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Abstract

The phase transition of cadmium selenide (CdSe) from wurtzite to rocksalt structure has been the subject of
extensive research. In this study, we present a novel approach combining machine learning potentials with
swarm intelligence-based pathway sampling to elucidate the complex phase transition mechanisms in CdSe.
We developed an accurate machine-learning potential for CdSe, validated against density functional theory
(DFT) calculations, achieving mean absolute errors of 1.8 meV/atom for energies and 33 meV/A for forces.
This potential was integrated with the PALLAS (Pathway sampling via swarm intelligence and graph theory)
method to explore the potential energy landscape and identify low-energy transition pathways. Our simulations
revealed a complex network of transition pathways, and we discovered a multi-step transition mechanism
involving an unexpected zinc blende intermediate phase, which appears to play a crucial role in facilitating
the transition between wurtzite and rocksalt structures. This finding provides new insights into the structural
flexibility of CdSe and offers an explanation for experimentally observed phenomena such as wurtzite/zinc
blende coexistence in nanostructures. Our approach not only advances the fundamental understanding of
phase transitions in CdSe but also establishes a powerful computational framework for exploring complex
materials phenomena, opening new avenues for materials design and discovery in semiconductor systems.
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1. INTRODUCTION

Cadmium Selenide (CdSe), a pivotal II-VI semiconductor material, has been the subject of extensive research
due to its crucial applications in optoelectronics!!=3!, photovoltaics*~7!, and nanostructured materials®-'"1. TIts
unique attributes, particularly at the nanoscale ®'!1, have spurred a multitude of studies aimed at unraveling and
leveraging its potential for advanced technological applications. Among the critical phenomena associated with
CdSe, phase transitions, especially the transition from wurtzite to rocksalt structures, have garnered significant
attention!'271, These transitions profoundly influence the electronic and optical properties, necessitating a
comprehensive understanding at the atomic level to optimize the performance and efficiency of CdSe-based devices.

Significant progress has been made in understanding the phase transitions of CdSe across various scales and
conditions. For example, Fan et al. !>’ demonstrated the ability to control the phase transition from the zinc blende
to wurtzite phase in CdSe nanocrystals by varying the volume ratio of ethanolamine and water, providing valuable
insights into the manipulation of phase and morphology in nanomaterials. Durandurdu et al.['® observed a phase
transition from the wurtzite to rocksalt structure in CdSe using constant-pressure ab initio molecular dynamics
simulations, proposing a transformation mechanism involving orthorhombic intermediate phases. Similarly, Li et
al.”!l investigated the structural phase transition sequence of CdSe under high pressure, offering critical insights
into the material’s behavior under extreme conditions. Building on this foundation, Tolbert et al.[??! explored
the size-dependent phase transitions in CdSe nanocrystals, revealing how quantum confinement effects influence
structural stability and phase behavior. Their findings highlighted the pivotal role of surface energy and particle
size in determining phase transition pressures, providing valuable guidance for tailoring the properties of CdSe
nanostructures. More recently, in situ high-pressure synchrotron X-ray diffraction studies have elucidated the
pressure-induced phase transitions in CdSe nanowires, demonstrating how nanostructuring impacts transition
pathways and mechanical properties?>! A very recent study employed molecular dynamics simulations with a
machine-learning-based deep potential to uncover the crystallization mechanisms of CdSe, shedding light on the
atomistic details of its structural transformations ?”1. T

hese advances collectively emphasize the diverse conditions and approaches that have been used to deepen our
understanding of CdSe phase transitions, paving the way for further exploration of its structural dynamics. While
much attention has been given to the effects of pressure and nanoscale features, a comprehensive understanding of
the transition mechanisms in bulk CdSe remains critical. Bulk transitions provide a foundation for interpreting the
behavior of nanostructures and offer insights into the intrinsic properties of the material. However, systematically
sampling the phase transition pathway poses a challenging task due to the complexity and computational demands
of accurately mapping the transition mechanisms. Methods like the nudged elastic band (NEB) method ?$! or
transition path sampling (TPS)3%-311 have been employed to study phase transitions in materials, but these approaches
often require an initial path connecting the reactant and product and may be computationally expensive for large
systems. Standard molecular dynamics (MD) simulations can provide insights into the dynamics of phase transitions
but may limited by the time scales required for sampling rare events such as phase transitions.

