0 − 1

2 (log log p)−
1
2 .

Assumption 6 enforces that most edge-wise test statistics are
only weakly correlated, and similar assumptions have also
appeared in Liu (2013) and Javanmard and Javadi (2019). To pro-
vide more intuition and to justify this Assumption, we prove that
in the simultaneous measurement setting, this assumption holds
when each node has a constant number of strongly connected
neighbors; we further empirically validate this Assumption
for many sparse graphs and erose measurement patterns.
More details are included in Section C of the supplementary
material. The following theorem suggests that our procedure
can successfully control the false discovery proportion both in
expectation and in probability when Assumptions 5 and 6 hold.

Theorem 5 (Validity of FDR control). Consider the GI-JOE
(FDR) procedure described in Section 4 and suppose the sig-
ni#cant edge set under a given nominal level α is given by Ẽ.
Let FDP =

∑
(a,b)∈H0 1{(a,b)∈Ẽ}

|̃E|∨1 , where H0 = {(i, j) ∈ [p] × [p] :
"∗

i,j = 0}; Also let FDR = EFDP. If Assumptions 5 and 6
hold, then we have lim supn,p→∞ FDR ≤ α, and for any ) > 0,
limn,p→∞ P(FDP > α + )) = 0.

The proof of Theorem 5 can be found in Section G of the
supplementary material. This is the #rst theoretical guarantee
for FDR control with erosely measured data. Although we still
require su"cient pairwise sample sizes for all pairs of nodes,
we allow nj,k to be of di!erent order. As shown in Section G of
the supplementary material, our GI-JOE FDR approach indeed
controls the FPR empirically in a wide range of erose measure-
ment settings and graph structures, even when the sample size
condition might be violated.

5. Empirical Studies

In this section, we present empirical studies to validate our
GI-JOE approach for both edge-wise inference and full graph
inference. We #rst verify the validity of our edge-wise inference
procedure in Section 5.1; then we compare the graph selection
performance using both our GI-JOE approaches and various
baseline estimation and inference methods in Section 5.2. A real
data example is included in Section 5.3.

5.1. Simulations for Edge-Wise Inference: Validating
Theory

Here, we investigate the Type I error and power of GI-JOE for
testing one node pair. To study the e!ect of di!erent pairwise
sample sizes, here we consider the pairwise measurement sce-
nario where each sample only consists of two variables. When
the given node pair for inference is (a, b), we set the pairwise
sample size as follows: nj,k = ∑n

i=1 1{j,k∈Vi} = n1 if (j, k) ∈
S1(a, b)\S2(a, b), nj,k = n2 if (j, k) ∈ S2(a, b), and nj,k = 50
otherwise. The precision matrix "∗ = !∗−1 is generated with
three graph structures: a chain graph, a three-star graph, and
an Erdős–Rényi graph with connection probability 3

p−1 . Then
we study the Type I error for testing an unconnected node pair,
and the power for testing an edge with di!erent signal strengths.
More details on the set-ups and the implementation of our GI-
JOE approach can be found in Section E.1 of the supplementary
material. Figure 3 summarizes the Type I error rate and power
averaged over 200 replicates when the con#dence level is set
as 0.95, under three graph structures. In the Type I error plot
(a), we consider three network sizes p = 50, 100, 200, and a
range of n(a,b)

1 , n(a,b)
2 . We can see that the Type I error rates are

close to 0.05 with moderately large, although di!ering, pairwise
sample sizes. In the power plot, The dimension p is #xed as
200, sample sizes n(a,b)

2 = n2 ∈ {125, 250, 500}, n(a,b)
1 =

n1 ∈ n2/{1, 1.2, 1.5}. The dependence of power on the SNR
"∗

a,b
"∗a,aσn(a,b) is similar across di!erent sample sizes, supporting
Theorem 4.
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Figure 3. Type I error rates versus sample size, averaged over 1000 replicates; Power versus signal to noise ratio, averaged over 200 replicates. Target Type I error rate is set

as α = 0.05, and the error bars represent the 95% con!dence interval. The x-axis in (b) is the signal-to-noise ratio
"∗

a,b
"∗

a,aσn(a,b)
, which determines the asymptotic power of

our test (see Theorem 4).

