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ABSTRACT

In this work, we consider methods for large-scale and nonconvex
unconstrained optimization. We propose a new trust-region method
whose subproblem is defined using a so-called ‘shape-changing’
norm together with densely-initialized multipoint symmetric secant
(MSS) matrices to approximate the Hessian. Shape-changing norms
and dense initializations have been successfully used in the context
of traditional quasi-Newton methods, but have yet to be explored
in the case of MSS methods. Numerical results suggest that trust-
region methods that use densely-initialized MSS matrices together
with shape-changing norms outperform MSS with other trust-region
methods.
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1. Introduction

In this paper, we propose a new solver for general large nonconvex problems of the
following form:
min f(x), (1)

where x € 0" and f is continuously differentiable. Generally speaking, solvers for uncon-
strained optimization fall into three categories: Line search (see, e.g. [21,26], trust-region
methods [15,31], and cubic regularization methods [14,25]. While traditional line search
methods that use local quadratic models require each of these models are convex, trust-
region methods are able to approximate nonconvexity in the underlying function using
nonconvex quadratic models. In this work, we focus on trust-region methods with
possibly-indefinite Hessian approximations.

Trust-region methods generate a sequence of iterates {xi} by solving at each iteration a
trust-region subproblem:

1
min Q(s) = ngs + ESTBks subject to ||s]| <6, (2)

seN”

where g = Vf(xx) and By &~ V2f(xi). Given xi, the next iterate is then computed as
Xk+1 = Xk + Sk, where sx is an approximate solution to (2). The choice of norm in (2)
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affects the difficulty to solve the trust-region subproblem. In this manuscript, we consider
two shape-changing [7] norms to define the trust region. By using one of the norms, the
trust-region subproblem decouples into two subproblems, each with closed-form solu-
tions. Meanwhile, the other shape-changing norm allows for a similar decoupling into
two subproblems, one with a closed-form solution and the other that is a low-dimensional
trust-region subproblem that is easily solved.

In large-scale optimization, it can be the case that the Hessian of the objective func-
tion is either too computationally expensive to compute or store. In these cases, first-order
methods such as steepest descent and quasi-Newton methods may give the fastest conver-
gence. Multipoint symmetric secant (MSS) methods can be thought of as generalizations
of quasi-Newton methods in that they attempt to enforce multiple secant conditions at one
time. As with quasi-Newton methods, MSS methods generate a sequence of matrices {By}
to approximate the Hessian of f at xi using a sequence of low-rank updates. Specifically,
at each iteration, By is updated using a recursion relation where By, = By + Uy, and Uk
is a low-rank update (e.g.rank(Uy) < 2). However, these methods must be user-initiated
by selecting an initial By. Conventionally, the initial matrix for limited-memory quasi-
Newton matrices is chosen to be a scalar multiple of the identity, e.g. By = yiI, yx € N.
This choice leads to minimal storage requirements; only y, must be stored in addition to
the quasi-Newton pairs. More recently, dense initializations have been proposed that are
also low-memory initializations in which only two constants must be stored in addition
to the usual quasi-Newton pairs [3,19]. These dense initializations implicitly decompose
M™ into two orthogonal subspaces (where one subspace corresponds to the span of the
eigenvectors that have already been computed and the other corresponding to its orthog-
onal complement), assigning a parameter to each subspace. The dense initialization can
be viewed as a generalization of the traditional initialization, i.e. the scalar multiple of the
identity. With a judicious choice of parameters the dense initialization has been shown to
outperform the traditional initialization [3,19]. In this paper, we consider the same splitting
of R" in a shape-changing trust-region setting.

In this manuscript, we propose a densely-initialized MSS method that relies on a new
compact formulation of MSS matrices. This new compact formulation allows for a more
computationally efficient solution to trust-region subproblems for solving large nonconvex
problems of the form (1). The motivation for this research comes from three differ-
ent recent papers on first-order methods for solving general nonconvex unconstrained
optimization problems where (1) a limited-memory symmetric rank-one (L-SR1) quasi-
Newton trust-region method with a shape-changing norm was found to be competitive
with other standard trust-region methods [4], (2) a limited-memory Broyden-Fletcher-
Goldfab-Shanno (L-BFGS) method with a dense initialization together with a shape-
changing trust-region method outperformed other L-BFGS trust-region methods [3] and
(3) a MSS trust-region method that uses the Euclidean norm to define the trust region
together with a dense initialization outperformed both conventional initalizations and
other standard quasi-Newton trust-region methods [19].