In response to this challenge, we have recently developed the PALLAS method3?!, an innovative approach that
leverages the principles of swarm intelligence and graph theory. The PALLAS method is adept at identifying
low-energy transition pathways between two minima without the prerequisite of specifying the transition mechanism
a priori. This methodology underscores the effectiveness of combining swarm intelligence with computational
strategies to elucidate phase transformations in solid-state systems. The approach builds upon previous work in
swarm intelligence algorithms, such as particle swarm optimization**! and ant colony optimization3*!, adapting
these concepts to the complex landscape of materials science.

Despite the ability of the PALLAS method in mapping transition pathways, the extensive sampling required is
computationally burdensome, highlighting the need for a more efficient and accurate method of energy and force
calculation. This computational challenge is not unique to our approach but is a common hurdle in materials
simulation, as noted in the review of machine learning potentials for atomistic simulations®3. In recent years,
several studies have leveraged machine learning (ML) potentials to address this computational challenge and study
phase transitions in semiconductors. [?73¢#11 These studies demonstrate the growing capability of ML potentials
to capture complex atomic interactions accurately while significantly reducing computational costs compared to
traditional ab initio methods.

Our initial application of the PALLAS method utilized a force field approach?! to discover new transition pathways
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for CdSe. However, our previous study aimed to show the feasibility of the PALLAS method in exploring complex
energy landscapes but was limited by the accuracy of the force field employed®?). This work addresses this
need by applying a novel computational framework that combines machine-learning-based potentials with the
PALLAS methodology for transition pathway sampling. This approach enables the systematic exploration of phase
transition pathways, uncovering insights into the structural transformations of CdSe at an unprecedented level of
detail. Although our focus is on bulk transitions at ambient pressure and low temperatures, this work establishes
a computational methodology that can be extended to address the effects of pressure and temperature as well as
transitions in nanostructures. These extensions represent exciting avenues for future exploration, which we briefly
discuss in the concluding sections.

2. METHODS

2.1. Transition Pathway Prediction

The transition pathway prediction method in this study is based on the recently developed PALLAS approach3?!,
which efficiently identifies low-energy transition pathways in solid-state systems without requiring predefinition
of the mechanism. PALLAS integrates several key components: the solid-state dimer method for saddle point
optimization[*!; a fingerprint method for quantifying structural dissimilarity *4; multiobjective particle swarm
optimization for pathway optimization!*!; and graph theory for network analysis 401,

The PALLAS algorithm begins by generating random velocities for the reactant and product structures to displace
them from their initial minima. The solid-state dimer method then locates saddle points and nearby minima from
these configurations. A crystal fingerprint technique, based on Gaussian overlap matrices, measures configurational
distances between structures, quantifying their similarity or dissimilarity. This approach captures both local atomic
environments and global structural characteristics, allowing for an accurate representation of the configurational
space 47311 The collection of minima, transition states, and their connections forms an undirected network graph.
Graph algorithms, such as Kruskal’s algorithm®? and breadth-first search>3!, analyze this network to identify
optimal low-barrier transition routes. Multiobjective particle swarm optimization guides the search by optimizing
both the configurational distance and energy barriers along pathways, enabling efficient exploration of the potential
energy surface for favorable transition mechanisms.

In the PALLAS method, several parameters remain fixed during the pathway sampling process to ensure consistency
and reliability. The system composition and lattice parameters are kept constant, focusing exclusively on structural
transformations without introducing compositional or volumetric changes. Additionally, in the multiobjective
particle swarm optimization (PSO), the learning factors ¢; and c9 are set to 2, and the inertia weight w is maintained
within the range 0.4 < w < 0.9, as this range is known to optimize performance. Random numbers r; and ro are
independently generated within the range (0, 1) for each iteration, ensuring dynamic but controlled updates to the
particle positions. These fixed parameters provide stability and guide the efficient exploration of the potential energy
surface.

