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ABSTRACT
We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair nat-
ural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most
expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the
t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency
or accuracy. Our algorithm yields sub-kJ mol−1 deviations for relative energies when compared with canonical CCSD(T), with typical errors
being on the order of 0.1 kcal mol−1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for
non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight
the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219963

I. INTRODUCTION
Coupled-cluster (CC) theory1,2 is one of the greatest triumphs

of modern quantum chemistry, allowing for the accurate evaluation
of the electronic energy of a molecule in polynomial time, as an
approximation to solving the time-independent Schrödinger equa-
tion. Full configuration interaction (FCI)3,4 seeks to provide the
exact energy and wave function, within a finite basis set. Unfortu-
nately, FCI scales as O(N!) with respect to the size of the molecule,
rendering it very challenging for molecules larger than a few atoms.
CC theory allows for a systematic series of approximations to FCI,
and its exponential ansatz allows for size-extensivity of electronic
energies. The basic equations for CC theory are

∣ΨCC⟩ = eT ∣Ψ0⟩, (1)

ECC = ⟨Ψ0 ∣e−THeT ∣Ψ0⟩, (2)

where Ψ0 is the reference Hartree–Fock wave function given by
a single Slater determinant, T is the electron excitation operator,
andH is the molecular Hamiltonian, within the Born–Oppenheimer
approximation. With the T operator, any number of electron excita-
tions can be considered, up to the number of electrons in the system.
More excitations consideredmeans a larger runtime, in exchange for
greater accuracy. Coupled-cluster methods are defined by the high-
est level of electronic excitations that are considered. For the CCSD
method, T = T1 + T2 such that

∣ΨCCSD⟩ = e(T1+T2)∣Ψ0⟩, (3)

J. Chem. Phys. 161, 082502 (2024); doi: 10.1063/5.0219963 161, 082502-1

Published under an exclusive license by AIP Publishing

 13 January 2025 23:35:43

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0219963
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0219963
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0219963&domain=pdf&date_stamp=2024-August-22
https://doi.org/10.1063/5.0219963
https://orcid.org/0000-0002-6946-209X
https://orcid.org/0000-0003-0900-2849
https://orcid.org/0000-0002-6930-2184
https://orcid.org/0000-0003-3659-0711
https://orcid.org/0000-0002-5570-7666
https://orcid.org/0000-0003-0252-2083
mailto:ajiang10224@gmail.com
mailto:justin.turney@uga.edu
mailto:sherrill@gatech.edu
https://doi.org/10.1063/5.0219963


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

ECCSD = ⟨Ψ0 ∣e−(T1+T2)He(T1+T2) ∣Ψ0⟩, (4)

where T1 represents the excitation operator where one electron
is excited from the ground-state wave function, while T2 is the
two-electron excitation operator. The CCSD(T) method5 considers
triples electronic excitations T3 in a perturbative manner using the
CCSD wave function. CCSD(T) is known as the “gold standard”
method in quantum chemistry, with errors in relative energy (versus
FCI) often around 1 kcal mol−1 or less,6–9 and often with excellent
agreement with experimental data.10

Unfortunately, the cost of evaluating the CCSD wave function
for a molecule scales as O(N6

), and CCSD(T) adds a non-iterative
O(N7

) step on top of the iterative CCSD method. This means that
CCSD and CCSD(T) methods are intractable for systems with more
than around 30 atoms on a typical workstation. Therefore, it is use-
ful to devise a series of approximations to CCSD and CCSD(T) that
allow them to be useful for largermolecular complexes, such as phar-
maceutical molecules, protein fragments, and smaller whole proteins
(such as crambin and insulin) to allow for increased applicability
of high-accuracy quantum chemistry to fields such as drug discov-
ery and computational biology. Currently, cheaper methods, such as
density functional theory (DFT)11–13 or Møller–Plesset perturbation
theory (MP2),14,15 are applied to these problems, but they do not
have the accuracy of coupled-cluster.

One such approach to increase the efficiency of coupled-
cluster based methods is through rank reduction. Parrish et al. used
orthogonal projectors to transform CCSD amplitudes into smaller-
ranked tensors.16–18 Lesiuk successfully applied such an approach
to CCSD(T).19 Rank reduction can also be used in conjunction
with tensor hypercontraction (THC) methods.20–23 Through the
use of the CANDECOMP/PARAFAC (CP) decomposition24 of the
orthogonal projectors, Hohenstein et al. applied THC to CCSD
amplitudes,18 while Jiang et al. have recently applied this approach
to the (T) correction.25

Another approach to this problem is to reformulate coupled-
cluster theory through local correlation methods,26–46 especially
methods that use pair natural orbitals (PNOs)29,30 [triples natural
orbitals (TNOs)35 are used for the triples terms]. State-of-the-
art PNO-based coupled-cluster methods include the domain-
based local pair natural orbital [DLPNO-CCSD(T)] method40,44

in ORCA;47 the pair natural orbital local [PNO-LCCSD(T)]
method41,45 in Molpro;48 and the local natural orbital [LNO-
CCSD(T)] method43,46 in MRCC.49 ORCA’s DLPNO-CCSD(T)
algorithm has been executed on system sizes containing more
than 1000 atoms,40 far greater than the 30 atoms using canonical
CCSD(T) methods. As used in practice, these methods are reason-
ably accurate approximations to canonical CCSD(T) at a greatly
reduced computational cost. Approximations are often made to the
(T) correction, rendering it not fully equivalent to its canonical vari-
ant, such as through the semi-canonical (T0) algorithm.35 However,
alternative formulations, such as the iterative (T) algorithm, also
known as (T1) (not to be confused with the t1 transformation),44 do
yield the canonical result in the limit of very tight cutoffs. In either
case, errors relative to canonical CCSD(T) are typically proportional
to system size (are “size extensive”), and good accuracy can typi-
cally be maintained by a proper selection of parameters and/or (T)
algorithm.50

To contribute to the development of these highly efficient
and popular PNO-based methods, and to make these methods
more accessible to the quantum chemistry community, we imple-
mented our own version of the DLPNO-CCSD(T) method in the
open-source Psi4 package.51 While working on this project, it has
been brought to our attention that the DLPNO-CCSD(T) method
has previously been implemented in the open-source SERENITY
program.52,53 However, the implementation in SERENITY only
treats triples through the semi-canonical (T0) treatment,35 so this
work, to the best of our knowledge, represents the first open-source
implementation of DLPNO-CCSD(T) that includes an iterative (T)
algorithm to account for the non-canonical local orbitals.44 The dif-
ference between semi-canonical (T0) and iterative (T) will be further
elaborated in Sec. III C.

In this work, we make use of the t1-transformed Hamiltonian
to reduce the complexity of the CCSD equations,54,55 and we present
our own set of LCCSD working equations that minimize common
sources of error in PNO-based methods, such as the PNO projec-
tion error. We have also developed a set of parameters that allow
our code to yield relative energies with deviations on the order of
0.1 kcal mol−1 from canonical CCSD(T), called TightPNO, follow-
ing the convention of Neese et al.34,40 We test our code extensively on
relative energies, including interaction energies and conformation
energies. Weak, non-covalent interactions have historically been a
challenge for local correlation methods.36 We also present results
for some of the largest systems on which a canonical CCSD(T)
computation have been performed, the 16- and 17-molecule water
cluster conformers with an aug-cc-pVTZ basis set.56 We compare
our results to ORCA’s implementation of DLPNO-CCSD(T), as
well as a canonical MP2/CCSD(T) many-body expansion method.57
Finally, we benchmark our algorithm on a whole insulin chain (787
atoms),58 a system significantly beyond the reach of conventional
coupled-cluster theory.

II. THEORY
A. Notation

We use the following conventions to describe the indices of
matrices and tensors appearing in this work:

● μ, ν, λ, σ: atomic orbitals; these range from 1 to nbf , the
number of basis functions.

● i, j, k, l: canonical and local occupied molecular orbitals
(MOs); these range from 1 to nocc, the number of occupied
orbitals.

● a, b, c,d: canonical virtual molecular orbitals; these range
from 1 to nvirt , the number of virtual orbitals.

● p, q, r, s: general canonical molecular orbitals; these range
from 1 to nocc + nvirt .

● μ̃, ν̃, λ̃, σ̃: projected atomic orbitals (PAOs); these range from
1 to nbf .

● μ̃i j , ν̃i j , λ̃i j , σ̃i j : projected atomic orbitals localized to pair ij;
these range from 1 to npao, ij, the number of PAOs local to
local molecular orbital (LMO) pair ij.

● μ̃ijk, ν̃ijk, λ̃ijk, σ̃ijk: projected atomic orbitals localized to triplet
ijk; these range from 1 to npao, ijk, the number of PAOs local
to LMO triplet ijk.
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● aij, bij, cij,dij: pair natural orbitals in each pair domain ij;
these range from 1 to npno, ij, the number of PNOs in the
domain of LMO pair ij.

● aijk, bijk, cijk,dijk: triples natural orbitals in each triplet
domain ijk; these range from 1 to ntno, ijk, the number of
TNOs in the domain of LMO triplet ijk.

● P,Q: auxiliary basis functions for density-fitted ERIs; these
range from 1 to naux, the number of auxiliary basis functions
for density fitting.

● Pij,Qij: local auxiliary basis functions in each pair domain ij;
these range from 1 to naux, ij, the number of auxiliary basis
functions local to LMO pair ij.

● Pijk,Qijk: local auxiliary basis functions in each triplet
domain ijk; these range from 1 to naux, ijk, the number of
auxiliary basis functions local to LMO triplet ijk.

The relative sizes of these indices are typically

npno,ij < ntno,ijk ≪ npao,ij < npao,ijk < naux,ij < naux,ijk ∼ O(1), (5)

nocc ≪ nvirt < nbf < nnaux ∼ O(N), (6)

where N is the system size represented by the number of atoms.

