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ABSTRACT

Elucidating functional connectivity reveals interactions between
brain regions based on their in vivo activity. However, a gap exists
in current statistical methods’ ability to untangle direct interactions
from confounding activity due to stimuli and physiological effects,
leading to a bottleneck in understanding how the brain filters and
decodes information. We propose methods to remove physiological
and environmental effects from calcium imaging in the rodent olfac-
tory bulb to better isolate connectivity-related activity correlations.
Our approach deconvolves brain signals by learning smooth filters
leveraging generalized ridge regularization, thus producing stronger
isolation of such connectivity-related activity. Our method for re-
moving specific external correlation-causing factors is applicable
in a wide variety of settings including those with different external
stimuli.

Index Terms— functional connectivity, ridge regression, cal-
cium imaging, olfaction

1. INTRODUCTION

Functional connectivity, the correlation in neural activity between
spatially distinct areas, is an important tool for understanding brain
structure and function [1]. Mapping functional connectivity allows
analysis of how parts of the brain play related and interdepen-
dent roles in various cognitive and physiological processes [1] [2].
Functional connectivity differs from effective connectivity analyses,
which take into account a priori assumptions about neurophysiology
and the models used to describe it. Because functional connectivity
is only concerned with correlation in activity and not with any prior
knowledge, it is readily applicable and also brings an added benefit
of being able to find relationships between regions with undiscov-
ered connections. A commonly mentioned drawback of functional
connectivity analyses is that relationships may be found that are
correlative but not causative. However, functional connectivity anal-
yses may reveal certain neural phenomena that are not necessarily
causative, such as parallel processing in the brain.

The olfactory system is a particularly interesting sensory system
of the brain within which to perform functional connectivity anal-
yses for several reasons. Firstly, it is the only sensory system that
relays data directly to the primary site of sensory processing instead
of being routed through the thalamus [3]. Secondly, it is the least
understood and phylogenetically oldest sensory pathway and it re-
mains unknown how features are spatially arranged in the olfactory
bulb (OB) and whether they are processed in parallel as they are in
other sensory systems [3]. Thirdly, the relatively strong influence
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of the olfactory bulb on emotion and memory caused by its direct
connections to the amygdala, hippocampus, and medial prefrontal
cortex make it a compelling system to study [4]. A basic diagram of
the olfactory system is shown below in Figure 1(a).

Fig. 1: (a) Diagram of the rodent olfactory system (left). (b) Illustration of
the factors that contribute to the recorded neural activity (right). Activity
caused by mechanical and odorant stimulation is isolated and removed by
our technique, better isolating activity caused by connectivity. (a) was cre-
ated with Biorender.

While the OB is a fascinating topic of study, difficulties arise in
resolving connectivity because OB recordings are contaminated by
external influences. Breathing [5] and exposure to stimuli introduce
correlations in the data that are unrelated to connectivity, thus posing
the problem of how to separate connectivity-based correlations from
other physiological causes of correlation. The problem of physio-
logical noise in neural recordings has been significantly addressed
in functional magnetic resonance imaging (fMRI) [6, 7], and we use
that work as inspiration to address the aforementioned confounds in
OB recordings.

The data we analyzed is from OB calcium imaging, which is
a popular method of acquiring neural activity due to the fact that
changes in calcium concentrations are a strong indication of neu-
ral activity. These recordings are taken from glomeruli, which are
spherical bundles of synapses between olfactory nerves and projec-
tion neurons including tufted and mitral cells [8]. Because of the
popularity of calcium imaging, extending the work done on isolat-
ing factors of correlation in fMRI to calcium imaging has potential
to reveal structural correlations even beyond the OB.

2. EXPERIMENTAL PROCEDURE

All animal procedures were conducted in accordance with an ani-
mal protocol that was approved by the Institutional Animal Care and
Use Committee (IACUC) of The University of Texas Health Sci-
ence Center at Houston (UTHealth). The following steps are also
mentioned in a prior work [9], however the spontaneous (no odor-
ant) data collected was used in the prior work [9] while we use the
stimulus (odorant) data for the present work. Further note that the
lab technique in [10] is nearly identical to the technique of this work
and the prior work [9].
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For conducting calcium imaging, researchers anesthetized a
mouse (male; 5 months old at imaging) with lineage of Gad2-
IRESCre [11] (JAX stock #10802) and RCL-tdTomato [12] (Ai9;
JAX stock #7909). In order to achieve genetically-encoded calcium
indicator GCaMP6f expression by the synapsin promoter in OB
neurons, AAV vector (AAV1.Syn.GCaMP6f.WPRE.SV40; UPenn
Vector Core) was given to the mouse three weeks before imaging.

