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Abstract— Precision medicine aims to provide diagnosis and
treatment accounting for individual differences. To develop
machine learning models in support of precision medicine,
personalized models are expected to have better performance
than one-model-fits-all approaches. A significant challenge, how-
ever, is the limited number of labeled samples that can be
collected from each individual due to practical constraints.
Transfer Learning (TL) addresses this challenge by leveraging
the information of other patients with the same disease (i.e.,
the source domain) when building a personalized model for
each patient (i.e., the target domain). We propose Weakly-
Supervised Transfer Learning (WS-TL) to tackle two challenges
that existing TL algorithms do not address well: (i) the target
domain has only a few or even no labeled samples; (ii) how
to integrate domain knowledge into the TL design. We design a
novel mathematical framework of WS-TL to learn a model for the
target domain based on paired samples whose order relationships
are inferred from domain knowledge, while at the same time
integrating labeled samples in the source domain for transfer
learning. Also, we propose an efficient active sampling strategy
to select informative paired samples. Theoretical properties were
investigated. Finally, we present a real-world application in
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precision medicine of brain cancer, where WS-TL is used to build
personalized patient models to predict Tumor Cell Density (TCD)
distribution across the brain based on MRI images. WS-TL
has the highest accuracy compared to a variety of existing TL
algorithms. The predicted TCD map for each patient can help
facilitate individually optimized treatment.

Note to Practitioners—This work was motivated by Precision
Medicine applications that need to build personalized machine
learning models to account for individual differences. Due to
limited data from each person, Transfer Learning (TL) provides a
promising approach, which can leverage the information of other
patients with the same disease (i.e., the source domain) when
building a personalized model for each patient (i.e., the target
domain). The proposed WS-TL model addresses the application
scenarios with two unique properties: (i) the target domain has a
few and even no labeled samples, which is a challenging situation
that most existing TL methods do not address well; (ii) there is
domain knowledge to provide weak labels for a large number
of unlabeled samples in the form of order relationships, which
provides an opportunity to integrate the domain knowledge into
the TL design. We demonstrate WS-TL in a Precision Medicine
application for brain cancer and show promising results. WS-TL
has the potential of addressing a broad range of other application
areas in building personalized models.

Index Terms— Machine learning, statistical modeling, health
care, precision medicine.

I. INTRODUCTION

PRECISION medicine aims to provide diagnosis and treat-
ment accounting for individual differences. To develop

machine learning models in support of precision medicine,
personalized or patient-specific models are expected to have
better performance than one-model-fits-all approaches. A sig-
nificant challenge, however, is the limited number of labeled
samples for each individual due to cost, availability, and other
practical constraints.

To tackle this challenge, Transfer Learning (TL) provides
a promising approach. TL is a subfield in machine learning,
which aims to transfer the information learned from related
source domains to help build a model for a target domain.
TL has been used to build personalized models in the medical
field, such as heart rate failure prediction [1], tumor classi-
fication [2], and seizure detection [3]. In these applications,
the target domain is each patient of interest whereas the
source domain includes other patients with the same or similar
disease.
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In this paper, we focus on addressing two limitations of the
existing TL methods. First, even though TL can leverage the
information in the source domain, most existing TL algorithms
still need the target domain to have a non-trivial number
of labeled samples, although not enough to build a robust
model on their own, but enough to bias the model of the
source toward the target. This limits the application of TL
to areas where the target domain has only a few or even
no labeled samples. Second, most existing TL algorithms are
purely data-driven, whereas domain knowledge exists in many
applications. Integration of domain knowledge into the TL
design holds great promise to improve the model performance.
In this paper, we focus on the type of domain knowledge
that can provide weak labels for a large number of unlabeled
samples.

Next, we give a motivating example to further illustrate the
research question we aim to address:

A motivating example in precision medicine of brain cancer:
Glioblastoma (GBM) is the most aggressive type of brain
cancer with a median survival of only 15 months. There is
a significant region-to-region variation of Tumor Cell Density
(TCD) —the percentage of tumor cells within a regional tissue
sample— across the brain. It is important to know the regional
TCD so that treatment can be optimized, i.e., regions with
higher TCD can be treated more aggressively to prevent tumor
growth whereas regions with lower TCD can be treated less
aggressively to avoid over-damaging of the brain [4]. To know
the TCD of a specific region, the gold-standard approach is
to acquire a biopsy sample from that region and obtain TCD
measurement through histopathologic analysis. However, due
to the invasive nature of biopsy, only a few biopsy samples
can be acquired from each patient, leaving many regions where
TCD remains unknown. To tackle this challenge, a machine
learning model can be trained to predict regional TCD based
on imaging (e.g., MRI) features extracted from the same
region, f : x → y, where x contains the imaging features and
y is the regional TCD. Once trained, the model can be used to
predict the TCD of any unbiopsied region using the imaging
features from that region. Since imaging is non-invasive and
can portray the whole brain, using the trained machine learning
model allows for generating a predictive TCD map for each
patient to guide individualized treatment.

Recent findings have provided strong evidence of both
interpatient heterogeneity in GBM as well as intralesional
heterogeneity within a single GBM tumor [5], [6], [7], calling
for a patient-specific model to link imaging features with
regional TCD. However, as aforementioned, each patient has
only a few biopsy samples with TCD measurement (on average
four biopsy samples per patient in our case study), prohibiting
the training of a robust model using each patient’s data alone.
Using TL to transfer the information of other patients (as the
source domain) to help build the model for each patient (as the
target domain) represents a step in the right direction. How-
ever, the patient-wise sample size is still too small for most
existing TL algorithms to be applicable. On the other hand,
we can potentially leverage a large number of weakly labeled
samples in training to compensate for the biopsy/labeled sam-
ple shortage, where the weak labels are provided by domain
knowledge. Specifically, domain knowledge in cancer biology

and imaging physics can help pinpoint certain areas of the
brain, Ah , Al , such that samples from Ah are likely to have
higher TCD than those from Al . That is, suppose x1 ∈ Ah
and x2 ∈ Al are two samples from the two areas, respectively.
Then, y1 > y2 holds according to the domain knowledge, even
though these two samples are not biopsy samples so that their
exact TCD values, y1 and y2, are unknown —the reason why
they are called weakly labeled samples.

To summarize, the goal of this paper is to develop a
new TL method, called Weakly Supervised Transfer Learning
(WS-TL), to address the application scenarios with two unique
properties: (1) the target domain has a few and even no labeled
samples; (2) there is domain knowledge to provide weak labels
for a large number of unlabeled samples in the form of order
relationships.

Although our model was motivated by the need to build
personalized models for precision medicine, it can provide
value in other science and engineering domains that share
the above-mentioned properties. For example, in forest fire
management [8], direct fire risk measurements through aerial
or ground inspection can only be taken from a few loca-
tions due to resource constraints. Domain knowledge about
vegetation type or wind direction may indicate that some
regions are at higher risk than others, which can be used to
create weakly labeled samples to aid the forest fire prediction.
Plant phenotyping is another example parallel to precision
medicine but for plants [9]. Automated imaging technolo-
gies have been used to monitor plant physiology and crop
yield. However, in-depth phenotyping at cellular level still
requires time-consuming manual measurements taken from
leaf surfaces. Applying knowledge about how environmental
conditions may influence the growing process to the data
collected from environmental sensors can be used to gener-
ate weakly labeled samples to aid the prediction of growth
phenotypes.

The contributions of this paper are summarized as follows:
• New TL model: We design a novel optimization frame-

work of WS-TL to learn a model for the target domain
based on paired samples whose order relationships are
inferred from domain knowledge, while at the same time
integrating labeled samples in the source domain for
transfer learning. We develop an Alternating Optimization
algorithm to solve the WS-TL formulation with con-
vergence guarantee. We conduct theoretical analysis to
reveal beneficial properties of WS-TL such as solution
sparseness and robustness.

