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Abstract

As climate change drives health declines of tropical reef species, diseases
are further eroding ecosystem function and habitat resilience. Coral disease
impacts many areas around the world, removing some foundation species
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to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral
disease processes remains insufficient to overcome many current challenges in reef conservation,
yet cumulative research and management practices are revealing new disease agents (including
bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods
to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding
programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reener-
gized and mobilized the research community to think bigger and do more. This review therefore
focuses largely on novel emerging insights into the causes and mechanisms of coral disease and
their applications to coral restoration and conservation.

1. INTRODUCTION TO CORAL DISEASE

Stony coral tissue loss disease (SCTLD), dark spot syndrome, tissue sloughing, yellow band dis-
ease (also referred to as yellow blotch disease), coral tumors, white band disease, brown band
disease, black band disease, bleaching—these are the phenotype-associated names for a few of the
conditions that shallow scleractinian corals succumb to on reefs today (Figure 1). Most of these
conditions lack a known definitive cause, but together they result in significant losses of already
depleted corals in tropical locations such as the Caribbean (van Woesik & Randall 2017) as well as
in higher latitudes (Page et al. 2023). Due to the dramatic declines in total live coral cover and/or

Black band disease

« Phenotype: black band lesion that moves
through coral colonies, destroying coral tissue

« Proposed pathogens: cyanobacteria
(e.g., Phormidium corallyticum), sulfide-
oxidizing bacteria (e.g., Beggiatoa spp.),
sulfate-reducing bacteria (e.g., Desulfovibrio
spp.), and heterotrophic bacteria

CORAL DISEASES Brown band disease

« Phenotype: distinct brown bands
preceding healthy tissue followed by
bleached tissue or a denuded skeleton

- Proposed pathogen: consortium of

predatory ciliates beloging to the subclass
Scuticociliatia

Skeletal eroding band disease

- Phenotype: black or dark gray bands across the
coral surface

« Proposed pathogen: Halofolliculina corallasia

(most reported ciliate species)

Rapid tissue loss diseases

« Phenotype: progressive tissue loss and
exposure of the underlying white skeleton

Dark spot syndrome

N « Phenotype: dark or purple lesions
Yellow band d"se?se resembling rings scattered across coral
« Phenotype: yellow to white circular band surface

that radiates outward

« Proposed pathogen: no pathogen
defined as etiological agent; white plague
disease type Il may be related to orders
Rickettsiales, Vibrionales, and
Flavobacteriales

« Proposed pathogen: consortium of Vibrio
spp.

Figure 1

« Proposed pathogen: no pathogen
defined as etiological agent, but
bacteria and fungi may be related

Named coral diseases, highlighting their visible signs and suspected pathogens.
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A BRIEF HISTORY OF CORAL DISEASE RESEARCH

Coral disease research began in 1973 with the observation of black band disease reported by Antonius (Richardson
2012); a formal description was subsequently published by Rutzler et al. (1983).1In 1977, the first major coral disease
was described as rapid tissue loss, then termed white plague (Dustan 1977). Since then, hundreds of studies have
explored coral epizootics using various methods and terms. As a result, coral disease work has had several periods
driven by different but often overlapping research approaches and foci as well as changing paradigms.

From the 1970s to the 1990s, researchers focused on descriptive macroscopic signs such as changes in coloration,
lack of tissue, and depression in the coral skeletons, but attempts at microscopic and culture-based methods were
lacking. During this period, several disease phenotypes were described (Goreau et al. 1998), some of which were
later discarded due lack of evidence to support the pathology, etiology, and epizootiology of the putative disease. Due
to the novelty of the research, this foundational period was also characterized by a paucity of conceptual consensus,
leading to inconsistency in our scientific nomenclature. Research in the 1990s had three areas of focus: etiological
characterizations, descriptions of pathologies and host responses, and initial attempts at treatment. During this
period, fulfilling Koch’s postulates for putative diseases became paramount (Richardson 1998). Initial efforts to treat
coral diseases with mechanical removal of pathogens, shading, and other in situ techniques were also first attempted
(Griffin 1998, Hudson 2000). Despite this progress, many diagnostic data (e.g., histology and transmission electron
microscopy) were inconsistently collected, limiting the comparability of the studies.

The 2000s saw major technological and theoretical advancements with the introduction of new genomic meth-
ods and the coral holobiont model (Bosch & Miller 2016, Reshef et al. 2006), allowing scientists to better investigate
how corals interact with pathogens and the intersecting role of the environment and genetics in coral health. High-
throughput sequencing tools (e.g., amplicons, metagenomics, and RNA sequencing) provided deeper (although
often confusing) insights into mechanisms of coral diseases and coral immune responses to stress and disease.
Molecular techniques also helped identify reservoirs and intermediaries involved in coral-pathogen interactions
(e.g., Sweet et al. 2013D).

Across all these eras, formal incorporation of veterinary science and epidemiological modeling has advanced coral
disease research. Work & Aeby (2006) unified disease naming, while researchers embraced modeling coral-pathogen
interactions (Brandt & McManus 2009, Muller & van Woesik 2012). Advanced histopathology techniques helped
researchers move beyond Koch’s postulates by allowing them to link tissue changes to the presence or abundance of
pathogens and specific processes such as tissue damage (Ainsworth et al. 2007, Gignoux-Wolfsohn & Vollmer 2015,
Work & Meteyer 2014). Despite this progress, identifying a specific pathogen or even the pathogenic consortium
remains challenging. In the end, for holistic coral disease research, the incorporation of a myriad of techniques,
models, and theories should be attempted. We are at a point where significant advancements are being made, and
working across disciplines will help crack the code of coral disease.

extirpation of coral species (Eddy et al. 2018), scientists, managers, and funding agencies have
poured millions of dollars and years of human effort into trying to define the causes, conventions,
and consequences of coral disease (Moriarty et al. 2020).

While coral disease research has transitioned from observational to more comprehensive
approaches (see the sidebar titled A Brief History of Coral Disease Research), we still face many
challenges. For example, the etiologies for the vast majority of coral diseases remain unknown.
Likewise, some core epidemiological aspects of coral diseases (e.g., mechanisms of pathology,
transmission, dispersion, environmental drivers, modeling, and treatments) are poorly under-
stood. We are, however, making great strides in understanding why some corals are resistant to
disease at large (MacKnight et al. 2022, Mydlarz & Muller 2023, Vollmer et al. 2023) and are
testing what we can do to stop or ameliorate these outbreaks (Neely et al. 2021, Ushijima et al.
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2023). Comprehensive reviews and meta-analyses have synthesized progress in understanding
coral diseases over the last 20 years (Alvarez-Filip et al. 2022, Raymundo 2008, Sweet et al. 2020,
Vega Thurber et al. 2020, Woodley et al. 2015), but the field continues to respond quickly to the
SCTLD epizootic and the advent of new interventions. Here, we synthesize the current state of
knowledge regarding scleractinian coral disease, with a strong emphasis on its interactions with
restoration efforts, and make recommendations for future areas of research and innovation.

1.1. Coral Disease Descriptors and Their Etymology

There are two primary categories of coral disease: infectious and physiological. Historically, many
studies have assumed that infectious agents drive most coral disease dynamics. However, many of
these diseases likely fall along a spectrum, with the two categories as endpoints: Changes in host
background status due to genetics and/or alterations in the environment cause shifts in coral phys-
iology and disease susceptibility and simultaneously shift microorganisms from inconsequential
to pathogenic. In this review, we focus almost exclusively on the infectious components of dis-
eases; for more elaborate and comprehensive reviews on physiological aspects of coral disease, see
the excellent works by Andersson et al. (2020), Ricci et al. (2022), Rich et al. (2021), and Spies &
Takabayashi (2013).

