
Transverse field γ-matrix spin chains

Rui Xian Siew ,1,* Shailesh Chandrasekharan ,1,† and Ribhu K. Kaul 2,‡

1Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708, USA
2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 26 June 2024; accepted 15 October 2024; published 14 November 2024)

We introduce a simple lattice spin model that is written in terms of the well-known four-dimensional
γ-matrix representation of the Clifford algebra. The local spins with a four-dimensional Hilbert space
transform in a spinorial ð1=2; 0Þ ⊕ ð0; 1=2Þ representation of SO(4), a symmetry of our model. When
studied on a chain, and as a function of a transverse field tuning parameter, our model undergoes a quantum
phase transition from a valence bond solid phase to a critical phase that is described by an SUð2Þ1 Wess-
Zumino-Witten field theory.
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I. INTRODUCTION

Understanding the nonperturbative properties of quan-
tum field theories is challenging in theoretical physics.
These challenges become even more difficult when the path
integrals depend on the topological classification of the
field configurations. Often the topological information
encodes the anomalous symmetries of the theory and
appears through topological terms in the classical action
of the quantum field theory [1–3]. Understanding the
physics of such topological terms has become an exciting
area of research at the crossroads of both high energy and
condensed matter physics [4,5]. In the context of high
energy physics, the value of the θ-parameter in QCD is
found to be unnaturally small, which is a puzzle referred to
as the strong-CP problem [6]. In condensed matter physics,
θ terms play a central role in our understanding of novel
phenomena related to spin liquids, deconfined criticality,
symmetry-protected topological phases, and localization,
among others (see [7–9]).

There are very few nonperturbative methods used to
study the physics of quantum field theories with topological
terms since they often lead to complex actions even when
path integrals are written in Euclidean space. This makes it
difficult to use Monte Carlo methods unless special tricks
are designed to solve the associated sign problems [10]. On
the other hand, if we take inspiration from condensed matter
physics, there are examples of quantum lattice models that
are free of sign problems when formulated properly, while
also describing quantum field theories with emergent
topological terms at long distances. Awell-known example
of this is the one-dimensional quantum spin-half chain.

In this case, there is extensive literature that shows that the
model is described by the k ¼ 1 SU(2) Wess-Zumino-
Witten (WZW) model with a marginally irrelevant coupling
at long distances [11]. Recently it was also demonstrated
that spin ladders naturally reproduce the physics of the O(3)
nonlinear sigma model with a θ term in the continuum, all
the way from the UV fixed point to the IR fixed point [12].
The idea of being able to construct any desired con-

tinuum quantum field theory via the critical physics of
a quantum lattice Hamiltonian with a proper choice of
a finite-dimensional local Hilbert space is becoming a
new area of research and is referred to as qubit regulari-
zation [13–16]. If these new quantum lattice models
provide an alternate approach to studying continuum
quantum field theories, they can then be studied using
quantum computers when they become available [17].
Since anomalies arise through projective representations in
the quantum Hilbert space [18], it is possible that when the
quantum Hilbert space of the lattice model is realized
through these representations, topological terms may
naturally be induced in the Euclidean effective actions
of the long-distance theory that arise at some quantum
critical points. For example, when the SO(3) symmetry is
realized through a quantum Hilbert space that contains
spinorial representations, even simple quantum lattice
models naturally contain WZW terms [19].
The motivation of our current work is to explore new

quantum lattice models with SO(4) symmetries realized
through Hilbert spaces using spinorial representations. We
hope that these different representations can help us identify
exotic quantum critical points where quantum field theories
with new types of topological terms will naturally emerge.
Traditional lattice models with SO(4) symmetries are
constructed using local Hilbert spaces in the vectorial
representations. These describe a quantum particle moving
on S3 (unit sphere in four-dimensional Euclidean space) and
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thus contain the sum of irreducible representations (irreps)
of soð4Þ≡ suð2Þþ ⊕ suð2Þ− of the form ðsþ; s−Þ ¼
ðs; sÞ, where s ¼ 0; 1=2;… are the usual irreps of SU(2).
However, we can formulate lattice models using irreps of
the universal covering group of SO(4) which is Spin(4).
Then SO(4) is realized projectively through a two-to-one
mapping. The simplest nontrivial Spin(4) representation is
of the form ð1=2; 0Þ ⊕ ð0; 1=2Þ. Thus, it is natural to
explore SO(4) symmetric quantum lattice models realized
via a Hilbert space that contains this representation. A
natural question is whether such lattice models contain
exotic quantum critical points with novel topological terms.
Since these models have a spinorial representation, we can
extend the Lieb-Shultz-Mattis (LSM) theorem to these spin
models, which forbid simple gapped symmetry-preserving
phases. This, in turn, implies that the effective field theory
cannot be described by simple sigma models with disor-
dered phases, and will likely contain topological terms. One
such term we are interested in is the θ term of the SO(4)
model in 2þ 1 dimensions. We note that we may need a
quantum lattice Hamiltonian where the SO(4) symmetry of
the θ term only arises as an emergent symmetry, since
anomalies may prevent the realization of the SO(4) sym-
metry as an on-site symmetry [20–22].
With this general motivation, our specific goal in this