• Integration with efficient active sampling strategy:
We propose a novel strategy to select informative paired
samples included in WS-TL training, called Active Sam-
pling based on Maximal Model Change (AS-MMC).
We conduct theoretical analysis which demonstrates a
faster convergence of WS-TL integrated with AS-MMC
than random sampling.

• Contribution to Precision Medicine of brain cancer:
We show the application of WS-TL to a real-world
case study for predicting the regional TCD for patients
with GBM. WS-TL builds personalized models for each
patient and generates predictions with higher accuracy
than a variety of competing methods. The results show the
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potential of using WS-TL to facilitate precision treatment
of GBM tumors.

II. RELATED WORK

Our proposed method is related to two subfields in machine
learning: TL and Weakly Supervised Learning (WSL). In this
section, we review the existing methods in each subfield and
point out the difference in our method.

A. Transfer Learning (TL)
The existing TL methods fall into three main categories:

instance transfer, feature transfer, and parameter transfer.
Instance transfer aims to correct the distribution difference

between the source and target domains by reweighting the
samples. Algorithms differ in terms of their reweighting strat-
egy. For example, Weighted-SVM [10] assigns domain-level
weights to source and target samples. Kernel Mean Matching
(KMM) [11] reweights source samples based on reduction in
Maximum Mean Discrepancy (MMD), a widely used metric
in TL to measure distribution difference, and then trains the
model using reweighted samples. TrAdaBoost [12] adjusts
weights iteratively based on the error of sequentially learned
models. Jiang and Zhai [13] incorporated weighted unlabeled
samples by assigning them pseudo labels using an auxiliary
model trained on labeled samples.

Feature transfer aims to find a feature mapping where the
distribution difference between the source and target domains
is minimized. For example, Pan et al. [14] proposed to learn
a transformation matrix that minimizes the marginal distri-
bution difference measured by MMD and then use principal
component analysis to find a lower-dimensional representation.
These two steps are later integrated into a unified algorithm
called Transfer Component Analysis [15]. TCA is by far one
of the most cited methods in the TL literature due to its ability
to require only unlabeled samples from the target domain
for transfer learning and demonstrated good performance in
various applications. Several methods are built upon TCA
such as Joint Distribution Adaptation [16] and Adaptation
Regularization-based Transfer Learning [17]. These methods
either require labeled samples from the target domain or create
pseudo labels assigned to unlabeled target samples. There is
a risk that pseudo labels may be incorrect when there is a
substantial distribution difference between the domains.

Parameter transfer approaches use a pre-trained source
model and adapt its parameters to fit the target domain.
A-SVM [18] aims to learn a delta function that represents the
gap between source and target model parameters. Yang et al.
[19] further improved A-SVM by directly regularizing the
difference of source and target model parameters, called
Adapt-SVM. Duan et al. [20] extended A-SVM into a general
formulation that can be used for multi-source problems called
Domain Adaptation Machine. Also, ensemble-based methods
have been developed to combine outputs of multiple source
models with those of the target [21], [22]. In summary, param-
eter transfer approaches can tackle problems with conditional
distribution differences between the source and target domains.
However, these methods require enough labeled data from the
target domain to adapt the source model.

Our work is different from the existing TL methods in the
following way: We target the more challenging situation that
the target domain has a few and even no labeled samples. Also,
most existing TL algorithms are purely data-driven, whereas
domain knowledge exists in many applications. We propose to
integrate domain knowledge, which can be used to create weak
labels for a large number of unlabeled samples in the form of
order relationships into the TL design. This can lead to greater
interpretability and sample efficiency. Furthermore, while the
majority of existing TL methods focus on classification prob-
lems, our proposed WS-TL focuses on regression-type of
problems with continuous response variables, which is more
relevant to Precision Medicine applications like the one in the
motivating example.

B. Weakly Supervised Learning (WSL)
Our work also intersects with WSL, which builds machine

learning models by incorporating samples with incomplete,
imprecise or inaccurate labels. Incomplete supervision is when
only a small subset of training data is labeled whereas the other
data remain unlabeled. Semi-supervised learning is a repre-
sentative technique for this type of problems where no there
is no supervision for the unlabeled samples. Imprecise labels
provide inexact supervision such as coarse-grained labels and
expected label distributions. For example, Kandemir et al.
[23] developed a framework that allows labels to be provided
for groups of observations instead of instance-level labels.
Lei et al. [24] trained a crowd counting model using large
amounts of total count-level annotations together with small
amounts of location-level annotations. The field of Partial
Label Learning (PLL) is another form of imprecise super-
vision. PLL tackles problems when each training sample is
equipped with a set of candidate labels instead of a single label
[26]. Inaccurate labels are low-quality labels expected to have
a high level of noise. Examples include using crowdsourcing
systems [26] to collects large amounts of non-expert labeled
data, using user-defined heuristic rules to automatically label
data [27], or using external knowledge bases to map unlabeled
data [28].

There are several works in weakly supervised regression that
tackle the above-mentioned forms of weak supervision. For
example, Cao et al. [29] proposed a weakly supervised regres-
sion model with a tailored loss function to train from inexact
annotations, where the inexact labels are categorical defined
based on ranges of the continuous ground truth. Kang et al.
[30] proposed a semi-supervised support vector regression
based on self-training, i.e. training several models from the
initial labeled samples and using these models to generate
proxy labels on unlabeled samples. Chung et al. [31] proposed
a semi-supervised multi-output Gaussian Process model and
placed a prior on the group membership of unlabeled samples
as a form of weak supervision.

Different from existing WSL methods, we consider a form
of weak supervision through ordering relationships between
pairs of unlabeled samples. This type of weak label has not
been well studied to our best knowledge. Also, the proposed
WS-TL is among the first works that investigate how to
leverage order-based weakly labeled samples in the TL setting.
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C. Knowledge-Informed Machine Learning

One strategy to improve models with insufficient training
data is to use prior knowledge as another source of infor-
mation. The field of Knowledge-informed Machine Learning
studies how to incorporate prior knowledge into data-driven
learning to improve the accuracy, robustness, and interpretabil-
ity of the models.

Existing methods differ by the source of knowledge (e.g.
scientific knowledge, expert opinion), the representation of
knowledge (e.g. algebraic equations, simulation results), and
where in the learning pipeline the knowledge is integrated
(e.g. data, model structure, objective function). For example,
Wang et al. [5] constrained the predictions of a Gaussian
Process model to be consistent with the simulation results from
a mechanistic model. Erion et al. [32] used a graph regularizer
to encourage functionally related genes from known biology
to have similar feature contributions in the trained model.
Elmarakeby et al. [33] used domain knowledge from a large
biology database to customize the architecture of a neural
network, where nodes and layer connections are designed to
follow biological pathways. A comprehensive taxonomy of
knowledge-informed ML can be found in [34].

Motivated from the brain-cancer case study, we focus on
domain knowledge that informs pairwise relationships of unla-
beled samples. This knowledge is used to generate weakly
labeled data to enlarge the training sample size.

III. PRELIMINARIES: SUPPORT
VECTOR REGRESSION (SVR)

SVM is a well-known classification algorithm, which is
formulated to find a hyperplane with the maximum margin to
separate two classes. SVM represents the optimal hyperplane
with a sparse collection of support vectors, thus gaining
solution efficiency and good generalizability. Another appeal-
ing property is that SVM can efficiently perform nonlinear
classification by implicitly mapping the input features into
a high-dimensional feature space using the so-called kernel
trick. The extension of SVM for predicting a continuous
response variable is known as SVR [35]. SVR generalizes
the maximum margin concept of SVM by introducing an
ε-insensitive margin around the predictive function, called an
ε-tube. SVR is formulated as an optimization problem to find
an ε-tube that includes as many training samples as possible
in trade-off with model complexity.

