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ABSTRACT

The negative binomial model, which generalizes the Poisson
distribution model, can be found in applications involving
low-photon signal recovery, including medical imaging. Re-
cent studies have explored several regularization terms for
the negative binomial model, such as the ¢, quasi-norm
with 0 < p < 1, ¢; norm, and the total variation (TV)
quasi-seminorm for promoting sparsity in signal recovery.
These penalty terms have been shown to improve image re-
construction outcomes. In this paper, we investigate the £,
quasi-seminorm, both isotropic and anisotropic £, TV quasi-
seminorms, within the framework of the negative binomial
statistical model. This problem can be formulated as an op-
timization problem, which we solve using a gradient-based
approach. We present comparisons between the negative
binomial and Poisson statistical models using the ¢, TV
quasi-seminorm as well as common penalty terms. Our
experimental results highlight the efficacy of the proposed
method.

Index Terms— Negative binomial distribution, low-
count imaging, nonconvex optimization, ¢, total variation
quasi-seminorm.

1. INTRODUCTION

In numerous photon-limited signal processing applications,
such as medical imaging [1], astronomy [2], and network traf-
fic analysis [3], the Poisson model [4] has been widely used
for image reconstruction. However, the Poisson model as-
sumes the data has the same mean and variance [5]. The
negative binomial (NB) model is a more generalized statis-
tical distribution, to which the Poisson model reduces under
certain assumptions. The negative binomial model has been
used for low-photon signal reconstruction [6] and matrix fac-
torization [7]. Here, we explore the application of the negative
binomial model for sparse signal recovery.

The negative binomial probability mass function (PMF) is
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given by

Pulr = ("1 )a- o

where y and r represent the counts of successful and failure
events, respectively. Here, 8 denotes the failure probability.
In general, the negative binomial probability can be thought of
as the probability of observing y successful events occurring
before the r failure, where each event is an independent and
identically distributed Bernoulli trial with failure occurring
probability 5. The expectation and variance of the negative
binomial PMF, denoted by ;. and o2 respectively, are given
byu=r(l-p)/Bando® =r(l - B)/B* = pu+ p?/r [8].
Given that the negative binomial distribution does not require
identical mean and variance values. However, if we let r go
to infinity, the variance will approach the expectation, which
shows Poisson distribution is a limiting case of negative bino-
mial distribution.

For optimization methods in sparse signal recovery appli-
cation, sparsity-promoting penalties can improve reconstruc-
tion accuracy. Both the £, quasi-norm (for 0 < p < 1) and
the total variation (TV) quasi-seminorm have been evaluated
in the contexts of both the Poisson [9, 10] and negative bino-
mial models [11, 12]. The £, TV quasi-norm [13] has been
used successfully for the Poisson model [14] for signal re-
covery. This paper investigates the application of the £, TV
quasi-norm in the framework of the negative binomial model.

2. PROBLEM FORMULATION

Under the assumption of low-photon signal models, the ob-
served vector of data y can be drawn from negative binomial
distribution, which can be expressed as

y ~ NB(r, 3).

Replacing the probability /3, the observation model becomes

r
y; ~ NB (T’r+(Af*)i)'

Here, f* € R’} denotes the true signal or image, while A €
RT'™™ represents the sensing matrix that projects the scene
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Fig. 1. Example of observation model. (a) The true image f*. (b) The expected observation at the detector stage. Here, the
measurement operator A is a Gaussian blur. (c) Observed measurement y,—; drawn from a negative binomial (NB) distribution
with dispersion parameter r = 1. (d) Observed measurement ¥,.—19 drawn from a NB distribution with » = 10. (e) Observed

measurement y10p9 drawn from a NB distribution with » = 1000.

f* onto an expected measurement set y, given by Af*. We
denote the vector of noisy observation by y € R’". This leads
to the negative binomial statistical model

P =1(" ")) (i) -

i=1
See [8] for further details.

To optimize the probability of observing y in (1), we ap-
ply the maximum likelihood principle and minimize the cor-
responding negative binomial log-likelihood function, which
is given by

m
F(f) =Y (r+y:)log(r+ (Af):) — yilog((Af):). (2)
i=1
In our application of interest, the pixel intensities of the
images are piece-wise constant. Consequently, the variations
in these intensities are sparse. We exploit this inherent prop-
erty of the signal to improve the accuracy of signal recov-
ery. In particular, we investigate the use of the ¢, TV quasi-
seminorm penalty with 0 < p < 1 to promote sparsity in our
solution. The completed formulation of our problem can be
expressed as

f* = argmin  O(f) = F(f) + 7| flI'}y
fer?
subjectto 0 < f, 3)

where 7 > 0 is a regularization parameter. There are gener-
ally two choices for the TV quasi-seminorm: the anisotropic

m—1 n m n—1

1 5y = Z Z | fik — freril” + Z Z | ik — fresal?