This systematic approach allows PALLAS to identify the most energetically favorable transitions between crystalline
phases without requiring prior knowledge of the mechanism. However, it is important to note that, like many
computational methods, PALLAS has limitations. The identification of the global minimum energy pathway is
an NP-hard problem, and the algorithm relies on a practical halting criterion, terminating when no lower-energy
pathway is found after 10 consecutive generations. As a result, while PALLAS provides a comprehensive exploration
of the energy landscape, it does not guarantee identification of the absolute global minimum barrier. Additionally,
the current study does not incorporate entropy or temperature effects, which could influence transition pathways and
metastable state stability.

2.2. Potential Energy Surface Modeling

To model the potential energy surface (PES) of CdSe accurately for our study on phase transition pathways, we
employed the Neural Equivariant Interatomic Potentials (NequlP) framework *. NequIP represents a significant
advancement in machine learning potentials, offering precise predictions of material properties through its innovative
use of E(3)-equivariant neural networks. This approach is pivotal for simulating phase transitions by accurately
predicting total energies and atomic forces while respecting the fundamental symmetries of the physical system.
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2.2.1. Dataset Generation

Our NequlP model was trained using an amalgamation of training data generated using different methods. 1750
structures were generated using an entropy maximization technique®. In short, this technique involves adding an
entropy term to the total energy that is to be optimized. The entropy term comes from a descriptor, where here we
have chosen as a structural fingerprint descriptor*. The fingerprint descriptor provides a vector for every atom in
the unit cell, with the euclidean distance between two different atomic fingerprint vectors indicating the dis-similarity
of their chemical environments. The entropy term is then calculated as

1 n
Sap) = ) Ln(nminAg; ) (1)
Jj=1

Where 7 is the number of atoms in the unit cell, {q} is the set of all fingerprint descriptor vectors for each atom in
the unit cell, and min,; Ag; ; represents smallest euclidean distance attainable between the fingerprint vector of
atom j and some other atomic fingerprint vector of atom /.

The entropy term is then used to modify the total energy such that it becomes E;rq; = Eprr + KS({q}) where
K is an adjustable parameter used to control the effect of fingerprint entropy on the final structure. When K is
positive, structures will tend towards dis-similar local environments for each atom which leads to a more efficient
training dataset. 1250 structures are initialized in a 2 X 2 X 1 supercell of the conventional unit cell for the rocksalt
configuration of CdSe and 500 structures are initialized in a 2 X 2 X 2 supercell of the wurtzite structure, which
yields 16 Cd and 16 Se atoms for all structures. Velocities for each atom are then chosen from a Maxwell-Boltzmann
distribution for a temperature of 10,000 K and annealed down to OK with a time-step of 2.5 femtoseconds over a
time period of 0.75 picoseconds. Simultaneously, the K term in the calculation for total energy is raised from 0 at
10,000 K to 100 at OK. This allows structures to relax into random but maximally disordered configurations. Forces
are calculated by using Heynman-Fellman forces from DFT plus the entropy generated forces which are simply the
derivative with respect to atomic positions of the entropy term.

An additional 500 structures are generated using the same technique, but with K going from 0 to 100. This promotes
highly symmetric structures, allowing the neural network to describe these types of configurations more accurately.
Furthermore, we performed molecular dynamics simulations with both the rocksalt and wurtzite structures to
generate an additional 2000 training points. An NVT ensemble with an Andersen thermostat was used to maintain a
temperature of 5000K with a timestep of 2.5 femtoseconds over a time period of 2.5 picoseconds. The molecular
dynamics simulations added structures that could be naturally attained by the CdSe system rather than being
artificially created by maximizing or minimizing entropy.

A total of 4250 training structures were generated which were then filtered for structures with a DFT energy below 0
eV as well as a maximum force of 100 eV/A. This filtering yields 3753 structures which are then split into 2700
training structures, 302 validation structures and 751 structures reserved for testing.