5.2. Graph Selection Study and Comparison with Baselines

Now we study the graph selection performance of our GI-JOE
(Holm) and GI-JOE (FDR) approaches under di!erent erose
measurements, compared with some baselines. In particular,
we consider four estimation methods and four inference meth-
ods. The estimation methods include standard plug-in meth-
ods (Kolar and Xing 2012; Park, Wang, and Lim 2021) with
neighborhood lasso (Nlasso), graphical lasso (Glasso), CLIME,
and the variant plug-in method described in Section 2 (Nlasso-
JOE). The only di!erence between Nlasso-JOE and Nlasso is
the former uses a di!erent tuning parameter for each node that
depends on its own sample sizes, as explained in Section 2. The
inference methods include GI-JOE (Holm), GI-JOE (FDR), and
also ad hoc implementations of the debiased graphical lasso
(Jankova and Van De Geer 2015). Speci#cally, since there are
no applicable inference methods designed for erose measure-
ments, the only baseline we can implement is applying existing
inference methods for simultaneous measurement settings and
plug in the minimum pairwise sample size for computing the
variance of each edge. This is not a method one would ever use
in practice, since it is too conservative and has no theoretical
guarantees, but we still present the results of such baselines, just
to prove the concept that considering the di!erent sample sizes
over the graph is important. Although Jankova and Van De Geer
(2015) is only concerned with edge-wise inference, we still add
a Holm’s correction and FDR control procedure on top of its
edge-wise p-values for a fair comparison, and we denote these
two procedures by DB-Glasso (Holm) and DB-Glasso (FDR).
Some additional implementation details of these methods can
be found in Section D.2 of the supplementary material.

The comparative studies here include both synthetic and real
data-inspired simulations, and we #rst present the synthetic set-
up. For graph structures, we consider the chain graph, 10-star
graph, and Erdős–Rényi graph, with dimension p = 200. We

experiment with three synthetic erose measurement patterns,
but due to space limit, here we only present the results for
two measurement patterns and defer more complete results to
the supplementary material. In measurement 1, each node is
independently missing with low, moderate, or high probabilities;
measurement 2 is the size-constrained measurements scenario,
where each sample consists of randomly selected 20 nodes,
and each node is sampled with probability weight positively
depending on its degree. For each measurement scenario, we
consider two di!erent total sample sizes. Table 1 summarizes
the F1 scores of our GI-JOE method and some other baseline
estimation and inference methods, averaged over 20 indepen-
dent runs (standard deviations included in parentheses). For
both Nlasso and Nlasso-JOE, we present the results based on
the AND rule; The results for OR rule and more detailed results
on true positive rate, true negative rate, and true discovery rate
can be found in Section E of the supplementary material. In
summary, among all di!erent measurement scenarios, sample
sizes, and graph structures, GI-JOE (FDR) is either the best
or comparable to the best among all inference and estimation
methods, in terms of the F1 score. The Nlasso-JOE is usually
the best among the estimation methods, suggesting that using
di!erent tuning parameters that accommodate for the di!erent
pairwise sample sizes may be a simple yet e!ective trick.

While for the real data-inspired simulations, either the graph
structure is adopted from real neuroscience data or the measure-
ment patterns are adopted from real gene expression datasets.
Due to space limit, here we only present the latter (real erose
measurements) but leave the real graph simulation results in the
supplementary material. For the real measurement patterns, we
take two publicly available single-cell RNA sequencing datasets
(Darmanis et al. 2015; Chu et al. 2016), and focus on the top
200 genes with highest variances. The chu and darmanis mea-
surement patterns have pairwise sample sizes ranging from 0
to 1018 and from 5 to 366. The graphs for data generation are
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Table 1. F1 scores of the graphs selected by estimation methods (!rst three) and inference methods (last four) under two measurement scenarios.