During the procedure, an anesthetic (urethane; 6% w/v, 20 µl/g
bodyweight) was administered to the mouse and reinforced upon toe
pinch reaction by the mouse. Additionally, a heating pad held the
mouse body temperature constant at a 36-37 °C range. Then, imag-
ing was conducted through the exposure of the skull over the dor-
sal OB to create a cranial window. The equipment used included an
acousto-optic deflector-based two-photon microscope equipped with
a Nikon 16x/0.8NA objective lens with random-access mode imag-
ing available.

For a more focused analysis, regions of interest (ROIs) in the
mouse OB were selected through a process of determining the loci of
glomeruli by triggering responses to certain odors. After the identifi-
cation of these locations, the ROIs were put at each glomerulus’ mid-
dle region to minimize the possibility of interference of surrounding
cell bodies. From the ten glomeruli detected, two ROIs were selected
per glomerulus and imaged with a 500 Hz sampling rate. Simulta-
neous to imaging, a chest-placed piezo-electric captured breathing.
Overall, the data gathered includes ROI and breathing data for multi-
ple 15-second segments where an odorant stimulus was introduced.
The pairs of ROIs for each glomerulus were averaged to yield the
glomerular time series data.

3. MODELING OLFACTORY BULB CONNECTIVITY

3.1. Modeling Olfactory Bulb Signals

We represent glomerular activity as the linear combination of three
independent components: breathing, odorant response, and noisy
glomerular connectivity, as illustrated in Figure 1(b). Inspired by
the fMRI literature [6, 7], we learn linear and time-invariant fil-
ters to model the effects of both breathing and stimuli, allowing us
to isolate each of the three components of the data. Filtering out
breathing-related activity allows for analysis of spatial organization
of responses to different odorant stimuli. Further filtering out stim-
ulus responses results in isolated noisy connectivity-related activity,
which can finally be analyzed to infer functional connectivity more
accurately than with the original data.

Mathematically, the recorded time-series for a single glomerulus
j is represented as an N -length vector,

yj = [yj [1] · · · yj [n] · · · yj [N ]]→ ,

where time is indexed by n. The signals for different glomeruli u and
v should not be directly analyzed via correlation (e.g., as yu · yv)
prior to the removal of confounds because this will tend to reveal
correlation between glomeruli which have similar responses to me-
chanical stimulation from breathing [5] and to chemical stimulation
from odorants. Thus, in order to determine more precise functional
connectivity between glomeruli, the components of each glomerulus
time series which derive from mechanical and odorant stimulation
must be removed.

The purpose of our model, which is inspired by prior work in
fMRI [6], is to perform a decomposition for every yj into three
components: gj , the component due to mechanical stimulation from
breathing, hj , the component due to odorant stimulation, and rj , the
residual noisy connectivity component. Hence, the decomposition
is represented as yj = gj + hj + rj . The components hj and gj

were each modeled as the output of causal linear and time-invariant
filters applied to the breathing and odorant time-series data, respec-

tively. The breathing filter weights are represented as a vector ωωω(b)
j ,

of length ε, and the odorant filter weights as ωωω(o)
j , of length ϑ.

The final component rj was assumed to be zero-mean Gaussian.
At any time index n, all glomeruli can be represented by the random
vector r[n] containing the residuals of all glomeruli, and r[n] has a
multivariate Gaussian distribution. This distribution encapsulates the
covariance of residuals between the K glomeruli, where specifically
r[n] = [r1[n] · · · rj [n] · · · rK [n]] → N (0,!). The diagonal of
the covariance matrix ! describes the noise of glomerular residuals
while the off-diagonal elements contain the desired breathing- and
stimulus-adjusted covariances related to glomerular functional con-
nectivity.