2.2.2. DFT Calculations

Energy and force calculations for the training dataset were performed using DFT within the Vienna Ab initio
Simulation Package (VASP)®!. The projector augmented wave (PAW) method was employed to describe the
electron-ion interactions °”). The Perdew-Burke-Ernzerhof revised for solids (PBEsol) functional °3%! was used to
model the electron-electron interactions. A plane-wave basis set with a kinetic energy cutoff of 400 eV was utilized
to expand the electronic wavefunctions. Monkhorst-Pack k-point meshes %! with a grid of spacing 0.03 x 27A~!
for Brillouin zone sampling were chosen after checking for convergence. The convergence criteria for the electronic
self-consistent field calculation were set to 107 eV. The total energy and atomic forces were calculated for each
structure in the training dataset, providing the reference values for training the machine learning potential.

2.2.3. NequlP Model Training
With the dataset in place, we proceeded to train the NequlP model. The process involved the following key steps:

1. Data Preprocessing: Atomic numbers are first one-hot encoded into feature vectors of length 48, which are built
from direct sums of the irreducible representations of the O(3) symmetry group.

2. Model Architecture: The one-hot encoded feature vector is then refined through 4 interaction blocks, which
encode interactions between atoms in the unit cell and neighbors within the cutoff radius of 5 A through a
convolution filter. The convolution filter involves a tensor product with a learnable radial function and spherical
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harmonics. Since the convolution filters involve tensor products with spherical harmonic functions, a maximum
rotation order is set to [, = 2. Tensor products that produce irreducible representations with [ > [,,,,, are
discarded. The learnable radial functions are implemented as a multi-layer perceptron with 2 radial layers, each
containing 64 neurons with SiLU activation functions. 8 basis functions were used in the basis embedding of
the interatomic distances. Finally, the / = 0 features of the final convolution layer are passed to two atom-wise
self-interaction layers which produce each atom’s contribution to the total energy. Forces can be computed by
taking the derivative with respect to atomic positions.

3. Training Process: We used the Adam optimizer with an initial learning rate of 5 x 102 and a batch size of 5. The
learning rate was reduced by a factor of 0.5 every 100 epochs if no improvement in validation loss was observed.
Training continued until convergence, which was defined as when error of the validation dataset reached below 2
meV/atom. One model was trained on energies and forces, with another being trained purely on stresses.

2.3. Integration with PALLAS

The trained NequlP model was the foundation for investigating the phase transition pathways of CdSe using the
PALLAS method. By providing a fast and accurate approach for calculating the energies and forces of various atomic
configurations encountered during the transition, the NequIP model enabled efficient exploration of the potential
energy surface (PES). To achieve seamless integration, a custom interface was developed to connect the NequlP
model with the PALLAS method. This synergy allowed rapid evaluation of the energies and forces for intermediate
structures along potential pathways, offering a computationally efficient means of exploring the energy landscape.
The high accuracy of the NequIP model ensured precise identification and characterization of transition states and
metastable intermediates, uncovering novel transition mechanisms that might have been overlooked by traditional
methods. The computational efficiency of NequlP, combined with the systematic pathway exploration of PALLAS,
enabled us to investigate regions of the PES that would be prohibitively expensive using ab initio methods alone.

3. RESULTS AND DISCUSSION

3.1. Validation of Machine Learning Potential

Building on the detailed methodology involving the use of machine learned interatomic potentials, we proceeded
to validate the accuracy and reliability of our machine learning potential for CdSe. The validation was conducted
through the analysis of 751 diverse configurations, representing a broad spectrum of the material phase space. This
subset, spanning a large energy range (-3.0 to -0.5 eV/atom), was instrumental in evaluating the robustness of the
model across different structural motifs of CdSe. The evaluation included a comparative analysis of the energies and
atomic forces predicted by our machine learning model against those derived from DFT calculations (Figure 1).
Specifically, we observed mean absolute errors (MAEs) in energy predictions to be minimal, closely aligning with
DFT benchmarks, thereby indicating a high level of accuracy in the energy landscape representation. Similarly, the
atomic forces predicted by the model demonstrated a strong correlation with DFT-calculated forces, underscoring
the precision of our model in capturing dynamic interactions within the CdSe system.

