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Abstract

Structural optimization has been a crucial component in computational materials
research, and structure predictions have relied heavily on this technique in particular.
In this study, we introduce a novel method that enhances the efficiency of local opti-
mization by integrating an extra fingerprint space into the optimization process. Our
approach utilizes a mixed energy concept in the hyper potential energy surface (PES),
combining real energy and a newly introduced fingerprint energy derived from the sym-
metry of local atomic environment. This method strategically guides the optimization
process toward high-symmetry, low-energy structures by leveraging the intrinsic sym-
metry of atomic configurations. The effectiveness of our approach was demonstrated
through structural optimizations of silicon, silicon carbide, and Lennard-Jones cluster
systems. Our results show that the fingerprint space biasing technique significantly
enhances the performance and probability of discovering energetically favorable, high-
symmetry structures, as compared to conventional optimizations. The proposed method
is anticipated to streamline the search for new materials and facilitate the discovery of

novel, energetically favorable configurations.
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The design and discovery of novel materials has been a cornerstone in the modern technologi-
cal advancements, where computational materials science emerges as a critical pillar, driving
forward the innovative quest for new materials. Central to this computational endeavor
is the prediction of the structure of materials, a fundamental information in understand-
ing their properties and functionalities at the atomic scale. Structure prediction methods,
such as CALYPSO,? USPEX,? XtalOpt,* basin hopping,® minima hopping,® and random
structure search,” therefore, play a critical role in navigating this challenge, forming the
backbone of material exploration and discovery. To predict a new (meta-)stable material,
we need to study its thermodynamic stability with respect to numerous local minima on a
high-dimensional potential energy space (PES) in the first place. However, finding the most
thermodynamically stable structure of a large assembly of atoms is a very difficult problem,
because the number of minima on the PES of a large system increases exponentially with

the number of atoms.8 10

To surmount this obstacle, several methods have been developed to improve the capabilities
of structure searching methods. One approach is to introduce a bias into the search space,
targeting the high symmetry structures that are more likely to be the global minimum. It is

1 and cluster!? systems that structures with high sym-

extensively studied in both crysta
metry tend to have either very low or very high energy (Pauling’s “rule of parsimony”). This
may explain why most of the ground state structures that exist in nature have high symme-
try. It would be feasible if one could take advantage of this symmetry bias during the local
optimization process and hence reduce the computation time to investigate the local minima
residing in the high energy funnels. For example, Shao et al.'® introduced a symmetry tree
graph coupled with an artificial-intelligence-based symmetry selection strategy, markedly
simplifying the problem of crystal structure prediction by bypassing the exploration of the
intricate low-symmetry subspace within the entire search space. A recent work 4 shows that

by explicitly introducing a symmetry biased penalty function to the PES, high-symmetry

structures will be found much faster than on an unbiased surface when performing structure



predictions using the minima hopping method.

While these global optimization methods vary in their specific structure searching approaches,
they all rely on the integrative calling of the local optimization process. However, local op-
timization methods often involve lengthy computation times and high levels of complexity.
Numerous local energy minima, many of which have high energy levels, can impede the op-
timization process. This impediment is especially noticeable in strong covalent systems like
carbon and silicon. Once covalent bonds are formed, they pose significant barriers to recon-
figuration. Thus, even if more energetically favorable structures are within reach, accessing
them remains challenging, trapping the system in a potentially energy-intensive state. This
situation has sparked interest in more efficient methods capable of accelerating this process.
For example, by starting a structure stochastically generated in a higher-dimensional space
(hyperspace), the structure can be relaxed in the additional dimension, which has been shown

to be effective in enhance the probability of reaching low-energy configurations. 1?