work is to introduce and study new many-body quantum
spin Hamiltonians invariant under a SO(4) global sym-
metry, realized using a local four-dimensional Hilbert space
on every site that transforms under the reducible repre-
sentation ð1=2; 0Þ ⊕ ð0; 1=2Þ of the symmetry group. In a
way, our lattice models are extensions of quantum spin-half
models that are invariant under Spinð3Þ ≃ SUð2Þ realized
using spinorial representations to Spin(4). As we explain
here, this can naturally be achieved by replacing the three
Pauli matrices with the five Dirac (gamma) matrices as the
basic quantum operators on each lattice site. Hence, we call
our models γ-matrix models (or GMM).
In this work, we focus on a simple nearest-neighbor

Hamiltonian in one spatial dimension. This allows us to
understand how to study the interesting quantum many-
body physics of these new spin models, using both analytic
arguments and controlled numerical methods such as exact
diagonalization and the density matrix renormalization
group (DMRG) on large system sizes. In future studies, we
plan to study the GMMs in higher dimensions. We find
that the simple one-dimensional model studied in this work
hosts the quantum phase transition between a dimer phase
and a critical phase, which is in the same universality
class as the one in the J1 − J2 model of a spin-half
antiferromagnetic chain with a next-to-nearest-neighbor
coupling [23,24]. It is interesting that the frustration arising
from a next-to-nearest-neighbor coupling in the J1 − J2
model is naturally induced through a simple nearest
neighbor coupling in the GMM model. While establishing
this phase diagram, we generalize two well-known results

about the S ¼ 1=2 chain [25] to the γ-matrix spin model:
(1) our GMM satisfies the LSM theorem which proves that
it cannot have a trivial gapped phase, and (2) in an extension
of the famous Majumdar-Ghosh point, for a special ratio of
the nearest and next-nearest-neighbor GMM interaction, the
model is exactly solved with a dimerized ground state.
Our paper is organized as follows. In Sec. II, we

introduce the model we study in our work. In Sec. III,
we provide strong evidence that our model has two phases:
a dimerized phase and a critical phase separated by a
quantum phase transition, all of the same type as [24]. In
Sec. IV, we show results using exact diagonalization and
tensor network calculations that confirm our predictions. In
Sec. V, we present our conclusions. Finally, we have
included four Appendixes, which are dedicated to reviews
of well-known facts and details that are too technical for the
main manuscript.

II. THE MODEL

A. Hilbert space

Here wewill consider a quantum spin model in which the
local on-site Hilbert space is four dimensional, i.e. there are
four states on each site of the lattice.1 The Hilbert space of
the many-body lattice system is built up in the usual way by
tensor products so that with L sites, the full Hilbert space
has a dimension 4L. We note that spin models with four-
dimensional on-site Hilbert spaces have been studied in the
past in the context of the S ¼ 3=2 representation of SU(2),
as well as fundamental representations of SU(4) and SO(4).
As we shall see, the model we introduce here is different
from these. In Appendix A, we review how the four-
dimensional Hilbert space can be viewed as a reducible
spinorial representation of the Spin(4) symmetry.