3.2. Breathing and Stimulus Filtering

We seek to estimate smooth, linear and time-invariant filters, ωωω(b)
j

andωωω(o)
j representing the weights of the breathing and odorant filters

respectively. To achieve this, first let X =
[
X(b) X(o)

]
, where X(b)

and X(o) are the Toeplitz matrices for the convolution performed
by the linear and time invariant filters consisting of row-wise stag-
gered and windowed versions of the breathing and stimulus data,
respectively. We propose to learn the smooth filter weights via gen-
eralized ridge regression [13, 14] that uses a penalty to ensure not
only low prediction error but also weight smoothness [6,15] for both
the breathing and stimulus filters. As in the fMRI literature, filter
smoothness was assumed to ensure that the filters may be physio-
logically possible [6], because a filter whose output varies extremely
strongly with even minuscule variations in relative input timing is
unlikely to occur naturally. This results from the correlation that
one expects to exist from one time point to another in biological
time series. The linear and time-invariant confound filter weights

are contained in the length ϖ = ε+ϑ vectorωωωj =
[
ωωω(b)↑

j ωωω(o)↑

j

]→
.

Further, we define the smoothing matrix as the squared differences
matrix D(ω)

j as

D(ω)
j =

[
ϱ(b)
j M→

b Mb 0ε↑ϑ

0ϑ↑ε ϱ(o)
j M→

o Mo

]
,

where ϱ(b)
j and ϱ(o)

j are the experimentally-determined ridge param-
eters, and Mb and Mo are the second-differences matrices to be
applied to ωωω(b)

j and ωωω(o)
j , respectively. Inspired by previous work on

learning smooth filters [6, 13, 15], we propose to learn our smooth
confounding filters via the following optimization:

ωωωj = min
ϖϖϖj↓Rω

1
N

↑yj ↓Xωωωj↑22 +ωωω→
j D

(ω)
j ωωωj .

The typical ridge penalty penalizes the magnitude of filter
weights, but the version of ridge regression we used penalizes the re-
sult of both second-differences matrices applied to the filter weights,
ensuring filter smoothness in both the breathing and stimulus filters.
The well-known analytical solution to the ridge regression problem
was used to solve for the filter weights [6, 15]:

ωωωj =
(
X→X+ND(ω)

j

)↔1
X→Y.

In order to perform ridge regression, the ridge parameters ϱ(b)
j

and ϱ(o)
j must be experimentally determined. Generalized cross-

validation (GCV) was used to yield both parameters because or-
dinary cross-validation would prove too computationally expensive
[16]. Both parameters were selected from a range of 7 exponentially
spaced powers of 10, ranging from 100 to 106 inclusive, to balance
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Fig. 2: Generation of simulated data through convolution of breathing and
stimulus time series with simulated linear and time-invariant filters.

computational complexity with a wide range of parameter magni-
tudes. The GCV process is performed collectively for both ridge
parameters in minimizing the mean squared error since we are si-
multaneously using breathing and odorant time series data. In other
words, the overall process selects optimal parameters ϱ(b)

j and ϱ(o)
j

and filter weights ωωω(b)
j and ωωω(o)

j for both breathing and odorant re-
sponses simultaneously.

3.3. Inferring Connectivity

Finally, we inferred functional connectivity using two commonly
employed approaches to assess functional brain connectivity [17]:
correlation and partial correlation. Specifically, we used the Pearson
correlation coefficient to calculate the degree of correlation between
the residual signals of pairs of glomeruli, ru and rv , for each possi-
ble pairing {u, v}. We additionally used the partial correlation [18]
to capture the conditional correlation between pairs of glomeruli.

4. RESULTS

In vivo respiratory data from mice were recorded to validate the
methods outlined in Section III. Substantial extraneous influences
(i.e. breathing and odorant stimulus responses) were successfully
removed with the proposed method to reveal underlying glomerular
functional connectivity.

The model was first validated using simulated data only. As
shown in Figure 2, the breathing and stimulus data were convolved
with the corresponding simulated breathing ωωω(b)

j and stimulus ωωω(o)
j

filters and ultimately combined to create the simulated time series.
The model was then applied to this data to derive breathing and
stimulus filters, which were found to accurately represent the filter
weights.

As part of the validation process for the filter determination
method, the effectiveness of the learned filter weights was compared

Fig. 3: Derived glomerulus-specific breathing and stimulus filters for real
data for the 10 observed glomeruli. Filters have been displayed on the
same plot to allow comparison of glomerular responses to breathing and
introduction of stimulus.

to different filter weights produced by arbitrary ϱ values rather than
ϱ values selected by GCV. It was demonstrated that the learned
weights accurately represented the true data values, whereas the
arbitrary weights failed to do so.