1.2. Named Coral Diseases

According to Morais et al. (2022), 40 coral diseases have been described. Of these, 22 were de-
tected in the Atlantic and Caribbean, and 9 were observed in the Indo-Pacific and the combined
West, South, and North Pacific regions. These diseases affect approximately 200 coral species,
often causing tissue loss and mass mortality (Bruckner 2015). Importantly, disease cases cannot
be diagnosed by mere observation of macroscopic signs. Thus, coral disease names are not diag-
nostic. While environmental disturbances exceeding coral tolerance limits are known to disrupt
symbiotic relationships within the coral holobiont, leaving them vulnerable, some diseases ex-
hibit a distinct link to specific pathogens (Figure 1). These pathogens can be resident or transient
microorganisms (Mao-Jones et al. 2010).

1.2.1. Rapid tissue loss diseases. Several widespread coral diseases share similar physiological
characteristics, especially in the Indo-Pacific and Caribbean (Morais et al. 2022), making diagnosis
challenging due to the lack of specific criteria for each disease (see the sidebar titled A Brief History
of Coral Disease Research). Rapid tissue loss disease is therefore a collective term for diseases
characterized by fast tissue loss and exposure of the underlying white skeleton. Rapid tissue losses
include white band disease, white plague disease, white plague-like disease, and SCTLD.

White band disease primarily targets branching corals (Acroporidae), which are important reef
builders (Aronson & Precht 2001, Ritchie & Smith 1998). The disease lesion exhibits a progress-
ing line of tissue destruction that moves through coral colonies. This lesion starts at the base
and expands progressively through branch bifurcations (Bythell et al. 2004). Turf algae often col-
onize exposed white skeleton after tissue loss. White band disease exhibits two forms based on
the sequence of tissue death. Type I exhibits a sharp boundary between healthy tissue and ex-
posed skeleton, resembling a plague and causing significant destruction; this type has decimated
Acropora spp. in the Caribbean (Kline & Vollmer 2011). In contrast, type 1I may have a zone of
bleached tissue near the disease line and can sometimes halt its progression, appearing similar
to type I after stopping (Gil-Agudelo et al. 2006). Though less destructive than type I, type II’s
long-term impact remains concerning. While no specific pathogens have been identified for
type I, researchers suggest a possible involvement of isolated bacteria or a consortium (Kline &
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Vollmer 2011). For type II, potential pathogens include bacterial taxa of the orders Rickettsiales,
Vibrionales, and Flavobacteriales (Gignoux-Wolfsohn & Vollmer 2015).

White plague disease is a contagious coral disease that can cause pervasive damage to reefs
when widespread (Rosenberg & Loya 2004, Silva-Lima et al. 2021). It is easily recognizable by a
linear white band with a diffuse border that migrates destructively through coral colonies, leaving
exposed skeletons quickly colonized by algae (Bourne et al. 2015). The disease displays varying
degrees of disease progression rate, classified into three types: I, II, and III. Type III is by far
the most aggressive, with tissue loss rates 20 times faster than type II's (Bythell et al. 2004). The
exact cause of the disease is complex and varies among coral species and locations. While
the core macroscopic signs remain similar, the microbial consortium responsible differs between
the Caribbean and Indo-Pacific regions. For this reason, the Indo-Pacific variant is distinguished
as white plague-like disease. Several types of microorganisms, including Vibrio spp., Thalassomonas
Spp., cyanobacteria, and even viruses, are linked to white plague disease (Chimetto Tonon et al.
2017, Silva-Lima et al. 2021, Thompson et al. 2006).

When SCTLD was first documented in Florida, it was identified as a white plague-like
syndrome because the macroscopic signs of lesion formation were similar to those previously
documented for rapid tissue loss diseases within the region (Papke et al. 2024). However, the
spatiotemporal ecology of this disease was so unique and tractable (during its invasion and epi-
demic periods) that SCTLD was soon identified as a novel coral disease; it has now spread to
reefs in at least 28 countries and territories across the Caribbean, causing severe coral losses (e.g.,
Alvarez-Filip et al. 2022, Brandt et al. 2021, Papke et al. 2024). Often, when a reef was initially af-
tected by SCTLD, colonies of the Meandrinidae family were the first to show signs of the disease,
with rapid, persistent, and complete colony mortality followed by incidence in moderately suscep-
tible coral species (boulder and brain corals) and then low-susceptibility species (Porites spp. and
Agaricia spp.). SCTLD was also predictable spatially as it spread north and south of Miami, Florida,
USA, utilizing water currents as a vector of disease spread within Florida’s Coral Reef (Dobbelaere
etal. 2020). It was also evident that SCTLD was likely infectious and contagious from the spatial
ecology alone, and clusters could be detected across large (Muller et al. 2020) and small (Williams
et al. 2021) spatial scales. Importantly, as this disease becomes endemic on a reef, differentiating
the ecology of SCTLD from other endemic white plague-like mortality becomes increasingly
difficult.

Dozens of studies have been published on the causes of this disease, although no single
pathogen (e.g., bacterial or viral) or trigger (e.g., dinoflagellate-derived toxin) has yet been
shown to be a definitive agent. Flavobacteriales are a primary suspect, but several other bacterial
groups remain potential culprits (Clark et al. 2021; Heinz et al. 2024; Rosales et al. 2022, 2023).
Furthermore, the utility of antibiotics in treating this disease suggests that a bacterial pathogen is
involved (Ushijima et al. 2023). Viruses are also hypothesized to play a role in SCTLD etiology
(see Section 2.2.3).

1.2.2. Black band disease. Black band disease is one of the most common and widespread dis-
eases and affects several coral species around the world (Frias-Lopez et al. 2004, Richardson 1998).
Its phenotype consists of a distinct black band lesion that moves across colonies, destroying coral
tissue at up to several centimeters per month (Bruckner & Bruckner 2006). The band is com-
posed of a highly structured microbial consortium dominated by the cyanobacterium Phormidium
corallyticum, an oxygenated phototroph (Richardson & Kuta 2003); the sulfate-reducing bac-
teria Desulfovibrio spp. (Viehman et al. 2006); the sulfide-oxidizing bacteria Beggiatoa spp.
(Richardson 1996); and other heterotrophic bacteria (Miller & Richardson 2011, Richardson
1996). This seemingly contradictory consortium creates a microcosm of contrasting environments
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and is what makes black band disease so devastating (Cooney et al. 2002). While P. corallyticum gen-
erates oxygen at the surface, Desulfovibrio spp. thrive in the deeper anoxic zone, generating lethal
levels of hydrogen sulfide, disrupting vital symbioses, and ultimately leading to tissue necrosis and
colony death.

1.2.3. Yellow band disease. Yellow band disease was first described in Florida in 1994 (Reeves
1994), although it was likely already reported in the 1970s as “ring bleaching” by Dr. Phill Dustan.
The disease manifests as a light spot surrounded by a circular yellow band at the edge (Sutherland
et al. 2004). Yellow band disease targets the dinoflagellate algal endosymbionts (family Symbio-
diniaceae) of corals and results in colony paling. Thus, this disease sign can easily be confused with
bleaching induced by thermal stress.

