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Abstract— We introduce a modification to Manifold Regular-
ized Matrix Factorization for predicting drug-drug interactions,
employing a Wasserstein similarity measure. Our findings
demonstrate that this measure offers enhanced accuracy com-
pared to previously tested similarity metrics. Notably, it exhibits
resilience to variations in the latent feature vector size, denoted
as k, enabling the projection of the drug-drug interaction
matrix onto a significantly reduced dimensional space, thereby
reducing computational costs. The proposed method holds
significant implications for clinical practice by highlighting
drug-drug combinations warranting further investigation for
potential interactions.

[. INTRODUCTION

As of August 2023, it was estimated that approximately
60% of the adult population in the United States had taken
at least one prescription medication within the previous year,
with 37% reporting the use of three or more in the same time
period [1]. Given the large percentage of the population that
takes prescription drugs, it is paramount for public health
initiatives to understand potential drug interactions.

A significant hurdle in achieving this understanding lies
in the timeline from a drug’s conception to its approval,
spanning nearly eight years on average from the initiation
of clinical trials to final regulatory clearance, excluding the
initial phases of drug development [2]. While clinical trials
address some potential interactions, the focus tends to center
on commonly co-prescribed medications [3]. Compounding
this issue is the accelerated rate at which drugs are gaining
approval. Between 2011 and 2018, the FDA’s Center for
Drug Evaluation and Research sanctioned an average of 26
drugs annually, compared to an average of 23 approvals
per year from 2000 to 2010 [4]. This influx of medications
makes it increasingly impractical to assess all possible drug
combinations that a patient might encounter. Consequently,
healthcare practitioners often only recognize interactions be-
tween frequently prescribed drugs or in cases where adverse
effects are severe.

In response to these challenges, researchers have turned to
data analytics and machine learning techniques to enhance
the prediction of drug-drug interactions (DDIs). Leveraging
graphical representations of drugs, these methods employ
matrix completion algorithms to predict interactions based on
drug features and similarities [5]-[8]. We aim to add to this
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class of understanding by proposing the Wasserstein distance
as an alternate similarity measure to those already studied,
as it allows us to look at features of a drug at the atomic
level which ultimately provides greater insight into the drug
itself. Specifically, we apply the Wasserstein distance to the
Manifold Regularized Matrix Factorization method for drug
interaction prediction, which has previously seen success at
predicting DDIs.

II. METHODS

A. Drug molecules as probability measures

Graphs serve as a powerful depiction of small molecules,
where atoms are nodes and chemical bonds are edges.
This graph-based representation efficiently captures both the
structural and chemical characteristics of these molecules.
Our methodology of obtaining the similarity matrix unfolds
in several stages: (1) converting each drug molecule into a
set of node embeddings derived from its atomic properties;
(2) measuring the Wasserstein distance between all pairs of
graphs by solving the drug matching problem as an optimal
transport problem; and (3) building the similarity matrix
using the computed Wasserstein distance. By solving the
graph matching of the chemical atomic-level and topological
features of the drugs, we produce an informative similarity
matrix that is used to enforce the drug similarity constraints
on our matrix factorization optimization problem.

To formalize the attributed graph-matching problem, we
consider undirected labeled graphs, denoted as tuples in
the form: G(V,&,ly). Here, (V,€) represents the set of
vertices and edges within the graph. The function [/; assigns
each vertex v; € V a feature vector a; = If(v;) in a
specific feature metric space. In our specific application,
this feature vector captures atomic properties in a chemical
compound. Following [9], [10], we enhance the graph by
introducing a histogram to convey the relative significance
of its vertices. In this enhancement, assuming the graph
comprises N vertices, individual weights h; are assigned
to each vertex. Consequently, our graph takes the form
G(V,E, 1y, hg), where hg is a function associating a weight
with each vertex with h; = hg(v;). This definition enables
us to represent the graph as a probability measure with
comprehensive support across the feature space. In scenarios
where all weights are equal (h; = %), every vertex holds an
equivalent degree of relative importance.

Our objective is to define a matching distance metric
between two graphs (i.e., drug molecules), labeled G; and
Go, each possessing N and K vertices (atoms), respectively.
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These graphs are distinguished by their corresponding prob-
ability measures, hg, and hg,. Subsequently, we proceed to
calculate the pairwise distances between the drugs using op-
timal transport. This begins with the computation of ground
distances for each node pair.