In this work, we introduce a new method to enhance the efficiency of local optimization
by introducing an extra symmetry space. Rather than starting the structural optimiza-
tions initiated from a structure stochastically generated in hyperspace, we propose a new
implicit approach to infuse symmetry information into the process of local optimization.
This strategy, designed to prevent configurations from stagnating in high-energy states, is
realized through the introduction of the fingerprint energy that servers as the indicator of
the symmetry of structures. This performance boost is anticipated to be advantageous for
PES exploration methods that rely on the local optimization of structures. Therefore, the
work provides a path toward the objective of predicting the material structure of complex

systems.

In our approach, we introduce the fingerprint space to define the mixed energy (Fixea) On



the hyper PES as follows:
Emixed = Wprfp + WrealEreala (1)

where wg, and wyea are the mixing weights, and El, represents the real energy on the normal
PES, as described by methods such as density functional theory (DFT), machine-learning
potentials, or empirical potentials. FEf, is the fingerprint energy on the fingerprint PES,
which is defined based on the sum of the Euclidean norm of all pairwise atomic fingerprint

vector !¢ distances within the crystal structure:
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where N, denotes the number of atoms in the unit cell, and fp; and fp; are the atomic
fingerprint vectors for the atoms indexed by ¢ and j, respectively. The coefficient 7 is
a scaling factor utilized to equate the units of our fingerprint energy to the corresponding
physical units. The atomic fingerprint vectors (fp,) are employed to characterize the chemical
environment of atom (i) within structures. These vectors are derived from the eigenvalues of

16,17

the localized Gaussian overlap matrix, a method proven to be both efficient and reliable

in distinguishing various atomic environments. !6:18:19

The concept of symmetry in crystal structures is intimately linked to the similarity of local
environments of atoms within the structure. In high-symmetry structures, atoms typically
share similar local environments, reflecting a uniformity and orderliness in their spatial ar-
rangement. Conversely, low-symmetry structures are characterized by a diversity in the local
environments of atoms, indicating a more irregular and varied atomic arrangement. This
contrast in local environments serves as a fundamental indicator of the overall symmetry of
a structure. The degree of similarity in the local environments of different atoms can be ef-

fectively quantified to gauge the symmetry of a structure. Here, atomic fingerprints emerges



as an efficient tool. By assessing the differences in atomic fingerprints across a structure to
obtain a direct measure of its symmetry, the fingerprint energy becomes an effective met-
ric. Lower fingerprint energy corresponds to higher structural symmetry, indicating a more
uniform distribution of atomic environments throughout the crystal. A structure where all
atomic environments are identical, such as in a diamond structure, would exhibit a finger-
print energy of zero, epitomizing perfect symmetry. Therefore, the process of minimizing
fingerprint energy through a tailored fingerprint force-field becomes a strategic approach
to optimizing crystal structures towards enhanced symmetry. This methodology not only
provides a clear path to achieving higher-symmetry configurations but also offers a nuanced

understanding of the underlying symmetry in complex crystal structures.

In order to effectively introduce the fingerprint space during the optimization process, a spe-
cific parameterization is incorporated into the mixing strategy, ensuring that the transition
towards physically realistic structures is informed by both the exploratory freedom of hyper-
space and the the actual features of the target structure. In the early stages of structural
optimization, structures are free to explore in the fingerprint landscape, unconstrained by
the typical limitations of normal structural space. This initial phase is crucial for avoiding
potential traps and exploring a broader range of conformational possibilities. However, as
the optimization process advances, it becomes imperative to guide these structures towards a
final configuration that resides entirely in the normal space. To smoothly transition from the
expansive exploration of hyperspace to the final, physically realistic structures, the mixing

weights are chosen to as follows:

Wp = @(1 - miter); (3)
Wreal = 0.50(Ziter — 1) (sin (—g + 97rxi2ter) + 1) )

where © represents the Heaviside step function, and Tie, = Niter/Mmax. Here, it denotes

the current step of the structural relaxation, and n.y is a user-defined integer representing



the maximum number of structural relaxations before deactivating the fingerprint space.