Specifically, let X = Rd be the d-dimensional feature
space and Y = R be the space of the response variable. The
predictive function of a sample x ∈ X is f (x) = wT φ(x)+b,
where φ(x) includes a transformation function of the original
feature vector x,w contains the model coefficients, and b
is the intercept. Denote a training dataset by {(xi , yi ), i =
1, . . . ., n} ⊂ X × Y. The optimization problem of SVR is
formulated as:

min
w,b

1
2
||w||22 +

c
n

∑n

i=1
max

(
0,

∣∣yi −
(
wT φ(xi )+ b

)∣∣− ε
)
,

(1)

where ||·||
2
2 is the squared l2 norm and

max(0,
∣∣yi −

(
wT φ

(
xi

)
+ b

)∣∣ − ε) is known as the

ε-insensitive loss. ε is a desired accuracy specified
a priori (a.k.a. width of the tube). This loss function
penalizes the model if the predicted response for a sample,
f
(
xi

)
= wT φ

(
xi

)
+ b, is beyond ε-deviation from the

true response yi . C is a hyperparameter that determines the
trade-off between minimizing the training loss and model
complexity.

Directly solving the optimization in (1) is possible but
requires the transformation function φ(x) to be pre-specified.
This limits the form of the predictive function and is also
inefficient. To solve (1) with good generalizability and effi-
ciency, (1) can be converted to a constrained optimization
and solved in its dual form. In this way, the kernel trick
can be used to derive the predictive function based on inner
product of samples without having to define the form of φ(x)

explicitly [35].

IV. WEAKLY SUPERVISED TRANSFER
LEARNING (WS-TL)

A. Formulation and Algorithm

Consider a source domain and a target domain that share
some similarity (e.g., patients with the same disease) but
have non-identical models, fs and ft . Suppose we are given
a training dataset from the source domain, which consists
of ns labeled samples, S =

{(
xs

i , ys
i

)
, i = 1 . . . ns

}
. From

the target domain, we have a dataset that contains unla-
beled samples and there is domain knowledge to create a
set of ordered pairs from these unlabeled samples, T ={(

xt
l , xt

h

)
: xt

l ≺ xt
h, (l, h) ∈ �t

}
, where ≺ means that the

response variables of the two samples are known to have an
order relationship of yt

l < yt
h while the exact values of yt

l and
yt

h are unknown.
The goal of WS-TL is to learn a model for the target

domain, ft , based on the datasets S and T. We propose the
following optimization form:

min
w,b

1
2
∥w∥2

2 + C1LS + C2LT, (2)

where LS and LT are loss functions defined on the training
datasets of the source and target domains, S and T, respec-
tively. Since S contains labeled samples, we can use the
ε-insensitive loss of SVR and define

LS =
1
ns

∑ns

i=1
max

(
0,

∣∣ys
i −

(
wT φ

(
xs

i

)
+ b

)∣∣− ε
)
. (3)

If the optimization in (2) only included the first two terms,
it would become the SVR model for the source domain.
However, our interest is to learn a model for the target
domain. Thus, the optimization includes a third term with LT ,
a specially designed loss function for the ordered samples in
the target domain. This is to bias the source model towards
the target, and thus achieving transfer learning. Specifically,
we propose the following form for LT :

LT =
1
|�t |

∑
(l,h)∈�t

max
(
0, ŷt

l − ŷt
h

)
=

1
|�t |

∑
(l,h)∈�t

max
(
0,

(
wT φ

(
xt

l

)
+ b

)
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−
(
wT φ

(
xt

h

)
+ b

))
=

1
|�t |

∑
(l,h)∈�t

max
(
0, wT φ

(
xt

l

)
− wT φ

(
xt

h

))
, (4)

which penalizes the predicted responses of each pair of ordered
samples, ŷt

l and ŷt
h , if the predicted responses violate the order

constraint on the true responses, yt
l < yt

h .
Inserting (3) and (4) into (2), the final form of the WS-TL

optimization is:

min
w,b

1
2
||w||22 +

c1

ns

∑ns

i=1
max

(
0,

∣∣ys
i −

(
wT φ

(
xs

i

)
+ b

)∣∣
− ε)+

c2

|�t |

∑
(l,h)∈�t

max
(
0, wT φ

(
xt

l

)
− wT φ

(
xt

h

))
.

(5)

To solve this optimization without having to pre-specify the
form of φ, we borrow the idea from SVR by first converting
(5) to a constrained optimization using slack variables, ξi , ξ ′i ,
ξlh ,

min
w,b,ξi ,ξ

′

i ,ξlh

1
2
||w∥2

2 +
c1

ns

∑ns

i=1

(
ξi + ξ ′i

)
+

c2

|�t |

∑
(l,h)∈�t

ξlh

s.t. ys
i −

(
wT φ

(
xs

i

)
+ b

)
≤ ξi + ε(

wT φ
(
xs

i

)
+ b

)
− ys

i ≤ ξ ′i + ε

wT φ
(
xt

l

)
− wT φ

(
xt

h

)
≤ ξlh

ξi , ξ
′

i , ξlh ≥ 0, i = 1 . . . ns, (l, h) ∈ �t . (6)

Furthermore, we can derive the dual form of the primal
problem in (6) by first writing the Lagrangian of (6) using
nonnegative Lagrange multipliers λi , λ ′i , λlh, αi , α

′

i , βlh ≥ 0,

L =
1
2
||w||22 +

C1

ns

∑ns

i=1

(
ξi + ξ ′i

)
+

C2

|�t |

∑
(l,h)∈�t

ξlh

−

∑ns

i=1

(
λiξ i + λ

′

i ξ
′

i

)
−

∑
(l,h)∈�t

λlhξlh

+

∑ns

i=1
αi

(
ys

i − wT φ
(
xs

i

)
− b − ε − ξi

)
+

∑ns

i=1
α′i

(
wT φ(xs

i )+ b − ys
i − ε − ξ ′i

)
+

∑
(l,h)∈�t

βlh(w
T (

φ(xt
l )− φ(xt

h)
)
− ξlh).

It follows from the Karush-Kuhn-Tucker (KKT) conditions
that the partial derivates of L with respect to the primal
variables (w, b, ξi , ξ

′
i , ξlh) have to vanish at the saddle point

of L. Following the KKT conditions and skipping intermediate
steps, the dual form of the primal problem can be written as:

min
α,α′,β

1
2

∑
i, j

(
αi − α′i

)(
α j − α′j

)
κ
(
xs

i , xs
j

)
−

∑
i

(
αi − α′i

)
ys

i

+

∑
i

(
αi + α′i

)
ε −

∑
i,(l,h)

(
αi − α′i

)
βlh

[
κ
(
xs

i , xt
l

)
− κ

(
xs

i , xt
h

)]
+

1
2

∑
(l,h),(l ′,h′)

βlhβl ′h′
[
κ
(
xt

l , xt
l

)
− 2κ

(
xt

l , xt
h′

)
+ κ

(
xt

h, xt
h′

)]
s.t. αi , α

′

i ∈

[
0,

c1

ns

]
, i = 1 . . . ns;