Yellow band disease has different classifications and forms of occurrence according to the re-
gion where it is found. It is prevalent mainly in Caribbean reefs and affects dominant reef-building
corals such as Orbicella annularis and Orbicella faveolata. Within this region, it is recognized as
Caribbean yellow band disease (Randall et al. 2018, Rosenberg & Loya 2004). In the Arabian
Gulf, however, this disease impacts several species from the families Acroporidae and Poritidae,
manifests as a yellow band covered in mucus, and is known as Arabic yellow band disease. Within
the Pacific Ocean, the disease expresses similarly to Caribbean and Arabic yellow band disease but
disappears after total degradation of the tissue, as well as the loss of Symbiodiniaceae pigments
(Cervino et al. 2001). Yellow band disease progresses relatively slowly (1 cm per month) and can
be caused by a consortium of bacteria (Vibrio spp.).

1.2.4. Dark spot syndrome. Dark spot syndrome was first identified in the early 1990s in
Colombia (Solano et al. 1993) and is characterized by dark lesions that resemble rings or pig-
mented patches scattered across coral surfaces. These circular or elongated spots, in shades of
purple, black, or brown, may stem from pigment buildup within the coral symbiotic algae. While
not yet classified as highly contagious or widespread, dark spot syndrome can inflict significant
damage by causing tissue necrosis (Borger 2005). Its geographical range extends across both
the Indo-Pacific and Atlantic Oceans, encompassing the Caribbean and reaching the Brazilian
coast (Francini-Filho et al. 2008). Certain coral species, like Stepbanocoenia michelinii, Montastraea
annularis, and Siderastrea siderea, are especially susceptible (Cervino et al. 2001).

The etiology of this disease is still undefined, but bacteria and fungi are potential causes
(Kellogg et al. 2014, Meyer et al. 2016, Sweet et al. 2013a). Another hypothesis suggests that
it is a general stress-induced immune response (Borger 2005). Importantly, it increases in preva-
lence and severity during nutrient enrichment, suggesting that it is associated with reduced water
quality and bleaching (Brandt & McManus 2009, Vega Thurber et al. 2014).

1.2.5. Brown band disease. First observed in the Great Barrier Reef, brown band disease poses
a significant threat to scleractinian corals, particularly members of the Acroporidae, Pocillopori-
dae, and Faviidae (Willis et al. 2004). The disease is easily identifiable by a distinct brown band,
followed by bleached tissue or a denuded skeleton. The brown band arises from a consortium of
predatory ciliates belonging to the subclass Scuticociliatia. The ciliate lesion migrates from the
base to the tip of branching corals (Bourne et al. 2008, Ulstrup et al. 2007). Beyond their con-
tribution to macroscopic disease features, ciliates contribute to pathogenesis by actively ingesting
Symbiodiniaceae along with coral tissue (Seveso et al. 2015, Sweet & Bythell 2012).

1.2.6. Skeletal eroding band disease. Skeletal eroding band disease is a widespread coral dis-
ease linked to another ciliate, Halofolliculina corallasia. Characterized by a slowly progressing black
or dark gray band across the coral surface, this disease ultimately leads to progressive tissue loss
(Winkler et al. 2004). It primarily affects corals from the Pocilloporidae and Acroporidae families
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and exhibits high prevalence in the Great Barrier Reef (Willis et al. 2004) and incidence in the
Caribbean (Page et al. 2015) and Hawaii (Palmer & Gates 2010), suggesting a global distribution.
Winkler et al. (2004) speculated that the ciliate may opportunistically settle and establish on coral
tissue that has been damaged, for example, by predation (Winkler et al. 2004). However, it is not
clear whether the ciliate causes tissue loss or colonizes the denuded skeleton (Page & Willis 2008).

2. NONBACTERIAL PARTNERS AND THEIR ROLE IN CORAL DISEASE:
SYMBIODINIACEAE AND VIRUSES

Diverse microorganisms are implicated directly or indirectly in coral diseases. Multicellular
eukaryotes like fungi and trematodes can cause infections and are associated with worsening
coral health (Aeby 2015, Ainsworth et al. 2017, Bray & Cribb 1989). However, the majority of
studies concerning the etiology of coral diseases currently focus on three categories of potential
pathogens: protists, bacteria, and viruses. Each of these groups represents a broad collection
of genetic diversity, metabolisms, life histories, and potential mechanisms of disease. Below, we
summarize evidence regarding how these groups are directly and/or indirectly associated with
coral disease.

2.1. Symbiodiniaceae and Disease Resistance/Susceptibility

As the primary nutritional symbionts of stony corals, the Symbiodiniaceae play a fundamental
role in colony health by providing photosynthetically derived carbon resources to their cnidarian
animal hosts (Muller-Parker et al. 2015). Our understanding of the diversity and physiological
contributions (e.g., thermotolerance) of Symbiodiniaceae lineages to coral holobionts has bene-
fited from extensive research attention for decades (Davies et al. 2023). Given this, surprisingly few
studies have tested the extent to which Symbiodiniaceae identity (e.g., species and lineage) influ-
ences coral holobiont disease resistance or susceptibility. At a minimum, it has been documented
that mutualistic Symbiodiniaceae lineages can shift to parasitism under stressful environmental
conditions (Baker et al. 2018, Sachs & Wilcox 2006), which could contribute to (or follow) disease
states in the holobiont.

Some Symibiodinium lineages appear to be more parasitic than other genera. For example, in the
Caribbean, Symbiodinium was correlated with yellow (diseased) tissue areas on Caribbean Orbicella
annularis, Orbicella faveolata, and Orbicella franksi colonies exhibiting signs of yellow band disease
(Toller et al. 2001). Similarly, in the Pacific, Acropora cytherea white syndrome and Vibrio were cor-
related with colonies that harbored a Durusdinium lineage (Rouzé et al. 2016). Another study also
found that corals with signs of dark spot syndrome are less likely to harbor Durusdinium lineage
symbionts (Correa et al. 2009), but it is unclear whether this is because Durusdinium lineages are
selectively lost from tissues affected by dark spot syndrome or because harboring a Durusdinium
lineage improves colony resistance to dark spot syndrome. Recently, increased susceptibility to
(Klein et al. 2024) and severity of SCTLD have been correlated with harboring Durusdinium
symbionts (Beavers et al. 2023).

However, issues remain in testing linkages between Symbiodiniaceae and coral disease. For
most tissue loss diseases, lesion progress across colony surfaces is faster (e.g., on the order of
hours to days) than Symbiodiniaceae are typically observed to shuffle in relative abundance or are
typically lost from a coral colony (e.g., via a bleaching-type response over several weeks). Also,
associations between Symbiodiniaceae and some diseases could potentially be obfuscated by phy-
logenomic and phylogeographic associations between the animals and their protist counterparts.
The primary phylogenomic issue is that multiple coral species can be affected by the same ap-
parent coral disease, but these different holobionts may tend to form associations with different
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genera or lineages of dinoflagellate symbiont, making the disease susceptibility or resistance of
a given symbiont lineage harder to detect (e.g., differences in dominant Symbiodiniaceae within
S. siderea samples with and without signs of dark spot syndrome in Florida, USA, and the US Vir-
gin Islands; Correa et al. 2009). This challenge is compounded by the fact that stony coral species
vary in the flexibility and specificity of their symbioses with Symbiodiniaceae (Silverstein et al.
2012).

Bleaching, the mass loss of Symbiodiniaceae and/or its pigments, can also trigger (Brandt &
McManus 2009) or halt (Brandt et al. 2021) the progression of coral diseases. During and af-
ter bleaching, coral metabolism and cell integrity are severely altered, which may leave bleached
colonies more susceptible to disease. Conversely, for diseases initiated through infection or dys-
function of Symbiodiniaceae, bleaching could slow or halt disease progression by removing these
symbionts from the colony.