B. Operators

Spin models are constructed from local operators that act
on the site Hilbert space. From the perspective of the Spin
(4) symmetry, it is natural to work with the five Hermitian
4 × 4 anticommuting Dirac matrices (in contrast to the three
2 × 2 Hermitian anticommuting Pauli matrices that are used
for the usual two-dimensional on-site Hilbert space models).
We label these matrices as γμ (μ ¼ 1; 2; 3; 4; 5) where γ5 ¼
−γ1γ2γ3γ4 and they satisfy the anticommutation relations

fγμ; γνg ¼ 2δμν: ð1Þ

As we explain in Appendix A, the five Dirac matrices
transform as a 5-vector under the spinorial representations
of Spinð5Þ. Thus, the Dirac matrices are similar to the Pauli
matrices which transform as a 3-vector under the spinorial

1In contrast, the most popular spin models (Heisenberg,
transverse field Ising) have a two-dimensional local Hilbert
space.
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representation of SO(3) or Spinð3Þ transformations.
However, unlike the three Pauli matrices and the identity
matrix that span the space of 2 × 2 Hermitian matrices, the
five γ matrices plus the identity matrix do not form a
complete basis for 4 × 4 Hermitian matrices; we have to
include in addition the 10 commutators of γ matrices, σμν.
This means we can construct several interesting spin
Hamiltonians using the Dirac matrices with SO(4) sym-
metry realized in the spinorial representation, which we
collectively refer to here as γ-matrix models.2 Some of these
models and their symmetry properties are discussed in
Appendix B. These models can be defined in any dimension
and we expect that they host rich phase diagrams that have
not yet been explored. In this work, we focus on one of the
simplest and perhaps most natural of these models in one
spatial dimension, which we now introduce.

C. Transverse field γ-matrix model

A simple symmetric interaction we can introduce
between two spins at sites i and j is

P
4
μ¼1 γ

μ
i γ

μ
j .

However, in this case, we still have an extra γ5 term,
which has not appeared in the exchange interaction and to
which we can couple an external “transverse” field. Putting
all this together, we write down the following one-dimen-
sional spin chain model,

H ¼
XL
j¼1

�
J
X4
μ¼1

γμjγ
μ
jþ1 þ h γ5j

�
: ð2Þ

which we refer to as the transverse field O(4) γ-matrix
model (TFGMM). While this model can be written down in
any dimension, in this work we analyze it extensively on
a one-dimensional chain, where we are able to obtain its
full phase diagram. We will use both periodic boundary
conditions (PBC) and open boundary conditions (OBC) to
solve the system. In the PBC case, the term γμLγ

μ
Lþ1 in

Eq. (2) is replaced by γμLγ
μ
1, whereas the term is dropped in

the OBC case.
It is useful to note that the sign of h and J can be changed

by performing Z2 unitary transformation on H using

R51 ¼
Y
j

ðiγ5jγ1jÞ ð3Þ

and

Rodd
5 ¼

Y
j∈ odd

γ5j ; ð4Þ

implying that these signs do not change the physics. For
this reason, we will assume J; h ≥ 0 in this work. Further, if
we measure energies in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h2

p
, it is natural to

define the dimensionless Hamiltonian

Ĥ ¼
XL
j¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p X4
μ¼1

γμjγ
μ
jþ1 þ α γ5j

�
; ð5Þ

where we have defined a dimensionless coupling α ¼
h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h2

p
; 0 ≤ α ≤ 1 to probe the effects of the two

terms. Further, since fH;R51Rodd
5 g ¼ 0, the spectrum of Ĥ

is symmetric about zero.
We now analyze the symmetries of the TFGMM. The

nearest-neighbor term in Eq. (2) with coefficient J is
invariant under the O(4) symmetry. The transverse field
term with coefficient h breaks the O(4) symmetry to SO(4)
and splits the two SU(2) sectors in the SO(4) symmetry
group (see Appendix A for more details). Hence, at
very large h [or equivalently when α ¼ 1 in Eq. (5)]
our model favors one SU(2) sector, and, as we show below,
the model can be described by the physics of the SU(2)
Heisenberg chain.

D. Two-site problem

Before tackling the many-body problem on the chain, it
is helpful to gain some intuition by studying the spectrum
of the two-site model, i.e. Eq. (2) with L ¼ 2 under OBC.
Explicitly, the Hamiltonian is

Ĥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p X4
μ¼1

γμ1γ
μ
2 þ αðγ51 þ γ52Þ: ð6Þ

We will try to understand the irreducible representations
of its eigenstates under Spin(4) symmetry, as well as their
energetics. As we explain in Appendix A, irreducible
representations of Spinð4Þ ¼ SUð2Þþ × SUð2Þ− can be
understood as a tensor product of two SU(2) irreps, which
can be labeled by ðsþ; s−Þ, where s� ∈ 1

2
Z. Since our

model is invariant under Spin(4), all the eigenstates of the
two-site Hamiltonian can be classified through the quan-
tum numbers ðsþ; mþ; s−; m−Þ, where s�; m� ∈ 1

2
Z such

that −s� ≤ m� ≤ s�. The 16 energy eigenstates split into
two nondegenerate singlets (0,0) with eigenvalues
E ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 3α2

p
, one SUð2Þþ triplet with eigenvalue

2α, one SUð2Þ− triplet with eigenvalue −2α, and two
4-vectors (with sþ ¼ s−¼ 1

2
) with eigenvalues �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
.