B. t 1-transformed formulation of CCSD
In the CCSDmethod, theT cluster operator is truncated to only

include single and double excitation contributions. An alternate way
to formulate CCSD is to fold the effects of the single excitations back
into the Hamiltonian operator.54 In this alternate formulation,

ECCSD = ⟨Ψ0 ∣e−T2H̃eT2 ∣Ψ0⟩, (7)

where

H̃ = e−T1HeT1 , (8)

T1 = tai Eai, (9)

T2 = tabij EaiEbj. (10)

In singlet, closed-shell CCSD, Eai can be formulated as

Eai = a†
aai + ā

†
a āi, (11)

where the barred creation/annihilation operators refer to the beta
spin orbitals and non-barred refer to the alpha spin orbitals. The
quantity tai is known as the singles amplitude, and tabij is known as the
doubles amplitude. In the t1-transformed formalism, the amplitudes
are updated through iteratively solving the corresponding residual
equations,

Ra
i = ⟨Ψ

a
i ∣e
−T2H̃eT2 ∣Ψ0⟩, (12)

Rab
ij = ⟨Ψ

ab
ij ∣e

−T2H̃eT2 ∣Ψ0⟩, (13)

with

tai = t
a
i −

Ra
i

ϵa − ϵi
, (14)

tabij = t
ab
ij −

Rab
ij

ϵa + ϵb − ϵi − ϵj
, (15)

where ϵi and ϵa represent orbital energies obtained from the diag-
onal elements of the Fock operator in the MO basis. The residual
update equations are much more simplified compared to the tra-
ditional formulation of CCSD59 since all terms involving singles
excitations no longer arise explicitly. The t1-transformed formal-
ism of CCSD initially did not see much use after its introduction
due to the cost of transforming conventional, four-center ERIs every
iteration.54 However, DePrince et al.55 showed that using this for-
malism for CCSD is much more advantageous in the context of
using the density-fitting (DF)/resolution-of-the-identity (RI)60–68 or
Cholesky decomposition (CD)69–71 approximations for the two-
electron integrals. In this formalism, the two-electron integrals are
approximated as

(pq∣rs) ≈ (pq∣P)(P∣Q)−1(Q∣rs), (16)

where P and Q represent auxiliary basis functions. This can be
rewritten as

(pq∣rs) ≈ BQ
pqB

Q
rs, (17)

where

BQ
pq = (Q∣P)

−
1
2 (P∣pq). (18)

We present our working equations based on the formalism
of DePrince and Sherrill,55 with Eq. (31) in this work reflecting
a corrected sign error from the original work. Terms with a sin-
gle overhead tilde represent t1-dressed quantities, and their explicit
form is defined later,

Rab
ij = K̃

ab
ij + A

ab
ij + B

ab
ij + P̂

ab
ij [

1
2
Cab
ij + C

ab
ji +D

ab
ij + E

ab
ij +G

ab
ij ], (19)

where

K̃ab
ij = B̃

Q
aiB̃

Q
bj , (20)

Aab
ij = t

cd
ij B̃

Q
acB̃

Q
bd, (21)

Bab
ij = t

ab
kl β

kl
i j , (22)

Cab
ij = −t

bc
k jγ

ac
ki , (23)

Dab
ij =

1
2
ubcjkδ

ac
ik , (24)

Eab
ij = t

ac
ij
̃̃Fbc, (25)
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Gab
i j = −t

ab
ik
̃̃Fkj , (26)

with

βklij = B̃
Q
kiB̃

Q
lj + t

cd
ij B

Q
kcB

Q
ld, (27)

γacki = B̃
Q
kiB̃

Q
ac −

1
2
tadli B

Q
kdB

Q
lc , (28)

δacik = (2B̃
Q
aiB

Q
kc − B̃

Q
kiB̃

Q
ac) +

1
2
uadil (2B

Q
ldB

Q
kc − B

Q
lcB

Q
kd), (29)

̃̃Fbc = F̃bc − u
bd
kl B

Q
ldB

Q
kc, (30)

̃̃Fkj = F̃kj + u
cd
lj B

Q
kdB

Q
lc. (31)

P̂ab
ij is a permutation operator and is defined as P̂ab

ij (X
ab
ij ) = X

ab
ij

+ Xba
ji . The quantity u

ab
i j is the anti-symmetrized doubles amplitude

and is defined as uabi j = 2t
ab
i j − t

ba
i j . The singles residual takes the form

Ra
i = F̃ai + Aa

i + B
a
i + C

a
i , (32)

where

Aa
i = u

cd
kiB

Q
kcB̃

Q
ad, (33)

Ba
i = −u

ac
kl B̃

Q
kiB

Q
lc , (34)

Ca
i = F̃kcu

ac
ik . (35)

The DF/RI or CD integrals dressed with the singles amplitude take
the form55

B̃Q
ki = B

Q
ki + B

Q
kat

a
i , (36)

B̃Q
ia = B

Q
ia, (37)

B̃Q
ai = B

Q
ai − t

a
kB

Q
ki + B

Q
abt

b
i − t

a
kB

Q
kbt

b
i , (38)

B̃Q
ab = B

Q
ab − t

a
kB

Q
kb. (39)

Since BQ
ia does not transform under t1-dressing [Eq. (37)], the terms

in the singles and doubles amplitudes involving integrals of that
type do not need to be dressed. The dressed Fock matrices are,
analogously,

F̃ki = F̄ki + F̄kat
a
i , (40)

F̃ia = F̄ia, (41)

F̃ai = F̄ai − tak F̄ki + F̄abt
b
i − t

a
k F̄kbt

b
i , (42)

F̃ab = F̄ab − t
a
k F̄kb, (43)

where

F̄rs = Frs + [2(rs∣kc) − (rc∣ks)]tck. (44)

The energy expression is

ECCSD = (tabij + t
a
i t

b
j)[2(ia∣ jb) − (ib∣ ja)]. (45)

C. Perturbative triples correction in CCSD(T)
Although CCSD, with its size-extensive treatment of single

and double excitation operators, provides a good description of
dynamic electron correlation, it is often not sufficient for chemi-
cal accuracy.72–78 Chemical accuracy, in this context, is defined to
be a relative energy error of 1 kcal mol−1 or lower, compared to
either the FCI energy or experimental results. A full treatment of
triples (CCSDT) costs, iteratively, O(N8

). A cheaper way to con-
sider the effect of triples is the perturbative (T) treatment as devised
by Raghavachari et al.5 In restricted, single-reference, closed-shell
coupled cluster theory, E(T) can be expressed as25

E(T) =
1
3
(4Wabc

ijk +W
bca
ijk +W

cab
ijk )(V

abc
ijk −V

cba
ijk )

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
, (46)

with

Wabc
ijk = PL[(ia∣bd)t

cd
k j − (ia∣ jl)t

cb
kl ], (47)

Vabc
ijk =W

abc
ijk + PS[t

a
i ( jb∣kc)]. (48)

Following the formalism of Lesiuk,79 we define PL and PS, or the
“long” and “short” permutation operators, as

PL(Aabc
ijk ) = A

abc
ijk + A

acb
ikj + A

bac
jik + A

bca
jki + A

cab
kij + A

cba
kji , (49)

PS(Aabc
ijk ) = A

abc
ijk + A

bac
jik + A

cab
kij . (50)

In the (T) formalism, the triples amplitude takes the form

tabcijk =
Wabc

ijk

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
. (51)

Using the triples amplitude, as well as the permutational symmetry
of the energy denominator, one can rewrite the expression for the
(T) energy as

E(T) = t
abc
ijk ⋅ (

4
3
Vabc
ijk − 2V

cba
ijk +

2
3
Vcab
ijk ). (52)

In order to reduce memory costs, in our implementation of the
DLPNO-CCSD(T) algorithm, the indices are restricted such that
i ≤ j ≤ k (no restriction on the virtual indices). The energy expression
can now be rewritten as

E(T) =
tabcijk

1 + (δij + δjk + δik) + 2δijδjkδik

× (8Vabc
ijk − 4V

bac
ijk − 4V

acb
ijk − 4V

cab
ijk + 2V

bca
ijk + 2V

cab
ijk ). (53)
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D. Overview of domain-based pair natural orbital
(DLPNO)

In this section, we provide a brief overview of all of the different
localization techniques involved in the DLPNO approach as defined
by Neese et al.29,34,35,40 For a more comprehensive understanding,
the reader is referred to the original papers.

1. Local molecular orbitals (LMOs)
To localize the occupied molecular orbitals, one applies a uni-

tary transformation to the Hartree–Fock/SCF molecular orbitals, to
limit their spatial extent,80

CL
μi = CμjUji. (54)

The Foster–Boys81,82 or Pipek–Mezey localization82,83 approaches
can be used to effectively localize theMOs. For all computations pre-
sented here, we use the Foster–Boys approach, following the work of
Riplinger et al.40 Localizing molecular orbitals reduces the number
of “strongly correlated pairs” of molecular orbitals ij from O(N2

) to
O(N). In this context, we define “significantly correlated pairs” to
be pairs that need to be treated with MP2 or a higher level of corre-
lation. Otherwise, a dipole estimate39 is sufficient for a description of
non-significantly correlated pairs. In our work, similar to the previ-
ous work by Riplinger et al.,40 we divide our LMO pairs ij into four
classes: dipole pairs, semi-canonical MP2 pairs, weakMP2 pairs, and
strong pairs. Dipole pairs [which scale as O(N2

)] are treated using
an inexpensive dipole estimate. Semi-canonical MP2 pairs, scaling
as O(N), are treated using semi-canonical MP2 in the projected
atomic orbital (PAO) basis, while weak MP2 pairs, scaling as O(N),
are treated with full iterative LMP2. The surviving pairs, the strong
pairs, scaling as O(N), are treated at the CCSD level. For the (T)
correction, triplets ijk are determined from strong pairs and weak
MP2 pairs, so the number of relevant triplets is also linear scaling.
For clarity, “semi-canonical MP2” is obtained by using the standard
(canonical) MP2 energy expression, and the effect of off-diagonal
LMOFockmatrix elements that would contribute in the case of non-
canonical Hartree–Fock orbitals is neglected. In the case of canonical
molecular orbitals, “semi-canonical MP2” is the exact MP2 energy.
However, when localized molecular orbitals are used, the full MP2
energy requires an iterative solution.

