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Abstract—Graph Neural Networks (GNNs) have exhibited

remarkable success in various applications such as social and

telecommunication networks, yet their vulnerability to adver-

sarial attacks poses significant risks in security-sensitive do-

mains. Imperceptible perturbations in graphs can lead to severe

performance degradation, necessitating robust GNN models for

safety and privacy in critical applications. We address this

challenge by proposing optimization-based attacks on GNNs,

specifically focusing on modifying graph structures. Our ap-

proach leverages convex relaxation and projected momentum

optimization. Introducing the focal loss as an attack criterion, we

generate perturbations by minimizing a constrained optimization

problem. Evaluating on node classification tasks, our attacks

outperform state-of-the-art methods under the same perturbation

budget, highlighting the effectiveness of our approach. This

work contributes to enhancing the robustness of GNNs against

adversarial manipulations in real-world scenarios.

Index Terms—Graph Neural Networks, Adversarial Attack,

Adversarial Training, Defense, Focal Loss.

I. Introduction

Graph-structured data is a fundamental component in var-
ious AI applications, serving as a versatile representation for
modeling datasets across diverse domains such as molecules,
social networks, and interlinked documents with citations [1]–
[5]. The application of Graph Neural Networks (GNNs) to
graph-structured data has demonstrated remarkable success
in tasks ranging from node classification to link predic-
tion and recommender systems [1], [2], [6]. Despite these
achievements, recent studies reveal a critical challenge: the
vulnerability of GNNs to adversarial attacks [7]–[11]. Even
imperceptible perturbations in graphs can lead to substantial
performance degradation, posing severe risks in security-
sensitive domains such as blockchain and communication net-
works. Notably, GNNs, following a message-passing scheme
[12], are susceptible to adversarial manipulations primarily
focused on modifying graph structures, including edge ad-
ditions, deletions, and rewirings [13], [14]. In this context,
we address the pressing need for robust GNN models capable
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of withstanding adversarial attacks on graph structure, given
their potential implications for safety and privacy in critical
applications.

Attacking graph structures effectively poses a challenging
problem. In contrast to images, where data is continuous,
graphs are discrete. Additionally, the combinatorial nature of
graph structures introduces increased complexity compared to
text and images. Motivated by recent progress in generating
adversarial attacks on audios or images using first-order opti-
mization methods [15]–[18], we delve into the task of crafting
attacks through convex relaxation and projected momentum-
based optimization. We propose the use of the focal loss as
an attack loss, and we generate perturbations by minimizing a
focal loss-based constrained optimization problem, leveraging
momentum and projections onto the feasible set.

In the evaluation of node classification tasks with GNNs,
our optimization-based attacks demonstrate outperformance
compared to existing state-of-the-art attacks under the same
perturbation budget. This showcases the efficiency of our
attack generation approach utilizing convex relaxation and
first-order projected momentum optimization, resulting in sub-
stantially enhanced robustness against greedy attacks.

II. Problem Statement
A. Preliminaries on GNNs

Recent studies have demonstrated the effectiveness of Graph
Neural Networks (GNN) in transductive learning, e.g., node
classification within graph data [1]–[3]. This means that when
provided with a network topology, node features, and a known
subset of node labels, GNNs can efficiently predict the classes
of unlabeled nodes. Prior to defining GNN, let’s establish some
graph notations. Consider G = (V ,E ,X) as an undirected and
unweighted graph. Here, V represents the set of N vertices
(or nodes), E 2 (V ⇥ V ) represents the set of edges. The
edges describe the relations between nodes and can also be
represented by a binary adjacency matrix A 2 RN⇥N , where
Ai j denotes the relation between nodes vi and v j, and Ai j = 0
if (i, j) /2 E . Here X = [x1,x2, ...,xN ]2RN⇥d0 denotes the node
feature matrix where xi 2Rd0 is the feature vector of the node
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Fig. 1. A demonstration of an adversarial attack on graph data. The objective
of the Graph Neural Network is to predict the color of the nodes. In this
scenario, node 3 is the specific target. The attacker intends to alter the GNN’s
prediction for node 3 by manipulating either the edges or features or both.

vi. Following the common node classification setting, only
a part of nodes Vtrain = [v1,v2, ...,vNtrain ] are associated with
corresponding labels Ytrain = [y1,y2, ...,yNtrain ].