This paper is organized in five sections. Background on MSS matrices, shape-changing
norms, and the dense initialization is given in Section 2. In Section 3, we present the contri-
butions of this research; namely, we propose densely-initialized MSS trust-region methods
that use the shape-changing norms. Numerical results on the CUTEst test set are presented
in Section 4 comparing the proposed method to other quasi-Newton methods. Finally,
concluding remarks are in Section 5.
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1.1. Notation and glossary

Throughout this paper, capital letters denote matrices and lower-case letter are reserved
for vectors. Moreover, vectors with an asterisk denote optimal solutions. The symbol e;
denotes the ith canonical basis vector whose dimension depends on context. Finally, ‘sgn’
denotes the signum function.

1.2. Dedication

We dedicate this paper to Oleg P. Burdakov. The work presented here synthesizes three of
Oleg’s many areas of research: shape-changing norms [4,6,7], dense initalizations of quasi-
Newton methods [3], and MSS and secant methods [8-10,12]. This manuscript is written
in his memory. Nostrovia, Oleg!

2. Background

In this section, we review MSS matrices, including a recursion relation and compact
formulation, and the shape-changing norm.

2.1. MSS matrices

MSS matrices are generated similarly to traditional quasi-Newton matrices: A sequence
of matrices {By} is recursively formed using a sequence of low-rank updates. Specifically,
if {xx} is a sequence of updates obtained to solve (1), then define sy = xx4; — x; and
Yk = Vf(xk+1) — f(xx). The pairs {(si, yx)} are often referred to as quasi-Newton pairs. In
methods for large-scale optimization, limited-memory versions of these methods are used
that store only the most recently-computed m pairs; m is typically referred to as the ‘mem-
ory” of the method. In practice, m < n, e.g. m € [3,7] (see, e.g. [13]). In this work, we
assume a limited-memory framework where m is small; further, we let I denote the current
number of stored pairs.

Let the matrices Sk and Yy denote the matrices whose columns are formed by the stored
quasi-Newton pairs:

anxl

Sk=[sk-1 Sk—z - Sk—t) €W and  Yi= o1 ykz ... pl € R (3)

where | < m. While quasi-Newton matrices must satisfy the so-called secant condition
Bit15k = Yk, MSS matrices seek to satisfy multiple secant conditions: BxSx = Yj. Gener-
ally speaking, it is impossible to satisfy the secant conditions and also require By to be
symmetric [30]. (This can be seen by multiplying the multiple secant equations by S[ on
the left and noticing that while S,{BkSk is symmetric whenever By = B,Z, it is not generally
true that S{Yk will be symmetric [30].)

In [8,11,12], Burdakov proposes relaxing the secant conditions by symmetrizing the
product S,{ Y} using the following symmetrization:

Ajjy 12

sym(4) = {Aﬁ i<j.
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With this symmetrization, SEBkSk = sym(S,f Yy) and yields the following recursion rela-
tion for By:

(k — Brs)ei + ek — Brsi) T Ok — Bisi) Tskeref

Biy1 = Br +
s{ck (slfck)2

; (4)

where ¢ € R" is any vector such that c,{s,- =0 for all 0 <i < k and c[sk #0 [2,8].
Notice that this is a rank-two update; in practice, this update can generate indefinite
approximations to the Hessian. More generally, the recursion relation (4), without the
orthogonality conditions on ¢, is not new in the literature: When ¢, = s, the update is the
Powell-symmetric-Broyden (PSB), and ¢k = yx yields the Davidon-Fletcher-Powell (DFP)
update.
Given any initial By, the general compact formulation for MSS matrices is By = By +
U MWL, where
WS (Yi—BoSp] and M 2 [W(s'f BoSi = (T + B+ T )W VOV] G
where W = (S{Sk)_l, Ty is the strict upper triangular portion of S,? Y, and Ey is the diag-
onal of S,? Y [2]. The compact formulation requires that S has full rank. One way this can
be accomplished is using a rank-revealing decomposition and then removing columns of
Sk that are linearly dependent. In [19], the LDLT decomposition of S{Sk is used to find lin-
ear dependence. In this case, if a column of Sy is removed then the corresponding column
of Y must also be removed in order for My to be well-defined. See [19] for a full discussion.

