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Abstract—Structural variants (SVs) – such as insertions, dele-
tions, and duplications of an individual’s genome – are associated
with genetic diseases and promotion of genetic diversity. Detecting
SVs of an unknown genome is a mathematically challenging
problem since SVs are rare and prone to low-coverage noise.
Common approaches to detect SVs in an unknown genome
require sequencing fragments of the genome, comparing them
to a high-quality reference genome, and predicting SVs based on
identified discordant fragments. We developed a computational
method which seeks to improve existing SV detection methods in
three ways: First, we implement an optimization approach using
a negative binomial log-likelihood objective function. Second,
we use a block-coordinate descent approach to simultaneously
predict if an SV is homozygous or heterozygous given genomic
data of related individuals. Third, we model a biologically
realistic scenario where variants in the child are either inherited
or novel. We validate our framework with simulated data and
demonstrate improvements in predicting SVs and detecting false
positives.

Index Terms—Structural variants, sparse signal recovery, non-
convex optimization, computational genomics

I. INTRODUCTION

The genome of an individual comprises a specific sequence
of nucleotides (A, C, G, T) and is approximately six billion
letters long in humans [1]. Humans are diploid organisms,
inheriting two copies of their genome, one from each parent.
Each cell in a human organism contains a replicated version of
the genome, which is transmitted during cell division. As DNA
molecules replicate, changes in the DNA sequence—genetic
variants—may occur. Sometimes, these changes can have
harmful effects that are inherited across generations. Structural
variants (SVs) are a type of genetic variation characterized
by insertions, deletions, inversions, and other alterations of
more than 50 nucleotides. SVs are relatively rare occurrences
but offer valuable insights into gene expression regulation,
ethnic diversity, large-scale chromosome evolution, and their
association with disease susceptibility [1], [2], [3], [4].

A common approach for SV prediction is to map individual
sequencing data to a reference genome and computationally
identify statistically significant deviations from the expected
mapping signals [5], [6]. However, errors in both the sequenc-
ing and mapping process may cause inconsistencies in the data
that falsely suggest the presence of an SV. As such, many
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computational approaches for SV detection suffer from high
false-positive rates [4], [5], [7], [8]. Despite the fact that the
rate of de novo SVs is negligible [9], and therefore most SVs
present in a child are inherited from one of their parents, most
computational SV pipelines do not leverage information from
familial genomes [10], [11], [12], [13], [14].

In this work, we develop a computational framework for
predicting the presence of SVs by simultaneously analyzing
related individuals. Our approach extends previous Poisson-
based methodologies [2], [15] by addressing a more realistic
scenario, incorporating sequencing data that follows a negative
binomial distribution from related diploid species with novel
structural variants. Our contribution involves adapting the
Sparse Poisson Intensity Reconstruction Algorithms (SPIRAL)
[16] framework, initially developed for imaging applications,
to meet the specific needs of our genomics application. We
utilize instead likelihood-based approach to predict the most
likely SVs present in each individual’s genome and constrain
the space of possible predictions by those that are consistent
with Mendelian inheritance [17]. We enforce sparsity in our
predictions through an `1 penalty term. We describe the
methodology in Section II, provide results on simulated data
in Section III and conclude in Section IV.

II. METHODS

Here, we describe our computational framework for predicting
SVs for related individuals. We use diploid data from one par-
ent (P) and one child (C) —which is separated to consider both
inherited (H) and novel (N ) SVs individually. Each signal
consists of n candidate locations in the genome where an SV
may be present. For each individual signal i 2 {P,H,N} in
our model, we consider two signals that take on binary values:
a heterozygous indicator ~yi 2 {0, 1}n and a homozygous
indicator ~zi 2 {0, 1}n indicating that the individual has one or
two copies of the SV in their genome, respectively. The true
signal is then ~f

⇤
i
= 2~zi + ~yi [18].

A. Observational Model

Observation vectors obtained from sequencing experiments
conducted on both the parent and the child are given by the
vectors ~sP 2 Rn, ~sC 2 Rn, respectively. We assume the
observed data follows a negative binomial distribution:20
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
~sP

~sC

�
⇠ NegBin

 "
~zP (2�P � ")

~zH(2�C � ") + ~yH(�C � ")

+
~yP (�P � ")

~zN (2�C � ") + ~yN (�C � ")

#! (1)

where �P ,�C represent the sequencing coverage —the aver-
age number of reads that align to known reference bases—of
the parent and the child, respectively and " > 0 is used to
reflect the measurement errors incurred through the sequencing
and mapping processes [18], [19]. Let

~s =


~sP

~sC

�
, ~z =

2

4
~zP

~zH

~zN

3

5 , ~y =

2

4
~yP

~yH

~yN

3

5 , ~f =


~z

~y

�
,

where ~f 2 {0, 1}6n. The general observation model is

~s ⇠ NegBin(A~f + "1)

where 1 2 R2n is the vector of ones and A = [A1 A2] 2
R2n⇥6n is the sequence coverage matrix with A1, A2 as:

A1 =


(2�P � ")In 0 0

0 (2�C � ")In (2�C � ")In

�

A2 =


(�P � ")In 0 0

0 (�C � ")In (�C � ")In

�

where In 2 Rn⇥n is the n⇥ n identity matrix.