2.2. The Good, the Bad, and the Ugly: Viral Roles in Coral
Immunity and Disease

Microscopy and high-throughput sequencing technologies have revealed extensive morphological
and genetic diversity of putative virus-like particles (VLPs) and genomic sequences associated with
coral animal tissues and coral-associated Symbiodiniaceae and bacteria (Correa et al. 2021, van
Oppen et al. 2009, Vega Thurber et al. 2017). Despite this, viruses are a relatively understudied
component of coral disease. Viral impacts on colony health and functioning likely span the good
(bolstering coral immune system function and disease resistance), the bad (direct antagonism as the
etiological agents of disease), and the ugly (indirect contributions to disease through increases in
the virulence of other microorganisms or through secondary infections) (Figure 2). This section
highlights seminal works, key developments, and promising future directions in understanding
viral contributions to coral holobiont diseases.

2.2.1. The good: viral contributions to the coral immune system. Viral infections of bac-
terial, archaeal, and eukaryotic microbial symbionts can shift their community compositions,
affecting their physicochemical contributions to coral mucosal and tissue layers (Grasis 2017,
Quistad et al. 2017). This virus-derived immunity mechanism is likely impactful within the coral
surface mucus layer, since surface mucus acts as a physical buffer to the surrounding environment
and is the site of first defense against pathogen invasion. In the coral surface mucus, phage:bacteria
ratios can be ~4.5-fold higher than corresponding ratios in the water column (Barr et al. 2013,
Nguyen-Kim et al. 2015). It has been suggested that this enriched phage environment includes
coral immunophages, or bacteriophages that directly contribute to the coral immune system via
pathogen cell lysis. Recently, immunophages within the mucus of the coral Oculina patagonica were
shown to be capable of infecting Vibrio mediterranei, an emerging pathogen that causes bacterial
bleaching (Rubio-Portillo et al. 2014). These mucus-associated vibriophages are present at low
abundance during ambient conditions but proliferate rapidly during warming periods if V. mediter-
ranei invades the coral surface mucus. Viruses that predate on other pathogenic bacteria should
also be tested for immunophage roles. For example, cyanophages could contribute to colony re-
sistance to black band disease through immunophage activity since cyanobacteria are implicated
in the disease (Buerger et al. 2019, Veglia et al. 2021).

Eukaryotic viruses—those infecting the coral itself, Symbiodiniaceae, or other eukaryotic
symbionts—are also potentially capable of influencing coral immune properties (Weynberg et al.
2017a). In mice, latent (dormant infection state) herpesvirus infections confer protection from
bacterial pathogens by priming the mouse immune system through upregulation of nonspecific
immune-related genes (Barton et al. 2007). Interestingly, viruses exhibiting some similarities to
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Figure 2

Viral impacts on colony health and disease, which likely span the good, the bad, and the ugly. (#) The good: Viruses may bolster coral
immune properties in diverse ways, represented here as coral mucus-associated immunophages infecting Vibrio mediterranei, thereby
countering pathogen invasion and maintaining holobiont homeostasis. (5) The bad: Viral infection of coral tissues or Symbiodiniaceae
could initiate disease or bleaching signs in coral holobionts. Here, a pathogenic virus infects coral tissue, resulting in gross disease signs
(represented by discoloration of coral epidermal cells) and increased production (secondary infections) by resident, latent, or chronic
viruses. (c) The ugly: This scenario demonstrates the double-edged sword of immunophage activity. While immunophages effectively
lyse invading pathogens, they also release bioavailable virulence factors. These genetic elements are then acquired by a nearby
nonpathogenic microbe, transforming it into a new pathogen that invades coral tissues, again prompting secondary virus infections in
the holobiont.

known Herpesviridae are common in stony coral holobionts (Correa et al. 2016, Vega Thurber
et al. 2008, Wood-Charlson et al. 2015). It is hypothetically possible that latent atypical herpes-
like virus infections can drive coral innate immunological priming and provide colonies with
increased resilience to potential pathogens; this should be empirically tested. The identification
of viral groups that contribute to or prime coral immune systems can support reef management
by enabling targeted intervention efforts (see Section 4.2.2).

2.2.2. The bad: viruses as etiological agents of coral disease. A virus has yet to be con-
firmed as the etiological agent of a coral disease, or even comprehensively isolated, cultured, and
characterized from diseased (or healthy) coral tissues or symbiont cells. However, for each coral
disease in which viruses have been assessed (e.g., dark spot syndrome, white plague disease, white
patch syndrome, SCTLD, tumors, and bleaching), diverse VLPs and apparent increases in viral
production have been observed in stressed and unhealthy colonies (relative to apparently healthy
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colonies, but see Wang et al. 2018). For example, higher abundances of Cressdnaviricota viruses
were found in bleached and white plague—affected tissues relative to apparently healthy colonies
(Soffer et al. 2013). Also, small (<50-nm diameter) icosahedral VLPs were significantly more
abundant in coral tissues and Symbiodiniaceae 1 cm away from white patch lesions (Lawrence
et al. 2015). Similarly, numerous studies have provided morphological and omics-based evidence
that virus abundance or production increases in heat-stressed or bleached corals (Correa et al.
2016, Littman et al. 2011, Marhaver et al. 2008, Messyasz et al. 2020, Vega Thurber et al. 2009)
and cultures of coral-associated Symbiodiniaceae (Weynberg et al. 2017b). These works suggest
that viral infections play a role in coral disease, but additional evidence is needed to clarify whether
viruses are the primary etiological agents.

Dinoflagellate-infecting RNA viruses (dinoRINAVSs) are currently the most comprehensively
investigated viral group in terms of potential contributions to coral bleaching signs. The genus
Dinornavirus represents positive-sense, single-stranded RNA viruses that infect marine dinoflag-
ellates (Tomaru et al. 2004). Currently, there is a single member of this genus (Heterocapsa
circularisquama RNA virus), which infects the toxic bloom—forming dinoflagellate H. circular-
isquama (Tomaru et al. 2009). Dinornavirus-like sequences similar to H. circularisquama RNA virus
were first detected in Caribbean coral tissues (Correa et al. 2013) from five sequences in thermally
stressed Montastraea cavernosa RNA metaviromes and within transcriptomes from Symbiodini-
aceae cell culture (genera Symbiodinium and Breviolum) (Bayer et al. 2012). In the decade since
then, Dinornavirus-like sequences (dinoRNAVs) have been detected in the tissues of 12 Pacific
coral species (Grupstra et al. 2022b; Howe-Kerr et al. 2023a,b; Montalvo-Proafio et al. 2017,
Weynberg et al. 2014), the feces of two coral-eating fishes (Veglia et al. 2024), and additional
transcriptomes from Symbiodiniaceae cell cultures (genus Cladocopium) (Levin et al. 2017). Addi-
tionally, dinoRINAV-like endogenous viral elements have been found in dinoflagellate genomes,
which is strong evidence that Symbiodiniaceae are the target hosts of dinoRINAVs in coral colonies
(Veglia et al. 2023).