Given a graph G = (V ,E ,X) and the partial labels Ytrain,
the goal of GNN is to learn a function fW : Vtrain ! Ytrain
that maps the nodes to the set of labels so that fW can predict
labels of unlabeled nodes.

In GNNs, the representation h(k)i 2 R1⇥dk of node vi at the
kth layer is recursively calculated by aggregating the messages
(information) propagated from its neighbors. The update of
the representation of node vi at the kth is given by following
generic propagation rule

h(k+1)
i = gk+1

⇣
Aggr j2N (i)

�
f k+1(h(k)j )

�⌘
(1)

where h(k+1)
i 2 Rdk+1 denotes the feature vector of node vi

at layer k + 1, h(0)i = xi is the input feature vector of node
vi. g(·) is a mapping (activation) function (e.g., ReLU). The
function Aggr(·) is a permutation-invariant aggregator such as
the mean pooling, and f(·)(k+1) is differential function such
as one defined by an MLP, and N (i) denotes the node vi’s
neighbors together with itself ( j = i) [1], [2].

A fundamental form of GNNs is the Graph Convolutional
Network (GCN) proposed by Kipf and Welling in 2016 [1].
GCNs leverage the spectral graph theory and convolutional
operations to learn node representations. The key idea behind
GCNs is to aggregate information from neighboring nodes,
allowing each node to refine its representation based on the
local graph structure. In GCNs, the propagation rule in (1)
becomes

h(k+1)
i = s

⇣
Â

j2N (i)

1p
did j

h(k)j W(k)
⌘

(2)

where s(·) = max(0, ·) is the ReLU function. W(k) 2Rdk⇥dk+1

is the weight matrix for layer k. The scalars di and d j are the
degrees of nodes vi and v j, respectively. Using the layer-wise
notations, the propagation rule will take the form

H(k+1) = s
⇣

D̃� 1
2 ÃD̃� 1

2 H(k)W(k)
⌘

(3)

where H(k) 2RN⇥dk = [(h(k)1 )T ;(h(k)2 )T ; · · · ;(h(k)N )T ]T ; Ã = A+
IN is the normalized adjacency matrix with added self-
connections, where IN is the identity matrix; and D̃ is a
diagonal matrix with D̃ii = Â j Ãi j. For further details, see [1].

B. Attack Generation Through Edge Perturbation
A topological perturbed graph is represented by a perturbed

adjacency matrix, denoted as A0 = A+d , where the matrix d
represents the changes to the edges added to the original matrix
A, and it is given by the element-wise product of two N ⇥N
matrices, C and M:

d =C�M, (4)

where � denotes the element-wise product and M 2 {0,1}N⇥N

is a Boolean symmetric matrix that encodes whether an edge in
G is modified. The matrix C is given by C = N⇥N � IN �2A,
where N⇥N is the N⇥N matrix of ones. The positive entries
of C denote the edges that can be added to the graph A while
its negative entries denote edges that can be removed. Here we
assume that nodes are not self-connected. Our goal is to find
the minimum edge perturbations encoded by the matrix M to
mislead GNNs. We call our attack generation method Focal
Loss-Projected Momentum (FL-PM) Attack, and we begin by
defining our proposed attack loss function.

C. Focal Loss Function
Let P(M,W ;A,X) denote the prediction probability of a

GNN specified by A. Here, we propose to use focal loss as a
per-node attack loss. Introduced in [19] as a training loss, it
surpasses the traditional cross-entropy loss in scenarios where
class imbalance is prevalent by introducing a dynamic mod-
ulating factor that downweights the impact of well-classified
examples. This factor is controlled by a focusing parameter,
mitigating the dominance of the majority class, allowing the
model to prioritize learning from challenging instances. Pre-
vious studies have employed various types of loss functions,
such as cross-entropy [20], [21], as attack losses. We, here,
propose to use focal loss-type attacks for attacking graphs for
the first time, which is given by

FLi(M,W;A,X ,yi) =� 1
K

K

Â
j=1

ȳi j · (1�Pi j)
g · log(Pi j) (5)

where g is the focusing parameter which controls the rate at
which easy examples are down-weighted. K are the number of
classes and ȳi j is a binary indicator of whether class j is the
correct classification for instance vi (1 if true, 0 otherwise).

