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Abstract— This paper tackles the challenge of aligning

graph representations of small biological molecules, crucial for

understanding structure-function relationships in biological

research. We focus on matching undirected and attributed

graphs, addressing the limitations of current methodologies

that overlook functional insights provided by node embeddings.

Our approach considers graphs as probability distributions

in a metric space, introducing a novel embedding scheme

that accounts for immediate and secondary neighbors of

nodes with continuous attributes. We formulated the graph

matching problem as an optimal transport and we present an

innovative graph kernel that is based on optimal transport

to overcome limitations in traditional kernels, specifically

addressing naive aggregation. Experimental results show

that our approach outperforms state-of-the-art techniques

in five of six common datasets, promising advancements in

graph alignment methodologies for molecular analysis and

computational biology.

Clinical relevance— The porposed method advances drug

discovery and development by employing a graph-based frame-

work rooted in optimal transport theory. This approach fa-

cilitates enhanced classification of small molecules, notably

proteins and enzymes, potentially revolutionizing therapeutic

advancements for targeted treatments and drug design preci-

sion.

I. INTRODUCTION
The accurate alignment and comparison of graphs rep-

resenting small biological molecules, such as proteins and
enzymes, hold paramount importance in understanding their
structure-function relationships and facilitating robust clas-
sification [1]. Graph-based representations encapsulate intri-
cate molecular structures, enabling nuanced analysis crucial
for biological and pharmaceutical research. Aligning these
graphs aids in discerning structural similarities, identifying
conserved functional motifs, and elucidating evolutionary
relationships among molecules. This alignment-driven clas-
sification approach not only enhances our comprehension of
molecular characteristics but also empowers drug discovery,
protein function prediction, and biological system model-
ing [2]. Understanding the significance of graph alignment
underscores the foundational role of node embeddings, the
initial step in graph matching methodologies.

The initial step in graph matching, pivotal to under-
standing graph alignment, centers on the task of learning
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node embeddings. This process aims to derive latent vector
representations for each node within a graph, effectively
encapsulating its topology and structural characteristics. Ac-
quiring appropriate node embeddings holds immense value
in graph matching as it facilitates the alignment of multiple
graphs based on the metric structure associated with these
embeddings. However, many existing graph matching meth-
ods predominantly rely on topological information, such as
adjacency matrices, often neglecting the valuable functional
insights offered by node embeddings [3]. Moreover, several
proposed variations of graph matching techniques struggle to
generalize effectively when confronted with graphs featuring
high-dimensional continuous node attributes, necessitating
intricate extensions to accommodate such complex cases [4].

Optimal transport (OT) theory has significantly influenced
recent advancements in machine learning [5]–[11], primarily
due to its ability to compare empirical distributions. In
response to the limitations observed in existing approaches,
this paper introduces a novel OT-based matching method.
Our method leverages graph representations derived from an
innovative graph embedding technique coupled with princi-
ples from optimal transport theory. Specifically, our approach
focuses on enhancing node embeddings by considering both
the first and second neighbors of the nodes, thereby improv-
ing the quality and comprehensiveness of the embeddings
generated. Additionally, we introduce a novel formulation
for graph kernels. Finally, we demonstrate the effectiveness
of our proposed method through successful experimental
results. Our method achieves higher accuracy in comparison
to state-of- the-art methods. Notably, it outperforms existing
methods in 5 out of 6 common datasets.

II. METHOD

A. Optimal transport background

Optimal transport [5] is a mathematical concept that
defines the problem of finding the most efficient way of
moving an object such as probability distribution from one
configuration onto another (e.g., matching two probability
distributions). Efficient here means a lower cost.

To mathematically represent the transportation problem,
consider two sets of points denoted as X = {xi}

N
i=1 and

Y = {yi}Ki=1 representing the source and target samples,
respectively. Let p 2 HN and q 2 HK represent two
discretized distributions of interest, where HN and HK

denote histograms with N and K bins respectively. The
elements are constrained such that p 2 RN

+ and
P

i pi = 1,
and q 2 RK

+ with
P

i qi = 1.
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(a) (b) (c)
Fig. 1. (a) Graph matching scheme. First, graph embeddings are generated using the scheme f(·), then optimal transport is employed to align the two
graphs and compute its similarity. (b) The transportation map between two graphs obtained from MUTAG dataset. (c) The similarity matrix of graphs from
MUTAG dataset. Highlighted color means higher similarity. The diagonal is enforced to be zero to avoid trivial solution.

Consider the matrix Q 2 RK⇥N , which has non-negative
entries Qi,j and which serves as a transportation plan or
coupling matrix. This matrix describes how much mass pj
located at xj is to be transported to match with the mass qi
situated at yi. To ensure the validity of Q, it is necessary for
the matrix to adhere to the subsequent two conditions:

NX

j=1

Qij = qi for all i 2 {1, ..,K},

KX

i=1

Qij = pj for all j 2 {1, .., N}.