The association of dinoRNAVs with Symbiodiniaceae, in combination with their similarity
to a known dinoflagellate-infecting virus capable of lytic infection, suggests that dinoRNAVs
may contribute to some coral bleaching signs. Grupstra et al. (2022b) observed a significant
increase in dinoRNAV aminotype richness and dispersion within coral holobionts (Pocillopora
verrucosa—Cladocopium pacificurm and Pocillopora ligulata—Cladocopium latusorum) during an ex situ
heat-stress experiment. This apparent temperature-driven dinoRINAV productivity was cor-
roborated via the in situ characterization of dinoRNAV community dynamics associated with
Porites cf. lobata—Cladocopium C15 across time and space, and before and after a thermal stress
event, on a Pacific reef (Howe-Kerr et al. 2023a). Assessing dinoRNAV infection prevalence
at the Symbiodiniaceae cell level (rather than the coral holobiont level) with single-cell RNA
sequencing, double-stranded RNA immunofluorescence (Coy et al. 2023), or other approaches
and correlating physiological shifts in individual Symbiodiniaceae cells with dinoRNAV infection
will confirm the extent to which dinoRINAV infections lyse Symbiodiniaceae cells in heat-stressed
coral tissues (as documented for other VLPs whose morphologies are similar to Dinornavirus’s;
Davy et al. 2006, Wilson et al. 2001) and reveal the extent to which dinoRNAV infections
contribute to coral bleaching signs.

2.2.3. Bad or just ugly? Direct versus indirect roles of viruses in stony coral tissue loss
disease. Initial investigations of the etiology of SCTLD focused on bacterial diversity (see
Section 1.2.1). However, a report of filamentous VLPs associated with Symbiodiniaceae cells
in SCTLD-affected and unaffected Florida corals (Work et al. 2021) drove researchers to
look more deeply into the role of viruses in this disease. Two novel Alphaflexiviridae genomes
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[coral holobiont-associated alphaflexvirus 1 (CHFV1) and CHV2] were then generated from
RNA sequencing libraries of US Virgin Island corals from SCTLD-affected, -exposed, and
-unexposed colonies (Veglia et al. 2022). Detection of sequence similarities with positive-sense,
single-stranded RINA viruses provided additional support for, but not confirmation of, the role of
filamentous viruses in SCTLD.

The lack of data on coral holobiont-associated viral diversity for many host species, geographic
locations, and disease states complicates the evaluation of viruses as potential etiological agents of
disease. Except for one study documenting filamentous VLPs associated with white patch disease
(Lawrence et al. 2015) and the documentation of filamentous VLPs in heat-stressed Symbiodini-
aceae cultures (Weynberg et al. 2017b), putative filamentous viruses had not been significantly
linked to coral disease. Yet examination of more than 700 transmission electron microscopy im-
ages of Symbiodiniaceae cells from apparently healthy and heat-stressed or bleaching corals in the
Pacific subsequently revealed that filamentous VLPs are common and prevalent in an ocean basin
where SCTLD has yet to be documented, making these viruses unlikely to be the sole etiological
agent of this disease (Howe-Kerr et al. 2023b).

Upregulation of antiviral immunity genes in coral and Symbiodiniaceae from SCTLD-affected
coral holobionts during an ex situ transmission experiment additionally implicated viruses in
SCTLD etiology (Beavers et al. 2023). From the same samples, we documented differential abun-
dance of various viral orders and found limited support for a single virus pathogen (i.e., CHFV).
Importantly, however, similar viral orders were differentially abundant in SCTLD-affected corals
analyzed from Floridian reefs based on identical methods (Vega Thurber & Correa 2023). Taken
together, studies to date have informed hypotheses about viruses as potential etiological agents
that can now be tested pending development of more quantitative sequence-independent virus
detection approaches. Viruses that should be further investigated for “bad” roles include groups
predicted to infect Symbiodiniaceae, such as Algavirales and Durnavirales, as well as potential
coral-infecting viruses, including Herpesvirales and Chitovirales.

Another key finding that highlights potential “ugly” viral roles in some aspects of SCTLD was
the observed upregulation of the gene Abcel (Beavers et al. 2023), a negative regulator of RNase
L, a protein that has antiviral capacity via viral RNA degradation (Drappier & Michiels 2015).
Importantly, upregulation of Abcel to inhibit RNase L is an antiviral evasion mechanism utilized
by some human positive-sense, single-stranded RNA viruses, including one within Picornavirales
(encephalomyocarditis virus) (Martinand et al. 1998). Picornavirales was also differentially abun-
dantin SCTLD-affected tissues across all coral species analyzed by Vega Thurber & Correa (2023)
and Veglia (2023) (Veglia et al. 2024). We thus hypothesize that the onset of SCTLD infection
induces Picornavirales to employ antivirus evasion tactics, potentially undermining the coral’s im-
mune response to virus infection and enabling opportunistic production by diverse viral groups
and, ultimately, holobiont destabilization.

3. CORAL DISEASE ECOLOGY, THE ENVIRONMENT,
AND RESTORATION

Outside of the invasion and epidemic conditions of white band disease and SCTLD, environmen-
tal conditions are closely associated with coral disease incidence, prevalence, and severity. Increases
in ocean temperatures associated with climate change are often positively correlated with coral dis-
ease dynamics and outbreak conditions (Maynard et al. 2015, Randall & van Woesik 2015). This
phenomenon likely fuels different processes associated with disease dynamics by directly affecting
the disease agent, promoting higher growth rates of pathogens (Ward 2006), triggering virulence
pathways (Kimes et al. 2011), and/or causing coral physiological stress, resulting in a compro-
mised immune system within the host (Brandt & McManus 2009, Miller et al. 2009). Although
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coral disease outbreaks often follow or coincide with major stress events, such as coral bleaching
episodes (Croquer & Weil 2009, Jones et al. 2004, Weil et al. 2009a), they are not necessarily a
direct result of high temperatures per se; rather, they arise because the coral hosts have lost their
algal symbiont partners and are then compromised in health and immunity (Mydlarz et al. 2009,
Pinzén et al. 2015).

Experimental manipulations within the field and laboratory show that nutrient enrichment
also increases coral disease prevalence and severity (Bruno et al. 2003, Vega Thurber et al. 2014,
Voss & Richardson 2006). However, whether nutrients affect the disease agents directly, further
compromise the coral hosts, or both is largely unknown. One area that has been well studied,
however, is the effects of nutrients on Aquarickettsia robweri, a hypothesized intracellular parasite
of the critically endangered coral Acropora cervicornis. Elevated nutrients promote the abundance of
A. robweri within the coral hosts, ultimately reducing growth and increasing disease susceptibility
(Klinges et al. 2022, 2023). As coral diseases are also often more common within urbanized areas
with poor water quality or areas with elevated direct human impact, it is likely that the severity
of coral diseases will continue to increase, directly and indirectly, as a consequence of persistent
global eutrophication (Malone & Newton 2020).

3.1. Coral Restoration and Coral Disease Dynamics

Coral restoration has become a common strategy to assist the recovery of reef-building corals
in anticipation of the return of reef ecosystem function across bioregions, particularly in the
Caribbean. Coral diseases have therefore become an accelerating factor of observed trends of ho-
mogenizing reef communities and reef flattening recorded across the Caribbean. In addition to the
direct benefits associated with reseeding a reef with living coral tissue, restoration efforts have in-
directly facilitated and accelerated coral disease research. Although coral restoration has advanced
coral disease research, particularly within endangered coral species like Caribbean acroporids, per-
sistent acute and chronic disease incidences within the reef environment continue, limiting the
efficacy of coral restoration initiatives (Miller et al. 2014).