B. Wasserstein distance on drug molecules

Optimal transport, as outlined in [11], offers a mathemati-
cal paradigm tailored to solving the challenge of finding the
most efficient way of relocating objects, often probability
distributions, from one configuration to another while mini-
mizing costs. Efficiency, in this context, pertains to achieving
such transfers at minimal expense.

To mathematically formulate the transportation problem in
the context of graphs, consider two sets of nodes, denoted
as X = {x;}}_, representing the source samples, which
correspond to the nodes of the first graph (representing the
molecules of one drug), and Y = {y;}1£,, corresponding to
the target nodes of the second graph (representing a second
drug). We introduce two discretized distributions of interest,
denoted as p € Hy and q € Hyg. Here, Hy and Hy
signify histograms with N and K bins, respectively. The
vector p serves to convey the relative significance of the
vertices (atoms) within the first drug, and the vector q for
the second drug. These distributions adhere to the following
constraints: p € RY, indicating that each element of p is a
non-negative real number, and the sum of its elements equals
1, ie., Zj p; = 1. Similarly, q € ]Rf with the constraint
>ia =1

Define Q € R+*¥ as the transportation plan or coupling
matrix, with elements denoted as ;;. This matrix precisely
quantifies the amount situated at the source x;, having a
total mass of p;, which necessitates transportation to the
target location y;, possessing a total mass of ¢;. From a
linear algebra perspective, the entries in the j® column
of @ represent the amounts from the ;™ source to be
transported to the targets, while the entries in the i" row
signify the amounts from the sources transported to the ™
target. Mathematically,

N
> Qij=ua for all i€ {1,..,K},
j=1

K
> Qij=p;
i=1

The transportation process involves a cost matrix C, where
C; represents the geometric distance between x; and y;. The
total cost related to a transport plan is defined as follows:

ey
forall je{1,.,N}.

K N
C,Q)r = Z ZcijQij

i=1 j=1

2

where ( - ,- ) is the Frobenius dot-product of two matrices.
The optimal transport is thus formulated as the following
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optimization problem:

minimize (C.Q)F
N

subject to ZQU =gq; forall i€ {l,.,K}
j=1
K
> Qij=p; forall je({l,.N}
i=1

Qi; >0 forall (i,5)e{l,.,K}x{l,., N}
3)

In each column, the transportation process must precisely
allocate the mass p; to achieve a perfect match with the in-
tended mass ¢;. This optimization problem can be expressed
more succinctly as follows:

minimize
QGRK X N

<07 Q)F
subject to Q1y = q,

)
QT]-K =p, Q >0,

where 15 and 1x represent vectors of ones in dimension
N and K, respectively. We define the set of all admissible
couplings or transport plans Q(p, q) between histograms as
follows:

Qp,q) ={Q e RN | Q1y =q,Q"1x = p}.

In a specific scenario where the cost function C' aligns
with a distance matrix, the optimal transport problem leads
to the Wasserstein distance on Hy X Hp. The Wasserstein
distance is defined as:

— minimize (C,Q)p.

W(p.q) QeQ(p.a) )

We employ the simplex method [12] to solve (4), which
iteratively moves from one feasible solution to another along
the edges of the feasible region until an optimal solution is
attained. The method employs a tableau representation, with
each iteration selecting a pivot column and row for tableau
update. The algorithm iterates until optimality conditions are
satisfied.

We solve (4) for each pair of drugs and obtain the distance
matrix D € R™*™_ where m is the number of drugs and
where the entries are given by (5). We define our similarity
matrix S as follows:

1
- m(maX(D)lme - D) (6)
where max(D) is the maximum element in the matrix D
and 1,,xn, is the matrix of ones of size m x m. Note that
the entries s;; of S are between 0 and 1. Also, the larger the
distance, i.e., the entry in D, the closer the corresponding

entry in S is to 0, and vice versa.

C. Similarity-Constrained Matrix Factorization

Our implementation follows the methodology introduced
by Zhang [13]. We assume we have a DDI matrix, A, which
is an m X m symmetric matrix with zeroes on the diagonal.
The elements of A indicate whether or not an interaction is
known between each drug, with a value of 1 indicating a
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known interaction while O indicates either no interaction or
no known interaction.