Following the successful validation using simulated data, the
method was applied to the real stimulus data. The analysis, as ex-
pected, revealed the identification of stimulus filters that demon-
strated a decrease in influence over time as illustrated in Figure 3.
The stimulus filters were designed to begin at the first intake of
breath following the introduction of the stimulus, leading to a more
pronounced impact on the data than that of the breathing filters. The
breathing filters in this instance appear less informative, which is
expected because stimulus activity appears to dominate recordings
when odorants are introduced. Furthermore, because both breathing
and stimulus filters are constrained to be time-invariant, changes in
the breathing response over time may be passed to the stimulus filter.
As seen from Figure 4, the residual waveforms, which have been ad-
justed from the original recordings for both breathing and stimulus
effects, can now be examined.

Fig. 4: Time series before and after removal of activity due to external
causes. The absence of periodic and drastic increases in activity due to
stimulus presentation is clear, while removal of breathing related response
is not as obvious.

The waveform data was analyzed to infer glomerular connectiv-
ity using the Pearson correlation coefficient. The initial correlation
plot in Figure 5 showed nearly uniformly strong pairwise correla-
tions between glomeruli which lacked informative features due to
commonality among glomeruli in terms of breathing and stimulus
responses. Furthermore, inhibitive correlations between glomeruli
were extremely uncommon. However, after adjusting for both
breathing and stimulus response, the final plot (Fig. 5) revealed a
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Fig. 5: Correlations between glomeruli at various stages of removal of stim-
ulus and breathing related activity using the Pearson correlation coefficient.
Some correlations become negative after removal of stimulus related activ-
ity possibly due to lateral inhibition between glomeruli.

notable increase in variation in correlation. This adjustment also
unveiled negative correlations that were not initially apparent, in-
dicating the potential influence of lateral inhibition [19] between
glomeruli that was hidden by the noise of general stimulus-related
activity.

The same process was performed using partial correlation (Fig.
6). As with the Pearson correlation, we often see decreases in corre-
lation magnitude using partial correlation. However, also observable
are changes in correlation sign again indicating that our decomposi-
tion is able to reveal connections that even partial correlation, when
adjusting for the influence of common components found in other
glomeruli, is not able to reveal. This contrast serves to demonstrate
the effectiveness of the method in extracting meaningful relation-
ships and underlying patterns from complex data, making it a pow-
erful tool for further analysis and exploration.

Finally, we performed a brief analysis on the potential existence
of a spatial relationship for connectivity between glomeruli (Fig. 7).
We find that our breathing and stimulus adjusted partial correlation
reveals stronger functional connections between a subset of spatially
closer glomeruli. This is consistent with the previous findings of
neurons in the visual cortex [20] and reveals important findings about
the neural circuitry in the olfactory bulb. These preliminary findings
can be more robustly tested over a larger set of glomeruli distributed
over a greater area of the olfactory bulb to confirm our findings and
reveal further relationships.

5. FINAL REMARKS

This method could be applied to a broad variety of problems that
require isolation of the effects of external factors in order to study
latent relationships hidden in the data. Further research could fo-
cus on comparing the efficacy of the proposed method to an unsu-
pervised method such as functional principal components analysis
(FPCA), which may provide a greater understanding of the bene-
fits and drawbacks of relying on external data (such as stimulus or
breathing data) to decouple the corresponding signals. The use of
time-varying filters may also prove more effective in modeling the
relationship between confounds and observed activity.

In addition to the work done in this manuscript centered on learn-

Fig. 6: Partial correlations between glomeruli at various stages of removal
of stimulus and breathing related activity.

Fig. 7: Relationships between interglomerular distance and connection
strength after removal of stimulus and breathing-related activity. Nodes
indicate the approximate center of glomeruli in the calcium images taken
of the olfactory bulb. Edges vary in color according to correlation coeffi-
cient, and edge widths vary according to correlation coefficient magnitude.

ing filters, future work could focus on better understanding how the
brain distinguishes between odors, especially those that are similar.
This could help determine whether the lateral inhibition suggested
by the negative correlations is indeed responsible for enabling finer
differentiation between similar scents [19]. One possible avenue for
this research could be investigating how removing the largest princi-
pal components of the data affects the calculated connectivity. Ad-
ditionally, applying this model to data including a large set of stim-
uli could help reveal correlations between glomeruli that would be
missed when using a single odorant.
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