Further validation was conducted through the analysis of several key structures, including the wurtzite, rocksalt, and
zinc blende phases of CdSe. The total energy differences between DFT and the ML potential were 12, 5, and 16
meV/atom, respectively. Validation was also performed on several transition states predicted by the PALLAS method,
with total energy differences between DFT and the ML potential being 9 meV/atom (Figure 3b). This comprehensive
validation process affirmed the capability of the NequIP-trained machine learning potential in accurately modeling
the PES of CdSe and highlighted its potential in facilitating advanced studies of material properties and phase
transitions.

3.2. Phase Transition Pathway Network in CdSe

The application of the PALLAS method to the wurtzite to rocksalt phase transition in CdSe revealed a complex
network of transition pathways, as illustrated in Figure 2. This network provides a comprehensive view of the
potential energy landscape connecting the wurtzite and rocksalt phases of CdSe. The transition pathway network
spans an energy range of approximately 1.6 eV/atom, with the wurtzite and rocksalt structures positioned at the
lower energy regions of the network. This energy spread indicates the presence of numerous metastable intermediate
states and transition pathways connecting the two phases. The network topology reveals several key features. The
existence of numerous interconnected nodes between the wurtzite and rocksalt structures suggests multiple possible
transition mechanisms, each with varying energy barriers. Several nodes in the mid-energy range of the network
likely represent metastable intermediate structures, which could play crucial roles in the transformation process,
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Figure 1. Graph of comparison of neural network predictions for (a) energies and forces and (b) stress versus the DFT calculated
energies, forces and stresses for the 751 structures in the testing set. The black dashed line represents perfect agreement between
the prediction by the neural network and the DFT calculated value. Mean absolute error of the energies were 1.8 meV/atom and
mean absolute errors of the forces 33 meV/A. The stress plot shows predictions versus DFT values for each Voigt component of

the stress, with average errors for every component below 10~° eV/A®.

potentially serving as kinetic traps or facilitating the overall transition.

The transition pathway network allows for the identification of the lowest energy pathway connecting the wurtzite
and rocksalt phases. This optimal path, highlighted in orange in Figure 2, represents the most thermodynamically
favorable transition mechanism. The color of nodes in the network provide insight into the energy barriers
associated with different transition steps. Higher-energy nodes along a pathway indicate significant barriers that
may kinetically hinder the transformation. Furthermore, the network structure provides information about potential
kinetic bottlenecks and metastable states that could influence the transformation dynamics. Intermediate nodes in
the network represent predicted metastable structures of CdSe, some of which may be experimentally accessible and
exhibit interesting properties. The identified pathways and intermediate states may offer guidance for experimental
efforts aimed at controlling the phase transition process and potentially accessing novel metastable forms of CdSe.

3.3. Microscopic Mechanism of CdSe Phase Transitions

The PALLAS method has provided valuable insights into the microscopic mechanisms of the wurtzite to rocksalt
phase transition in CdSe. Figure 3(a) illustrates the energy profile of several transition pathways, with the lowest
energy pathway highlighted by a thick blue line. Figure 3(b) further validates the accuracy of the machine-learned
potential by comparing the predicted energies along the transition pathway to DFT-calculated values. The close
agreement, with a mean absolute error of only 9 meV/atom, highlights the reliability of the PALLAS+NequlP
framework in capturing the intricate details of the potential energy surface. The energetic landscape, coupled with
the structural configurations along the pathway shown in Figure 4, offers a comprehensive view of the transformation
process.