Once A and S are known, the goal is to decompose A
into two low-rank matrices X € R"™*F Y € R™** such
that A = XYT, where k is the dimension of a latent feature
vector. The objective function we consider in this work is

1 A
LXY) = SIA=XYTI+ 5 (IXIE + Y1) @)

1 S A S .,
5 2 (ay=ag))" + 5 37 (1513 + 1513)
0]

K3

where the first term in (7) is a fitting term and the second is
a regularization term to make the problem well-posed. Here
|| - ||F is the Frobenius norm, || - ||2 is the Euclidean norm,
Z; is the ith row of X, ¢/ is the jth row of Y, and A > 0 is
the Tikhonov regularization parameter.

This method assumes that drug-drug similarities can be
represented by manifolds in the drug feature space, meaning
that each drug feature has a neighborhood that maps to the
drug similarity. By making this assumption, we can utilize
the fact that nearby points in the drug feature space will likely
have a similar mapping to their drug similarity. Therefore,
the objective function L can then be regularized over the
manifolds by

row 1 = -
Lreg (X) = 52‘51]"'7’& _:LJHg (®)
4,7
co 1 - N
Ligg (V) = izsszyz‘ - 7l3 )
4]

where s;; is the similarity between the ith and jth drugs.
Finally, we attain the Manifold Regularized Matrix Factor-
ization (MRMF) [13] by combining (7) with (8) and (9)
resulting in the following optimization problem:

minimize Ly (X,Y)
X,YERMXR (10)

= L(X,Y) + p (L]20(X) + L2 (V)

reg
where p > 0 is a manifold regularization parameter.

To find the minimizer of (10), we utilize an alternating
descent method in [13]. This method is equivalent to a
gradient descent where #; and g; are successively fixed.
We start by randomly initializing #; and ;. Then, we use
Newton’s method to compute each update to Z; and g;:

an
(12)

-1
gj — 173 - ng Lmiw (v?jj Lmix)

where Vg, Ly, and Vg, L, are the gradients of Ly,
with respect to ; and yvec;, respectively, and V%ime and
V%j Lo are the Hessians of L,,;, with respect to &; and
yvec;, respectively. The updates (11) and (12) are continued
until convergence.
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III. NUMERICAL EXPERIMENTS
A. Data

As pharmaceutical data becomes increasingly accessible,
researchers have turned to curated databases for compre-
hensive drug information. TWOSIDEs, for instance, ag-
gregates reported drug interactions without attribution to
a specific drug [14]. Complementary feature data, encom-
passing side effects, off-label effects, and chemical com-
positions, are drawn from established repositories such
as SIDER [15], OFFSIDES [14], PubChem [16], and
DrugBank [17]. By linking drugs with known interac-
tions to those with detailed feature information, a com-
prehensive dataset is formed. This mapping, compiled
by Zhang [18], identifies 548 drugs with both interac-
tion data and detailed features. The dataset, including
the drug-drug interaction matrix, A, is publicly accessi-
ble via Github at: https://github.com/zw9977129/
drug-drug-interaction/tree/master.

The key feature utilized to construct our similarity ma-
trix is the Simplified Molecular-Input Line-Entry System
(SMILES) string associated with each drug. SMILES lever-
ages molecular graph theory to provide atomic-level feature
representation for drugs [19]. However, it’s worth noting
that four drugs in the original dataset lack SMILES indices,
resulting in a final dataset comprising 544 drugs with a total
of 47,537 known interactions.

To evaluate the accuracy of our method, 10% of the
known interactions are randomly withheld. Subsequently, our
objective is to accurately reconstruct the original drug-drug
interaction matrix A.

B. Parameter Settings

The three parameters in the MRMF method that can
be altered are (i) the latent feature vector size, k, (ii) the
Tikhonov regularization parameter, A, and (iii) the manifold
regularization parameter, u. Several experiments were run
altering these parameters to find the optimal parameter
setting. Zhang [13] found k = 0.08*m, A\ = 22, and p = 22
to produce the best result, so we initially started with this
combination. In their study, this was found to be the best
combination of parameters, regardless of the similarity metric
used. Our results show that this is not an optimal parameter
combination when using the Wasserstein distance metric, as
it predicts that no drug interactions are present.

We then swept over the parameter space field to find the
optimal settings. Our first sweep held k¥ = 0.1 x m while
looping over A\, € J = {2": k € —4,-3,-2,---,2,3}.
Next, we conducted four variations of an experiment where p
and A are held constant while looping over k = 0.015 * m,
where § € {2,4,6,8,10,12,14,16,18,20}. In the first of
these we set u = A = 22 in the second w=A= 272 in the
third ;1 = A = 274, and finally in the fourth ;1 = A = 276,

Of these experiments, the greatest results were achieved
when k = 0.1 xm and = A = 276, The results presented
from here on will be based on these parameters.