To formulate our attack strategy, we seek M in (4) that
minimizes the per-node FL-type attack loss given a finite
budget of edge perturbations D 2 N. We consider a model
in which we target a pre-defined GNN with a known weight
matrix W. Given a fixed W, the problem of generating attacks
can be framed as follows

minimize
m2Rn Â

i2V

FLi(M,W;A,X ,yi)

subject to 1
T
n m  D

m 2 {0,1}n,

(6)
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where we replace the symmetric matrix variable M with its
vector form m that consists of n=N(N�1)/2 unique variables
in M and 1n is the vector of ones with length n. The second
constraint enforces the resulting M to be Boolean.

D. Projected Momentum-Based Attack
The optimization problem (6) presents a combinatorial op-

timization challenge due to the inclusion of Boolean variables.
To simplify the optimization process, we choose to relax the
constraint on m to its convex hull m 2 [0,1]n, which makes
our optimization problem continuous:

minimize
m2Rn

FL(m) := Â
i2V

FLi(M,W;A,X ,yi)

subject to m 2 M
(7)

where M = {m|1T
mD,m2 [0,1]n}. We solve the optimiza-

tion problem (7) by projected momentum:

vt+1 = bvt +(1�b )—FL(mt)

m
t+1 = ProjM

h
m

t �hvt+1

i (8)

where t denotes the iteration index of projected momentum,
h is the learning rate, b is the momentum decay factor, vt
is the momentum, —FL(mt) is the gradient of the attack loss
at m

t , and ProjM [·] is a projection mapping onto the set M .
Momentum is an optimization technique that accelerates con-
vergence and enhances the stability of gradient-based methods
[22]. By incorporating a momentum term that accumulates
information from past gradients, this helps maintain a con-
sistent direction of optimization, enabling faster movement
along relevant dimensions and dampening oscillations. This
smoothing effect makes our solver effective in escaping local
minima and navigating complex optimization landscapes.

Using the approach in [20] and by letting z = m
t �hvt+1,

the projection ProjM [z] is computed by solving a minimization
problem given by

minimize
m2Rn

1
2km� zk2

2 +R[0,1]n(m)

subject to 1
T
n m  D,

(9)

where R[0,1]n(m) is the indicator function such that

R[0,1]n(m) =

(
0 if m 2 [0,1]n

• otherwise
.

The unconstrained minimizer mu of (9) is

mu = Proj[0,1]n(z). (10)

This projection is component-wise and can be calculated easily
since each component Proj[0,1](zi) takes the middle value
among 0,1, and zi. If 1

T
n mu  D, then mu is the minimizer

of (9) and m
t+1 = mu. Now suppose mu is not feasible, i.e.,

1
T
n mu > D. Consider the Lagrangian function associated with

(9), which is given by

L (m,l ) = 1
2km� zk2

2 +R[0,1]n(m)+l (1T
n m�D)

=

(
n

Â
i=1

� 1
2 (mi � zi)

2 +R[0,1](mi)+lmi
�
)
�lD

(11)

where l 2 R is the Lagrange multiplier associated with the
constraint. Setting the partial derivatives of the Lagrangian
with respect to m and l equal to zero, we see that the optimal
solution is given by

m = Proj[0,1]n(z�l1n) (12)

(see [20] for details). Note that as l tends to zmax = max{zi},
m tends to 0, which is feasible with respect to the inequality
constraint in (9). Similarly, as l tends to 0, m tends to
mu, which is not feasible by assumption. To compute the
optimal l , we use the corresponding Karush-Kuhn-Tucker
(KKT) conditions:

l (1T
n m�D) = 0 (13)

l � 0 (14)
1

T
n m  D (15)

(see [23] for details). Since mu is not feasible, l 6= 0. Letting

f (l ) = 1
T
n Proj[0,1]n(z�l1n)�D, (16)

we see that (13) implies f (l ) = 0 at the optimal l . To find
the root of f (l ) in (16), we use the bisection method, which
applies since f (0)> 0 (because 1

T
n mu > D by assumption) and

f (zmax)< 0 (see [20] for further details).
Finally, since the variable m can be interpreted as a prob-

abilistic vector. We recover a binary solution from m using
random sampling [8], [20]. Details are given in Algorithm 1.