2.2. The spectral decomposition
Consider the compact formulation of B, with (5):
By = By + WkMng,

where ¥ € Rnx2l M € M2%2 and 1 is the number of stored quasi-Newton pairs. Then,
given the so-called ‘thin’ QR factorization of Wy, namely ¥, = QR, we obtain the following
expression for By:

By = By + QRMRTQT, (6)

where Q € %" R € R2*2 and RMRT € %2%2! Because of its small size, the spectral
decomposition of RMR” is computable. Suppose UAUT is the spectral decomposition
of RMiRT with A = diag{):l, ..., Ay}, and By = yil is the conventional one-parameter
initialization. Then, By can be written as By = PAPT, where
P=[QU (QU)'] and A= [A+V’<I 0 ]
0 il

While the above derivation is found in [3-6,18], in practice, the factorization may also be
accomplished using the LDLT factorization [3,4,6,19]. (For more details on this spectral
decomposition of By see [3,4,6,19].) For simplicity, we define

Py=QU and P, =(QU)%, 7)

and make use of these definitions throughout the duration of the manuscript.



OPTIMIZATION METHODS & SOFTWARE . 5

In order to solve the trust-region subproblem at each iteration, it will be necessary to be
able to implicitly perform matrix-vector products with Pj. It is possible to form P without
storing Q. To see this, note that

Py =QU = Y R'U. (8)

In order for R to be invertible, W} must have full rank. Similar to [3,4,6,19], we propose
using the LDLT decomposition to identify columns of Wy that are linearly dependent. For
a full discussion on ensuring both Sx and Wy have linearly independent columns, see [19].

2.3. Shape-changing norms

Trust-region subproblems have the form of (2), but any norm may be used in the constraint
that defines the trust region. The most commonly-chosen norm is the Euclidean norm;
other popular choices found in the literature are the one-norm and infinity-norm. One
important advantage in using the Euclidean norm to define the trust region is that there
are optimality conditions that characterize a global solution [20,24]:

Theorem 2.1: The vector s* € R" is a global solution of
. T 1 ¢ .
m&\n Q(s) =g s+ 55 Bs subject to ||s]|2 < 6, (9)
seR”

if and only if ||s*|2 < & and there exists a unique ¢* > 0 such that B+ o*I is positive
semidefinite and

(B+0o*Ds*=—g and o*( — |s*|2) = 0. (10)

So-called ‘exact’ subproblems solvers aim to explicitly find a pair (s*,0*) that satis-
fies (10) in order to solve each subproblem to high accuracy [5,6,17,24]. While convergence
proofs of the overall trust-region method only require an approximate solution of each
subproblem [27-29], these ‘exact’ solvers bet on that solving each subproblem to high
precision will lead to fewer overall iterations of the trust-region method.

The ‘shape-changing’ norms were first defined by Burdakov and Yuan [7]. These shape-
changing norms make use of the matrix of eigenvectors Py and P (see 7), and thus, the
size and shape of the trust-region change every iteration:

Isllpoo = max(|| P slloo, IP]sl2) (11)

Isllp2 = max(|| P sll2, [|P] sll2). (12)

For simplicity, we refer to (11) as the (P, 00) norm, and (12) as the (P, 2) norm.

In [6], Burdakov et al. show that these norms are equivalent to the Euclidean norm and
the equivalence factors are independent of P. Importantly, these norms allow each sub-
problem to be decomposed into two small subproblems, each of which are either easy to
solve or have a closed-form solution. These norms have been successfully used in L-BFGS
and L-SR1 trust-region settings [4,6]. For more details on these norms, see [6,7]. Imple-
mentation details for solving trust-region subproblems defined using the shape-changing
norm are presented in Section 3.2.
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2.4. The dense initialization

The conventional initialization for a quasi-Newton method is a constant diagonal initializa-
tion, i.e. By = ykI, yx € N. This initialization performs well in practice and enjoys ease of
use with no additional memory requirements other than storing a scalar—for these reasons
itis the most popular initialization. Other low-memory initializations include nonconstant
diagonal matrices. Until the dense initalization was first proposed for L-BFGS matrices,
low-memory intializations were limited to diagonal matrices.