To implement the structural optimization in the mixed space, it is important to calculate
the forces of each atom in guiding the structures to an energetically favorable configuration.
The atomic forces on the mixed PES can be obtained from taking the partial derivative of
the 3N Cartesian coordinates (where N is the total number of atoms in the system) with

respect to mixed energy,

0 0

_wfpaEfp - wreal_Ereal- (4)

Fmixed = O

The derivatives of the real energy will be obtained from the DFT or force field calculations,

while the derivatives of the fingerprint energy can be defined as follows:
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where z¥ denotes the k-th Cartesian coordinate of the D-th atom, and the derivatives of
the atomic fingerprint are calculated using the Hellmann-Feynman theorem (see details in
Supporting Information). For the crystal structures, the Cauchy stress tensor is calcu-
1 9Eyp

lated using finite difference method, o0 = —55; .

, where €, are the elements of the strain
tensor. The stress tensor elements o,, are defined as the volume normalized negative strain

derivatives of the fingerprint energy.

Our methodology was implemented in Python 3, utilizing the Atomic Simulation Environ-
ment (ASE)? to interface with various calculators to perform energy and force calculations
at the level of DFT or force fields. To demonstrate the effectiveness of our approach, we
performed structural optimizations on randomly generated initial structures for both crystal

and cluster systems.

For crystals, our focus was on silicon and silicon carbide systems, chosen for their propensity



to form complex allotropes and compounds. This leads to intricate and challenging PES
landscapes, making them suitable testbeds for our method. This complexity arises from
the intricate PES and small energy variations relative to their global minima, primarily
influenced by sp? and sp® hybridization.?! 2> We generated initial random structures (300
for each system) using the CALYPSO code!? without bias towards specific space or point
groups. For local optimization, we employed the ASE built-in optimizer, FIRE (fast inertial
relazation engine)?® for simultaneous optimization of atomic positions and cell parameters.
The energy and force calculations for the real PES were performed using DFTB+ (Density
Functional Tight Binding method)?” with pbc Slater-Koster parameterization set?*3° and
0.04 k-grid (equivalent to 0.04x27rA~! k-point meshes). Figure 1 shows the comparison
of the distribution of local minima obtained through optimization on the real PES with
those identified using the mixed PES approach. We can find that the fingerprint space
biasing technique effectively shifts the energy landscape, promoting the emergence of high-
symmetry structures. For both the Sizs and Sij4Cy¢ systems, there is a significant density of
high-symmetry structures at lower enthalpy levels when the optimization is guided by the
fingerprint space, indicating the probability of finding energetically more stable structures is
significantly enhanced. In addition to identifying lower-energy structures, our method also
successfully identified high-symmetry structures that were not found in the optimization
using the real PES. For example, the I4/mmm-Sis, structure (Fig. 2a) and the P4/mmm-
Si;¢Cy¢ structure (Fig. 2b) were discovered during the local optimization when relaxed

on the mixed PES. This indicates that our method can successfully identify high-symmetry

structures that might otherwise be missed or underrepresented in conventional optimizations.

We also performed structural optimizations on Lennard-Jones (LJ) and binary Lennard-
Jones (BLJ) clusters, which are commonly used as benchmark systems in structure opti-
mization methods due to their well-defined PES landscapes. Our method was first tested
on LJsg and LJ75 clusters, known for their nontrivial double-funnel energy landscapes. ' For

the BLJ clusters, the parameters o044 = 1.0, o = 0.8, €44 = 1.0, egp = 0.64 are chosen,
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Figure 1: Comparison of the distribution of local minima optimized on real PES (red) and on fingerprint
mixed PES (blue) for (a) Sizo crystal and (b) Si;¢Cie crystal at ambient conditions. Symmetry, plotted
along the x-axis, is measured by the number of symmetry operations that leave the structure invariant.

The opacity of the colored box indicates the relative abundance of meta-stable structures corresponding to
a given symmetry and enthalpy level.