A major objective of many restoration initiatives focuses on creating reproductively viable
corals within a few years or less after outplanting (Koch et al. 2022b) to assist with jump-starting
population recovery. Coral disease epizootic events can cause complete colony mortality of out-
planted corals within short periods of time but can also result in partial mortality of large,
established outplants in land-based facilities and in situ coral nurseries, thus reducing the abil-
ity of these corals to sexually reproduce (Weil et al. 2009b) and reducing the efficacy of long-term
restoration activities. Restoration efforts may also increase the likelihood of disease epizootic
events for pathogenic agents that are density dependent. Currently, many of the endemic diseases
within the Caribbean occur spatially at random within reef scales (Foley et al. 2005, Muller &
van Woesik 2012, Zvuloni et al. 2009), and disease occurrences may be associated with ubiquitous
dormant pathogens that become pathogenic when the host’s immunity becomes compromised
following a dysbiosis within the host microbiome (MacKnight et al. 2021). However, these ran-
dom distributions are often observed within reefs that are already depauperate of coral hosts, and
diseases may become more clustered as host density within reefs increases, allowing for greater
intercolony transmission over small spatial scales. The manipulation of outplanting strategies to
test for density dependence within coral disease dynamics of these restoration sites should be
a research priority for restoration programs. Additionally, disease management is likely a critical
component to any successful restoration plan and likely must include innovative novel approaches
to reduce both inter- and intracolony disease transmission within outplanted corals (e.g., see
Section 4).
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From a coral implementation perspective, coral diseases affect the capacity to harvest corals, as
the production of sexual coral spats and microfragments can be significantly reduced when either
parental or donor colonies are scarce after massive mortalities. Coral diseases can therefore alter,
delay, or even hinder the outcomes of a coral restoration and increase the costs as mortality spreads
out across reefs in nurseries and land-based facilities.

3.2. Integration of Coral Immunity, Microbiology, Stress Dynamics
to Understand Disease Susceptibility

Disease susceptibility is caused by a combination of factors, including the genetics of the hosts
and potential pathogens, the immunological and physiological status of all the holobiont mem-
bers, and the prevailing environmental conditions (e.g., temperature, salinity, sedimentation, and
nutrient concentrations). Coral genotype has clear roles in disease susceptibility. At the same time,
coral immunology varies among coral taxa, and this variation has long been suspected to play an
important role in the relative disease susceptibility of coral species. Yet all of these intersecting
parts of the disease puzzle matter for understanding coral disease onset, progress, and culmination.
For example, the levels of some immune parameters are correlated with disease susceptibility and
bleaching mortality across 10 cnidarian families (Palmer et al. 2010). Surveys of immunity, surface
microbiomes, and disease on the Great Barrier Reef revealed that increased microbiome variabil-
ity, reduced microbiome diversity, and lowered immune activity precede signs of white syndrome
among corals (Pollock et al. 2019).

In addition to the direct effects of immune variation on susceptibility to pathogens, there are
also likely to be indirect effects resulting from immunity-driven modifications to coral-microbial
symbiosis, which in turn influence disease susceptibility. For example, in Hydrz, the antimicrobial
neuropeptide NDA-1 promotes establishment of Curvibacter sp. during development by suppress-
ing gram-positive bacterial growth (Augustin et al. 2017). In association with either Acidovorax sp.
or Pseudomonas sp. microbes, Curvibacter in turn protects Hydra against infections by Fusarium
fungi (Fraune et al. 2014). Evidence is emerging that similar mechanisms may exist in corals.
Transcriptomic studies often see differences in innate immune gene expression. For example,
SCTLD-infected corals differed in their expression of 30 innate immune genes (Beavers et al.
2023), including three members of the NF-kB pathway (s#ad6, TLR6, and Traf3). Dmbt1, which
plays a role in mucosal innate immunity, notably fell in expression during SCTLD infection, con-
currently with disruption to the mucosal microbiome of SCTLD. Thus, pathogen infection may
alter innate immune gene expression, which in turn may potentially further alter microbiome
structure (Mohamed et al. 2023, Voolstra et al. 2024). It is important to emphasize that the mi-
crobiome may be able to remember past encounters with pathogens or environmental stressors,
known as microbiome memory, as shown by Vompe et al. (2024). Epigenomic modifications may
mediate this memory. These modifications allow the microbiome to anticipate and respond more
effectively to future challenges, potentially enhancing resilience to infection (Mohamed et al.
2023). On the other hand, the adapted microbiome may potentially interfere negatively with the
host interaction.

Importantly, not all symbiotic interactions are equal. It is well established that factors like
environmental stress, coral immunity, pathogen infection, and macroalgal competition can alter
coral microbiome structure and biodiversity, which may have secondary consequences for disease
susceptibility. Critically, many of these factors also have the potential to change the nature of
host-microbial symbiosis—converting friend into foe or harmless neighbor into dire threat
(Figure 3). The most obvious example of this type of shift in the nature of symbiotic interactions
is the change in symbiosis between coral hosts and their dinoflagellate partners, Symbiodiniaceae,
which breaks down during thermal stress, resulting in inorganic nutrient and carbon metabolism
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imbalances (Ridecker et al. 2023), redox fluctuations (Nielsen et al. 2018), and potential bleaching
(Helgoe et al. 2024). If this essential nutritive mutualism is not reestablished, its loss results in
disease and the death of the holobiont. At the same time, during this breakdown, corals may actu-
ally predate upon their symbionts, scavenging their once mutualist partners for needed nutrition
(Wiedenmann et al. 2023). Thus, this relationship has moved from one of shared benefit to
competition and predation.

Further, if variations in coral microbiomes within populations correspond to variations in dis-
ease susceptibility (coral species vary greatly in microbiome composition, richness, evenness, and
membership), then some of the large differences in overall disease susceptibility among coral
species may also be due to the evolution of microbial symbiosis. Indeed, a recent comparison of
coral microbiomes across 40 coral genera suggested that a substantial fraction of genus-to-genus
differences in coral disease susceptibility correspond to the abundance of Endozoicormonas in coral
tissues (Epstein et al. 2023). This result appears paradoxical, as Endozoicomonas is commonly lost
during coral disease and becomes more abundant after thermal stress in amplicon surveys. The
same study, however, observed that Endozoicormonas also correlates with coral growth rate. Thus, as-
sociation with Endozoicomonas may influence life-history strategy by promoting faster growth but
at the cost of increased vulnerability to disease (Epstein et al. 2023). In other words, although
Endozoicomonas is often considered a mutualist, it may contribute to disease under various
unfavorable environmental scenarios (Pogoreutz & Ziegler 2023).
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Figure 4

Innovative approaches to preventing and mitigating coral disease. This figure depicts the three direct disease intervention approaches
employed to manage coral disease: chemical applications (top left), biological treatments (bottom left), and macro-level strategies (right).

4. INNOVATIVE APPROACHES TO MANAGING CORAL DISEASE

Therapies to treat sick corals and preventative measures to avert disease onset and transmission
are limited. Below, we discuss the three main approaches employed by restoration managers and
researchers to treat diseased lesions: chemical applications, biological methods, and macro-level
strategies. No one approach has proven to be a panacea for coral disease treatment, but together
they have the potential to aid in generating healthier and more resilient coral reefs (Figure 4).