∑ns

i=1

(
αi − α′i

)
= 0

βlh ∈

[
0,

c2

|�t |

]
, (l, h) ∈ �t , (7)

where κ(x1, x2) ≜ φ
(
x1

)T
φ
(
x2

)
denote the kernel function

of two samples which can be directly computed on the input

space without going through the transformation function φ.
Also, α ≜ {αi ; i = 1 . . . ns}, α

′

≜
{
α′i ; i = 1 . . . ns

}
, β ≜

{βlh; (l, h) ∈ �t }.
The optimization in (7) is not convex with respect to all

the unknown parameters, α,α
′

, β, simultaneously. But it is
biconvex, i.e., it is convex with respect to α, α

′

while fixing
β, and is convex with respect to β while fixing α, α

′

. Based
on this property, we can use Alternating Optimization (AO) to
iteratively solve two sub-optimization problems in (i) and (ii):

(i) Given α∗, α
′∗, the optimization in (7) becomes:

min
β

1
2

∑
(l,h),(l ′,h′)

βlhβl ′h′
[
κ
(
xt

l , xt
l

)
− 2κ

(
xt

l , xt
h′
)

+ κ
(
xt

h, xt
h′

)]
−

∑
i,(l,h)

(
α∗i − α′∗i

)
βlh

[
κ
(
xs

i , xt
l

)
− κ

(
xs

i , xt
h

)]
s.t. βlh ∈

[
0,

c2

| �t ]

]
, (l, h) ∈ �t .

(ii) Given β∗, the optimization in (7) becomes:

min
a,a′

1
2

∑
i, j

(
αi − α′i

)(
α j − α′j

)
κ
(
xs

i , xs
j

)
−

∑
i

(
αi − α′i

)
ys

i

+

∑
i

(
αi + α′i

)
ε

−

∑
i,(l,h)

(
αi − α′i

)
β∗lh

[
κ
(
xs

i , xt
l

)
− κ

(
xs

i , xt
h

)]
s.t. αi , α

′

i ∈

[
0,

c1

ns

]
, i = 1 . . . ns;

ns∑
i=1

(
αi − α′i

)
= 0.

Each sub-optimization in (i) and (ii) can be solved by a
quadratic programming solver. The iterations between (i) and
(ii) are guaranteed to converge to a local optimum. To find the
global optimum (or a solution that is close enough), we follow
the common practice by trying different initial values and
selecting the best solution among the different trials.

Furthermore, denoting the final solution of the dual opti-
mization in (7) by α̂,̂α

′

,β̂, the solution of the primal problem
in (5) can be derived as:

ŵ =
∑ns

i=1

(̂
αi − α̂′i

)
φ
(
xs

i

)
+

∑
(l,h)∈�t

β̂lh
(
φ
(
xt

l

)
− φ

(
xt

h

))
.

The intercept b̂ can be estimated using one sample that satisfies
the KKT equality constraint, i.e., for any i such that 0 <

α̂i < C1
/

ns , b̂ = ys
i − ŵT φ

(
xs

i

)
− ε; or for any j such that

0 < α̂′j < C1
/

ns , b̂ = ŵT φ
(

xs
j

)
− ys

j − ε.
Finally, we can predict for new sample in the target domain,

xt , using the following predictive function:

ŷt ≜ ŵT φ
(
xt)
+ b̂ =

∑ns

i=1

(̂
αi − α̂′i

)
κ
(
xs

i , xt)
−

∑
(l,h)∈�t

β̂lh
[
κ
(
xt , xt

l

)
− κ

(
xt , xt

h

)]
+ b̂, (8)

The predictive function (8) is a combination of the weighted
inner product of labeled data from the source and the weighted
inner product of unlabeled but ordered pairs from the target
domain. Without the latter inner product, the function would
become using only the model trained for the source domain to
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predict the sample in the target, which overlooks the domain
difference. The effect of adding the latter inner product is
to use ordered training samples from the target domain to
“adjust” the source model to become a suitable model for the
target, and thus achieving transfer learning.

A final remark about WS-TL is that, even though it was
developed by assuming no labeled training sample from the
target is available but only ordered pairs, it can be easily
extended to include labeled samples from the target, if avail-
able, in a similar way as the labeled samples in the source.

B. Properties of WS-TL

An important and advantageous property of SVM/SVR is
its solution sparseness, which means that not all the training
samples need to be used in the predictive function for a
new sample, but only a small subset called Support Vectors
(SVs) while non-SVs can be discarded. This greatly improves
computational efficiency and saves memory storage of training
data. It turns out that WS-TL enjoys a similar property.
We provide the definition of SVs for WS-TL as follows.

Theorem 1 (SVs for WS-TL in dual view): Let α̂i , α̂′i ,
β̂lh, i = 1 . . . ns , (l, h) ∈ �t denote the solution of the dual
optimization in (7). Any training sample i in the source
domain satisfying α̂i > 0 or α̂′i > 0 is an SV. Any training
sample pair (l, h) in the target domain satisfying β̂lh > 0 is
an SV. Other training samples and pairs in the source and
target domains are non-SVs.

Proof: It is known from the constraints of the opti-
mization in (7) that α̂i ≥ 0, α̂′i ≥ 0. Also, α̂i and α̂′i
cannot be both positive for the same sample. Thus, for
each sample i , the possible combinations of

(̂
αi , α̂

′

i

)
are(̂

αi > 0, α̂′i = 0
)
,
(
α̂i = 0, α̂′i > 0

)
, or

(
α̂i = 0, α̂′i = 0

)
. In the

last case,
(̂
αi − α̂′i

)
= 0, and thus

(
α̂i − α̂′i

)
κ
(
xs

i , xt
)
= 0 in

the first summation in (8), which excludes sample i from
computing the predictive function in (8), i.e., sample i is not
a SV. This implies that sample i would be an SV under the
first two cases, i.e., α̂i > 0 or α̂′i > 0. Following a similar
idea, a pair (l, h) with β̂lh = 0 would be excluded from
computing the predictive function, which means that a pair
with β̂lh = 0 would be a non-SV. Since the constraints of
the optimization in (7) require β̂lh ≥ 0, an SV would be one
with β̂lh > 0.

Note that Theorem 1 defines SVs from the viewpoint of the
dual optimization solution. Theorem 2 characterizes these SVs
from the primal view. (Proof in Appendix A.)

Theorem 2 (SVs for WS-TL in primal view): Let
V = V s

∪ V t
=

{
i; i = 1 . . . ns, α̂i > 0 or α̂′i > 0

}
∪{

(l, h); (l, h) ∈ �t , β̂lh > 0
}

denote the index set of the
SVs defined in Theorem 1. Any SV with i ∈ V s satisfies∣∣ys

i −
(
ŵT φ

(
xs

i

)
+ b̂

)∣∣ ≥ ε. Any SV with (l, h) ∈ V t satisfies

ŵT φ
(
xt

l

)
≥ ŵT φ

(
xt

h

)
.

From the primal view, the SVs in the source domain
are training samples outside or on the boundary of the
ε-tube/margin around the predictive function, i.e., the predicted
response of a training sample that is an SV is beyond or equal
to ε-deviation from the true response. The SVs in the target
domain are training sample pairs whose order relationships

are violated or minimally satisfied (i.e., having the same
predicted response variable). Only these SVs will be used
in the prediction of a new sample, while other non-SVs
in the training data can be discarded. This gains computa-
tional and memory efficiency. Note that both labeled samples
and weakly labeled samples inherit this property from the
SVM-family.

In addition, WS-TL is robust to outliers. This is because the
coefficients for combining the SVs to generate a prediction are

upper-bounded, i.e., α̂i , α̂′i ≤ C1
/

ns , β̂lh ≤ C2
/
|�t |. In case

that the SVs include some outliers, the influence from these
outliers is at most C1

/
ns and C2

/
|�t |, so that the model would

not be overly biased.