Ultimately, these experiments found that the value for the
latent feature vector, k, did not have as great of an impact on
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Similarity AUPRC AUC Recall ~ Precision  Accuracy  F-score
Jaccard 0.7958  0.9585  0.6812 0.7722 0.9546 0.7237
Cosine 0.7958  0.9584  0.6906 0.7729 0.9546 0.7237
Gauss 0.7959  0.9584  0.6806 0.7726 0.9546 0.7236

Wasserstein | 0.9449  0.9690 0.7777 0.9292 0.9095 0.8467
TABLE 1

ACCURACY METRICS FOR VARIOUS SIMILARITY METRICS. THE FIRST THREE ROWS COME FROM ZHANG [13] WITH it = X = 22, k = 0.8 % m, WHILE

THE LAST ROW COMES FROM OUR APPROACH (USING THE WASSERSTEIN DISTANCE) WITH pt = A = 276, k=0.1%xm.

the results as the regularization parameters ;. and A. When
these regularization parameters are properly tuned, nearly
identical results are achieved, regardless of k. This allows
us to project a large DDI matrix into a much smaller space,
saving computational cost. In our numerical experiments, we
found that k£ = 0.1 x m is sufficient.

IV. RESULTS AND DISCUSSION

A. Evaluation Metrics

To analyze the performance of our method, we compare
recall, precision, accuracy, and F-score values:

TP
Reeall = 75+ PN 1)
TP

Precision = ———— 14

recision TP+ FP (14)
TP +TN

A - 1

Uy = TP FPL TN + FN (15
2 % Recall  Precisi

F-Score — * Kecall x Precision (16)

Recall + Precision

where TP is the number of true positives, T'N is the number
of true negatives, F'P is the number of false positives, and
F'N is the number of false negatives. Additionally, we utilize
the area under the ROC Curve (AUC), which is a metric of
the true positives vs false positive rates, and the area under
the precision-recall curve (AUPRC), which measures the true
positives to predicted positives.

Of these metrics, the AUPRC takes precedence in as-
sessing method performance, as it directly measures the
ratio of correctly predicted true positives to all predicted
positives. This has been chosen as the leading performance
metric as in clinical settings where this may be applied, the
ability to correctly predict true positives is highly valued,
and therefore it is acceptable to have a slight decrease in
overall performance if this measure is being met. However,
the remaining metrics do still provide supplementary insight
into model performance.

B. Comparison with Other Similarity Measures

We conducted a comparative analysis between the re-
sults obtained using the Wasserstein distance to generate
our similarity matrix and those reported by Zhang [13],
as summarized in Table I. While the Wasserstein distance
looks at features of a drug on an atomic level, the Jaccard
similarity, Cosine similarity, and Gauss similarity each look
at the drug features holistically. As such, these measures
look to understand how similar two drugs may be in terms
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of their overall composition and effects but may miss key
information that can only be seen when exploring the
chemical structure of a drug. Each of these are common
measures in bioinformatics problems and therefore serve as a
basis to compare our proposed Wasserstein-based similarity
measure. Zhang’s study indicated that, under their optimal
parameters, similar accuracy was achieved regardless of the
similarity metric employed, suggesting that the accuracy
of the Manifold Regularized Matrix Factorization (MRMF)
method was independent of the similarity measure utilized.
In contrast, our approach using the Wasserstein similarity
measure yielded a significantly higher AUPRC of 0.9449.
This outcome underscores the effectiveness of our metric in
accurately identifying potential drug-drug interactions.

It’s important to note that our measure’s high AUPRC
primarily reflects its ability to predict true positives, while
having slightly lower performance with regards to predict-
ing true negatives. We surmise that this is because the
Wasserstein distance captures the similarity between features
that drive drug interaction, while excluding the features
that do not. This may result in a lower overall accuracy
score, however, in practical application, the focus lies on
identifying potential interactions for further investigation,
thus prioritizing true and false positives over true negatives.

V. CONCLUSION

This study proposes an alternative similarity metric for
similarity-constrained drug-drug interaction prediction. Our
findings demonstrate that the Wasserstein similarity measure
outperforms previously studied metrics when integrated with
the MRMF method for DDI prediction, particularly in terms
of true positive prediction rates.
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