1=1 k=1 I=1 k=1
and the isotropic
m—1n—1
G =D \/(fl,k = Jiere)?P + (fre = frwsr)?
=1 k=1
m—1 n—1
+ > fin = sl + D Uk = frnpial”-
=1 k=1

See [15] for further details.

3. ALGORITHM

The optimization problem defined in (2) can be solved via
gradient-based methods. In particular, we use the second-
order Taylor series expansion of F'(f) at the current iterate
f7 to define a sequence of quadratic sub-problems. The first
and second derivatives of F'(f) can be computed exactly:

T+ Y Yi

VR =3 (Frcam ~ i) 4™

S T+ Y Y e.oT
Z((TJF(Af)iV (Af)?> o

i=1

ViF(f)=A" A

)

where e; represents the i column of the m x m identity ma-
trix.

To reduce the computational complexity, we will apply
the Barzilai-Borwein approach [16] to avoid computing the
Hessian. Specifically, we approximate the second derivative
of F(f) with a scalar multiple of the identity matrix, i.e.,
V2F(f) ~ a;I, where a; > 0 is a scalar. In the absence
of the £, TV quasi-seminorm, the quadratic approximation is
given by

Fi(f) = F(F) + (f = F)TVF() + 2N - F13.

By defining ¢ = f7 — LVF(f7) and incorporating the
penalty term, the corresponding quadratic subproblems and
iterates can be expressed as

i+ = arg min
fern

subjectto 0 < f 4)

1 . T
_ _ AJ2 p
2||f 75+ a; ”fHTV

To deal with the ¢, TV quasi-seminorm, we take the
reweighted approach [17, 18], which allow us to transfer an
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£, TV nonconvex regularization directly to an ¢; TV convex
regularization:

m—1 n
”f”?‘/w(ﬁ) = wklfire = frowl +
=1 k=1
m n—1
Z wiklfie = fipls
=1 k=1
and
”fHI;Vﬂ =
m—1n—1
> \/('Yl,k(fl,k = fra16))? + (Wik(fie = frrs1))?
=1 k=1
m—1 n—1
+ Z ’W,n‘fl,n - fl+1,n| + Z Wm,k fm,k - fm,k+1|
=1 k=1

where the weights +; 1, and w; . are defined as
| £ J -1
T,k = |fl,k - fl+17k|(p )7
47 J -1
Wik = |fl,k - fl,k+1‘(p )a

and f7 is the output from the previous iteration j. These
weights satisfy the following approximations:

\flj;k - flj.l,-Lk; CD(fr — frarw) = (fre — frern)?

(see [17] for details). We can now apply the fast gradient
projection method [19] to solve the subproblem defined in (4).

4. EXPERIMENTS

We performed two experiments with data using various noise
levels, with dispersion parameters » = 1,10, 25, and 1000.
All experiments involved reconstructing a blurry, noisy image
(from the MATLAB Medical Imaging Toolbox) with dimen-
sions of 512 by 512 pixels. Each experiment was conducted
10 times, where the average of these trials are presented.
The objectives of the two experiments are:

1. To examine the effectiveness of the £, TV quasi-seminorm
using different values of p.

2. To evaluate and compare the performance of the Poisson
and negative binomial models when employing the ¢, TV
quasi-seminorm.

3. To benchmark the performance of £, TV quasi-seminorm,
£1 TV quasi-norm, and £, quasi-norm.

The details of each experiment are as follows:

Experiment 1: This experiment investigated the optimal so-
lutions using negative binomial model with different p values
using the ¢, TV quasi-seminorm. The test data for this ex-
periment consist of 2D images that have different noise-level
intensities, drawn from the negative binomial distribution.

Experiment 2: Here, we compared the results from using
Poisson and negative binomial models. This experiment fo-
cuses on the relative performances of multiple types of regu-
larization, including the £, TV quasi-seminorm, ¢; TV quasi-
norm, and ¢, quasi-norm. As with the first experiment, the
test data were the same 2D images with noise drawn from a
negative binomial distribution.

For the negative binomial models, several methods exist
for estimating the parameter r, such as method-of-moment
[20] and the maximum quasi-likelihood methods [21]. Ad-
ditionally, cross-validation techniques offer a precise method
for estimating the dispersion parameter [22]. However, for
the sake of eliminating potential biases or inaccuracies inher-
ent in the parameter estimation process, our experiments in-
tentionally use the exact value of the parameter r as a prior.