C. Integration of WS-TL With Active Sampling

It is relatively easy to obtain ordered paired samples in
the target domain because the exact values of the response
variables for these samples are not needed. As a result,
it is common for the training dataset to contain many paired
samples. Instead of including all the available pairs to train
WS-TL, it is desirable to select a subset of pairs that can
achieve a similar level of accuracy at a lower computational
expense. We propose a pair selection strategy called Active
Sampling based on Maximal Model Change (AS-MMC) as
follows.

Let k = 0, 1, . . . , K denote the iterations of adding pairs
to the training set. Let T

(k)
AS−M MC denote the set of pairs at

the k-th iteration. At the initial k = 0, no pair is selected and
only labeled samples from the source domain are included.
Thus, T

(0)
AS−M MC = ∅. Also, T

(0)
AS−M MC ⊂ T

(1)
AS−M MC ⊂ · · · ⊂

T
(K )
AS−M MC because pairs are incrementally added.
Further, let O

(
w; S, T

(k)
AS−M MC

)
denote the objective func-

tion of the WS-TL optimization at the k-th iteration, i.e.,
when the training set includes the labeled samples from the
source, S, and selected pairs from the target up to this iteration,
T

(k)
AS−M MC . Let w(k) be the optimization solution, i.e.,

w(k)
= argmin

w

O
(
w; S, T

(k)
AS−M MC

)
.

The intercept b is easy to solve so it is not shown for nota-
tion simplicity. Suppose a candidate pair

{(
xt

l , xt
h

)
: xt

l ≺ xt
h

}
is added to the training set. Then, in the next iteration, the
objective function will be updated to include the loss on
this pair, i.e., LT

(
xt

l , xt
h

)
= max

(
0, wT φ

(
xt

l

)
− wT φ

(
xt

h

))
.

As a result, the optimal solution for the model parameter
w will change. The goal of AS-MMC is to select the pair
that maximally changes the model. However, it is inefficient to
compute the model change by repeatedly solving the WS-TL
optimization with each candidate pair. To achieve computa-
tional efficiency, we propose to approximate the model change
by the gradient of loss at the candidate pair [36], i.e.,

1w(k+1) ≜ w(k+1)
− w(k)

≈
∂LT

(
xτ

l , x t
h

)
∂w

1w(k+1)
≈

{
φ
(
xt

l

)
− φ

(
xt

h

)
, w(k)T

φ
(
xt

l

)
> w(k)T

φ
(
xt

h

)
.

0, otherwise
(9)
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Then, AS-MMC selects the pair that maximally changes the
model, which is:(

xt
l , xt

h

)(k+1)
= argmax

(xt
l ,x

t
h)∈T

(k+1)
c

∥∥1w(k+1)
∥∥

2

≈ argmax
(xt

l ,x
t
h)∈T

(k+1)
c

∥∥φ
(
xt

l

)
− φ

(
xt

h

)∥∥
2, (10)

where T(k+1)
c is the set of candidate pairs satisfying the

conditions that (i) these pairs have the ability to change
the model (i.e., the order relationships of these pairs
are violated under the current model) according to (9);
and (ii) they have not been selected in previous itera-
tions. The candidate set can be re-written as T(k+1)

c ={
(xt

l , xt
h) : ŷt (k)

l > ŷt (k)

h , (xt
l , xt

h) ∈ T\T
(k)
AS−M MC

}
, where ŷt (k)

l

and ŷt (k)

h are can be obtained using kernel computations accord-
ing to (8).

To avoid explicitly pre-defining the transformation φ,
we employ the kernel trick and write (10) as:(
xt

l , xt
h

)(k+1)
= argmax

(xt
l ,x

t
h)∈T

(k+1)
c

(
φ
(
xt

l

)
− φ

(
xt

h

))T(
φ
(
xt

l

)
− φ

(
xt

h

))
= argmax

(xt
l ,x

t
h)∈T

(k+1)
c

κ
(
xt

l , xt
l

)
+ κ

(
xt

h, xt
h

)
− 2κ

(
xt

l , xt
h

)
≈ argmin

(xt
l ,x

t
h)∈T

(k+1)
c

κ
(
xt

l , xt
h

)
. (11)

The last step holds for most commonly used kernels as the
kernel function between a sample and itself is a constant. (11)
implies that the pair selected by AS-MMC is one with two
samples farthest apart in the kernel space (i.e., having the
smallest kernel function) within the candidate set T(k+1)

c .
Next, we provide a theoretical backup of the AS-MMC

strategy by analyzing its convergence property.
Theorem 3 (Convergence of AS-MMC): Recall that T ={(
xt

l , xt
h

)
: xt

l ≺ xt
h, (l, h) ∈ �t

}
is the set containing all avail-

able pairs in the target domain. Suppose
∣∣∣∣φ(

xt
l

)
− φ

(
xt

h

)∣∣∣∣
2 ≤

R for all
(
xt

l , xt
h

)
∈ T . Further suppose that there exists an

optimal solution w∗ such that the ordering relationships of all
pairs in T are satisfied by at least δ > 0, i.e., (w∗)T φ

(
xt

h

)
−

(w∗)T φ
(
xt

l

)
≥ δ. Let NAS−M MC denote the total number of

pairs needed by AS-MMC to reach w∗ from w(0), where w(0)

is the model parameter using only the labeled samples from
the source domain. Let ||w∗||2 = L and

∣∣∣∣w(0)
∣∣∣∣

2 = M . Then,
the upper bound for NAS−M MC is

NAS−M MC ≤ O
(

L
δ

(
L R2

δ
+ M

))
. (12)

Please see proof in Appendix B. Theorem 3 guarantees that
AS-MMC converges within a finite number of pairs defined
above. Furthermore, we derive the convergence property of
random sampling to compare with AS-MMC.

Theorem 4 (Convergence of random sampling): In the
same setting of Theorem 3, suppose the probability
of sampling a pair (xt

l , xt
h) satisfying the inequality

wT φ
(
xt

l

)
> wT φ

(
xt

h

)
is P . Then the number of pairs NRS

needed to reach w∗ from w(0) using random sampling is

NRS ≤ O
(

L
δP

(
L R2

δ
+ M

))
. (13)

Algorithm 1 WS-TL Integrated With AS-MMC
Input:Labeled samples in the source domain, S ={(

xs
i , ys

i

)}ns

i=1; available ordered paired samples in the target
domain, T =

{(
xt

l , xt
h

)
: xt

l ≺ xt
h, (l, h) ∈ �t

}
; batch size B;

stopping criterion ϵ.
Output: Solution to the WS-TL optimization, α̂,̂α

′

,β̂

1. Initialize: k ← 0;α(0)
← 0,a′(0)

← 0,β(0)
←

0; T
(0)
AS−M MC ← ∅;

2. Repeat
3. Train WS-TL using S and T

(k)
AS−M MC :

3.1 Use the proposed AO algorithm to solve the WS-TL
optimization and get α∗,α′∗,β∗;

3.2 α(k+1)← α∗,a′(k+1)
← α′∗,β(k+1)

← β∗
;

4. Select B pairs using AS-MMC:
4.1 T(k+1)

c ← ∅;

4.2 For each (xt
l , xt

h) in TT
(k)
AS−M MC do

4.3 If ŷt (k)

l > ŷt (k)

h then
4.4 T(k+1)

c ← T(k+1)
c ∪ {(xt

l , xt
h)};

4.5 End if
4.6 End for
4.7

{
(xt

l , xt
h)

(k+1)
}B

i=1
← top B pairs from T(k+1)

c with
minimum κ(xt

l , xt
h);

5. T
(k+1)
AS−M MC ← T

(k)
AS−M MC ∪

{
(xt

l , xt
h)

(k+1)
}B

i=1
;

6. k ← k + 1;
7. until

∣∣∣∣α(k+1) − α(k)
∣∣∣∣

2 +

∣∣∣∣∣∣α′(k+1)
− α′(k)

∣∣∣∣∣∣
2
+∣∣∣∣β(k+1)

− β(k)
∣∣∣∣

2 ≤ ϵ

8. return α(k+1), a′(k+1)
,β(k+1)

The proof is skipped. Because P ∈ [0, 1], the upper bound
of AS-MMC is smaller than random sampling, suggesting
that AS-MMC needs fewer pairs to reach the same level of
accuracy than random sampling (i.e., a faster convergence).