Although the Foster–Boys or Pipek–Mezey localization pro-
cedure is O(N3

) and determining the dipole pair contribution is
O(N2

), these steps have such a small pre-factor that they do not
significantly affect the computation time of systems studied in this
work.

2. Projected atomic orbitals (PAOs)
Compared to localizing the occupied space, localizing the vir-

tual space is challenging. One of the earliest attempts at virtual space
localization was through projected atomic orbitals (PAOs).84 Since
the atomic orbital space spans the same subspace as the complete
MO space, a complete, localized, and linearly dependent descrip-
tion of the virtual space can be determined from the atomic orbitals
and occupied MO coefficients. PAOs have a more local charac-
ter compared to canonical virtual molecular orbitals. The following

equations represent how PAOs are formed by projecting out the
occupied MO space from the complete AO space:

CPAO
μ̃ν = δμν − CL

μiC
L
σiS

AO
σν , (55)

SPAOμ̃̃ν = CPAO
λ̃μ SAOλσ CPAO

σ̃ν . (56)

The CPAO coefficients give the contribution of atomic orbital μ to
PAO ν̃, and SPAO represents the overlap matrix between two PAOs.
Next, the PAOs are normalized,

CPAO
μ̃ν = (SPAOν̃ ν̃ )

−
1
2 CPAO

μ̃ν , (57)

and the PAO overlaps are non-iteratively recomputed using the new
PAO coefficients.

One early attempt at creating local-correlation algorithms was
by Schütz, Hetzer, and Werner,85 who used LMOs and PAOs to
implement a local version of MP2.14 In their work, they gave each
occupied molecular orbital pair its own set of PAOs, taking advan-
tage of the limited spatial overlap between LMOs and PAOs. The
concept of giving every MO pair its own virtual space is a precur-
sor to PNO (pair natural orbital) based algorithms. Werner and
co-workers later extended the same framework to CCSD86 and
CCSD(T)87 methods. In these methods, a set of redundant, lin-
early dependent PAOs is assigned to each LMO based on the spatial
overlap of the PAO with the LMO. In our work, following Pinski,
Riplinger, Valeev, and Neese,39 the overlap is computed through a
measure called the “differential overlap integral” (DOI),

DOIĩμ = (ĩμ ∣ĩμ)
1
2 . (58)

If the value of the integral is greater than a given tolerance
TCUT_DO, then the PAO μ̃ is included in the domain of LMO i. The
PAOs included in the domain of a pair ij are the union of the PAOs
included in the domain of LMO i combined with the PAOs in the
domain of LMO j. After the PAOs in the pair domain of pair ij are
determined, linear dependencies are removed through an algorithm,
such as partial Cholesky, and then, the resulting space is transformed
into a canonical basis (forming a diagonal Fock matrix and, thus,
orbital energies for these transformed versions of the virtual orbitals
for LMO pair ij). The resulting PAOs will be called canonical PAOs,

F μ̃ij ν̃ij = ϵ μ̃ijδ μ̃ij ν̃ij = Xμ̃ μ̃ijF
PAO
μ̃ ν̃ Xν̃ ν̃ij . (59)

3. Pair natural orbitals (PNOs)
To mitigate the high crossover points associated with using

projected atomic orbitals (PAOs), Neese et al. introduced pair nat-
ural orbitals (PNOs) for correlated methods, such as CEPA29 and
CCSD.30 PNOs are eigenvectors of the pair density of a molecular
orbital pair ij,

Dab
ij =

1
1 + δij

[uacij t
bc
ij + u

ca
ij t

cb
ij ]. (60)

The pair density can computed through canonical virtual orbitals
or PAOs. In their original work, Neese et al.29 constructed PNOs
from canonical virtual orbitals, using amplitudes from a preceding
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MP2 calculation. In a later work, Riplinger and Neese34 updated
their methodology by computing PNOs using canonical PAOs, from
semi-canonicalMP2 amplitudes. This is known as the domain-based
local pair natural orbital (DLPNO) approach,

Dμ̃ij ν̃ij
ij = XPNO,ij

μ̃ijai j nocc,ijaij XPNO,ij
ν̃ijai j . (61)

The eigenvectors, XPNO,ij
μ̃i jai j , represent the transformation from canon-

ical PAOs to PNOs, and their eigenvalues nocc,ijaij represent the
occupation numbers corresponding to each pair natural orbital.

The PNOs are then truncated to form a more compact descrip-
tion of the virtual space spanned by each pair ij. In our method,
we use three criteria for determining significant PNOs. If any one
of the following three criteria is met, then the PNO is considered
significant.

● Occupation criterion: All PNOs with an occupation num-
ber greater than TCUT_PNO will be included. We will dub this
the occupation cutoff.

● Energy criterion: Every PNO is included, from highest to
lowest occupation number, until the pair energy computed
from only those PNOs, as a ratio of the total semi-canonical
MP2 energy for the pair ij, is greater than TCUT_ENERGY.

● Trace criterion: Every PNO is included, from highest to
lowest occupation number, until the sum of their occupation
numbers, divided by the total virtual occupation number
sum, is greater than TCUT_TRACE.

In the demonstrations of the algorithm presented here, we will
use tighter cutoffs in order to best capture the effects of non-
covalent interactions. We present results using TCUT_PNO = 10−7,
TCUT_ENERGY = 0.997, and TCUT_TRACE = 0.999. The occupation cri-
terion was the original method of truncating PNOs introduced by
Riplinger et al. in the ORCA package47 in the DLPNO-CCSD algo-
rithm.34 The energy criterion was first introduced by the work of
Schwilk et al. in the Molpro package48 in their PNO-LCCSD algo-
rithm.41 After the truncated PNO basis is constructed, the truncated
PNOs are canonicalized to give orbital energies for the pair ij.

For diagonal pairs ii, a tighter occupation cutoff is used, with
the occupation number criterion TCUT_PNO scaled by TDIAG_SCALE
= 10−3 when determining significant PNOs. These PNOs are also
assigned to the singles amplitudes of orbital i.

For the (T) algorithm, it is possible to build a compact virtual
space for LMO triplets ijk, by forming a triplet density,34 through the
average of pair densities of pairs ij, jk, and ik,

Dijk =
1
3
(Dij +Djk +Dik). (62)

In our algorithm, a PAO space is first built for triplet ijk by
merging the PAO spaces of LMOs i, j, and k, at a looser toler-
ance TCUT_DO_TRIPLES (default 10−2), and then, the combined PAO
space is canonicalized. Next, the pair densities for ij, jk, and ik are
computed using converged LCCSD amplitudes for strong pairs, and
LMP2 amplitudes for weak pairs, and then, each projected into the
canonical PAO space for triplet ijk. The projected densities are then
averaged to form the triplet density, which is subsequently diago-
nalized to form the triples natural orbitals (TNOs). In this work,
only the occupation criterion TCUT_TNO (default 10−9) is used for the

selection of TNOs. The use of an analogous energy or trace criterion
for triples is not considered but would be an interesting avenue for
future research.

4. Local density fitting
To reduce the cost of integral computation, in this algorithm,

similar to the previous work by Riplinger et al.,34,40 only a subset of
auxiliary basis functions is used, rather than the full set of auxiliary
basis functions, in using the DF/RI approximation for two-electron
integrals. The Mulliken population of electrons of LMO i for each
center A is used to determine local auxiliary function domains,88

Pi
μν = C

L
μiSμνC

L
νi, (63)

qiA = 2∑
μ∈A
∑
ν
Pi
μν ⋅

Pi
μμ

Pi
μμ + Pi

νν
. (64)

If qiA for local molecular orbital i on atom A is greater than
TCUT_MKN, then all of the auxiliary basis functions centered on atom
A are in the local auxiliary domain of LMO i. Thus, the subset of
auxiliary basis functions (Qij) local to pair ij is the union of the local
auxiliary domains on LMO i and LMO j.

III. WORKING EQUATIONS
In this section, we present the working equations for our

DLPNO-CCSD(T) implementation. We will use our sets of work-
ing equations for density-fitted, t1-dressed CCSD and (T) as pre-
sented in Sec. II as a starting point, following the work of DePrince
and Sherrill.55 For a baseline derivation, we use these following
heuristics:

● The virtual space of singles amplitudes for LMO i uses the
diagonal PNOs of pair ii.

● The virtual space of doubles amplitudes for LMO pair ij uses
PNOs of pair ij.

● PNO overlap matrices are used in the event of a mismatch in
virtual spaces (defined below),

Saijakl = X
PNO,ij
μ̃aij SPAOμ̃ ν̃ XPNO,kl

ν̃akl . (65)

For example, Eq. (22) becomes

Baijbij
ij = (Saijakl t

aklbkl
kl Sbijbkl)β

kl
ij (66)

as the PNOs of pair kl from the doubles amplitudes need to
be transformed into the PNOs of pair ij.

Converting integrals to the PNObasis is less straightforward, and the
different ways to formulate integrals from a speed/accuracy trade-off
perspective is presented in Sec. III A.