Chain graph 10-Star graph

Method Measurement 1 Measurement 2 Measurement 1 Measurement 2

n=600 n=800 n=20,000 n=30,000 n=600 n=800 n=20,000 n=30,000

Nlasso 0.62(0.18) 0.70(0.02) 0.41(0.01) 0.34(0.01) 0.35(0.11) 0.40(0.10) 0.28(0.01) 0.29(0.01)
Glasso 0.37(0.01) 0.35(0.01) 0.31(0.01) 0.47(0.21) 0.49(0.02) 0.47(0.01) 0.35(0.01) 0.39(0.25)
CLIME 0.40(0.04) 0.32(0.01) 0.27(0.00) 0.44(0.01) 0.25(0.01) 0.39(0.03) 0.28(0.03) 0.43(0.02)
Nlasso-JOE 0.64(0.12) 0.91(0.05) 0.68(0.20) 0.88(0.01) 0.82(0.07) 0.86(0.02) 0.80(0.02) 0.90(0.01)

DB-Glasso (Holm) 0.01(0.01) 0.05(0.02) 0.07(0.02) 0.42(0.03) 0.00(0.01) 0.00(0.01) 0.00(0.01) 0.04(0.01)
DB-Glasso (FDR) 0.00(0.01) 0.01(0.01) 0.01(0.01) 0.06(0.02) 0.00(0.01) 0.01(0.01) 0.01(0.01) 0.06(0.02)
GI-JOE (Holm) 0.78(0.01) 0.81(0.01) 0.37(0.12) 0.67(0.02) 0.32(0.04) 0.50(0.01) 0.96(0.01) 0.97(0.01)
GI-JOE (FDR) 0.81(0.01) 0.86(0.01) 0.74(0.08) 0.92(0.01) 0.51(0.03) 0.61(0.01) 0.99(0.01) 0.98(0.01)

NOTE: The average sample size 1
p2

∑
j,k nj,k ranges from 50 to 350. The highest F1 scores are in bold.

Table 2. F1 scores of estimation methods (!rst three) and inference methods (last four) with the ground truth graphs being a scale-free graph and a small-world graph with
200 nodes, under two real measurement patterns from single-cell RNA sequencing datasets (the chu data (Chu et al. 2016) and darmanis data (Darmanis et al. 2015)).

Method chu measurement darmanis measurement

Scale-free graph Small-world graph Scale-free graph Small-world graph

Nlasso 0.54(0.25) 0.57(0.28) 0.31(0.02) 0.34(0.11)
Glasso 0.61(0.19) 0.70(0.17) 0.59(0.03) 0.49(0.10)
CLIME 0.41(0.07) 0.40(0.02) 0.26(0.04) 0.35(0.12)
Nlasso-JOE 0.61(0.30) 0.92(0.01) 0.51(0.03) 0.81(0.01)

DB-Glasso (Holm) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
DB-Glasso (FDR) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
GI-JOE (Holm) 0.96(0.01) 0.93(0.01) 0.44(0.04) 0.55(0.03)
GI-JOE (FDR) 0.94(0.03) 0.93(0.01) 0.75(0.03) 0.76(0.02)

NOTE: Our GI-JOE methods always have the highest F1-scores, and GI-JOE (FDR) is better for the darmanis measurement (average sample size 250) while GI-JOE (Holm) is
better for the chu measurement (average sample size 850). The highest F1 scores are in bold.

scale-free graphs and small-world graphs with 200 nodes. The
F1-scores summarized in Table 2 also suggest the e"cacy of the
GI-JOE (FDR) approach. Visualizations of the real graph and
measurement patterns, and speci#cs of the simulated graphs can
be found in Section F of the supplementary material.