Optimal transport tackles the challenge of transporting p to q

in an optimal manner. This is achieved by considering a cost
matrix Cij that’s chosen to represent the Euclidean distance
between xi and yj , defined as Cij = kxi�yjk2. The optimal
transport is defined by the optimization problem

minimize
Q2RK⇥N

hC,QiF =
KX

i=1

NX

j=1

CijQij

subject to Q1N = q, QT1K = p, (Q)i,j � 0

(1)

where the cumulative cost of the transportation plan is
denoted by the Frobenius dot-product of two matrices h · , · i
and where 1N and 1K represent vectors filled with ones,
both of dimension N and K respectively. We establish the
collection of all permissible couplings or transport plans,
denoted as Q(p, q), for histograms in the following manner:

Q(p, q) = {Q 2 RK⇥N
+ | Q1N = q, QT1K = p}.

To be more precise, particularly when the cost C takes the
form of a distance matrix, the optimal transport corresponds
to the Wasserstein distance over the space HN ⇥HK . This
distance is defined as follows:

W (p, q) = min
Q2Q(p,q)

hC,QiF (2)

We used a simplex method [12] to solve (2), which
involves moving iteratively from one feasible solution to
another along the edges of the feasible region until an
optimal solution is reached. The method utilizes a tableau

representation, with each iteration selecting a pivot column
and row to update the tableau. The algorithm continues until
optimality conditions are met.

B. Wasserstein distance on graphs

The inadequacy of the current aggregation step in R-
convolution graph kernels, which might obscure significant
differences in substructures due to averaging, has motivated
us to develop a more detailed distance measure between
structures and their constituents. Our approach is built upon
the following sequential stages: (1) converting each graph
into a collection of node embeddings, (2) quantifying the
Wasserstein distance between every pair of graphs, and (3)
generating a similarity matrix that will be employed within
the learning algorithm. Fig. 1 represents the outlined steps.
We first establish a proposed and novel embedding scheme
and proceed to demonstrate the integration of embeddings
within the framework of the Wasserstein distance.

The Weisfeiler–Lehman kernels: The Weisfeiler–Lehman
graph kernels [13] offer an efficient solution for feature
extraction on graphs characterized by discrete node labels.
It is based on the Weisfeiler-Lehman test of isomorphism
on graphs. This method transforms the initial graph into a
sequence of graphs, where the node attributes of these graphs
encapsulate both topological and label-related information. It
looks and compares kernel comparing subtree-like patterns.
Its process involves generating a sequence of ordered strings
by amalgamating the labels of a node and its neighboring
nodes. These strings are then hashed to generate compressed
node labels, effectively capturing a broader context. As the
algorithm progresses through iterations, these labels encom-
pass progressively larger neighborhoods around each node,
enabling the comparison of more extensive substructures.

Extension to continuous attributes: The Weis-
feiler–Lehman kernels heavily rely on discrete node
labels. If the graph data contains continuous or more
complex attributes, the discretization process might lead to
information loss. To overcome this limitation, we propose an
embedding scheme for graphs characterized by continuous
node attributes and weighted edges. The key concept
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TABLE I
INFORMATION ABOUT 6 BENCHMARK DATASETS USED IN OUR EXPERIMENTS, INCLUDING THEIR SIZE USED IN A CLASSIFICATION TASK, AND A

BRIEF DESCRIPTION. THE FIRST FOUR DATASETS ARE VECTOR ATTRIBUTED GRAPHS WHILE THE NEXT TWO CONTAIN GRAPHS WITH DISCRETE

ATTRIBUTES.

Type Dataset Size Description

BZR 405 Ligends classified into holding an active or inactive Benzodiazepine Receptor (BZR) site.

Vector
Attributes

COX-2 467 Cyclooxygenase-2 (COX-2) inhibitors classified into an active or inactive against human recombinant enzyme.

ENZYMES 600 A set of protein tertiary structures categorized based on the type of reaction they catalyze.

PROTEINS 1113 Two categories of proteins: enzymes (functional) and non-enzymes (non-functional).

Discrete
Attributes

MUTAG 188 Whether a chemical compound is mutagenic aromatic and heteroaromatic nitro or non mutagenic.