A. Discussion of PNO projection error
Integrals can either be directly formed from the PAO basis or

approximated using PNO overlap matrices. For example, integrals
of type (iakl∣ jbkl) can be derived in two ways,

(iakl∣ jbkl) = X
PNO,kl
μ̃akl (ĩμ∣ j̃ν)X

PNO,kl
ν̃bkl (67)
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or

(iakl∣ jbkl) ≈ S
akl
aij (iaij ∣ jbij)S

bkl
bij
. (68)

Using the projection approximation is advantageous in that
building and storing integrals of type (iakl∣jbkl) is significantly more
expensive (requiring an index loop over ij and kl in storage) than
projecting integrals of type (iaij∣jbij) (only requiring an index loop
over ij). Using the projection approximation, such as in Eq. (68), is
akin to using the PNO basis of ij in a resolution of the identity (RI)
operator,

∑
aij
∣aij⟩⟨aij ∣ ≈ 1. (69)

This is not always a good approximation, as it assumes that the
span of the PNOs of pairs ij is close enough to the span of the PNOs
of pairs kl. The error resulting from building integrals from the pro-
jection approximation is defined as the “projection error.”34,41 The
projection error decreases as the PNO cutoff is tightened. Interest-
ingly enough, using the projection approximation does not induce
large errors for most terms, even if it is sometimes used repeat-
edly. However, for contributions to Rab

ij that are linear in tabij , as well
as certain terms involved in dressing the Fock matrix, the projec-
tion approximation cannot be applied without bringing large errors.
After extensive experimentation, we have determined a set of work-
ing equations that best balance speed and accuracy, derived from
the original set of equations presented in this work, transformed to
the local basis. For terms that explicitly show four-center integrals,
the integrals are first computed from the sparse three-center inte-
grals through local density-fitting and LMO/PAO sparsity39,40 and
stored explicitly in sparse-format as four-index quantities, while for
terms that involve three-center integrals, the four-index quantities
are never explicitly formed. Select terms in some equations are bold-
faced to ease reader comprehension and highlight design choices
that balance accuracy and efficiency.

B. LCCSD working equations
First, let us define some integral and amplitude intermediates,

t̃akli = S
akl
aii t

aii
i , (70)

Jrspq = (pq∣rs), (71)

Krs
pq = (pr∣qs), (72)

Lrspq = 2K
rs
pq − K

sr
pq, (73)

Mrs
pq = 2K

rs
pq − J

rs
pq. (74)

For the contributions to the Rab
ij residual,

K̃aijbij
ij = B̃Qij

aij iB̃
Qij

bij j
, (75)

Aaijbij
ij = tcijdi jij B̃Qij

aijci j B̃
Qij

bijdij
, (76)

Baijbij
ij = (Saijakl t

aklbkl
kl Sbijbkl)β

kl
ij , (77)

Caijbij
ij = −Saijakiγ

akicki
ki Sckickj t

bkjckj
kj Sbijbkj − J

aijckj
ik Sbijbkj

tbkjckjkj , (78)

Daijbij
ij =

1
2
Saijaikδ

aikcik
ik Scikcjku

bjkcjk
jk Sbijbjk +

1
2
Maijckj

ik Sbijbjk
ubjkcjkjk , (79)

Eaijbij
ij = taijcijij

̃̃Fbijcij , (80)

Gaijbij
ij = −(Saijaik t

aikbik
ik Sbijbik)

̃̃Fkj. (81)

The intermediates are redefined as

βklij = B̃
Qij

ki B̃
Qij

lj + t
cijdij
ij BQij

kcij
BQij

ldij
, (82)

γakickiki = −̃takil J lckiki + t̃
bki
i Jakickikbki − t̃

bkl
i Kbklckl

kl Sckickl t̃
aki
l

−
1
2
Sakiali t

alidli
li SdlidklK

dklckl
kl Sckickl , (83)

δaikcikik = −̃t aikl Mlcik
ik + t̃

bik
i Mckiaki

kbki − t̃
blk
i Lblkclklk Sckiclk t̃

aik
l

+
1
2
Saikail u

aildil
il SdildklL

ckldkl
kl Scikckl , (84)

̃̃Fbijcij = F̃bijcij − S
bij
bkl
ubkldklkl Kckldkl

kl Scijckl , (85)

̃̃Fkj = F̃kj + (S
clk
clj u

cljdl j
lj Sdlkdlj )K

clkdlk
lk . (86)

Similarly, the singles residuals in the diagonal PNO basis take the
form

Raii
i = F̃aiii + A

aii
i + B

aii
i + C

aii
i , (87)

where

Aaii
i = u

ckidki
ki Kckidki

kaki
Saiiaki − t̃

aii
l uckidkiki SckicklK

ckldkl
kl Sdkidkl

, (88)

Baii
i = −S

aii
aklu

aklckl
kl [K

ickl
kl + t̃

bkl
i Kbklckl

kl ], (89)

Caii
i = S

aii
aiku

aikcik
ik F̃kcik. (90)

Here are the relevant DF integrals dressed with the singles ampli-
tudes:

B̃Qij

ki = B
Qij

ki + B
Qij

kaij
t̃ aiji , (91)

B̃Qij
aij i = B

Qij
aij i − t̃

ai j
k BQij

ki + B
Qij

aijbij
t̃ biji − t̃

aij
k BQij

kbij
t̃ biji , (92)

B̃Qij

aijbij
= BQij

aijbij
− t̃ ai jk BQij

kbij
. (93)

J. Chem. Phys. 161, 082502 (2024); doi: 10.1063/5.0219963 161, 082502-7

Published under an exclusive license by AIP Publishing

 13 January 2025 23:35:43

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

For the dressed Fock matrices, since we are not using canonical
MOs, we derived these equations from the work of Schwilk et al.,41

F̃ij = Fij + Ficjj t
c jj
j , (94)

F̃iaij = S
aij
aikL

aikcik
ik t̃cikk , (95)

F̃aiii = Faiii − t̃
aii
k Fki + Faiibii t

bii
i − t̃

aii
k Fkbii t

bii
i , (96)

F̃aijbij = Faijbij − t̃
aij
k Fkbij , (97)

where

Fij = Fij + [2J
kcij
ij − K

kci j
ji ] t̃

cij
k , (98)

Fiakl = [2B
Qkl
iaklB

Qkl
mckl − B

Qkl
icklB

Qkl
makl] t̃

ckl
m , (99)

Faiii = [2B
Qii
aiiiB

Qii
kcii − B

Qii
aiiciiB

Qii
ki ] t̃

cii
k , (100)

Faijbij = ϵaijδaijbij + [2B
Qij
aijbij

BQij
kcij
− BQij

aijcijB
Qij
kbij
] t̃ cijk . (101)

In our formalism, we dress our Fock matrices directly in the PNO
space, rather than the PAO space, as is done by Werner and co-
workers in their PNO-LCCSD algorithm in Molpro.41 In our work-
ing equations for DLPNO-CCSD, the terms have a slightly different
structure than the original set of working equations from canonical
t1-transformed DF-CCSD. One notable modification is the expan-
sion of the t1-dressed integrals and the removal of the leading
two-virtual integrals in Eqs. (83) and (84) from their canonical coun-
terparts and expressing their contributions explicitly in Eqs. (78)
and (79). This is done since PNO projection errors are greatest in
terms containing linear doubles amplitude contributions to the dou-
bles residual. In addition, even though the Rab

i j and Ra
i residuals are

only updated over strong pairs, weak MP2 pairs also contribute to
the residual of strong pairs. Because of this, the DF integrals from
Eqs. (91)–(93) are only constructed over strong pairs to save mem-
ory costs. Therefore, the t1-dressed integrals are expanded explicitly
in other parts of the working equations as well, in Eqs. (78), (79),
(88), and (89). Certain Fock matrix contributions also have a unique
form. Equation (95) is not constructed from Eq. (99), since the for-
mer is looped over strong pairs and the latter is looped over both
strong pairs and weak LMP2 pairs. Finally, Eq. (101) is built with
the explicit DF integrals, and not through projecting integrals of
type (kckk∣akkbkk) (errors too large) or building integrals of type
(kckk∣aijbij) (too expensive to store) as a trade-off between speed
and accuracy. For the sake of absolute clarity and reproducibility,
the energy expression we used was

ELCCSD = (t
aijbi j
ij + t̃ ai ji t̃ bijj )L

aijbij
ij , (102)

where the singles and doubles residual updates can be computed in
three equivalent, equally valid formalisms,

taiii − =
Raii
i

ϵaij − Fii
, (103)

taiii − =
Raii
i

Faijaij − Fii
, (104)

taiii − =
Raii
i

F̃aijaij − F̃ii
, (105)

taijbi jij − =
Raijbi j
ij

ϵaij + ϵbij − Fii − Fjj
, (106)

taijbijij − =
Raijbij
ij

Faijaij + Fbijbij − Fii − Fjj
, (107)

taijbijij − =
Raijbij
ij

F̃aijaij + F̃bijbij − F̃ii − F̃jj
. (108)

As shown above, both dressed and undressed Fock matrices can be
used for the energy denominators for the residual updates. At con-
vergence, the computed energies will be equivalent. This is presented
for reader comprehension and to reduce the confusion between the
equations as presented in other works.