4.1. Chemical Applications for Disease Prevention and Intervention

Chemical applications are commonly employed against human, animal, and agricultural diseases.
Their use in corals, while not widely adopted, has resulted in mixed results and efficacies. In gen-
eral, antiseptics like chlorinated epoxy have been highly ineffective in treating diseased corals
(Neely et al. 2021, Walker et al. 2021), with the exception of one study on black band disease in
Hawaii (Aeby et al. 2015). Antibiotics, on the other hand, have shown more promise in treating
multiple diseases at the individual level. Broad-spectrum antibiotics are attractive treatments for
corals, as the majority of disease-causing agents are either unknown or driven by multiple diverse
taxa. Notably, the antibiotic amoxicillin has been successful in treating SCTLD-affected corals.
Applying a combination of amoxicillin and Base 2B, a silicone product to prevent antibiotic leach-
ing, can quickly halt SCTLD lesion progression (Shilling et al. 2021), although its effectiveness
appears to be coral species specific (Forrester et al. 2022, Lee Hing et al. 2022, Studivan et al.
2023). While amoxicillin does not prevent new lesions from appearing on a given coral, halting
disease progression through initial treatments is predicted to decrease reinfection, allowing reef
sites to progress to lower SCTLD prevalence (Neely et al. 2021). Notably, this same treatment is
effective in treating Pseudodiploria spp. infected with black band disease in the US Virgin Islands
(Eaton et al. 2022).

A critical issue for all antibiotics is the potential development of antibiotic resistance and its im-
plications for nearby species and the surrounding environment. Antibiotic resistance occurs when
targeted microbes no longer respond, rendering infections difficult to treat and increasing the risk
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of disease spread. Even diluted concentrations of antibiotics allow bacterial populations to de-
velop defensive mechanisms that inhibit antibiotic function (Jutkina et al. 2018). The emergence
of antibiotic-resistant pathogens has had a global effect, reverberating across diverse ecosystems.
For example, Serratia marcescens, the pathogen responsible for acroporid serratiosis (white pox) in
Acropora palmata, has become resistant to a wide range of antibiotics as a consequence of exposure
to antibiotics used to treat Serratia infections in humans (Tavares-Carreon et al. 2023).

While the use of antibiotics in coral ecosystems has raised concerns, it is important to rec-
ognize the dual role that antibiotics can play in coral health management. Beyond their direct
therapeutic applications, antibiotics hold promise as diagnostic tools for identification and se-
lection of appropriate treatments for coral diseases (Kline & Vollmer 2011, Sweet et al. 2014).
Antibiotics, when strategically applied, can help isolate and identify specific pathogens involved in
coral ailments. This targeted approach paves the way for tailored and effective treatment regimens
but cannot differentiate between primary and secondary disease agents. Researchers treating coral
disease with amoxicillin are rightly concerned about the unintended long-term consequences of
antibiotic treatments in the marine environment. To minimize this risk, practitioners apply highly
concentrated dosages of amoxicillin that kills pathogens, commensals, and underlying coral tissue
(Walker et al. 2021). This type of application is less likely to lead to antibiotic resistance than
successive low-dosage treatments (Roberts et al. 2008).

Other chemical applications also warrant examination. For example, flavonoids are polyphe-
nolic phytochemicals that are commonly found in marine organisms, including corals (Martins
et al. 2019), and have natural bactericidal, bacteriostatic, antiviral, and antiprotozoa properties
(Martinez-Castillo et al. 2018). One study found that Sargassum extracts, including flavonoids, are
inhibitory to coral pathogen cultures (Ahmed et al. 2022). The efficacy of flavonoids in combating
plant diseases and their proposed use as substitutes for antibiotics in human health (Biharee et al.
2020) imply that these compounds are promising options for addressing coral diseases that should
be explored.

4.2. Biological Treatments for Disease Mitigation:
Probiotics and Bacterial Predators

Biological agents are emerging as potentially powerful tools to treat coral disease. This antibiotic-
independent therapy can employ a single beneficial taxon or a consortium of microbes and has
the potential to act beyond a single inoculation or individual coral colony and distribute at the
reef scale, and has thus gained traction in recent years. The specificity of these biological agents
depends on the chosen taxa and can range from highly specific to broad acting.

4.2.1. Beneficial microorganisms for corals and probiotics to prevent and ameliorate
disease. The microbes involved in biological treatments are commonly called beneficial mi-
croorganisms for corals (BMCs): consortia of naturally associated coral microorganisms that
contribute to host health (Peixoto et al. 2017). BMCs can function as probiotics, providing health
benefits when administered in appropriate doses (Peixoto et al. 2021). BMCs are typically isolated
from healthy corals that have a desired phenotype, such as elevated disease resistance or wider
thermal tolerance compared with their congeners, and then reinoculated into unhealthy corals or
those with inferior traits. By employing multiple taxa simultaneously, these therapies can promote
coral health through multiple mechanisms, including enhancing host immune response, creating
direct antagonism against pathogens, excluding invaders through indirect niche colonization, and
contributing to nutrient cycling. One study found that the addition of five putatively beneficial
coral microbes mitigated Vibrio coralliilyticus—induced bleaching in Pocillopora damicornis (Rosado
etal. 2019).
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BMC studies have focused primarily on improving coral resilience and acting as preventative
rather than curative treatments for pathogen-mediated diseases. For example, BMCs can mitigate
temperature-induced bleaching (Doering et al. 2021, Li et al. 2023, Rosado et al. 2019, Santoro
et al. 2021) and improve host physiology (Zhang et al. 2021). While studies applying BMCs as
probiotics are in early stages, the observed advantages indicate the need for future investigations
into the potential of these treatments for disease prevention and/or mitigation. Inoculated BMCs
are not retained within host microbiomes for long periods and demonstrate optimal efficiency
when applied during stress (Voolstra et al. 2021). Therefore, use of these treatments would likely
require readministration at times of stress, although there might be epigenetic elements to be
further considered for long-term benefits that are independent of the probiotic retention. Man-
agement actions that bolster natural processes (e.g., trophic transmission) that spread BMCs on
reefs may be key to achieving scalability (Barno et al. 2021, Grupstra et al. 2022a).

Single-taxon BMC:s also show promise as antibiotic-independent treatments for coral disease.
They aim to prevent disease via direct antagonism of pathogens and opportunists without com-
promising the integrity of the coral holobiont and other bacteria in the coral surface mucus layer,
which may defend the holobiont against foreign invaders. These applications are among the least
explored methods to combat coral disease, yet early studies have demonstrated their effective-
ness as treatments and preventatives (prophylactics) without substantially altering the composition
of coral microbiomes. Coral isolates with antibiotic and/or antagonistic activity toward coral
pathogens have been identified and tested in vitro (Deutsch et al. 2022, Sweet et al. 2021), and
several strains have been tested in vivo. A recent study implemented a Pseudoalteromonas species
(strain MCHI1-7) as a probiotic to treat SCTLD-infected M. cavernosa (Ushijima et al. 2023).
MCHI-7 has broad-spectrum antibacterial activity and was able to arrest or slow disease
progression in treated corals, as well as prevent disease transmission to untreated corals.

Another potential single-taxon probiotic is a less commonly studied microbial predator of coral
bacteria, Halobacteriovorax. Originally identified in coral microbiomes during experimental stress
experiments (Vega Thurber et al. 2009), subsequent application studies of Halobacteriovorax pre-
vented V. coralliilyticus—induced infection without affecting other microbiome members in stressed
M. cavernosa, suggesting that bacterial predators may mitigate the ability of pathogens to cause dis-
ease outbreaks (Welsh et al. 2016, 2017). Because these organisms predate on a large variety of
blooming bacteria and are natural, low-abundance members of coral microbiomes, Halobacteriovo-
rax treatments could be a viable and safe option to combat the coral disease epidemic, particularly
in nursery settings.