PTC-MR 344 Chemical compounds labeled based on their carcinogenicity in male rates (MR) rodents.

of our approach revolves around formulating a dual-tier
explicit propagation approach that harnesses and enhances
the existing node features through an averaging process
spanning both the immediate and secondary neighborhoods.
While similar methodologies have been indirectly explored
in the context of calculating node-level features, they are
either dependent on extra hashing procedures to handle the
continuous attributes [14], [15] or they only consider the
first immediate neighborhood [16]. Furthermore, we can
readily incorporate edge weights by factoring them into
the computation of the average within each neighborhood.
Let’s assume we have a continuous attribute denoted as
a0(v) = a(v) for every node v 2 G. In this scenario, our
recursive embedding scheme is defined by

am+1(v) =
1

3

 
am(v) +

1

deg(v)

X

u2N (v)

↵((v, u)) · am(u)

+
1

deg(v)

X

u2N (v)

1

deg(u)

X

w2N (u)
w 6=v

↵((u,w)) · am(w)

!
,

where ↵ is an edge weight, and N (u) represents the neigh-
borhood of node u, which includes the neighbors of u. In
cases where edge weights are absent, we assign ↵ a value of
1. The inclusion of the 1/3 factor is to maintain consistent
scale of features throughout the iterations. The ability of
our proposed scheme to incorporate edge weights renders it
suitable for diverse graph types, eliminating the need for an
additional hashing procedure. Furthermore, it bears similarity
to the propagation strategies employed in numerous graph
neural networks, a technique that has demonstrated efficacy
in node classification tasks involving large datasets [17].

Wasserstein approach for attributed graph alignment: In
this paper, we focus on comparing attributed graphs that
hold continuous attributes as well as graphs with discrete
attributes on the vertices. In a more formal formulation, we
consider undirected labeled graphs, which can be represented
as tuples in the following structure G(V, E , f) where (V, E)
are the set of vertices and edges of the graph. f is a
labeling function that assigns each vertex vi 2 V with
a feature ai = f(vi) in some feature metric space. We
suggest enhancing the aforementioned graph by introducing

a histogram, intended to convey the relative significance of
the vertices within the graph. To achieve this, assuming the
graph comprises N vertices, we allocate those vertices with
weights hi. Through this procedure, our graph will take the
form G(V, E , f, hG), where hG is a function that associates a
weight to each vertex, such that hi = hG(vi). This definition
permits the graph to be depicted as a probability measure
with complete support across the feature space. When the
weights are all equal hi =

1
N , every vertex holds identical

relative significance.
We aim at defining a matching distance between two

graphs G1 and G2 with N and K vertices, respectively. The
two graphs are described respectively by their probability
measure hG1 and hG2 . We introduce Q(hG1 , hG2) as the set
of all permissible couplings between hG1 and hG2 , as follows:

Q(hG1 , hG2) = {Q 2 RK⇥N
+ | Q1N = hG2 , Q

T1K = hG1}

In this regard, the matrix Q depicts a probabilistic matching
of nodes between the two graphs. We also consider the cost
matrix C 2 RK⇥N that stands for the distance between the
features (i.e., embedding). This optimization problem can be
expressed as

minimize
Q2RK⇥N

+

hC,QiF

subject to Q1N = hG2 , QT1K = hG1 , (Q)i,j � 0.
(3)

After generating the node embeddings using the graph em-
bedding scheme, we proceed to assess the pairwise Wasser-
stein distance between the graphs. This begins with the
computation of ground distances for every node pair. In the
case of categorical (discrete) node features, we employ the
normalized Hamming distance, which equals 1 when two
vectors share no common features and 0 when the vectors are
identical. For continuous node features, on the other hand,
we employ the Euclidean distance. Subsequently, we insert
the ground distance into (3) and calculate the Wasserstein
distance utilizing a network simplex method [18].

III. NUMERICAL EXPERIMENTS

We use the Python implementation, Python Optimal Trans-
port package, to solve the optimization problem and compute
the Wasserstein distance between two graphs [19]. Our code
will be released upon publication.
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TABLE II
AVERAGE CLASSIFICATION ACCURACY ON THE GRAPH DATASETS WITH CONTINUOUS ATTRIBUTES. THE BEST RESULT FOR EACH DATASET IS

HIGHLIGHTED IN BOLD.

BZR COX2 ENZYMES PROTEIN

OTGK (Ours) 85.82±1.5 79.72±2.15 74.01±6.76 76.75±3.04

WWL 84.42±2.03 78.29±0.47 73.25±0.86 77.91±0.88

WD 84.01±3.02 75.2±2.31 72.4 ± 2.45 63.97±3.26
HOPPER 84.15±5.26 79.57±3.46 45.33±4.00 71.96±3.22
PROPAK 79.51±5.02 77.66±3.95 71.67±5.63 61.34±4.38
HGK-WLK 78.59±0.63 78.13±0.45 63.04±0.65 75.93±0.17
HGK-SP 76.42±0.72 72.57±1.18 66.36±0.37 75.78±0.17
PATCHY-SAN 82.20±4.23 71.91±3.40 27.33±4.16 71.79±3.39
VH-C 74.82±2.13 48.51±0.63 47.15±0.79 60.79±0.12

TABLE III
AVERAGE CLASSIFICATION ACCURACY ON THE GRAPH DATASETS WITH

DISCRETE ATTRIBUTES. THE BEST RESULT FOR EACH DATASET IS

HIGHLIGHTED IN BOLD.