B. Optimization Formulation

We assume a Negative Binomial process to model the noise
in the sequencing and mapping measurements. The negative
binomial distribution is parameterized by its mean ~µl = ~el

T
A~f

and standard deviation ~�
2
l

= (~elTA~f)l +
1
r
(~elTA~f)2

l
, l =

1, . . . , 2n, where ~el represents the canonical standard basis
vectors. We set the dispersion parameter r = 1 to maximize
the standard deviation. Thus, the probability of observing the
observation vector ~s given the true signal ~f , is given by

p(~s |A~f) =
2nY

l=1

 
1

1 + (A~f)l + "

! 
((A~f)l + ")

1 + (A~f)l + "

!~sl

(2)

where " > 0 represents the sequencing and mapping errors.
The solution space for inferring ~f from ~s is exponentially

large for large n. Thus, we apply a continuous relaxation of
~f such that its elements lie between 0 and 1, i.e. 0  ~f  1:

0  ~zi, ~yi  1, i 2 {P,H,N}. (3)

For simplicity, we assume inequalities read element-wise and
denote 0 and 1 as the vector of zeros and ones, respectively.

The continuous relaxation allows us to apply a gradient-
based maximum likelihood approach to recover the indicator
values ~zi and ~yi by estimating A~f such that the probability of
observing the vector of negative binomial data ~s is maximized
under our statistical model. We seek to minimize the corre-
sponding Negative Binomial negative log-likelihood function

F (~f) ⌘
2nX

l=1

(1+~sl) log
�
1+~eT

l A~f + "
�
�~sl log

�
~eT

l A~f + "
�

(4)

Familial Constraints. We incorporate additional constraints
to leverage biological information about ~f to improve accu-
racy of the model. Since a structural variant cannot be both
homozygous and heterozygous, we require that

0  ~zi + ~yi  1, i 2 {P,H,N}.

The signal of the child is comprised of both inherited and novel
structural variants, ~f⇤

C
= ~zH+~yH+~zN+~yN , where a structural

variant cannot be both inherited and novel simultaneously.

0  ~zH + ~yH + ~zN + ~yN  1.

To account for relatedness, we assume the child can have
an inherited homogeneous SV only if the parent has at
least a heterogeneous SV. Similarly, the child can only have
an inherited heterogeneous SV if the parent has at least a
heterogeneous SV. On the other hand, if the parent has a
homogeneous SV at a particular location, then the child must
have at least a heterozygous SV at that location:

0  ~zH  ~zP + ~yP  1

0  ~zP  ~zH + ~yH  1

Finally, we note that novel structural variants in the child
cannot be inherited from the parent.

0  ~zN + ~yN  1� (~zP + ~yP )  1

S denotes the set of all vectors satisfying these constraints:

S =

8
>>>>>>>>><

>>>>>>>>>:

~f =

2

6666666664

~zP

~zH

~zN

~yP

~yH

~yN

3

7777777775

2 R6n :

0  ~zi + ~yi  1

0  ~zH + ~yH + ~zN + ~yN  1

0  ~zH  ~zP + ~yP  1

0  ~zP  ~zH + ~yH  1

0  ~zN + ~yN

 1� (~zP + ~yP )  1

9
>>>>>>>>>=

>>>>>>>>>;

Sparsity-promoting `1 penalty. Since structural variants are
rare in an individual’s genome, a common challenge with
SV recovery is predicting false positive SVs by mistaking
fragments that are incorrectly mapped against the reference
genome [18]. To model this, we incorporate an `1-norm
penalty in our objective function to enforce sparsity in our
predictions. Further, we assume novel SVs are even more rare
since they are not inherited from a parent. The penalty is:

pen(~f) = (k~zP k1+k~zHk1+k~yP k1+k~yHk1)+�(k~zNk1+k~yNk1)

where � > 1 is the penalty term that enforces greater sparsity
in the child’s novel SVs. The objective function takes the form:

minimize
~f2R6n

F (~f) + ⌧pen(~f)

subject to ~f 2 S
(5)

where F (~f) is the Negative Binomial negative log-likelihood
function shown in Equation (4) and ⌧ > 0 is a regularization
parameter. Our approach in solving the minimization problem
in Equation (5) employs sequential quadratic approximations
to the Negative Binomial negative log-likelihood F (~f). More
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(a) (b) (c)