C. (T) working equations
Most of the triples equations are trivially carried over from the

canonical (T) equations. Still, we present the W and V intermedi-
ates as they are computed in the TNO basis in our code for the
sake of completeness. The two-electron integrals are never stored in
the (T) algorithm but computed on-the-fly from sparse three-center
integrals and contracted into the intermediates as needed,

Waijkbijkcijk
ijk = PL[(iaijk∣bijkdijk)[S

cijk
ck j t

ck jdk j
k j Sdijkdk j

]

− ( jl∣kcijk)S
aijk
ail t

ailbil
il Sbijkbil

], (109)

Vaijkbijkcijk
ijk =Waijkbijkcijk

ijk + PS[taiii Saijkaii ( jbijk∣kcijk)]. (110)

Since we are in the LMO basis where the Fock matrix is not
diagonal, we need to iteratively solve for the full (T) energy.44,45 The
approximation where the triples amplitudes are not corrected for
off-diagonal LMO Fockmatrix elements is called the semi-canonical
(T0) approximation.34,44 In this work, we will not use the semi-
canonical (T0) approximation in any of our test cases, as it is known
to be problematic for certain systems.44,45 The triples amplitudes are
iteratively updated as

Raijkbijkcijk
ijk =Waijkbijkcijk

ijk − taijkbijkcijkijk

× (ϵaijk + ϵbijk + ϵcijk − fii − fjj − fkk)

−∑
l≠i

filt
aljkbljkcljk
ljk Saijkbijkcijkaljkbljkcljk

−∑
l≠j

fjlt
ailkbilkcilk
ilk Saijkbijkcijkailkbilkcilk

−∑
l≠k

fklt
aijlbijlcijl
ijl Saijkbijkcijkaijlbajlcajl

, (111)
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taijkbijkcijkijk − =
Raijkbijkcijk
ijk

ϵaijk + ϵbijk + ϵcijk − Fii − Fjj − Fkk
. (112)

In the iterative (T) algorithm, unlike in the semi-canonical (T0)
algorithm, all three taijkbijkcijkijk , Waijkbijkcijk

ijk , and Vaijkbijkcijk
ijk intermediates

need to be stored. The T3 amplitudes need to be stored and updated,
with the W intermediate stored to compute the residual, and the
V intermediate stored to compute the energy [Eq. (53)]. Although
the memory costs for storing these quantities may appear to be
excessive due to its O(nijkn3pno_ijk) scaling, the memory require-
ments are often similar to or less than the memory requirements
for the preceding DLPNO-CCSD computation. This is because the
TNO space used in the iterative (T) computation is smaller than the
one used in the semi-canonical (T0) computation, and in addition,
applying the index restriction i ≤ j ≤ k reduces costs by a factor of
6. There is an option to perform disk I/O with these triples inter-
mediates, through the keyword WRITE_TRIPLES, but we do not
anticipate the average user needing to use this. For example, in
a uracil dimer computation in the cc-pVDZ basis set (TightPNO
convergence), the total storage requirement for the DLPNO-CCSD
computation is around 8.40 GiB, while the requirements for the
triples intermediates are around 2.36 GiB each (total of around 7.09
GiB).

IV. IMPLEMENTATION DETAILS
A. CCSD algorithm details

Much of our prescreening to classify pairs in the DLPNO-
CCSD algorithm is derived from the original work of Valeev, Neese,
and co-workers.39,40 We first screen out the dipole pairs based on
the TCUT_DO_ij and TCUT_PRE cutoffs, the overlap and energy crite-
ria used to ensure that LMOs i and j are non-overlapping. Next,
we determine the semi-canonical MP2 pairs as all non-dipole pairs
with an energy contribution less than TCUT_PAIRS_MP2. The lat-
ter is done using an initial prescreening procedure that is looser

in cutoffs.40 In the third step, we recompute the semi-canonical
LMP2 amplitudes for surviving pairs (non-dipole or semi-canonical)
through the refined prescreening procedure40 and compute PNOs
for the LMP2 procedure using TCUT_PNO_MP2, TCUT_ENERGY_MP2, and
TCUT_TRACE_MP2. Pairs are then divided into weak LMP2 pairs or
strong pairs based on their energy through TCUT_PAIRS. Next, LMP2
energies and amplitudes are computed for both weak and strong
pairs using the tighter PNOs. Finally, the PNOs are recomputed
at looser cutoffs from converged LMP2 amplitudes with TCUT_PNO,
TCUT_ENERGY, and TCUT_TRACE, with only the strong pair amplitudes
being updated in the LCCSD iterations; the weak MP2 pair ampli-
tudes are saved for the (T) algorithm. The total DLPNO-CCSD
energy thus contains contributions from all four pair classes, as well
as a PNO truncation correction39 from strong pairs and weak MP2
pairs. The PNO truncation is computed as the difference between the
semi-canonical LMP2 energy computed in the initial, tighter PNO
basis (TCUT_PNO_MP2) and the PAO basis, summed with the differ-
ence between the LMP2 energy computed using the tighter PNOs
used for LMP2 and the looser PNOs (TCUT_PNO) used for LCCSD,

EDLPNO−CCSD = ELCCSD[strong pairs] + ΔELMP2[weakMP2 pairs]

+ ΔESC−LMP2[semi−canonicalMP2 pairs]

+ ΔEdipole[dipole pairs]
+ ΔEPNO[strong pairs+weakMP2 pairs]. (113)

We present values for the most relevant parameters used in the
DLPNO-CCSD algorithm, as reported in this section and through-
out this work, in Table I. The presented values are those corre-
sponding to the TightPNO/NormalPNO convergence settings for
our code. We will present all our results with TightPNO.

B. Triples algorithm procedures
Wemodel our triples algorithm based on a combination of fea-

tures from DLPNO-CCSD(T) in ORCA44 and PNO-LCCSD(T) in
Molpro,45 in order to optimize speed and accuracy. First, we use the

TABLE I. Parameters of our DLPNO-CCSD algorithm for TightPNO and NormalPNO settings. Boldface denotes default
values for the TightPNO setting.

Parameter Description
TightPNO

value
NormalPNO

value

TCUT_PNO LCCSD PNO occupation criterion 10–7 3.33 × 10−7

TCUT_ENERGY LCCSD PNO energy criterion 0.997 0.99
TCUT_TRACE LCCSD PNO trace criterion 0.999 0.99
TCUT_PNO_MP2 LMP2 PNO occupation criterion 10–9 3.33 × 10−9

TCUT_ENERGY_MP2 LMP2 PNO energy criterion 0.999 0.997
TCUT_TRACE_MP2 LMP2 PNO trace criterion 0.9999 0.999
TDIAG_SCALE Scale of TCUT_PNO for diagonal pairs 0.001 0.001
TCUT_DO LMO/PAO DOI criterion for pair domains 0.005 0.01
TCUT_DO_ij LMO/LMO DOI criterion for dipole pairs 10–5 10–5

TCUT_PRE Dipole energy cutoff for pair screening 10–7 10–6

TCUT_PAIRS Strong/weak pair cutoff 10–5 10–4

TCUT_PAIRS_MP2 Weak/semi-canonical pair cutoff 10–6 10–6

TCUT_MKN Local density fitting Mullikan tolerance 10–3 10–3
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triples prescreening algorithm as presented by Ma and Werner.45
We first compute the semi-canonical (T0) energy for each possi-
ble triplet ijk, derived from combinations of pairs ij, jk, and ik,
at least one of which is a strong pair, at a weaker TNO tolerance
(TCUT_TNO_PRE). All triplets ijk for which the absolute value of the
energy is lower than (TCUT_TRIPLES_PRE) are screened out and not
further considered, but the sum of their energy contributions is
saved and accounted for. We will term these triplets that did not
survive the prescreening as the “screened triplets.” The rest of the
algorithm is derived from the work of Guo et al.,44 where the TNOs
of the surviving triplets are then recomputed at a tighter tolerance
(TCUT_TNO), in order to obtain a more accurate semi-canonical (T0)
energy. The TNOs are then recomputed at a looser tolerance for
the iterative (T) step to reduce the cost of storing triples amplitudes
and intermediates. To this end, the energies of the triplets are sorted
and the ∼20% of triplets that account for at least 90% of the semi-
canonical (T0) energy are deemed “strong triplets,”44 and the rest
are deemed “weak triplets.” For the “strong triplets,” the TNOs are
recomputed at a looser tolerance TCUT_TNO ⋅ TSTRONG_SCALE and the
“weak triplets” at TCUT_TNO ⋅ TWEAK_SCALE for the full iterative (T)
algorithm. The final (T) energy is as follows:

EDLPNO−(T) = ∑
i≤j≤k

Eijk
(T0)[TCUT_TNO] + ∑

ijk∈strong triplets
(Eijk
(T) − E

ijk
(T0))

× [TCUT_TNO × TSTRONG_SCALE]

+ ∑
ijk∈weak triplets

(Eijk
(T) − E

ijk
(T0))

× [TCUT_TNO × TWEAK_SCALE]

+ ∑
ijk∈screened triplets

ΔEijk
(T0)[TCUT_TNO_PRE]. (114)

The default values for the triples parameters are presented in Table II
(values are the same across all PNO convergences).

C. Discussion on memory usage
For the integrals, the quantities are stored in RAM based on

their form in the working equations. For example, Kaijbij
ij and Jaijbijij

are stored as a list of matrices (of dimension npnoi j ⋅ npnoi j ) indexed
by the index of pair ij, while the non-projected integrals Jaijck jik and
Kaijck j
ik (used to form Maijck j

ik ) are stored as a nested list of matri-
ces of dimension npnoi j ⋅ npnok j , with the first index being the LMO

pair ij and the second index being the LMO index kij, which rep-
resents all LMOs k such that ki and kj are both strong or weak
pairs. The DF integrals BQij

ki jaij
BQij

aijbij
are similarly stored as a nested

list, with the first index being the LMO pair ij and the second index
being the auxiliary function index qij in the domain of ij for each
set of matrices. The non-projected J and K integrals, as well as the
DF integrals, need only to be stored for strong pairs. There is an
option to store the expensive BQij

kijaij
BQij

aijbij
integrals to disk, through

the keywords WRITE_QIA_PNO and WRITE_QAB_PNO. Algo-
rithms that explain how the non-projected integrals (Jaijckjik andKaijckj

ik )
are formed are included in Appendixes A and B.

All the dressed Fock matrices are computed and stored, while
only the dressed integrals B̃Qij

aij i (list of matrices of dimension

nauxij ⋅ npnoij indexed by ij) and B̃Qij

kij i
(list of matrices of dimension

nauxij ⋅ nlmoij indexed by ij) are stored, due to the reduced memory
requirements.

For most computations, the largest contributor to memory
cost is the Saijbkl PNO overlap integrals, which are stored as a nested
list indexed by the LMO pair ij and then the LMO pair kl. Since
these quantities are only used for the Baijbij

ij and Eaijbij
ij intermedi-

ates [Eqs. (77) and (80)], to reduce the cost of the PNO overlap
integrals, we have developed a semi-direct lowmemory overlap algo-
rithm for PNO matrices, where PNO overlaps of the form Saijbkk ,
as well as Saijbkj and Saijbik , are stored in RAM, and Saijbkl is computed
through the semi-direct algorithm. This can be toggled by the setting
LOW_MEMORY_OVERLAP. The algorithm for this is presented in
Appendixes A and B.