Finally, we discuss some implementation strategies for
AS-MMC: (i) Batch mode: even though running AS-MMC to
select one pair in each iteration has the best chance to identify
a minimally needed subset of pairs, it is computationally
intensive. In practice, AS-MMC can be run in a batch mode
by including B top-ranked pairs according to the criterion in
(11) in each iteration. The batch size, B, can be pre-defined.
(ii) Warm start: in each iteration when the WS-TL optimization
is solved based on AS-MMC selected pairs by far, the optimal
solution from the previous iteration can be used to initialize
the optimization solver (i.e., the proposed AO algorithm in
Sec. IV-A. This warm-start strategy will greatly speed up the
convergence rate for the AO algorithm compared with random
initial values (i.e., cold start). (iii) Stopping criteria: several
criteria can be employed in practice, such as a pre-specified
number of maximum iterations, a pre-specified number of total
pairs selected, or a threshold for insignificant model change.
Algorithm 1 lays out the major steps of integrating AS-MMC
into WS-TL.

D. Hyper-Parameter Tuning
In this paper, we target the situation when the target domain

has only a few or even no labeled samples. Thus, two metrics
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can be used to tune the hyper-parameters, C1, C2. When
labeled samples are available in the target domain, we can
select C1, C2 to minimize the Mean Absolute Predictive Error
(MAPE) based on cross-validation. When there is no labeled
sample in the target domain, we can select hyperparameters
that minimize the Mean Pair Order Error (MPOE) on a
validation set that contains ordered pairs:

M P O E =
1
|�′t |

∑
(l,h)∈�′ t

I{ŵT φ
(
xt

h

)
< ŵT φ

(
xt

l

)
},

where �′t is the set of indices of validation pairs and I is the
indicator function. MPOE is the proportion of pairs that are
ordered wrong by the model and can be used as a proxy of
consistency with domain knowledge. When both metrics are
applicable, they can cross-reference each other for more robust
tuning based on both accuracy and domain knowledge.

V. SIMULATION STUDY

In this section, we compared the performance of WS-TL
with existing TL methods on simulation data. We evaluated
WS-TL under two factors: i) few or no samples in the
target domain, and ii) small and large difference between the
source and target domain, for linear and nonlinear scenarios.
Additionally, we compared WS-TL run with random sampling
versus active sampling. All experiments were run on 2.8GHz
Intel Core i7 with 16GB RAM under Mac OSX operating
system and using Python software.

A. Data Generation Process

(A.1) Linear case: Assume a linear relationship between
the features and the response variable in the source and
target domains, i.e., ys

= (ws)T xs
+ ε, yt

=
(
wt

)T xt
+ ε.

We created the domain difference by making ws = wt +1w,
1w ∼ N (0, δ), where δ is set for multiple values to create
varying levels of difference between the domains in our exper-
iments, and wt ∼ N (5, 1). To simulate data for the features,
we sampled xt , xs from N (µ, 6) ∈ R10, with µ being a vector
of 5’s, and 6i j = ρ|i− j |σ 2, i, j = 1 . . . 10, ρ= 0.5,σ 2

= 1 to
create feature correlations. To simulate data for the response
variable, we used the aforementioned linear equations with
ε ∼ N

(
0, 202). Following this data generation scheme, we cre-

ated a training set that includes 100 labeled samples from the
source domain and 600 ordered pairs from the target domain.
Additionally, nt = 0, 5, 10, 15 labeled samples from the target
were included to represent the settings of no labeled samples
available and various small sample sizes of labeled samples.
Finally, we generated a separate test set of 100 labeled samples
in the target domain to evaluate model performances. The sim-
ulation was conducted 20 times. The average signal to noise
ratio (SNR), V ar( f (x))

V ar(ε)
, of target samples was approximately 2.

(A.2) Nonlinear case: To generate nonlinear data, we fol-
lowed a previously published strategy [37] and adopted a
polynomial feature mapping φ : R5

→ R7, φ(x) =

(x2
1, x2

4, x1x2, x3x5, x2, x4, 1). Let ys
= (ws)T φ(xs)+ε, yt

=(
wt

)T
φ
(
xt

)
+ε, ε ∼ N

(
0, 602). The rest of the data generation

process is similar to (A.1). The average SNR of target samples
was approximately 4 across 20 replications.

B. Competing Methods

We compare WS-TL with four existing algorithms: TCA
[15], KMM [11], Weighted-SVR [10], and Adapt-SVR [19].
These algorithms are included because they are commonly
used TL algorithms. Also, they represent the main categories
of TL methods as reviewed in Sec. II-A: instance transfer
(KMM, Weighted-SVR), feature transfer (TCA), and parame-
ter transfer (Adapt-SVR).

C. Model Performance With Small Labeled Sample Size in
the Target Domain

This experiment compares the different methods with nt =

5, 10, 15 labeled samples in the target domain. The training of
weighted-SVR used labeled samples in the source and target
domains. To train KMM, the features of all available samples
(labeled and unlabeled) from the source and target were
used, then a supervised learning model such as an SVR was
trained using reweighted source and target samples. Similarly,
the feature mapping in TCA was found using all samples,
followed by a supervised learning model in the transformed
feature space. Adapt-SVR was trained by first pre-training
an SVR using source samples, then training the target model
using the source model and labeled target samples. To train
WS-TL, Algorithm 1 was used. Since the goal is to train the
best model for the target, labeled samples from the target were
weighted higher than the source. The Radial Basis Function
(RBF) kernel was used in all methods for the nonlinear
case. The hyper-parameters of all methods were tuned to
minimize MAPE using cross-validation. The trained models
were applied to the test set to compute MAPE.

(C.1) Results of the linear case: Fig. 1(a) and 1(b) show
the average accuracies on test data for different methods.
WS-TL has the smallest mean MAPE and MPOE in all
settings. KMM and TCA perform the worst because they are
designed to transfer-learn the marginal distribution between
domains and thus do not have a good mechanism to leverage
labeled samples in the target while they exist. Weighted-SVR
and Adapt-SVR can leverage labeled samples in the target by
directly using them to adjust the model of the source, and thus
working better than KMM and TCA. However, they require
a relatively larger number of labeled samples in the target to
make the “adjustment” work. Therefore, Weighted-SVR and
Adapt-SVR do not work as well as WS-TL when the labeled
sample size in the target is very small, e.g., nt = 5. Further-
more, when there is a large difference between the source and
the target domains (Fig. 1(b)), which is a challenging situation
for transfer learning, the benefit of WS-TL is quite substantial
compared to the other methods. Note that in the case of small
difference between source and target domains, adding a few
more labeled samples did not improve the average accuracy
of WS-TL. This may be because the labeled source samples
were sufficient to learn a reasonably good target model or there
exists redundancy of information contained in the few added
samples and weakly labeled samples.