The dense initialization exploits the partitioning of %" into two subspaces: (i) the
eigenspace associated with the eigenvalues

A +Vka--.,5»21+1/k,

and (ii) the eigenspace associated with the eigenvalue yy, assuming that RMR” is nonsin-
gular. Specifically, note that

Bo = vl = kPP" = yP|P| + yPLP].
In lieu of using one parameter for both spaces, the dense initalization uses two:
By = &xPyP + ¢ P, PT, (13)
where i, ¢ kC € M. For the duration of the paper, By will denote a dense initial matrix. Using

the dense initialization, the compact formulation becomes By = PAPT, where

(14)

P=[QU (QU)'] and A:[AHIJ 0}

0 (eI
3. Implementation

In this section, we demonstrate how the dense initialization for an MSS method can be
used in a shape-changing norm. This section presents the contributions of this research.

3.1. Asecond compact formulation

The spectral decomposition By = PAPT where P and A are given by (14) relies only on
the existence of a compact formulation for Bg. In this subsection, we derive an alternative
compact formulation for By in the case of a dense initialization that is compatible with the
derivation of the spectral decomposition in Section 2.2.

Consider the compact formulation for the dense initialization:

By = By + WM w[,

where Wy and My, are given in (5). The following lemma appears in [19] and allows us to
define an alternative compact formulation in Theorem 3.2:

Lemma 3.1: Suppose By is as in (13). Then, BoSk = (xS

Proof: See [19, Corollary 3.4]. |
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Theorem 3.2: Suppose By is as in (13) and Sy, is full rank, then By can be written as
By = By + \IJkMk\IJIZ,
where

B _ _ T
Go— (8 V] and Mk=[ oW — W(Tk + Ex+ T )W W], (15)

w 0

and W = (SZSk)’l, Ty is the strict upper triangular portion ofSZYk, and Ey is the diagonal
of SI Yx.

Proof: Consider the compact formulation where Wy and M are given by (5) together with
the dense initialization:

By = By + WM,

where

5 T5 _ T
W= S (Ye— BoS] and My — [W(SkBOSk (T + Ex + T)YW Wi|.

w 0

By Lemma 3.1, Wy = [Sx (Yx — {kSk)] and My, can be simplified as follows:

Mo — [W(széosk—<Tk+Ek+T,Z)>W W}
k= w 0

(oW —W(Tk+Ec+ THhw W
- w 0l

Putting this together yields that \IkoklIJkT can be written as
W — W(Tx + Ex + THW W:||: ST }

UM =[S Vi — oS | K k k
MW =[Sk Yy é“kk][ W 0 || vy — 080T

= —OSKWS{ — SkW(Tk + Ex + THWS{ + ScWY! + Y WS;

_ —gW — W(Tx + Ex+THW W [sF
=[Sk Yil [ W k 0] [ka]'

k
Thus, By = By + \ilk]\A/Ik\iJZ , where Uy and M, are given by (15), respectively. |

It is the case that the compact formulation given in Theorem 3.2 is the compact for-
mulation Burdakov in [12] derived for the case of the conventional initialization By = I,
vk € N; however, his method of derivation required a single-parameter initialization.

There are several benefits of using the compact formulation given in Theorem 3.2 over
the compact formulation defined by (5). Namely, W can be formed without any compu-
tations; whereas (5) requires scalar multiplication with ¢ and n subtractions. Moreover,
more importantly, whenever a new ¢ is computed Wy in (5) must be recomputed, possibly
from scratch; however, in (15), ¢ is not needed to form U It is for these reasons that the
proposed method uses this second alternative compact formulation.
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We note further that By in (15) can also be represented by

_ o )
Ty = [SW Y] and Mk:[ G = (T B+ 1)) é]

Since W1 = S,?Sk, M, can be formed without inverting a small matrix. In order to keep
computational cost low, it is not necessary to form the product Sy W. Instead, when a
product with an arbitrary vector p and Wy is needed, one can compute this using only

. = WSt . . .
matrix-vector products as follows: \.ka p= (YFD ) :| We make this representation avail-
k

able as an additional option for an L-MSS method; however, our numerical experiments
favoured the results with (15). For this reason, we assume the representation (15) for the
duration of the paper.