The lowest energy pathway reveals a complex, multi-step transformation that challenges the notion of a simple,
direct transition between the wurtzite and rocksalt phases. Beginning with the hexagonal wurtzite structure (P63mc
space group), the system first evolves through a transition state with P1 symmetry. This low symmetry configuration
suggests a distortion of the wurtzite lattice, likely involving a shear deformation that breaks the initial hexagonal
symmetry. Intriguingly, the pathway then passes through a stable intermediate minimum with F43m symmetry.
This face-centered cubic structure, recognized as the zinc blende phase, plays a pivotal role in the transition process.
Its presence indicates that the wurtzite to rocksalt transformation in CdSe can involve a metastable intermediate
phase, rather than proceeding directly.
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Figure 2. Transition pathway network for the wurtzite to rocksalt transformation in CdSe. Nodes represent distinct structural
configurations, while edges indicate transition pathways. The color gradient from blue to red represents increasing energy, with
energy values given in eV/atom relative to the wurtzite structure. Blue triangles indicate the energy differences (in meV/atom)
between the corresponding nodes and the wurtzite (WZ) phase. Many metastable structures are observed, with several nodes
exhibiting energies close to that of the wurtzite phase; however, none are lower in energy than wurtzite. These nodes correspond to
metastable structures that may become accessible during the phase transition under certain external conditions (e.g., pressure or
temperature). The orange line represents the lowest-energy pathway connecting the wurtzite and rocksalt structures.

An interesting feature of our PALLAS simulations is the prevalence of the zinc blende intermediate across the
majority of identified transition pathways. This consistent appearance suggests that the zinc blende structure serves
as a crucial facilitator in the wurtzite to rocksalt transformation, potentially providing a lower energy kinetic pathway
between the hexagonal and cubic phases. The importance of the zinc blende phase in our computational results aligns
with experimental observations in the literature. For example, wurtzite/zinc blende mixed phase CdSe structures
have been reported in various studies, indicating the coexistence of these two phases under certain conditions ['3-61],
Studies also demonstrated controlled synthesis of CdSe nanocrystals in both wurtzite and zinc blende phases through
careful selection of ligands and reaction temperatures '],

Following the zinc blende intermediate, the system traverses a second transition state with Cm symmetry. The low
symmetry in this configuration points to a complex atomic rearrangement, likely involving significant distortions
of the crystal lattice. Finally, the system reaches the highly symmetric rocksalt structure (Fm3m space group),
completing the phase transition. The contrast between the Cm transition state and the final rocksalt structure suggests
a sudden symmetrization in the final stage of the transformation. This two-stage transformation mechanism is
consistent with the previous study performed using NEB calculations?8.

To further elucidate the dynamical properties of the key transition states along the pathway, we conducted phonon
calculations for the two transition states using the Phonopy code!®?!. For the P1 structure, the phonon dispersion
curve reveals the most softened phonon mode at the Y point (Figure 4). The corresponding eigenvector indicates a
shear motion of Cd and Se atoms, consistent with the lattice distortions expected during the transition from wurtzite
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Figure 3. (a) Energy barriers of transition pathways extracted from the pathway network. The lowest energy pathway is highlighted
with a thick blue line. The dashed blue line represents the barrier calculated using DFT for the lowest-energy pathway. (b) Graph
of comparison of neural network predictions for energies the DFT calculated energies for the crucial points along the transition
pathway, including metastable states and transition states depicted in (a). Mean absolute error of the energies were 9 meV/atom.

to the zinc blende intermediate. Similarly, for the Cm structure, phonon dispersion reveals softened modes at the A
and M points. The eigenvectors of these modes suggest concerted atomic displacements, likely corresponding to
compressive and shear strains that drive the transformation toward the rocksalt phase. The presence of these soft
modes emphasizes the importance of lattice instabilities in enabling the multi-step transition pathway.

Our study provides a detailed characterization of the phase transition pathways in CdSe, focusing on the transformation
from the wurtzite to rocksalt phase. While it is well-established that the wurtzite structure represents the ground state
and that the zinc blende phase is a close metastable structure, our findings introduce new insights into the transition
mechanism. Specifically, we identify zinc blende as an intermediate structure along the WZ-to-RS transition pathway.
This theoretical prediction highlights a previously unrecognized role of zinc blende in facilitating the transition by
providing a lower-energy kinetic pathway between the two phases.