MUTAG PTC-MR

OTGK (Ours) 92.1±1.2 66.8±3.4

GK K=3 82.4±8.4 56.4±8.0
RWK 79.4±8.1 55.0±7.3
SPK 82.9±8.1 60.0±7.3
WLK 86.2±8.4 62.8±7.2
PATCHY-SAN 83.0±10.8 55.3±8.2

Data sets: We evaluate our framework on 6 commonly
used benchmark datasets, and these datasets are categorized
into 2 distinct groups. BZR, COX2 [20], PROTEINS, EN-
ZYMES [21], are vector attributed graphs. MUTAG [22]
and PTC-MR [4] contain graphs featuring discrete attributes
originating from small molecules. All data are available in
[23]. Datasets used in this study are described in Table I.

Experimental setup: Regarding the feature distance matrix
C between node features, for graphs possessing discrete
attributes, we adopt a Weisfeiler-Lehman (WL) labeling
approach, achieved by concatenating the labels of neigh-
boring nodes. For graphs featuring continuous attributes,
we implement our suggested embedding scheme outlined in
Sec. II, which involves assigning weights to the attributes of
neighboring nodes as well as those of second-level neighbors,
and subsequently calculating their average.

Derived from the graph Wasserstein distance, a similarity
matrix denoted as MWD can be formulated for integration
into a learning algorithm. We run two tasks and show the
results of the classification task. For the classification task,
we run a support vector machine using the indefinite kernel
matrix e��MWD , which is an instance of a Laplacian kernel
and seen as a noisy observation of the true positive semidef-
inite kernel [24]. We name our kernel Optimal Transport-

based Graph Kernel (OTGK). We assess classification ac-
curacy through comparison with state-of-the-art graph kernel
methods.

For vector attributed graphs, we compared our proposed

method with the Wasserstein Weisfeiler–Lehman (WWL)
kernel that averages only over the direct neighbors [16]
and without embedding the features (WD). Furthermore,
we compared with the graph HOPPER kernel [27] and the
propagation kernel (PROPAK) [15], we also conducted a
comparison with two variations of the hash graph kernel,
namely HGK-SP and HGK-WL [14]. We also compare our
method with the PATCHY-SAN framework for convolutional
neural networks on graphs (PATCHY-SAN) [28]. In addition,
we compared to a continuous vertex histogram (VH-C),
which is defined as an RBF kernel between the aggregate
of graph node embeddings.

For the categorical case, we compared with the random
walk kernel (RWK) [25], the graphlet count kernel (GK)
[26], with size of the graphlets K=3, the Weisfeler-Lehman
kernel (WLK) [13], and the shortest path kernel (SPK) [21].

Results and discussion: In our experiments, we use 10-
fold cross-validation, and we repeat each cross-validation
split 10 times and report the average accuracy. For the vector
attributed graphs, the average accuracy values presented in
Table II indicate that OTGK stands out as a leading-edge
technique, achieving the top performance on 3 out of the
4 datasets. Furthermore, the our proposed method comes
in close second for the fourth dataset, PROTEIN. For the
discrete labeled graphs, Table III shows that our method out-
performs all competitive methods. The consistency of other
competitive methods is lower, as they demonstrate strong
performances on specific datasets only. We also observe that
our approach utilizing WL attributes achieves better perfor-
mance compared to the WL kernel method, highlighting the
advantage of employing an optimal transport-based distance
instead of a kernel-based similarity. Furthermore, our ap-
proach surpasses convolutional neural networks in graph-
related tasks by a substantial margin, which is particularly
noteworthy.

IV. CONCLUSIONS
In this work, we introduce a novel learning method based

on optimal transport, aimed at achieving attributed graph
matching and the process of learning node embeddings
within a single framework. We show that learning features
from first- and second-level neighbors is beneficial to the
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objective of obtaining higher accuracy performance in var-
ious matching tasks. Our experiments demonstrate that our
proposed method outperforms the state-of-the-art approaches
for graph classification in both continuous node attribute
scenarios and categorical settings, showcasing its potential
to contribute significantly to the field of graph alignment
methodologies. The ability to align and compare graphs with
high-dimensional continuous node attributes positions our
approach as a promising solution for tackling complex cases
in biological research.
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