3.2. Solving the trust-region subproblem

In this section, we demonstrate how to solve the trust-region subproblem defined by a
shape-changing norm, where an MSS matrix is used to approximate the Hessian at each
iterate. We generally follow the presentations in [4,6], altering the presentation to allow for
a dense initialization.

3.2.1. The (P, o0) shape-changing norm
In this section, we consider a trust-region subproblem whose constraint is defined by the
(P, 00) norm:

1
min Q(s) = ngs + ESTBks subject to ||s||pco < 6, (16)

SERN -

Consider v = PTs where P = [P P, ] as in Section 2.2. Applying this change of variables
by substituting in Py for s in (16) yields the following quadratic function:

Q(PY) = gl (Pv) + 2 (Pv)T Bi(P). (17)
Letting
vi=Pfs, vi=Pls, g=Pjg g =Plg
then (17) simplifies as follows:
Q(PY) = gl (Pv) + 20T Av
=gV +glvi + 3[ (A + vy + ¢ NIve3). (18)

Notice that (18) is separable, and thus, (16) can be decoupled into two trust-region
subproblems:

1 o on
n;{)gﬂn ) =g v + E(VK(A + &lop)vy)  subjectto [[vllec <8, (19)
V” .

) 1 )
min g1 (vi) =glvi + ¢ lvi |3 subjectto||vy2 < 8. (20)
v, efn=2 2



OPTIMIZATION METHODS & SOFTWARE . 9

Both of these subproblems have closed-form solutions. In particular, the closed-form
solution to (19) is given by [4,6]:

_lali if ‘—[gl]i <drand A; > 0,
Aj Aj
c if[g||]i=0andki=0,
vili = | —sgn([g)])8x if[g]i # 0and A; =0,
46 if [g“]i =0and A; <0,
Ok
- ];  otherwise,
|Lgnlil gl
where A; = A; + Crfori=1,...,2land ¢ € [—&k, 8x]. The closed form solution to (20) is
1
o8t if ¢ > 0and g1 2 < 8kl¢ |
k
Vi = (Sku(S if ¢ < 0and g ll =0
k .
— | otherwise,
lgel®

where u € %" 2! is a unit vector with respect to the two-norm [4,6]. Notice that V% II2 is
at times inversely-proportional to g“kc when {kc is positive; in other words, a very large and
positive ;‘kc results in a small 8 = 1/ when ||g] ||2 is not too relatively large.

Having obtained optimal v} and v, s* can be recovered using the relationship Pv = s

and noting that P J_P_’IL =(U- P||Pf) to give

3
s=p|'l
v

=P”VT|< +PJ_Vj_. (21)
T,
To compute P Lv"j_, we use the same strategy as in [4]; that is, picking u to be u = ”}I:T;:’”,
1 €ill2
where i is the first index such that ||PJT_ei|| # 0, then
st = P|| (VW — PEW*) + W*, (22)
where
1 .
~ ek if ¢ > 0and llg[l2 < 8kl¢C]
k
(Sk e
wh=1 ———e if{ <Oand|gill2=0
|1P eill2
)
— K g otherwise.
llgL Il

Note that the quantities || g ||> and ||PJT_ ei||2 can be computed using following relationships:

gLl + llgill3 =llgl3 and [IPTeill3 + [IPfell3 = 1.

Thus, the solution s* for the (P, 00) trust-region subproblem can be computed using only
Py via (8).
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3.2.2. The (P, 2) shape-changing norm
In this section, we consider a trust-region subproblem whose constraint is defined by the
(P, 2) norm:

1
min Q(s) = ngs + ESTBks subject to ||s||p2 < 6, (23)

senn
Different from the (P, c0)-norm, the subproblem does not have a closed-form solution;
however, it can be decoupled into two subproblems-one that has a closed-form solution
and one that is a low-dimensional two-norm subproblem that is easily solved. To see this,
consider the same approach as in the (P, 00)-norm case. Applying the same change of
variables v = PT’s, yields (18) as before. The problem is separable and decouples into the
following trust-region subproblems:

1 ,\
min g (v)) = g”Tv” + E(VK(A + ¢kl vy)  subjectto |lvyll2 < 6, (24)

vjeR?

min qu(v1) =glvi + SeCIvi I3 subjectto vy < 5. 25)
vy egn—2 2

Since (25) is identical to (20), its closed-form solution is given in Section 3.2.1. Subprob-
lem (24) is a low-dimensional problem since [ is typically chosen to be a small number
(e.g. less than 10). Moreover, Vg (v)) is a diagonal matrix. For this reason, any standard
subproblem solver (including direct methods) may be used to solve this subproblem (e.g.
see [15] for possible methods). However, in this work, we propose using the method found
in [5].