Algorithm 1: Random sampling of a perturbation
vector
Input: probabilistic vector m, J is # of random trials
Output: binary perturbation vector m*

1 for j=1 to J do

2 draw binary vector r
( j) following

3

r( j)
i =

(
1 with probability mi

0 with probability 1�mi

4 Select a vector m* from {r
( j)} that yields the smallest

attack loss FL(m*)

We summarize the PM attack in Algorithm 2. We note that the
key differences between our proposed method and those from
[20] is (i) the use of the focal loss as an attack loss function
and (ii) the use of momentum in the optimization algorithm
to minimize the loss.

Our defense strategy is done by leveraging our proposed
robust training of a graph convolutional networks (GCN)
against PM attacks (the resulted perturbed adjacency matrix
A0). We present our experimental results for both PM attack
and adversarial training defense on a GCN.

III. Experiments
In this section, we evaluate the effectiveness of FL-PM

against different graph adversarial attacks. Before presenting
our empirical results and findings, we first introduce the
experimental settings.
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Algorithm 2: Focal Loss-Projected Momentum (FL-
PM) Attack on GNN

Input: m
(0), learning rate h , and iterations T

Output: Perturbed adjacency matrix A0

1 for t=1 to T do

2 Momentum:
3 vt+1 = bvt +(1�b )—FL(m)
4 m

t+1 = m
t �hvt+1

5 Projection using (10) or (16):
6 ProjM

h
m

t+1
i

7 Random sampling using Algorithm 1 to return m*

8 Compute d using (4) and add it to A to return A0

A. Experimental settings

1) Datasets and model design: Following [11], [23], we
validate the proposed methodology using two benchmark
datasets: citation graphs Cora and Citeseer [25]. Both datasets
consist of unweighted edges, represented by a symmetric
adjacency matrix, denoted as A, and sparse feature vectors.
These feature vectors are utilized as the input for GCN. Our
GCN comprises two layers, each with 16 hidden units. The
Rectified Linear Unit (ReLU) activation function is applied
between the layers, and the Softmax function is employed to
produce soft labels as the output. All training is done using 200
epochs with learning rate 0.01. For each dataset, we randomly
choose 10% of nodes for training, 10% of nodes for validation
and the remaining 80% for test. We repeat each experiment
for 5 times and report the average performance. The iteration
number of random sampling is set as K = 20.

2) Baselines: To assess the effectiveness of our approach,
we conduct a comprehensive evaluation by comparing our
proposed attack model, Focal Loss-Projected Momentum (FL-
PM), with state-of-the-art GNN attacks and defense mod-
els using the adversarial attack repository DeepRobust [26].
Specifically, we compare it with CE-PGD, CW-PGD, CE-
min-max, and CW-min-max [20]. These are optimization-
based attacks where CE-PGD generates node perturbations
by minimizing cross-entropy loss through projected gradient
descent. Additionally, we compare our method with DICE

TABLE I
Misclassification rates (%) under 10% perturbed edges

Attack Cora Citeseer

Clean 16.8±0.11 25.5±0.08

DICE 18.9±0.13 26.9±0.07
Greedy 20.3±0.20 27.1±0.05
Meta-Self 19.7±0.14 26.1±0.06
CE-PGD 21.2±0.15 27.4±0.03
CW-PGD 17.4±0.12 26.0±0.05
CE-min-max 21.4±0.16 26.3±0.05
CW-min-max 20.8±0.13 26.1±0.06

FL-PM (ours) 22.9±0.13 27.7±0.02

Fig. 2. CE-PGD, FL-PGD, and FL-PM attack losses convergence on Cora.
The perturbation rate is 10%.