D. Computational details
For all correlated computations, the frozen-core approxima-

tion is used. Unless stated otherwise, TightPNO convergence is used
for all computations. All timings are performed on 16 cores of an
Intel Xeon 6136 central processing unit (CPU) (3.0 GHz processing
speed with 1 TB of RAM) unless stated otherwise. Typical quantum
chemistry algorithms benefit from access to large amounts of RAM,
especially for computations on the largest systems considered here.
Yet, DLPNO-CCSD(T) computations can also be carried out with
the resources available to the average user, who can find our code in
a development branch of the freely available Psi4 program.51

TABLE II. Default values (in boldface) of our DLPNO-(T) parameters for all settings.

Parameter Description Default value

TCUT_TNO TNO occupation criterion 10–9

TCUT_TNO_PRE TNO occupation criterion in “screened triplets” 10–7

TCUT_TRIPLES_PRE “Screened triplets” energy cutoff 10–7

TCUT_DO_TRIPLES LMO/PAO DOI criterion for triples domains 10–2

TCUT_MKN_TRIPLES Local density fitting tolerance for triples 10–2
TSTRONG_SCALE Iterative (T) strong triplet TCUT_TNO scaling 10
TWEAK_SCALE Iterative (T) weak triplet TCUT_TNO scaling 100
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TABLE III. TightPNO DLPNO-CCSD error statistics compared to canonical DF-CCSD reference (kcal mol−1). jun-cc-pVDZ
augments the cc-pVDZ basis set by adding diffuse functions for all heavy atoms up to shell lmax − 1. Boldface denotes
summary MAE, minimum, and maximum errors for each basis set.

Basis set (count) ME MAE RMSE Std Dev Min Max

cc-pVDZ (22) 0.017 0.063 0.088 0.086 −0.168 0.175

HB (7) 0.046 0.047 0.066 0.048 −0.006 0.132
DD (8) 0.033 0.105 0.128 0.124 −0.168 0.175
MX (7) −0.029 0.031 0.037 0.024 −0.074 0.007

jun-cc-pVDZ (22) 0.005 0.058 0.083 0.083 −0.243 0.122

HB (7) 0.044 0.054 0.068 0.052 −0.033 0.115
DD (8) −0.011 0.089 0.119 0.119 −0.243 0.122
MX (7) −0.015 0.025 0.031 0.027 −0.054 0.020

cc-pVTZ (22) 0.021 0.052 0.078 0.075 −0.200 0.141

HB (7) 0.054 0.054 0.071 0.046 −0.001 0.128
DD (8) 0.013 0.086 0.110 0.109 −0.200 0.141
MX (7) −0.003 0.011 0.015 0.014 −0.030 0.020

V. RESULTS

A. Dimer interaction energies

We first present the results of our DLPNO-CCSD and (T)
algorithms on the S22 dataset,89 consisting of 22 dimers of sizes
ranging from water–water to adenine–thymine. The interactions of
the S22 dimers can be primarily hydrogen-bonded (HB), dispersion-
dominated (DD), or mixed influence (MX).90 For a fair comparison
of our algorithm, we compared the results to canonical DF-CCSD

and DF-CCSD(T) as implemented in Psi4, using the same RI basis
sets for the correlated computations.55 For these tests, we use the
cc-pVDZ, jun-cc-pVDZ, and cc-pVTZ orbital basis sets.91,92 For the
unfamiliar reader, the jun-cc-pVDZ basis set adds a set of diffuse
functions for all heavy atoms up to shell l − 1, where l represents the
highest angular momentum shell, from the cc-pVDZ basis. All com-
putations are performed with the counterpoise (CP) correction.93
The results comparing DLPNO-CCSD to canonical DF-CCSD are
presented in Table III, and comparisons between DLPNO-CCSD(T)
and DF-CCSD(T) are shown in Table IV. We present the results of

TABLE IV. TightPNO DLPNO-CCSD(T) error statistics compared to canonical DF-CCSD(T) reference (kcal mol−1). jun-cc-
pVDZ augments the cc-pVDZ basis set by adding diffuse functions for all heavy atoms up to shell lmax − 1. Boldface denotes
summary MAE, minimum, and maximum errors for each basis set.

Basis set (count) ME MAE RMSE Std Dev Min Max

cc-pVDZ (22) 0.079 0.084 0.132 0.105 −0.025 0.312

HB (7) 0.116 0.116 0.145 0.088 0.008 0.280
DD (8) 0.115 0.115 0.170 0.126 0.002 0.312
MX (7) 0.003 0.018 0.020 0.020 −0.025 0.032

jun-cc-pVDZ (22) 0.070 0.079 0.113 0.089 −0.054 0.270

HB (7) 0.117 0.117 0.139 0.076 0.028 0.270
DD (8) 0.072 0.089 0.127 0.105 −0.054 0.229
MX (7) 0.020 0.028 0.046 0.042 −0.027 0.116

cc-pVTZ (22) 0.100 0.100 0.141 0.099 0.003 0.296

HB (7) 0.140 0.140 0.171 0.099 0.017 0.296
DD (8) 0.116 0.116 0.162 0.113 0.003 0.282
MX (7) 0.042 0.042 0.054 0.034 0.005 0.099
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the interaction energy errors in aggregate for each basis set, as well
as for each interaction type for each basis set.

As shown in the tables, at the TightPNO convergence, the algo-
rithm is accurate enough to yield interaction energy errors of MAE
0.06 kcal mol−1 or less in every basis set for CCSD and 0.10 kcal
mol−1 or less for CCSD(T). For the NormalPNO convergence, the
MAE is typically on the order of 0.2–0.3 kcal mol−1 for both CCSD
and CCSD(T), with the MAE for the dispersion-dominated com-
plexes being larger, around 0.5–0.6 kcal mol−1 (detailed results
are presented in the supplementary material). Generally speaking,
DLPNO-CCSD/DLPNO-CCSD(T) is the most accurate when mod-
eling dimers bound by mixed influences, vs modeling hydrogen-
bonded or dispersion-dominated dimers. It is also shown that
adding diffuse functions (as in the case of the jun-cc-pVDZ basis
set) helps reduce the errors associated with modeling dispersion
interactions relative to DF-CCSD(T). For dispersion-dominated
complexes, it is not recommended to use NormalPNO convergence,
which is consistent with the findings of Liakos et al.36

B. Potential energy surfaces
Next, we examined the potential energy surface along the disso-

ciation of a uracil dimer pair, from the S66x8 dataset of Řezáč et al.94
The dimer is displaced along an axis parallel to the two hydrogen
bonds, at 0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 1.5, and 2.0 times the aver-
age distance of the two hydrogen bonds (Req = 1.805 Å). As shown
in Fig. 1, the DLPNO-CCSD/DLPNO-CCSD(T) dissociation curves
match their respective canonical references, and DLPNO-CCSD(T)
also effectively captures the (T) correlation effects. The compu-
tation is performed in the cc-pVTZ basis set, with counterpoise
(CP) correction, with DF-CCSD/(T) used for the canonical refer-
ence. For canonical DF-CCSD(T), the computations take around
8 hours per dimer on 48 cores of the Intel Xeon 6136 specified in the
computational details, while for DLPNO-CCSD(T), it takes around
35 min per dimer, with the computation involving more separated
dimers being faster (39 min for 0.9Req; 26 min for 2.0Req).

FIG. 1. Counterpoise (CP) corrected cc-pVTZ interaction energies for uracil dimer
base pair along the (frozen monomer) dissociation curve.

FIG. 2. Errors along the frozen monomer dissociation curve for uracil dimer base
pair, defined as the canonical DF-CCSD/(T) interaction energy subtracted from the
DLPNO-CCSD/(T) result.

We also plot the errors of DLPNO-CCSD/(T) with respect to
the canonical DF-CCSD/(T) results along the dissociation curve,
as shown in Fig. 2. As expected, the errors decrease as the system
becomes more well separated, since the magnitude of the inter-
molecular correlation decreases. The CCSD and CCSD(T) errors
are 0.17 and 0.36 kcal mol−1, respectively, at 0.9Req separation, and
at 2.0Req, the errors decrease to 0.01 and 0.08 kcal mol−1. Larger
errors relative to the canonical reference around equilibrium are to
be expected due to the local approximations and are controllable
through tightening the parameters.

C. Large water cluster conformation energies
For a more rigorous test of the accuracy of our DLPNO-

CCSD(T) implementation, we consider some of the larger systems
for which canonical CCSD(T) results are available: conformers of
(H2O)16 and (H2O)17, in the aug-cc-pVTZ basis set, from the work
of Yoo et al.56 In their work, they computed canonical CCSD(T) ref-
erence values using supercomputing resources at the massive ORNL
Leadership Computing Facility. They used the CRAY XT5 partition,
containing a total of 18 684 compute nodes and 224 208 process-
ing cores with more than 300 TB of memory.56 In contrast, all of
our computations were run on a single computing node with 32
CPU cores and 450 GB of RAM. Xantheas and co-workers pre-
sented results for five different conformers of (H2O)16 and two
different conformers of (H2O)17. There are four possible conform-
ers of (H2O)17, but not all their computations finished since they
ran out of computing time. Table V presents the relative conforma-
tional energies for (H2O)16 and (H2O)17 as computed by Xantheas
and co-workers, by our DLPNO-CCSD(T) algorithm, and by the
DLPNO-CCSD(T) algorithm in ORCA. For ORCA, we used their
default TightPNO cutoff values (different than ours), for version
5.0.4. For completeness, we also include results from the work of
Bates et al.,57 who developed a highly accuratemany-body expansion
method to obtain absolute energies for the conformers close to the
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TABLE V. Relative conformation energies (kcal mol−1) using canonical CCSD(T) from the work of Yoo et al.,56 compared
with DLPNO-CCSD(T) as implemented in this paper and the implementation in ORCA,44 as well as the 3b:mb MP2/CCSD(T)
method of Bates et al.57 Boldface denotes the canonical values.