(C.2) Results of the nonlinear case: All the observations in
the linear case hold for the nonlinear case (Fig. 1(c) and 1(d)).
Moreover, WS-TL is better than the other methods in some
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Fig. 1. Test MAPE and MPOE (y-axis) for different methods with varying number of labeled sample sizes in the target domain (x-axis).

additional aspects: When the labeled sample size in the target
is very small, e.g., nt = 5, the MAPE gap between the best
performer of the competing methods (KMM or TCA) and
WS-TL is more substantial than the linear case. Also, this
gap is consistently existing regardless of how different the
source and target domains are (i.e., in both Fig 1(c) and (d)).
In these experiments, to achieve the accuracy of WS-TL
trained using five labeled samples from the target domain,
Adapt-SVR and Weighted-SVR required approximately 10-20
samples, on average, and KMM and TCA required more than

a hundred of samples. These results show that WS-TL can
achieve a reasonable level of MAPE requiring less labeled
samples compared to other TL methods. Note that WS-TL
had much lower MPOE than other models in the linear
case compared to the non-linear case. This may be because
the ordering relationships depend on the varying local land-
scapes of the nonlinear function, making test pairs more
difficult to infer from the training pairs, whereas directions
of increase/decrease are more homogeneous in the linear
setting.
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Fig. 2. Test MAPE and MPOE (y-axis) for different methods with varying levels of source-target difference (x-axis) when there is no labeled sample in the
target domain.

D. Model Performance With no Labeled Samples in the
Target Domain

This experiment compares the different methods when there
are no labeled samples in the target domain. Only WS-TL,
TCA, and KMM can handle this more challenging situation,
and they are trained in the same way as before (just without
any labeled sample from the target). In WS-TL, the ordered
paired samples from the target are half-half split into a training
set and a validation set, with hyper-parameters selected to
minimize the validation MPOE. Fig. 2(a) and (b) show the
results of the linear and nonlinear cases, respectively. WS-TL
had a smaller mean MAPE on test data than the competing
methods in all settings.

E. Model Performance With Random Sampling
Versus Active Sampling

This experiment compares WS-TL run using pairs selected
by random sampling versus pairs selected by active sampling
(with warm-start versus cold-start) in both accuracy and com-
putational time. The setting in A.1 with δ = 7 was used
conduct this experiment. For each replication, an initial pool
of 10,000 pairs was generated to ensure there are enough
pairs to be selected by the AS-MMC criteria. The randomly
sampling strategy (RS) drew n p pairs from the pool. The active
sampling (AS) strategy iteratively drew batches of 20 pairs
without replacement based on the AS-MMC criteria until n p

pairs were obtained (Algorithm 1). Under warm-start, each
new batch was used to fine-tune the previously trained model.
Under cold-start, the model was completely retrained using all
batches selected up to each time point. The experiment was
repeated 20 times for n p = {20, 40, . . . , 500}. We report the
training time as the total cumulative time to select pairs and
train WS-TL.

Fig. 3 shows that WS-TL run with active sampling required
less pairs to achieve the same level of MAPE as random
sampling at the cost of higher computational time, which can
be significantly decreased using the warm-start strategy. Note
that using a smaller batch size is expected to result in more
effective sampling, i.e. better accuracy, at the expense of more
sampling iterations, i.e. higher computational cost. Active
sampling had better consistency (i.e. smaller variance across
repetitions) in MAPE and MPOE than random sampling.
However, active sampling can result in a slightly worse MPOE
and saturation of MPOE when a large number of pairs are
used. This may be because active sampling limits the pool
of candidate pairs, which introduces bias into the distribution
of weakly labeled samples, whereas random sampling allows
exploration of diverse pairs. In summary, active sampling is
beneficial when a small number of pairs is needed to achieve
the desirable level of accuracy.

VI. CASE STUDY: PRECISION MEDICINE
FOR BRAIN CANCER

The background of this application was discussed in the
motivating example in Sec. I. The goal of this study is to
build a patient-specific model to predict regional TCD across
the tumoral area in the brain based on MRI.

A. Data Collection and Preprocessing
Patients and biopsy samples: This study uses the data

collected by our collaborators at Mayo Clinic for 34 patients
with GBM. IRB has been approved. A total of 155 biopsy
samples were collected with an average of four samples per
patient. For each biopsy sample, the TCD was measured
through histopathologic analysis, which is a continuous vari-
able ranging between 0 and 100% measuring the percent
of tumor content within the biopsy sample. The higher the
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Fig. 3. Average test MAPE (a), test MPOE (b), and training time (c) of WS-TL run with i) random sampling (RS), ii) active sampling with warm start (AS
warm), and iii) active sampling with cold start (AS cold). Standard deviations are displayed in shaded areas around the averages.

TCD, the more tumor content in the local brain region from
where the biopsy was acquired, which suggests the need for
more aggressive treatment to that region. Regional TCD is the
response variable in this study.

MRI preprocessing and feature extraction: Each patient
underwent a pre-surgical MRI examination, prior to image-
localized biopsies. The imaging session generated multiple
contrast images such as T1-weighted contrast-enhanced
(T1+C), T2-weighted sequences (T2), dynamic contrast
enhancement (EPI+C), mean diffusivity (MD), fractional
anisotropy (FA), and relative cerebral blood volume (rCBV).
Details of the imaging protocols can be found in our prior
publications [7], [38]. As our goal is to build a model using
MRI to predict regional TCD, regional MRI features were
computed using a sliding window approach. That is, an 8 ×
8 pixel2 window was slid through a pre-segmented tumoral
Region of Interest (ROI) within the brain, pixel by pixel. From
each window, we computed the average grey level intensity
over all the pixels included in that window for each contrast
image, which are used as features.

Labeled samples and ordered paired samples: The biopsy
samples are the labeled samples. To generate ordered paired
samples for each patient, we leveraged the domain knowledge
that the TCD near the boundary of the enhancing area of the
tumor is likely to be higher than that near the boundary of the
non-enhancing area. This phenomenon has been explained and
demonstrated in prior papers [39]. Denote the aforementioned
boundary areas by Ah and Al , respectively. We created each
ordered pair by taking one sample from Ah and another
sample from Al , i.e.,

{(
xi , x j

)
: xi ∈ Ah, x j ∈ Al

}
, with

the domain knowledge that x j ≺ xi . Since Ah and Al each
include many pixels, we can create a large number of ordered
pairs for each patient.

B. Modeling and Results by Different Methods
We applied WS-TL and the existing methods to this dataset.

In applying each method, one model is trained for each patient

as the target domain, and this process iterates through all
the patients to get patient-specific models. From the target
patient/domain, the biopsy/labeled samples and 600 paired
samples were included, while the biopsy samples from all
other patients were included as labeled samples in the source
domain. The process of model training for each method
is similar to that in the simulation study in Sec. V-C.
The hyperparameters of WS-TL were chosen to minimize
cross-validation MAPE of labeled target samples within those
that ensure <0.20 MPOE on validation pairs. This tuning
strategy requires the model to maintain a reasonable level
of consistency with domain knowledge while maximizing
accuracy. Because Weighted-SVR and Adapt-SVR require
a relatively large number of labeled samples in the target
domain, we evaluated them on the 14 patients who has at
least five biopsies (100 samples).

For performance comparison between different methods, the
MAPE based on leave-one-out cross-validation (LOOCV) was
computed. Also, we computed the MPOE on 300 ordered
pairs in a validation set from each patient to check the
consistency of model prediction with domain knowledge.
Tables I and II compare all methods for MAPE and MPOE
and shows the p-value of paired t-test that compares the metric
means of WS-TL with other methods. WS-TL achieved the
best accuracy (smallest MAPE and MPOE) for the scenario
with all patients and the scenario including only patients
with at least five biopsy samples. We want to point out
that all methods performed better than the one-model-fits-all
approach of training one SVR model for all patients, which
only achieved a MAPE of 0.18.