The zinc blende intermediate might be stabilized under certain conditions, potentially allowing for the isolation of
this metastable phase or the creation of mixed-phase CdSe with tunable properties. The importance of the zinc blende
structure in the transition pathways may also help explain the often-observed coexistence of wurtzite and zinc blende
phases in CdSe nanostructures '8! Our simulations suggest that nanoscale CdSe might readily fluctuate between
these two structures. The transition through the zinc structure could be a mechanism for stacking fault formation
in CdSe, as incomplete transitions could result in mixed WZ/ZB regions. Controlled synthesis methods, such as
chemical vapor deposition %3] or solution-phase synthesis ®*/, may enable the formation of the zinc blende phase as
a metastable state. Furthermore, transient detection of the zinc blende intermediate during phase transitions may be
possible using advanced characterization techniques. For example, time-resolved spectroscopy could track structural
changes dynamically, while in situ high-pressure X-ray diffraction experiments might reveal intermediate phases
under appropriate thermodynamic conditions!6>-%]. These approaches provide promising avenues for validating our
findings experimentally and for exploring the broader relevance of the zinc blende intermediate in phase transition
mechanisms.

Its worthy to note that our study focused on the phase transition at ambient pressure and low temperatures. At
finite temperatures, the free energy landscape may differ significantly from the zero-temperature potential energy
landscape. Entropic contributions can stabilize or destabilize certain metastable states, potentially altering the
transition pathways or introducing new mechanisms. Future extensions of this framework could incorporate free
energy calculations to account for temperature effects. Techniques such as thermodynamic integration®”!, or
enhanced sampling methods (e.g., metadynamics [®3%°1) could be used to compute the finite-temperature free energy
landscape. These methods would allow for a more comprehensive understanding of phase transitions, including how
temperature-dependent effects influence the stability of metastable states and the dynamics of the transformation
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Figure 4. (Upper panel) Structural configurations along the lowest-energy transition pathway from wurtzite (WZ) to rocksalt (RS) in
CdSe. Red and green spheres represent Cd and Se atoms, respectively. (Middle panel) Calculated phonon dispersion curves for
the transition states of CdSe. (Lower panel) Arrows indicate the eigenvectors of the softened phonon modes at the Y point of the
P1 structure and at the A and M points of the Cm structure.

process.

4. CONCLUSIONS

This study has demonstrated the power of combining machine learning potentials with swarm intelligence-based
pathway sampling methods to elucidate the complex phase transition mechanisms in CdSe. By integrating the
NequlIP machine learning potential with the PALLAS method, we have achieved a detailed understanding of the
wurtzite to rocksalt phase transition at an unprecedented level of accuracy and computational efficiency. Our machine
learning potential showed excellent agreement with DFT calculations, ensuring reliable exploration of the CdSe
potential energy surface. The PALLAS method revealed a complex network of transition pathways between the
wurtzite and rocksalt phases, highlighting the intricate nature of the phase transition landscape in CdSe. A key
finding of our work is the identification of a novel, multi-step transition mechanism involving an unexpected zinc
blende intermediate phase. This zinc blende structure appears to play a crucial role in facilitating the transition
between wurtzite and rocksalt phases. The prevalence of the zinc blende intermediate across multiple pathways
suggests its importance in the structural flexibility of CdSe, aligning with experimental observations of WZ/ZB
coexistence in CdSe nanostructures and offering an explanation for the formation of stacking faults. Our results
provide new insights into the energetics and kinetics of the phase transition, identifying key transition states and
energy barriers that could be targeted for controlling the transformation process.

These findings have implications for both fundamental materials science and practical applications of CdSe.
The detailed transition pathway network provides a roadmap for experimental efforts aimed at controlling phase
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transitions in CdSe, potentially enabling the synthesis of novel metastable forms or mixed-phase materials with
tailored properties. Our methodology demonstrates the potential for machine learning-enhanced computational
techniques to accelerate materials discovery and optimization, particularly in systems with complex phase behavior.
The synergy between machine learning potentials and swarm intelligence-based pathway sampling opens new
avenues for materials design and discovery. Future work could focus on experimental validation of the predicted
transition mechanisms, exploration of pressure and size-dependent effects on the transition pathways, and extension
of this methodology to other technologically relevant materials systems.
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