5.3. Real Data Example: Application to Calcium Imaging
Data

The two-photon calcium imaging technology can record in vivo
functional activities of thousands of neurons (Stringer et al.
2019), and such datasets can be used to understand the neuronal
circuits with the help of graphical model techniques (Vinci,
Dasarathy, and Allen 2019; Wang and Allen 2021). In this sec-
tion, we investigate the potential of our GI-JOE approach on a
real calcium imaging dataset from the Allen Institute (Lein et al.
2007), which contains the functional recordings of p = 227
neurons in a mouse’s visual cortex, when di!erent visual stimuli
or no stimulus were presented to the mouse. Here, we focus
on the raw %uorescence traces in one spontaneous session with
no external stimulus. This session includes n = 8931 samples
of the trace data associated with all 227 neurons. We manually
mask the data for some neurons to create erose measurements,
and then validate our methods by comparing the tested graph
based on masked data with the tested graph based on the full
dataset. In particular, the recorded neurons all lie on the same
vertical plane in a mouse’s visual cortex (see Figure 4 for the
physical locations of the neurons in x and y axis). To manually
create erose measurements, we divide the neurons into three
subsets based on their location on the x-axis (marked in di!erent

colors in Figure 4), and neurons in each subset are randomly
observed with high (

√
0.9), moderate (

√
0.5), and low (

√
0.1)

probabilities.
However, when inference methods are applied on the full

dataset, we #nd that the tested graph is always dense. This might
be due to the huge amount of latent neurons in the mouse’s
brain since latent variables are known to lead to dense graph
structures in graphical models (Wang and Allen 2021). Since
most of these edges have small edge weights, here we consider
testing if the edge weights are stronger than a threshold instead
of testing if they are zero. Speci#cally, for any node pair (a, b),
H0,(a,b) : |"∗

a,b
"∗a,a

| ≤ 0.12. Our GI-JOE approach can be directly
extended to test such hypothesis and the detailed procedures
are included in Section D of the supplementary material. For
validation purposes, we also apply a special version of our GI-
JOE (FDR) approach on the full dataset, where all pairwise
sample sizes are equal. As suggested by Figure 4, our GI-JOE
(FDR) approach works well, especially for the neuron set 1 (red)
as they have larger sample sizes; it identi#es the same hub neuron
in set 1 as the tested graph (a) with the full dataset. The speci#c
F1-scores of each method for each neuron set can be found in
Section E of the supplementary material.

6. Discussion

In this article, we propose the GI-JOE (Graph Inference when
Joint Observations are Erose) approach to address the graphical
model inference problem under the erose measurement setting,
where irregular observational patterns lead to vastly di!erent
sample sizes for node pairs. Our GI-JOE approach quanti#es the
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Figure 4. Tested functional connectivity graphs among neurons, using the Allen Brain Atlas dataset. The neurons marked in red, blue, and green have high, moderate
and low sample sizes. Our GI-JOE (FDR) approach works reasonably well, especially for red neurons, while the debiased graphical lasso with minimum sample size is too
conservative to !nd any edge.

di!erent uncertainty levels over the graph induced by the erose
measurements, including both an edge-wise inference method
and an FDR control procedure. We characterize the Type I error
and power for testing any node pair (a, b) by considering the
sample sizes involving a, b’s neighbors; We also guarantee the
valid FDR control of GI-JOE (FDR) under appropriate con-
ditions. Finally, our experiments with synthetic and real data
demonstrate the e"cacy of our approach for di!erent graphs and
measurement patterns.

There are still many open questions related to graph learning
with erose measurements that may be worth future investiga-
tion. For instance, it is possible to extend our theory and meth-
ods to general sub-Gaussian data or semiparametric graphical
models. Our problem setting is closely related to the latent
variable graphical models when some pairwise sample sizes
are extremely low, and some ideas in this line of work might
be useful to further improve our method with relaxed sample
size conditions. In addition, our current results are based on a
variant of the neighborhood lasso, while one may also consider
a variant of the graphical lasso or CLIME and investigate their
potential in this setting. Another practical but challenging set-
ting not considered here is data-dependent erose measurements,
which requires novel methods and theory since the sample
covariance would be biased and the plug-in type approach no
longer works. Furthermore, erosely measured data sometimes
exhibits temporal dependence and thus calls for new inference
methodologies.

Supplementary Materials

The Supplementary material includes all the technical proofs, additional
theoretical and empirical results. So$ware and code for reproducing the
empirical results can be found at https://github.com/Lili-Zheng-stat/GI-JOE.
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