NB model using Anisotropic pTV penalty
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Fig. 2. Experiment I: RMSE analysis for 2D data reconstruc-
tion employing the negative binomial model in conjunction
with the £, TV quasi-seminorm. The evaluation spans across
multiple noise levels, i.e., r = 1,10, 25 and 1, 000 for differ-
ent p values. Observe that the RMSE values do not change
significantly as the value of p changes.
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4.1. Experiment I: p-value exploration

In our first experiment, we examined a set of nine distinct
p values, evenly spaced between 0.1 and 0.9, using the nega-
tive binomial model with both anisotropic and isotropic £, TV
quasi-seminorms. These were applied to four different noise-
level images corresponding to four different dispersion pa-
rameter r values. As expected, as the parameter r increased,
the corresponding RMSE decreased. When r» = 1, the RMSE
was highest. In contrast, the scenarios with the highest r value
(specifically » = 1000) returned the lowest RMSE.

Interestingly, our findings indicate that the results of both
isotropic and anisotropic £, TV quasi-seminorms are not sen-
sitive to variations in the p value, as shown in Fig. 2. Specif-
ically, across the range of p values, the RMSE values change
by less than 1%.

4.2. Experiment II: Comparison between Poisson and
negative binomial models with mutiple regularizations

In the second experiment, we conducted a comparative anal-
ysis between the negative binomial and Poisson models using
three different penalties. The results for these comparisons
are presented in Table 1. Additionally, the results of » = 10
are visually represented in Fig. 3.

Our observations consistently show that the negative bi-
nomial model achieve lower RMSE values than the Poisson
model with various r values. As r increases, the RMSE gaps
between the two models diminish (see Table 1). This aligns
with the fact that the Poisson distribution can be seen as a
limiting case of the negative binomial distribution when the
dispersion parameter r approaches infinity.

Dispersion parameter r

Model | Penalty T 10 5 1,000
£, TV-A | 0.2005 | 0.1396 | 0.1238 | 0.1047

£73 [7, TVI | 0.1957 | 0.1418 | 0.1259 | 0.1043
g g ¢, TV-A | 0.2019 | 0.1421 | 0.1267 | 0.1053
Z 5 ¢1 TV-I | 0.1959 | 0.1399 | 0.1240 | 0.1047
pnorm | 0.2104 | 0.1603 | 0.1411 | 0.1253

¢, TV-A | 0.2364 | 0.1535 | 0.1403 | 0.1054

g £, TV-1 | 0.2231 | 0.1536 | 0.1422 | 0.1053

Kz ¢1 TV-A | 0.2386 | 0.1569 | 0.1501 | 0.1062
£ £1 TV-I | 0.2253 | 0.1581 | 0.1484 | 0.1054
pnorm | 0.2391 | 0.1739 | 0.1526 | 0.1262

Table 1. Experiment II: Evaluation of the Root-Mean-

Square Error (RMSE) for both the negative binomial and
Poisson models with four dispersion parameters (r =
1,10,25, and 1,000) using five regularization techniques:
isotropic £, TV (£, TV-I), anisotropic £, TV (¢, TV-A),
isotropic ¢1 TV (¢; TV-I), anisotropic ¢/; TV (¢/; TV-A), and
the p quasi-norm. For each penalty, the parameter p is opti-
mized to yield the minimum RMSE.

Poisson
Reconstruction

Negative Binomial
Reconstruction

£, TV-A norm

(a) RMSE = 15.35%

(b) RMSE = 13.96%

£, TV-I norm

(d) RMSE = 14.18%

(c) RMSE = 15.36%

Fig. 3. Experiment II: 2D data from a negative binomial
distribution (r = 10). The negative binomial model yields
a lower RMSE than the Poisson model with ¢, TV quasi-
seminorm. The difference between isotropic and anisotropic
versions is small.

Furthermore, our analysis reveals that the RMSE dif-
ferences between anisotropic and isotropic £, TV quasi-
seminorms are consistently small, regardless of whether the
negative binomial or Poisson model is applied. Additionally,
¢, TV quasi-seminorms consistently achieve lower RMSE
values than ¢, quasi-norms. We generally observe an im-
provement in RMSE values using the £, TV quasi-seminorm
over the /1 TV quasi-seminorm.

5. CONCLUSION

In this study, we investigate the £, TV quasi-seminorm for
signal reconstruction using 2-D data drawn from a negative
binomial model with four different noise levels. Our find-
ings demonstrate that the performance of the ¢, TV quasi-
seminorm surpasses that of the ¢, quasi-seminorm in both
negative binomial and Poisson model. Furthermore, our re-
sults show that the ¢, TV quasi-seminorm’s performance
remains consistent when using different p values within the
range 0 < p < 1. Additionally, when comparing the negative
binomial model with the Poisson model, our findings verify
that the negative binomial model yields lower RMSE values
in signal reconstruction.
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