(‘delete edges internally, connect externally’) [27], Meta-Self
attack [28], and a greedy attack – a variant of Meta-Self attack
without weight re-training for GCN.

B. Attack Performance
In Table I, we showcase the misclassification rates ((1�

Accuracy)⇥ 100%) of various attack methods when tested
against the natural model (GCN trained on clean data, i.e.,
A). The natural model is evaluated on perturbed data gener-
ated by different attacks. The effectiveness of each attack is
measured by its ability to deceive the natural model, leading
to an increased misclassification rate. As demonstrated in the
table, our attack proves to be the most effective, successfully
deceiving the model with a misclassification rate that reaches
approximately 23% on the Cora dataset. The closest com-
petitor, CE-PGD, as anticipated, achieved a misclassification
rate of approximately 21%. Surprisingly, the performance of
CW-PGD was notably lower compared to the other methods.
We additionally visualize the convergence of the attack loss
function for our method, CE-PGD, and focal loss function
with the PGD solver. Figure 2 illustrates the relative mono-
tonic convergence behavior of our method, characterized by
damped oscillations and faster convergence to a local minima,
demonstrating the effectiveness of our approach.

C. Defense Performance
We also trained the GCN on perturbed data generated by our

model and compared the performance on a testing perturbed
data with different models. We computed the improvement
on accuracy which is the difference between a accuracy of
a GCN trained on clean data (natural model) and tested
on perturbed data (i.e., attacked model) and a GCN trained
and tested on perturbed data (robust model). Experiments are
done on both datasets. Figure 3 shows the improvements on
accuracy obtained after applying our defense strategy (i.e.,
adversarial training) using perturbations obtained from our
model and different models. Notably, we observed a decrease
in performance when the GCN was trained on perturbed data
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(a) Cora (b) Citeseer
Fig. 3. Improvements on accuracy after training GCN on different attacks
for both datasets.

TABLE II
Average of five runs classification accuracy for different
perturbation rates of robust GCN trained and tested on

perturbed data generated from the methods in mentioned in
columns. 0% mean that the model is trained on clean data.

Dataset Pert. Ratio CE-PGD CW-PGD FL-PM

0% 0.8320 0.8320 0.8320
5% 0.8123 0.8024 0.8209
10% 0.7871 0.8069 0.8033

Cora 15% 0.7746 0.7434 0.7706
20% 0.7555 0.7645 0.7691
25% 0.7414 0.7245 0.7434
0% 0.7446 0.7446 0.7446
5% 0.7399 0.7452 0.7386
10% 0.7292 0.7332 0.7384

Citeseer 15% 0.7055 0.7452 0.7340
20% 0.7020 0.7305 0.7273
25% 0.6889 0.7133 0.7181

generated by CW-PGD. This implies that the natural model
exhibits better behavior compared to a robust model trained
and tested on this perturbed data. To assess the behavior
of a robust model under varying rates of perturbations, we
calculated the accuracy at different perturbation rates and
compared it to models trained and tested on CE-PGD and
CW-PGD. Overall, our model exhibited outperforms robust
models subjected to these attacks. Results are shown in Table
II.

IV. Conclusion

In conclusion, our study addresses the pressing vulner-
ability of Graph Neural Networks (GNNs) to adversarial
attacks on graph structures, crucial in diverse AI applications.
The proposed optimization-based attacks, utilizing projected
momentum optimization, specifically target graph structure
modifications. By incorporating the focal loss as an attack
criterion and minimizing a constrained optimization problem,
our approach generates perturbations that outperform state-of-
the-art methods in node classification tasks under the same
perturbation budget. The complexities inherent in attacking
discrete graph structures are effectively tackled through our
approach, drawing inspiration from recent advancements in
adversarial attacks on continuous data. The demonstrated
improvements of our attacks underscores their efficiency in
fortifying GNNs against adversarial manipulations, providing

valuable insights for enhancing the security of graph-structured
data in real-world applications where safety and privacy are
paramount.

References
[1] T. N. Kipf and M. Welling, ‘Semi-Supervised Classification with Graph

Convolutional Networks’, CoRR, vol. abs/1609.02907, 2016.
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