Testing probiotic efficacy requires further development of coral disease models to test new
therapies and efforts to address the scalability of biological treatment strategies on a reef-wide
scale. Emphasis should be placed on identifying delivery mechanisms that facilitate a gradual re-
lease of probiotics over time, reduce the frequency of required treatments, and promote treatment
spread across the entire reef following the inoculation of a limited number of coral colonies.

4.2.2. Phage therapy for bacterial diseases. In this review, we also consider viruses as bio-
logical treatments, given their similar mode of action to other biological agents and distinction
from chemical and mechanical treatments. Phage therapy employs bacteriophages, the viruses of
bacteria, as highly specific targets for a single pathogen (even at the strain level) and can be ef-
fective when etiological agents are well defined. Although the majority of coral diseases do not
have well-defined disease-causing agents, a causal relationship between a bacterium and a par-
ticular coral disease has only been established for a few bacterial taxa. Bacteriophages specific to
V. coralliilyticus, which causes tissue loss and bleaching in a range of coral species, and Thalassomonas
loyana, the cause of plague-like lesions in Favia favus, have been effective in both tank and field
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experiments (Cohen et al. 2013, Efrony et al. 2009, Jacquemot et al. 2018, Kim et al. 2019). The
timing surrounding phage addition appears to be crucial for successfully preventing coral disease.
For example, T loyana phage BA3 successfully prevented tissue loss and death in corals that were
treated within one day after infection by 7. Joyana but was ineffective if applied after two days
(Efrony et al. 2009).

As with antibiotics, the development of phage resistance is a significant barrier to effective
phage therapy implementation, although its use is not associated with spread resistance to other
pathogens and ecosystems due to its highly targeted nature. Phage resistance can occur rapidly;
phage-resistant members of the target population have occurred in up to 80% of biomedical
studies treating intestinal diseases (Oechslin 2018). However, some of the mutations that confer
phage resistance can reduce pathogen virulence. Therefore, phage therapy may have the capacity
to reduce disease spread and severity even while promoting phage resistance. For coral diseases
specifically, phage therapy may address many problems of scaling. Some phage have high repli-
cation rates and large burst sizes, meaning that only a small concentration of viral particles is
necessary to inoculate a diseased lesion and expand throughout coral tissue. Further, studies ex-
amining the efficacy of phage against coral disease and the long-term consequences of these
treatments for treated corals and the reefs they inhabit are needed to determine the feasibility
of this treatment in vivo.

4.3. Macro-Level Strategies for Disease Prevention and Mitigation

In combination with chemical and biological treatments, effective macro-level strategies are
paramount for mitigating coral diseases (NASEM 2019). Macro-level strategies range from me-
chanical treatments, to selective breeding for more disease resistant coral holobionts, to broader
approaches aimed at preventing coral disease. Mechanical treatments involve removing diseased
tissue, performing debridement, smothering diseased lesions, or creating trenches to prevent le-
sion spread and are often used in combination with chemical approaches. These strategies are
rarely successful in isolation (Miller et al. 2014), as etiological agents can exist in both diseased
and healthy coral tissue as well as in free-living cells in the water column. Moreover, their reliance
on an extensive amount of manpower renders them unsustainable for most diseases.

Long-term strategies such as selective breeding and long-term monitoring are necessary to
stop the global increase in coral disease prevalence and spread. For instance, ongoing restora-
tion initiatives aimed at identifying and cultivating disease-resistant coral genotypes contribute
significantly to curbing the spread of infectious diseases on reefs (Kiel et al. 2023, Klepac et al.
2024, Koch et al. 2022a). In addition to propagating taxa that are less susceptible to disease, these
efforts increase the genetic diversity of corals throughout all steps of restoration, from propa-
gating coral fragments in nurseries to outplanting corals on reefs. These efforts aim to fight the
monoculture effect (Altermatt & Ebert 2008), which can lead to unsustainable long-term envi-
ronments that build up disease pressure. For instance, ongoing coral restoration initiatives aimed
at identifying and cultivating disease-resistant coral genotypes contribute significantly to curbing
the spread of infectious diseases on reefs. Enhancing the prevalence of disease-resistant genotypes
on a reef reduces the overall pathogen load and makes pathogen transmission less likely, similarly
to the protective effect of vaccination at the population level. This proactive approach not only
safeguards disease-susceptible corals but also bolsters the overall resilience of the reef. Similar
disease-independent research initiatives have found that crossbreeding corals of the same species
across latitudes can promote heat tolerance (Dixon et al. 2015).

Increasing the genetic diversity of coral fragments during restoration, coupled with strategic
spatial arrangement, has proven to be effective in constraining disease outbreaks. Drawing in-
sights from terrestrial systems, researchers recently demonstrated a notable positive correlation
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between the diversity of A. cervicornis coral fragments on frames in nurseries and their resistance to
disease. Frames exhibiting higher genetic diversity had elevated overall resistance to disease com-
pared with frames with a single coral genotype (Brown et al. 2022). Implementing this approach
offers a relatively cost-effective strategy to reduce disease susceptibility resistance by distributing
pathogens across nonviable hosts.

5. A GLOBAL PERSPECTIVE ON WHAT WE NEED NEXT

Further research must be done to understand how coral diseases originate, what genetic factors
make a coral more or less susceptible to disease, how diseases spread between individuals and
between reefs, and how disease prevalence is influenced by reef composition and other environ-
mental factors. Undertaking this work will demand significant time and financial resources, yet the
costs of this comprehensive work are justified by the precipitous ongoing decline of reefs glob-
ally. Ultimately, we have learned a remarkable amount about diseases of corals but not enough to
limit and mitigate their impacts. SCTLD exemplifies how a disease epizootic can devastate already
threatened and at-risk species.

To control coral disease outbreaks, as a society we must use all available strategies that span
scales across time and space (Figure 5) to slow down and if possible reverse climate change,
while also mitigating local pollution and eutrophication (Gove et al. 2023). Thermal stress and
synergistic local impact pressures will otherwise continue to decimate shallow-water coral pop-
ulations directly via bleaching and mortality and/or indirectly through stress-mediated disease
events. Agencies need to work together to fund research and create cross-program task forces
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Holistic approach and scaling issues in coral disease management. This Stommel diagram shows the time (x axis) and space (y axis)
scales for disease management strategies. The oval colors indicate the type of intervention strategy. Abbreviation: BMC, beneficial
microorganism for corals.
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to understand the causes and consequences of disease epizootics. An excellent example in the
United States is the multi-agency-led Disease Advisory Committee (DAC), an SCTLD-focused
task force that has mobilized scientists, managers, and funding to understand and monitor this
disease, particularly in Florida but also across the Caribbean. The Florida DAC has been utilized
as a framework for other geographies, such as the US Virgin Islands and Puerto Rico DACs. These
existing task forces have laid out response plans and lessons learned that can be utilized by other
nations should SCTLD spread into other regions, including the Pacific.

Innovative approaches to disease mitigation should be encouraged, and restoration programs
must receive continued support and investment. In the Caribbean, restoration efforts should fo-
cus on two aspects: (#) restoring, rehabilitating, or enhancing population numbers for species
that have been severely affected by SCTLD and/or driven near to extinction and (/) accounting
for and propagating genotypes resistant and/or immune to SCTLD, bleaching, and other health
problems via assisted coral reproduction while ensuring that coral populations remain genetically
diverse. Continuous monitoring programs, such as tracking tagged colonies that survive and/or
resist SCTLD and/or other compromised health problems, are critical to informing coral assisted
reproduction, propagation, and restoration efforts. All efforts have risks, but the biggest risk is to
do nothing at all.
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