Fig. 1. The feasible set is shown by the shaded region for each step of the proposed block-coordinate descent approach. (a) Step 1: We obtain the solution
for the parent’s variables ~zP and ~yP given fixed child inherited and novel indicator variables (b) Step 2: We obtain the child’s inherited indicator variables
~zH and ~yH by fixing ~zP , ~yP , ~zN , ~yN . (c) Step 3: We obtain the solution for the child’s novel indicator variables ~zN and ~yN by fixing ~zP , ~yP , ~zH , ~yH .

specifically, at iteration k, we compute a separable quadratic
approximation to F (~f) using its second-order Taylor series
approximation at ~f

k and approximate the Hessian matrix by a
scalar multiple of the identity matrix, ↵kI [16]. This quadratic
approximation is then defined as

F
k(~f) ⌘ F (~fk) + (~f � ~f

k)TrF (~fk) +
↵k

2
k~f � ~f

kk22

which we use as a surrogate function for F (~f) in Equation (5).
Using this approximation, the next iterate is given by

~f
k+1 =

arg min
~f2R6n

F
k(~f) + ⌧pen(~f)

subject to ~f 2 S
(6)

We reformulate this constrained quadratic subproblem into
the following equivalent sequence of subproblems (see [16]):

~f
k+1 =

arg min
~f2R6n

Q(~f) =
1

2
k~f � ~r

kk22 +
⌧

↵k

pen(~f)

subject to ~f 2 S
(7)

where ~r
k = [~r k

zP
,~r

k

zH
,~r

k

zN
,~r

k

yP
,~r

k

yH
,~r

k

yN
]T = ~f

k

� 1
↵k

rF (~fk)

Our objective function Q(~f) is separable and decouples
into the function Q(~f) =

P
n

j=1 Qj(~zP , ~zH , ~zN , ~yP , ~yH , ~yN ),
where

Qj(~zP , ~zH , ~zN , ~yP , ~yH , ~yN ) =

1

2

(
((~zP � ~r

k

~zP
)j)

2 + ((~zH � ~r
k

~zH
)j)

2 + ((~zN � ~r
k

~zN
)j)

2

+ ((~yP � ~r
k

~yP
)j)

2 + ((~yH � ~r
k

~yH
)j)

2 + ((~yN � ~r
k

~yN
)j)

2

)

+
⌧

↵k

n
|(~zP )j |+ |(~zH)j |+ �|(~zN )j |

+ |(~yP )j |+ |(~yH)j |+ �|(~yN )j |
o

Since the bounds defining the region S are component-wise,
then Equation (7) separates into subproblems of the form:

f̃
k+1 = min

f̃=
[zP ,zH ,zN ,

yP ,yH ,yN ]2R6

⌧

↵k

n
|(~zP )j |+ |(~zH)j |+ �|(~zN )j |

+ |(~yP )j |+ |(~yH)j |+ �|(~yN )j |
o

+
1

2

n
((~zP � ~r

k

~zP
)j)

2 + ((~zH � ~r
k

~zH
)j)

2 + ((~zN � ~r
k

~zN
)j)

2

+ ((~yP � ~r
k

~yP
)j)

2 + ((~yH � ~r
k

~yH
)j)

2 + ((~yN � ~r
k

~yN
)j)

2
o

subject to f̃ 2 S

(8)
where zi, yi and rzi , ryi

are scalar components of ~zi, ~yi and
~rzi ,~ryi

, respectively, at the same location; and S is the set
of scalar constraints obtained from S . Since Equation (8) has
closed form solutions (obtained by completing the square and
ignoring constant terms), the constrained minimizer is obtained
by projecting the unconstrained solution to the feasible set.

C. Optimization Approach

We solve our problem using an alternating block-coordinate
descent approach [18], [19], [20]. We fix all but one individual
and solve Equation (7) over both indicator variables for that
individual. We successively minimize both indicator variables
for each individual while the other individuals are fixed. The
feasible region for this step is illustrated in Figure 1.

Step 0: We compute the unconstrained minimizer of Equa-
tion (7):
~f =[~rzP � ⌧

↵k

1n, ~rzH � ⌧

↵k

1n, ~rzN � ⌧

↵k

�1n,

~ryP
� ⌧

↵k

1n, ~ryH
� ⌧

↵k

1n, ~ryN
� ⌧

↵k

�1n]
T
,

where 1n 2 Rn. Next, we initialize the child’s inherited and
novel indicator variables by applying the following rule:

zH = mid{0, rk
zH

� ⌧

↵k

, 1}, zN = mid{0, rk
zN

� ⌧

↵k

�, 1},

yH = mid{0, rk
yH

� ⌧

↵k

, 1}, yN = mid{0, rk
yN

� ⌧

↵k

�, 1}
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where mid{a, b, c} chooses the middle value of the three argu-
ments. Further, if zH + yH > 1, then we let zH = ŷH = 0.5.
We adjust zN and yN similarly. We apply these rules to
ensure our initialization is consistent with the set of feasible
solutions. To initialize the parent indicator variables, we let
zP = r

k

zP
� ⌧

↵k

and yP = r
k

yP
� ⌧

↵k

.