Isomer ΔEcanon ΔEPSI4 ΔEORCA ΔE3b:mb

(H2O)16

Boat-a 0.25 0.35 0.00 0.36
Boat-b 0.42 0.51 0.15 0.60
Antiboat 0.51 0.63 0.27 0.67
4444-a (abab) 0.00 0.00 0.00 0.00
4444-b (aabb) 0.54 0.52 0.59 0.57

(H2O)17

Sphere 0.00 0.00 0.00 0.00
522′5 0.71 0.77 0.39 0.77
441′44 X 0.79 0.78 1.10
L-shape X 1.49 1.34 1.55

canonical CCSD(T) values, called the “CCSD(T):MP2 3-body:many-
body” method, which means that all monomer, dimer, and trimer
contributions are treated at the CCSD(T) level and the other con-
tributions are treated with MP2. We will refer to that as “3b:mb” as
shorthand,

E3b:mb/CCSD(T):MP2 = EMP2(all) +∑
A

ECCSD(T)(A) − EMP2(A)

+∑
AB

ΔECCSD(T)(AB) − ΔEMP2(AB)

+∑
ABC

ΔECCSD(T)(ABC) − ΔEMP2(ABC).

(115)

FIG. 3. Water cluster timings and empirical scaling with the DLPNO-CCSD(T)
method. System sizes range from 4 to 64 water molecules, presented for each
basis set.

The conformation energies are computed with respect to the lowest
energy conformer for each series of conformers. All three approxi-
mate methods correctly identify the lowest energy conformer (albeit
in ORCA, boat-a and 4444-a have nearly identical energies). Com-
pared to the DLPNO-CCSD(T) algorithm in ORCA, the DLPNO-
CCSD(T) algorithm we implemented gives closer answers to the
canonical CCSD(T) value for the conformation energies in all cases.
We believe this to be the case because of our use of additional cri-
teria (energy and occupation) for PNO selection, as well as a tighter
TDIAG_SCALE compared to ORCA (0.001 compared to 0.03). This is
evident in the boat-a conformation for (H2O)16, where the number
of PNOs for our pairs ranges from 11 to 149 (average of 44), while
ORCA ranges from 6 to 73 (average of 25). In addition, our criterion
for the initial consideration of triplets (2 weak pairs vs 1 in ORCA)

FIG. 4. Benzene cluster timings and empirical scaling with the DLPNO-CCSD(T)
method. System sizes range from 1 to 10 benzene molecules, presented for each
basis set.
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FIG. 5. 3D structure of insulin (787 atoms).

allows our code to recover more triples energy compared to ORCA.
For the boat-a configuration, our DLPNO-CCSD absolute energy is
0.3 kcal mol−1 lower, while the (T) contribution is 0.4 kcal mol−1

lower, leading to a net difference of around 0.7 kcal mol−1.
Surprisingly, even though the 3b:mb method gives more

accurate absolute energies than our DLPNO-CCSD(T) method,
the two methods reproduce conformation energies of compara-
ble accuracy. This shows that with a tight enough tolerance, local
correlation methods can capture subtle higher-order, many-body
electron correlation effects. The absolute energies are included in the
supplementary material.

D. Timings and scaling
For timings, we tested our code on a growing series of three-

dimensional water and benzene clusters (geometries available in the
supplementary material), as shown in Figs. 3 and 4. We performed
our tests in the cc-pVDZ, jun-cc-pVDZ, and cc-pVTZ basis sets. In
these figures, we present log–log plots, using our timings to calculate
the empirical scaling of our algorithm. We used a log–log regression
of the wall time (in minutes) compared to the system size (by the
number of basis functions) to perform our analysis, in order to fit
a function of the form t = a ⋅ nb, where the t is the runtime, a is a
pre-factor, n is the system size, and b is the computational scaling.
The results of our analysis are presented in Figs. 3 and 4. For each
system, across all basis sets, the empirical scalings are all below cubic
scaling, with non-diffuse basis sets scaling quadratic or less. Even
though the linear scaling regime has not been achieved yet with our
system sizes, the observed scaling shows a drastic improvement from
the seventh power scaling of canonical CCSD(T). Due to the three-
dimensional nature of these systems, we do not expect the onset of
linear scaling to occur until later, as opposed to previous tests on
linear alkanes in ORCA.40 The steps that are formally higher scaling,
such as molecular orbital localization and dipole pair prescreening,
have such a low pre-factor that they do not affect timings at all, and
none of the new features we incorporated in this algorithm, such
as the t1-transformation of integrals and Fock matrices, scale more
than linearly. The results of the analysis performed for the DLPNO-
CCSD as well as the DLPNO-(T) components of the computation
are presented in the supplementary material.

Finally, to assess the limits of the capabilities of our algo-
rithm, we tested our code on an insulin peptide hormone, as shown
in Fig. 5. The geometry was obtained from the work of Bykov
et al.58 and is also presented in the supplementary material. For
this computation, we used the def2-SV(P) basis set of Weigend and
Ahlrichs,95 with 6458 basis functions. In Table VI, we present the
DLPNO-CCSD(T) correlation energy, as well as its various con-
tributions, at both the NormalPNO and TightPNO convergences.

TABLE VI. Energy information for insulin/def2-SVP at NormalPNO and TightPNO convergence (mEh, unless stated
otherwise).

NormalPNO TightPNO Diff. Diff. (kcal mol−1)

DLPNO-CCSD(T) correlation energy −62 393.798 −62 433.591 −39.8 −25.0

DLPNO-CCSD contribution −60 265.340 −60 289.967 −24.6 −15.5

LCCSD correlation energy −58 868.909 −59 952.074 −1083.2 −679.7
Weak pair contribution −1248.806 −253.246 995.6 624.7
Semi-canonical contribution −45.786 −54.920 −9.1 −5.7
Dipole pair correction −23.966 −8.017 15.9 10.0
PNO truncation correction −77.873 −21.711 56.2 35.2

DLPNO-(T) contribution −2128.458 −2143.624 −15.2 −9.5

DLPNO-(T0) energy −1999.977 −2011.485 −11.5 −7.2
Iterative (T) contribution −118.583 −119.840 −1.3 −0.8
Prescreened triplets correction −9.897 −12.299 −2.4 −1.5
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TABLE VII. Timings for insulin using DLPNO-CCSD(T) algorithm at NormalPNO and TightPNO. Boldface denotes the
proportion of time spent in DLPNO-CCSD compared to DLPNO-(T) for each setting.

NormalPNO TightPNO

Total wall time (s) 44 906 (0.52 days) 128 090 (1.48 days)

DLPNO-CCSD 66% 83%

Orbital localization/sparsity prep 5% 2%
Dipole pair correction 0% 0%
Semi-canonical MP2 pair correction 0% 0%
LMO/PAO DF ints 16% 7%
PNO formation and PNO-LMP2 1% 1%
PNO overlap integrals 0% 0%
Integral PNO transformation 6% 7%
Local CCSD iterations 38% 66%

DLPNO-(T) 34% 17%

TNO formation 6% 2%
Semi-canonical (T0) 23% 12%
Iterative (T) 6% 3%

TABLE VIII. Domain information for insulin/def2-SVP at NormalPNO and TightPNO convergence.

NormalPNO TightPNO

Orbital information

Atoms 787 787
Basis functions 6458 6458
Frozen core orbitals 429 429
Active core orbitals 1117 1117
Virtual orbitals 4912 4912
Auxiliary basis functions (RI) 24 872 24 872

Pair information

Total LMO pairs (non-unique) 1 247 689 1 247 689
Dipole pairs 996 002 (79.8%) 857 900 (68.8%)
Semi-canonical LMP2 pairs 147 500 (11.8%) 284 386 (22.8%)
Weak pairs 87 590 (7.0%) 64 954 (5.2%)
Strong pairs 16 597 (1.3%) 40 449 (3.2%)
NAUX per pair 597 598
PAOs per pair 255 348
PNOs per pair (LMP2) 33 60
PNOs per pair (LCCSD) 16 30

Triplet information

Total LMO triplets (unique) 232 901 202 232 901 202
Initial triplets 601 572 (0.3%) 955 435 (0.4%)
Final triplets 292 805 (0.1%) 296 016 (0.1%)
TNOs per triplet (prescreening) 26 22
TNOs per triplet (T0) 52 60
TNOs per triplet (T) 30 32
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In Table VII, we present timings for the most important portions
of the computation (excluding SCF). For these sets of timings, we
used 32 CPU cores on a single second generation AMD EPYC
Rome (2.9 GHz processing speed, 2000 GB RAM) as part of the
Sapelo2 computing cluster at the University of Georgia. The com-
putation is performed completely in-core (excluding SCF). Finally,
in Table VIII, we present local domain information at both lev-
els of convergence. As shown in Table VI, NormalPNO recovers
about 99.96% of the TightPNO DLPNO-CCSD correlation energy
and 99.94% of the overall DLPNO-CCSD(T) correlation energy.

Although the LCCSD strong pair correlation energy at the Nor-
malPNO convergence is significantly less than the LCCSD strong
pair energy at the TightPNO convergence, the LMP2 weak pair cor-
rection makes up the majority of that difference. This highlights the
importance of the contribution of weak pairs in DLPNO-CCSD(T).
In the timings in Table VII, the TightPNO computation takes about
three times as long as the NormalPNO computation, with DLPNO-
CCSD taking much longer due to significantly larger PNO domain
sizes for the tighter criterion. For this computation, we used a
preliminary version of the LOW_MEMORY_OVERLAP algorithm,
where only the PNO overlap matrices of the form Saijbk j and Saijbik
are stored in RAM, and all other types are computed on the fly.
This is significantly less efficient than the current implementation
(as described earlier in Sec. IV), so this led to the disproportion-
ate amount of time spent in the LCCSD iterations. The time spent
in the LCCSD iterations would be significantly less with the cur-
rent code. One fact to highlight is that the dipole correction, though
nominally scaling as O(N2

), is far from being a bottleneck in either
computation. The triples contribution becomes less of a bottleneck
at tighter PNO convergences, due to the efficiency of our triples

prescreening algorithm, as highlighted in Table VIII. Table VIII also
highlights the locality of the pair and triplet domains in a large sys-
tem, such as insulin, with both the virtual and auxiliary domains
being significantly less than the span of the entire molecule.