C. Generation of TCD Prediction Maps

The ultimate goal is to use the trained model to predict the
TCD of any unbiopsied region based on image features from
the corresponding region, which would allow the generation of
a predicted TCD map within the tumoral ROI for each patient
to guide informed, individualized treatment. To do this, the
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Fig. 4. Predicted TCD maps within the tumoral ROI of two patients by WS-TL and the best-performing competing method (color maps overlaid on the
patient’s T2 MRI image).

TABLE I
LOOCV MAPE AVERAGED OVER ALL PATIENTS

TABLE II
VALIDATION MPOE PER PATIENT AVERAGED OVER ALL PATIENTS

trained model of each method was used to predict regional
TCD based on image features from the sliding windows. Then,
the predictions of all the sliding windows were visualized by
a color map overlaid on the ROI for each patient. Fig. 4
shows the predicted TCD maps by WS-TL for two patients
as examples. For comparison, we also show the maps by the
best performer among the competing methods for the same
patients. Patient A has one biopsy sample shown on this slice
of the MRI. The predicted TCD by WS-TL matches the true
TCD. Weighted-SVR has the smallest MAPE for this patient
among all the competing methods, which still underestimates
the TCD. Patient B has two biopsy samples on this slice of
the MRI, for which WS-TL predicted more accurately than
KMM, the best competing method for this patient. WS-TL
can more accurately capture the spatial distribution of TCD
because it is trained using not only biopsy samples but also

ordered pairs from relatively high and low TCD areas inferred
from domain knowledge.

VII. CONCLUSION

We proposed a new TL method, WS-TL, to learn a model
for the target domain based on paired samples whose order
relationships are inferred from domain knowledge, while at the
same time integrating the labeled samples in the source domain
for transfer learning. We showed that WS-TL benefits from
nice properties such as solution sparseness and robustness.
We also proposed a novel strategy to select informative paired
samples, AS-MMC, and showed that WS-TL can achieve a
faster convergence rate when integrated with AS-MMC than
random sampling. The performance of WS-TL was demon-
strated in simulation studies under various TL settings. In a
real-world case study for predicting the regional TCD distribu-
tion for patients with GBM, WS-TL built personalized models
for each patient and generated more accurate predictions than
a variety of competing methods.

Finally, we provide some discussion regarding the limita-
tions of this work and potential future directions. First, any
machine learning model would fail under some conditions.
Identifying the failure conditions helps understand the model
and use it properly. Theoretically speaking, the failure condi-
tions of WS-TL are that there are too few labeled samples
in the target domain (zero in the extreme case) AND the
weak labels include too many wrongly ordered pairs. If the
first condition is true, the model may still achieve good
performance if provided with a good set of paired samples.
If the second condition is true, choosing a low C2 may prevent
the model from being misled by the wrong pairs. Thus, the
quality of weak labels and the choice of hyperparameter C2
are crucial to the model performance. It is also worth noting
that, while using weakly labeled samples can enlarge training
sample size, choosing which domain knowledge or weak labels
to include is an additional source of bias. Thus, future research
can include development of robust algorithms to wrongful
or/and biased domain knowledge. Furthermore, we chose SVR
as the base model in this work because of its solid theory and
interpretability, but the proposed strategy of using order-based
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domain knowledge through weakly labeled samples can be
extended to other machine learning models such as neural
networks. Future research can explore such extensions. Last
but not least, the current formulation of WS-TL combines all
patients but one as one source with purpose of identifying a
population-average model, which is then customized toward
the left-out (i.e., target) patient. There is patient heterogeneity
in the source patients. Future research can be done to develop
multi-source WS-TL with strategies to select source patients
to transfer-learn from and to prevent negative transfer.

APPENDIX A
PROOF OF THEOREM 2

For optimal solutions α̂,̂α
′

,β̂,ŵ,̂b, the following KKT con-
ditions must be satisfied:

α̂i
(
ys

i − ŵT φ
(
xs

i

)
− b̂ − ε − ξ̂i

)
= 0 ∀i = 1 . . . ns,

α̂′i
(
ŵT φ(xs

i )+ b̂ − ys
i − ε − ξ̂ ′i

)
= 0 ∀i = 1 . . . ns,

β̂lh

(
ŵT φ(xt

l )− ŵT φ
(
xt

h

)
− ξ̂lh

)
= 0 ∀(l, h) ∈ �t .

By complementary slackness,

ys
i −

(
ŵT φ

(
xs

i

)
+ b̂

)
= ε + ξ̂i if α̂i > 0,

(ŵT φ
(
xs

i

)
+ b̂ − ys

i ) = ε + ξ̂ ′i if α̂′i > 0,

ŵT φ(xt
l )− ŵT φ

(
xt

h

)
= ξ̂lh if β̂lh > 0.

Since ξ̂i , ξ̂
′

i , ξ̂lh ≥ 0,∣∣ys
i −

(
wT φ

(
xs

i

)
+ b

)∣∣ ≥ ε if α̂i > 0 or α̂′i > 0,

wT φ
(
xt

l

)
≥ wT φ

(
xt

h

)
if β̂lh > 0.

The result of the theorem follows. ■

APPENDIX B
PROOF OF THEOREM 3

The pair (xt
l , xt

h)
(k+1) added to the training set at iteration

k by AS-MMC criteria satisfies

w(k)T
φ
(
xt

l

)
> w(k)T

φ
(
xt

h

)
⇒ w(k)T (

φ
(
xt

l

)
− φ

(
xt

h

))
> 0.

Recall that we approximate the model change by the gradi-
ent of loss at the candidate pair. From (9),

w(k+1) ≜ w(k)
+1w(k+1)

≈ w(k)
−( φ

(
xt

l

)
− φ

(
xt

h

)
). (14)

Thus, we have∣∣∣∣w(k+1)
∣∣∣∣2

2 =
∣∣∣∣w(k)

−
(
φ
(
xt

l

)
− φ

(
xt

h

))∣∣∣∣2
2

=
∣∣∣∣w(k)

∣∣∣∣2
2 + R2

− 2w(k)T (
φ
(
xt

l

)
− φ

(
xt

h

))
≤

∣∣∣∣w(k)
∣∣∣∣2

2 + R2. (15)

Multiplying both sides of (14) by w∗ we have(
w(k+1)

)T
w∗ =

(
w(k)

)T
w∗−

(
φ
(
xt

l

)
− φ

(
xt

h

))T
w∗

≥
(
w(k)

)T
w∗ + δ. (16)

Through the deduction of (15) and (16) for N iterations,∣∣∣∣wN
∣∣∣∣2

2 ≤
∣∣∣∣w(0)

∣∣∣∣2
+ N R2

= M2
+ N R2

;

and(
wN )T

w∗ ≥
(
w(0)

)T
w∗ + Nδ =

∣∣∣∣w(0)
∣∣∣∣∣∣∣∣w∗∣∣∣∣ cos θ + Nδ

= L M cos θ + Nδ ≥ −L M + Nδ,

where θ is the angle between w(0) and w∗.
According to Cauchy-Schwartz inequality,(

wN )T
w∗ ≤

∣∣∣∣wN
∣∣∣∣∣∣∣∣w∗∣∣∣∣.

Thus,

−L M + Nδ ≤ L
√

M2 + N R2.

Simplifying the above we obtain the upper bound for N :

N ≤
L
δ

(
L R2

δ
+ 2M

)
= O

(
L
δ

(
L R2

δ
+ M

))
.
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