Figure 2: (a) Top view (from c-axis) of the relaxed structure (I4/mmm-Sis2) in fingerprint space. The
initial structure (P4nc-Size) has 8 symmetry operations, but after relaxation in fingerprint space, the
structure exhibits 128 symmetry operations. Without fingerprint biasing, the initial structure would be
relaxed into a low symmetry (P1). (b) Top view (from c-axis) of the relaxed structure (P4/mmm-Si;6Cig)
in fingerprint space. While the initial structure (P42;¢-Sij6Ci6) has 8 symmetry operations, this
fingerprint-relaxed structure has 64 symmetry operations. Without fingerprint biasing, the initial structure
will be relaxed into 142m-Si;15C1g, which has 16 symmetry operations. Brown and blue spheres represent C
and Si atoms, respectively. The blue cubic box denotes the unit cell.



with oap = 0.5 X (044 + 0pp) and eap = \/eaacpp.** A total of 200 random configura-
tions were generated for each cluster using the CALYPSO code, and the energy and force
calculations were performed using the ASE built-in calculator.?® Figure 3 shows the com-
parison of the density of states (DOS) as a function of the energy per atom for different
cluster optimizations. We can find that our method effectively shifts the energy landscape in
a way that promotes the emergence of low-energy configurations. For both the LJ and BLJ
systems, there is a significant density of low-energy structures when the search is guided by

the fingerprint space, indicating an enhanced probability of finding energetically more stable

structures.
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Figure 3: Density of states (DOS) of the energy distribution of the optimized random-generated clusters
with (in salmon) or without (in blue) introducing fingerprint space. For binary LJ clusters, we choose the
chemical formula as A13Bog in the BLJ-33 case and and As5Bgg in the BLJ-115 case.

To further investigate the efficiency of our method, we plot the trajectories (Fig. 4) for



LJ-38 and Si;6Ci6 in the local optimization. Utilizing the FIRE (fast inertial relazation
engine)?® optimizer, we observe a notable acceleration in the energy and force convergence
when the relaxation process is conducted within the mixed space. This is particularly evident
in the case of the silicon carbide system, where the convergence is markedly swift. For the
Si;6C16 system, we encounter a funnel-like energy landscape which typically induces sluggish
convergence. In our case, the optimization in the normal PES failed to converge within 5000
steps. However, the integration of our fingerprint space dramatically alters this dynamic. It
becomes evident that within the initial 100 steps, the optimizer adeptly surpasses substantial
energy barriers. This capability is crucial, as it allows the system to access lower energy
minima in subsequent geometry relaxation steps. Our approach thus serves as a testament
to the power of incorporating hyper space strategies, which promise to advance the field of

computational material science.
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Figure 4: Trajectory plots for LJ-38 cluster (left) and Si;gCyg crystal (right) during local optimization
process. The top panel shows the energy at each local relaxation step. The bottom panel displays the
maximum component of the forces of all the atoms in the system at each local relaxation step. The force
convergence criteria (dashed line in the bottom panel) is set at 1 x 1072 in the corresponding units.
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In conclusion, we have developed a new method to utilize the intrinsic symmetry of atomic
structures to enhance the efficiency of local optimization. By integrating a fingerprint energy
derived from the symmetry of local atomic environments into the potential energy surface, we
have developed an approach that guides the optimization process towards high-symmetry,
low-energy structures. This implicit symmetry bias, embedded in the hyperdimensional
optimization space, has been shown to accelerate the discovery of energetically favorable
configurations in both crystal and cluster systems, thereby streamlining the search for new
materials. The benchmark results obtained from the application of our method to silicon,
silicon carbide, and Lennard-Jones cluster systems underscore its effectiveness. Notably, the
emergence of high-symmetry structures at lower energy levels and the rapid convergence of
energy and forces during optimization highlight the potential to reveal previously under-
explored regions of the potential energy landscape. Overall, our method represents a step
forward in the structure prediction field, offering an efficient tool for the exploration of com-
plex potential energy surfaces. As we continue to refine and apply this approach to a wider
range of materials, we anticipate that it will become an important component of the toolkit

in computational material science.
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