The OBS method found in [5] is an ‘exact’ subproblem solver when L-SR1 matrices
are used as the approximate Hessian. The method computes solutions to satisfy optimality
conditions given in Theorem 2.1 by exploiting the compact formulation of L-SR1 matrices.
For this work, we use a modified version of the OBS method that makes use of the compact
formulation for MSS matrices. Specifically, given an MSS matrix and its compact formula-
tion (Section 3.1), the partial spectral decomposition By = PAPT can be computed as in
Section 14, where

P=[QU (QU)] and A:[A+§kl 0]

0 I

The optimality conditions given by Theorem 2.1 for the (P, 2) subproblem are as follows:

A+ ©@* + DV} = g, (26)
a*(IVill2—8) =0 (27)
vyl < 8, (28)

o* >0, (29)

Ai+ (@ +8) =0 forl<i<2l (30)

Let ):21 denote the smallest entry in A. A solution of (26)-(30) can be computed by consid-
ering three general cases that depend on the sign of A; 4 &x. Details for each case is given
in [4,5].
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Having obtained v and v}, the solution to the (P, 2)-norm shape-changing subproblem
is computed using (22). As with the (P, 00)-norm case, matrix-vector products with P do
not require forming P|| explicitly; instead, we use the factored form in (8).

4, Numerical results

In this section, we report results of various experiments using the limited-memory
MSS method (L-MSSM) and other limited-memory quasi-Newton methods. For these
results, we used 60 problems from the CUTEst test set [22] with n > 1000. Specifi-
cally, all problems with the classification ‘OUR2’ with n > 1000 were chosen,! which
includes all problems with an objective function that is nonconstant, nonlinear, non-
quadratic, and not the sum of squares. The 60 problems were: ARWHEAD, BOX,
BOXPOWER, BROYDN7D, COSINE, CRAGGLVY, CURLY10, CURLY20, CURLY30,
DIXMAANA, DIXMAANB, DIXMAANC, DIXMAAND, DIXMAANE, DIXMAANE
DIXMAANG, DIXMAANH, DIXMAANI, DIXMAAN], DIXMAANK, DIXMAANL,
DIXMAANM, DIXMAANN, DIXMAANO, DIXMAANP, DQRTIC, EDENSCH, EG2,
ENGVALL, FLETBV3M, FLETCBV2, FLETCBV3, FLETCHBYV, FLETCHCR, FMIN-
SRF2, FMINSURE, GENHUMPS, INDEF, INDEFM, JIMACK, NCB20, NCB20B, NON-
CVXU2, NONCVXUN, NONDQUAR, POWELLSG, POWER, QUARTC, SCHMVETT,
SCOSINE, SCURLY10, SCURLY20, SCURLY30, SENSORS, SINQUAD, SPARSINE,
SPARSQUR, SSCOSINE, TOINTGSS, and VAREIGVL.

In our comparisons we use the following five algorithms to solve the trust-region
subproblems with various choices for the approximate Hessian:

Abbreviation Description

SC-INF the (P, 00)-norm subproblem solver with By = yxI

SC-INEF-D the (P, 00)-norm subproblem solver with a dense initialization
SC-1.2 the (P, 2)-norm subproblem solver with By = ;I

SC-L2-D the (P, 2)-norm subproblem solver with a dense initialization
trCG truncated CG [15, Algorithm 7.5.1]

For these experiments, trCG was implemented in MATLAB by the authors. The L-
MSS shape-changing subproblem solvers were implemented in an algorithm similar to [4,
Algorithm 5]. A feature of this algorithm is that the L-MSS matrix is updated by every
pair {(s;, yi)}f.‘:k_ 1 as long as the s; are linearly independent (updates are skipped if this
condition is not met). In the case of an MSS L2 method, previous numerical results found
that m = 3 outperformed larger memory choices of m = 5 and m = 7 [5,19]. Our own
experiments for this paper confirmed these results. For this reason, m = 3 is used for all
experiments with MSS matrices.