VI. CONCLUSION
In this work, we have presented an open-source DLPNO-

CCSD(T) algorithm and demonstrated that it can accurately model
non-covalent interactions. The deviations for relative energies com-
pared to canonical CCSD(T) are typically on the order of 0.1 kcal
mol−1 or less with our given set of parameters (at the TightPNO con-
vergence). Our emphasis on accuracy has resulted in somemodifica-
tions to previously published local PNO based CCSD(T) algorithms
such that the resulting code appears to provide improved accuracy
when using “TightPNO” cutoff parameters. We have also shown
our code to be competitive in accuracy compared to many-body
expansion methods based on canonical CCSD(T). Even when tak-
ing advantage of our code’s high accuracy, we have been able to keep
many of the useful properties associated with the original DLPNO-
CCSD(T) algorithm,34,35,40,44 such as its low scaling and increased
efficacy with larger basis sets. This code is now publicly available
to view and execute in a development branch of Psi4 and will be
widely available in a future release of the Psi4 software. In the future,
we plan to test and optimize our code to study even larger systems
than those presented in this paper, as well as explore additional ways
to reduce projection errors without compromising the efficiency of
our algorithm. Combined with advances in computing technology,
such as with massively parallel computing96–112 and GPUs,113–120 an
open-source version of DLPNO-CCSD(T) will also allow the devel-

ALGORITHM 1. Linear-scaling computation of K
aij bkj
ik —used in Eq. (79) (as part of M

aij bkj
ik ).

for ij in strong_pairs do ⊳ Loop over all strong ij pairs, i ≤ j
(Pij ∣i ν̃ij)← (P∣mν̃)[lmopair_to_ribfs[ij], i, lmopair_to_paos[ij]] ⊳ Get slice from (P∣mν̃)
AQij
iai j ← (Qi j ∣Pij)−1(Pij ∣i ν̃ij)XPNO

ν̃ijai j
If i ≠ j then

(Pij ∣ j ν̃i j)← (P∣mν̃)[lmopair_to_ribfs[i j], j, lmopair_to_paos[i j]] ⊳ Get slice from (P∣mν̃)
AQi j

jai j ← (Qi j ∣Pi j)−1(Pi j ∣ j̃νi j)XPNO
ν̃i jai j

end if
for Qi j in lmopair_to_ribfs[i j] do
for ki j in lmopair_to_lmos[i j] do

Kki j ν̃k j ← (Q∣mν̃)[Qi j , ki j , lmopair_to_lmos[k j]] ⊳ Get slice from (Q∣mν̃)
Kki jbk j ← Kki j ν̃k jX

PNO
ν̃k jbk j

Kaijbk j
ik + = AQi j

iai jKki jbk j
if i ≠ j then

Kki j ν̃i j ← (Q∣mν̃)[Qi j , ki j , lmopair_to_lmos[ik]] ⊳ Get slice from (Q∣mν̃)
Kki jbik ← Kki j ν̃ikX

PNO
ν̃ikbik

Kaijbik
jk + = A

Qi j
jai jKki jbik ⊳ Form jk analog

end if
end for

end for
end for
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ALGORITHM 2. Linear-scaling computation of J
aij bkj
ik —used in Eqs. (78) and (79) (as part of M

aij bkj
ik ).

for i j in strong_pairs do ⊳ Loop over all strong ij pairs, i ≤ j
pair_ext_domain← List[int] ⊳ Form extended domain for pairs
for ki j in lmopair_to_lmos[i j] do

k← lmopair_to_lmos[ij][kij]
pair_ext_domain = pair_ext_domain ∪ lmo_to_paos[k]

end for
(Pi j ∣iki j)← (P∣mn)[lmopair_to_ribfs[i j], i, lmopair_to_lmos[i j]] ⊳ Get slice from (P∣mn)
AQi j

iki j
← (Qi j ∣Pi j)−1(Pi j ∣iki j)

if i ≠ j then
(Pi j ∣ jki j)← (P∣mn)[lmopair_to_ribfs[i j], j, lmopair_to_lmos[i j]] ⊳ Get slice from (P∣mn)
AQi j

jki j
← (Qi j ∣Pi j)−1(Pi j ∣ jki j)

end if
for Qi j in lmopair_to_ribfs[i j] do

J μ̃i j ν̃i jext ← (Q∣̃μ ν̃)[Qi j , lmopair_to_paos[i j], pair_ext_domain] ⊳ Get slice from (Q∣̃μ ν̃)
Jaij ν̃i jext ← XPNO

μ̃i jai j J μ̃i j ν̃i jext
for ki j in lmo_pairs_to_lmos[i j] do

Jaij μ̃k j ← Jaij ν̃i jext [All, pair_ext_domain ∩ lmopair_to_paos[k j]]
Jaijbk j ← Jaij μ̃k jX

PNO
μ̃k jbk j

Jaijbk jik + = AQi j

iki j
Jaijbk j

if i ≠ j then
Jaij μ̃ik ← Jaij ν̃i jext [All, pair_ext_domain ∩ lmopair_to_paos[ik]]
Jaijbik ← Jaij μ̃ikX

PNO
μ̃ikbik

Jaijbikjk + = A
Qi j

jki j
Jaijbik ⊳ Form jk analog

end if
end for

end for
end for

opment of local coupled-cluster codes that take advantage of these
new hardware developments, enabling coupled-cluster calculations
on much larger systems than previously imaginable.

SUPPLEMENTARY MATERIAL

The geometries for insulin, as well as the water and benzene
clusters, used for the scaling tests are available in the supplementary
material. We have also included NormalPNO error statistics for the
S22 test set, absolute energies for the water clusters from Xanth-
eas and co-workers, and scaling analyses for the DLPNO-CCSD and
DLPNO-(T) portions of the computation for the water and benzene
clusters. We have additionally included (DLPNO)-CCSD/(T) rela-
tive energies for each of the S22 dimers, the uracil dimer, and wall
times for each of the scaling tests.
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ALGORITHM 3. Semi-direct algorithm for forming S
aij
bkl

and relevant contractions.

for i j in strong_pairs do ⊳ Loop over all strong ij pairs, i ≤ j
pair_ext_domain← List[int] ⊳ Form extended domain for pairs
for ki j , li j in lmopair_to_lmos[i j] × lmopair_to_lmos[i j] do

k, l ← lmopair_to_lmos[ij][kij], lmopair_to_lmos[ij][lij]
kl ← lmo_pair_index[k][l]
if kl ∈ strong_pairs ∪weak_pairs then

pair_ext_domain = pair_ext_domain ∪ lmopair_to_paos[kl]
end if

end for
Sij ← submatrix_rows_and_columns(SPAO, lmo_pair_to_paos[i j], pair_ext_domain)
S′ij ← XPNO

ij Sij ⊳ Transform first index of overlap matrix to PNO space of ij
Baijbi j
i j ← 0 ⊳ Initialize Baijbi j

i j
̃̃Fbijci j ← F̃bijci j ⊳ Eq. (85a)
for ki j , li j in lmopair_to_lmos[i j] × lmopair_to_lmos[i j] do

k, l ← lmopair_to_lmos[ij][kij], lmopair_to_lmos[ij][lij]
kl ← lmo_pair_index[k][l]
if kl ∈ strong_pairs ∪weak_pairs then
S′′ij ← submatrix_columns(S′ij, pair_ext_domain ∩ lmopair_to_paos[kl])

Saijbkl ← (S
′′

i j)aij ν̃klX
PNO
ν̃klbkl

Baijbi j
i j + = (S

aij
aklT

aklbkl
kl Sbijbkl)β

kl
i j ⊳ Eq. (77)

̃̃Fbijci j− = S
bij
bkl
ubkldklkl Kckldkl

kl Scijckl ⊳ Eq. (85b)
end if

end for
Eaijbi j
i j ← taijci ji j

̃̃Fbijci j +
̃̃Faijci j t

cijbi j
i j ⊳ Eq. (80), second term added to account for Pab

i j

Raijbi j
i j + = B

aijbi j
i j + Eaijbi j

i j ⊳ Add contributions to doubles residual
if i ≠ j then

Rbijai j
ji + = B

bijai j
ji + Ebijai j

ji ⊳ Add relevant contributions for ji
end if

end for
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APPENDIX A: COMPUTATION AND STORAGE
OF NON-PROJECTED INTEGRALS

In Algorithms 1–3, both in Appendixes A and B, for user
clarity, algorithms are presented with restricted index i ≤ j over
all strong pairs to increase efficiency. lmopair_to_paos[ij] repre-
sents all PAOS μ̃i j that are in the domain of ij (determined by
TCUT_DO), lmopair_to_ribfs[ij] represents all auxiliary basis func-
tions on atoms in the Mulliken fitting domain of pair ij (determined
by TCUT_MKN), and lmopair_to_lmos[ij] represents all LMOs k such
that ik and kj are both strong or weak pairs.

APPENDIX B: LOW MEMORY PNO OVERLAP
ALGORITHM

Here, we present our semi-direct algorithm for the formation
of Saijbkl intermediates, as well as contractions into the Baijbij

ij [Eq. (77)]

and Eaijbij
ij [Eqs. (80) and (85)] intermediates.
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105C. Peng, J. A. Calvin, F. Pavošević, J. Zhang, and E. F. Valeev, J. Phys. Chem. A
120, 10231 (2016).
106D. I. Lyakh, Int. J. Quantum Chem. 119, e25926 (2019).
107P. R. Nagy, L. Gyevi-Nagy, B. D. Lorincz, and M. Kállay, Mol. Phys. 121,
e2109526 (2023).
108C. Peng, C. A. Lewis, X.Wang, M. C. Clement, K. Pierce, V. Rishi, F. Pavošević,
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