Step 1: We project (zP , yP ) onto the feasible set S with fixed
inherited and novel variables to obtain the new parent indicator
values ẑP and ŷP .

Step 2: Using Step 1 estimates for the parent diploid indicator
variables,we project (zH , yH) onto our feasible set S with
fixed parent and child’s novel indicator variables to obtain the
new child’s inherited indicator variables ẑH and ŷH .

Step 3: Using estimates for the parent diploid indicator
variables and child’s inherited diploid indicator variables from
Steps 1- 2, we project (zN , yN ) onto our feasible set S with
fixed parent and child’s inherited indicator variables to obtain
the new child’s novel indicator variables ẑN and ŷN .

We repeat Steps 1, 2, and 3 for every j to update ~f
k+1 until

the relative difference between consecutive iterates converges
to k~fk+1 � ~f

kk/k~fkk 10�8.

III. RESULTS

We introduce a novel algorithm named NEgative Binomial
optimization Using `1 penalty Algorithm (NEBULA),
developed through extensive modifications to the existing

SPIRAL Poisson-based approach [16]. NEBULA incorporates
the negative binomial statistical method for effectively solving
the quadratic subproblems, marking a substantial advancement
in our computational framework for predicting the presence
of SVs in related individuals. Moreover, the flexibility and
robustness of NEBULA render it generalizable to diverse
applications beyond SV prediction [22]. The regularization
parameters (⌧, �) were hyperparameters selected to maximize
the area under the curve (AUC) for the receiver operating
characteristic (ROC).

Simulated Data. Similar to previous approaches, we simulated
two parent signals of size 105 with a set number of structural
variants and a set similarity of 80% between the parent
signals [18], [20]. In the parent signals, 5000 locations were
chosen at random to be structural variants. While two parent
signals were generated, only one parent signal was utilized
for testing the method. The child signal was constructed
by first applying a logical implementation of inheritance to
b5000(1 � p)c randomly selected parent structural variants
(where p is the percentage of novel SVs). Next, we randomly
chose b5000pc locations from the remaining (105 � 5000)
that were not chosen as a parent variant to be novel
variants in the child. After forming the true signals for each
individual, the observed sequenced signals were generated
by sampling from the Negative Binomial distribution
with a given coverage and error. All code is available at
github.com/jornelasmunoz/structural_variants.

Fig. 2. ROC curves (top) and Precision-Recall curves (bottom) for the reconstructed homozygous parent signal (left), reconstructed inherited homozygous
child signal (center), and reconstructed novel homozygous child signal (right) for our NEBULA algorithm (red) and the SPIRAL algorithm (blue). The
regularization parameters used were ⌧ = 1, � = 2, the percent of novel SVs is 4, and the coverage values for each individual are (�P ,�C) = (7, 3). The
coverages were chosen based on low-coverage values explained in [21].
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Analysis. Figure 2 displays the Receiving Operating Charac-
teristic (ROC) (top) and Precision-Recall (PR) (bottom) curves
obtained for a simulated data set where the parents share 80%
of their SVs. Our method demonstrates superior performance
in reconstructing homozygous signals for each individual, even
in the presence of significant sequencing and mapping errors
(" = 0.5). The Area Under the Curve (AUC) is employed
to quantify the ability of both SPIRAL and NEBULA in
distinguishing between classes. Since SVs are very rare, a
more informative metric is to examine Precision-Recall curves
to gain a deeper understanding of the performance of our
algorithm as it relates to false positives [23]. We see im-
provements in AUC and average precision for the parent and
child’s inherited signals. We also see comparable performance
for the reconstruction of the child’s novel signal. However,
neither method is able to accurately reconstruct the novel child
signal. We hypothesize that including the information from
both parents would enhance the ability to predict the child
signal.

IV. CONCLUSION

We present an optimization method for detecting both
structural variants and their genotype (homozygous or het-
erozygous) from low-coverage DNA sequencing data in related
individuals. This method leverages Mendelian inheritance to
improve signal reconstruction of noisy data. Our algorithm,
called NEBULA, uses negative binomial statistical methods
for optimization. This extends previous work (SPIRAL) that
focused on a Poisson-based optimization algorithm. We com-
pare our method to SPIRAL and applied them to simulated
data to reconstruct heterozygous and homozygous signals.
Overall, we achieve improved precision rates for total SV
detection with our method. While the data we used in this
proof-of-concept is synthetic, it is a natural extension to apply
this method to real-world data such as the 1000 genomes
project. In future studies, we intend to extend this work to
a two parent and one child framework where we will be using
real data.
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