Comparisons on the test set are made using extended performance profiles as in [23].
These profiles are an extension of the well-known profiles of Dolan and Moré [16]. We
compare total computational time (and function calls) for each solver on the test set of
problems. The performance metric p5(7) with a given number of test problems 7, is

ps(t) = card{p:mps < t}/np, and mps= tp,s/ min t,;,
1<i<S,i#s
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where t, is the ‘output’ (i.e. time) of ‘solver’ s on problem p. Here S denotes the total num-
ber of solvers for a given comparison. This metric measures the proportion of how close
a given solver is to the best result. The extended performance profiles are the same as the
classical ones for t > 1. (In the profiles we include a dashed vertical grey line, to indicate
7 = 1.) The solvers are compared on 60 large-scale CUTEst problems. We consider (1)
to be solved when || Vf(xx)|loo < & with & = 5.0 x 107, In all the performance profiles,
ps(7) < 1, which indicates that no solver was able to solve all the problems in the test set;
however, the value of p;(7) at T = 32 indicates the percentage of problems solved in the
test set.
For the single-parameter initialization, we use the representation By = yxI, where

T,,.
Yk = max )% > (31)
k—1<i<k—q Vi Si

and q is the number of stored iterates used to compute yj. This initialization is based on
work in [4] that showed that this initialization and the value of ¢ = 5 works well for single-
parameter initializations using SC-INF, SC-L2, L2, and trCG in the case of limited-memory
Symmetric Rank-1 (L-SR1) Hessian approximations. For the dense initialization,

T, T
{r = max y—’Tyl and gkc = }’_kT)/ k,
k=1<i<k—q | y; si Yk Sk

with g = 5, i.e. {x was chosen to be the single-parameter initialization and ;kc was cho-
sen to be the well-known initialization for quasi-Newton methods [1]. In [19], a variation
of this initialization was found to outperform other choices for ¢ and ;kc in the case of
MSS matrices. Note that g is the number of of stored updates to form the initialization
parameters and not the ‘memory’ given by m, i.e. the number of stored updates to form By.

4.1. Initialization experiments

In this section, we compare the performance of the dense initialization with the single
parameter initialization using the two shape-changing norms for the trust-region sub-
problems. In this set of experiments, only L-MSSM matrices were used to approximate
the Hessian, and a maximum of 5000 iterations were allowed. We begin with the following
two experiments:

e Experiment I.A: Comparison between the single parameter initialization (L-MSSM-SC-
L2) with the dense initialization (L-MSSM-SC-L2-D) using the shape-changing (P, 2)
norm.

e Experiment I.B: Comparison between the single parameter initialization (L-MSSM-
SC-INF) with the dense initialization (L-MSSM-SC-INF-D) using the shape-changing
(P, 00) norm.

Figure 1 shows that L-MSSM-SC-L2 outperforms L-MSSM-SC-L2-D in computational
time, while Figure 2 shows that L-MSSM-SC-INF-D outperforms L-MSSM-SC-INF in
both computational time and function calls. These results lead us to the following third
experiment, which compares the better method from the previous two experiments:
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Time Function Calls

L-MSSM:SC-L2-D K L-MSSM:SC-L2-D
L-MSSM:SC-L2 J L-MSSM:SC-L2

Figure 1. Experiment |.A. Comparison on time and function calls with the shape-changing (P, 2) solver.

Time Function Calls

L-MSSM:SC-INF-D
voevenes LMSSM:SC-INF

Figure 2. Experiment|.B. Comparison on time and function calls with the shape-changing (P, co) solver.

e Experiment I.C: Comparison between the single parameter initialization solver using
the shape-changing (P, 2) norm (L-MSSM-SC-L2) with the dense initialization solver
using the shape-changing (P, 00) norm (L-MSSM-SC-INF-D).

Figure 3 reports the results of Experiment I.C, where L-MSSM-SC-INF-D appears to
do better on the test set in terms of time and function evaluations. Moreover, this method
solves more problems on the test set than L-MSSM-SC-L2.

4.2. Subproblem solvers

In this section, we present Experiment II, which compares the best performing solver
from Experiment I (L-MSSM-SC-INF-D) to truncated CG (trCG). To compare these
approaches as trust-region subproblem solvers, only L-MSSM approximations of the Hes-
sian are used to approximate the Hessian for both methods. The maximum number of
allowed iterations in this experiment was 5000. The results of this experiment are pre-
sented in Figure 4. In terms of time, L-MSSM-SC-INF-D outperforms trCG. This may be
due to the fact that CG is an iterative method; in contrast, the (P, c0)-norm solver analyt-
ically computes the solution. In terms of function evaluations, at T = 1, the (P, 00)-solver
outperforms trCG-indicating that on any given problem in the subset, the (P, 00)-solver
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Time Function Calls

L-MSSM:SC-INF-D ra L-MSSM:SC-INF-D
-------- L-MSSM:SC-L2 pre sevneen LMSSM:SCL2

Figure 3. Experiment .C. Comparison on time and function calls with the the shape-changing (P, o)
solver with the dense initialization and the (P, 2) solver with the single-parameter initialization.

Time Function Calls

L-MSSM:SC-INF-D H L-MSSM:SC-INF-D
— =« L-MSSM:trCG :

Figure 4. Experiment Il. Comparison of (P, co) with the dense initialization to trCG subproblem solvers
with L-MSSM matrices.

will require fewer function evaluations most of the time. However, over the entire test set,
trCG performs slightly better in terms of function evaluations.

4.3. L-SR1 comparison

In this section, we compare the performance of the shape-changing norms using L-SR1 and
L-MSSM approximations for the Hessian. For these experiments, the maximum number
of iterations is 50, 000. The memory parameters for L-SR1 were chosen based on results in
[4], where m = 5 (the quasi-Newton method memory parameter) and g = 7 (the number
of stored iterates used to compute By = y,I) appear to be the best combination. We present
four experiments.

e Experiment III.A: Comparison between solvers using L-SR1 matrices with the single
parameter initialization with L-MSSM matrices with the single parameter initialization
using the shape-changing (P, 2) norm.
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Figure 5. Experiment Ill.LA: Comparison between L-SR1 and L-MSSM matrices using the single-
parameter initialization with the shape-changing (P, 2) norm.
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Figure 6. Experiment II1.B: Comparison between L-SR1 and L-MSSM matrices using the dense initializa-
tion with the shape-changing (P, 2) norm.

e Experiment III.B: Comparison between solvers using L-SR1 matrices with the single
parameter initialization with L-MSSM matrices with the dense parameter initialization
using the shape-changing (P,2) norm.

e Experiment III.C: Comparison between solvers using L-SR1 matrices with the single
parameter initialization with L-MSSM matrices with the single parameter initialization
using the shape-changing (P, 00) norm.

e Experiment III1.D: Comparison between solvers using L-SR1 matrices with the single
parameter initialization with L-MSSM matrices with the dense parameter initialization
using the shape-changing (P, c0) norm.

In these experiments, we used the single parameter initialization for L-SR1. For L-
MSSM, we used both the optimal memory sizes of m = 3 and g = 5 as well as the same
memory size used for L-SR1 (m = 5 and q = 7). Figures 5-8 report the results for these
four experiments. In all cases, the solvers that use the L-MSSM matrices outperform those
that use the L-SR1 matrices, both in computational time and function evaluations. In par-
ticular, based on the results of Figure 3, it is not surprising that the performance profile
comparing L-SR1 with the dense initialization L-MSSM (Figure 8) is more striking.
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Figure 7. Experiment IIl.C: Comparison between L-SR1 and L-MSSM matrices using the single-
parameter initialization with the shape-changing (P, c0) norm.
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Figure 8. Experiment Ill.D: Comparison between L-SR1 and L-MSSM matrices using the dense initializa-
tion with the shape-changing (P, co) norm.

5. Concluding remarks

In this paper, we proposed L-MSS methods that make use of the dense initialization
and two shape-changing norms. Numerical results suggest that methods using densely-
initialized MSS matrix approximations of the Hessian together with the shape-changing
norms outperform other trust-region methods. Based on the results in this paper, we sug-
gest default settings of m = 3 and g = 5 for both SC-L2 and SC-INF when using either the
dense or single-parameter initializations.

Note

1. See https://www.cuter.rl.ac.uk/Problems/mastsif.shtml for further classification information.
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