Since fĤ;R51Rodd
5 g ¼ 0, the two-site spectrum is invari-

ant under Ĥ → −Ĥ, i.e., for every positive energy eigen-
state, there is also a negative energy eigenstate. Also, as we
explain in Appendix A, when α ¼ 0 there is a Z2 symmetry
that flips between the two spins SUð2Þþ ↔ SUð2Þ−. The
ground state is an eigenstate of this additional symmetry.

2We note that any spin model with a local four-dimensional
Hilbert space can be written in terms of γ matrices and their
commutators. Some past work has addressed such models, see
e.g. [26–29]. Here we focus exclusively on the SO(4) symmetry
and its spinorial representation.

TRANSVERSE FIELD γ-MATRIX SPIN CHAINS PHYS. REV. D 110, 094510 (2024)

094510-3



Notably, the ground state is always a singlet under Spin(4)
for all α. This feature resembles the usual antiferromagnetic
model where the exchange interaction favors the formation
of two-site singlets. We note that at α ¼ 1 the singlet
becomes degenerate with a triplet, giving four ground states.
This is exactly what we expect since the transverse field
term by itself gives two degenerate ground states per site.

III. PHASE DIAGRAM

This section puts forth general arguments using exactly
solvable models and perturbation theory to establish the
phase diagram of Eq. (2) (see Fig. 1). The upshot of our
reasoning is that the model is valence-bond-solid (VBS)
ordered (breaking translational symmetry) for small values
of α, and it enters the k ¼ 1WZW critical phase for α > αc
where αc < 1 is a quantum critical point. The nature of this
transition from the VBS phase to the WZW phase has been
studied in the past. If it is second order, then its universality
class is of the Berezinskii-Kosterlitz-Thouless (BKT) type
that describes the fluid-dimer transition of the antiferro-
magnetic J1 − J2 Heisenberg spin-half chain, where a
coupling switches from being marginally relevant (VBS
phase) to being marginally irrelevant (WZW phase) [23,30].
The transition has been studied numerically within the spin-
half chain [24,31] and within a Hubbard-type fermionic
model [32]. In the next section, i.e. Sec. IV, we provide
detailed DMRG and exact diagonalization results that
substantiate this picture.

A. α≲ 1: Degenerate perturbation theory

At α ¼ 1, the TFGMM has only the transverse field term
and it is trivially solvable. Since γ5i has two eigenvalues
which are each twofold degenerate on each site, the many-
body ground state is highly degenerate and spans a 2L-
dimensional subspace whose energy is E0 ¼ −L. The two
degenerate states at each site transform under the irrep
ðsþ ¼ 0; s− ¼ 1

2
Þ of Spin(4), which implies that dynami-

cally the Spin(4) symmetry has reduced to the SUð2Þ−
symmetry. When we deviate from this strict α ¼ 1 limit, we
expect the degeneracy to be lifted and a unique quantum
ground state to be selected on finite lattices. In this regime
(i.e., when α ≲ 1), we can use degenerate perturbation
theory to argue that our model maps to the famous spin-1

2

J1-J2 Heisenberg chain. The effective Hamiltonian up
to quartic order of the small parameter ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
is

given by

Ĥeff ¼ L

�
−1 −

1

2
ϵ2 þ 7

8
ϵ4
�

þ ϵ2
�
1 −

3

2
ϵ2
�X

j

ðσiÞjðσiÞjþ1

þ 3ϵ4

4

X
j

ðσiÞjðσiÞjþ2 þOðϵ5Þ: ð7Þ

The leading order term in this effective Hamiltonian is
simply the nearest neighbor Heisenberg exchange coupling
J1 and the next-to-leading order term is the next-nearest-
neighbor coupling J2. We can identify

J1 ¼ 4ϵ2
�
1 −

3

2
ϵ2
�
; J2 ¼ 3ϵ4: ð8Þ

This allows us to conclude quite reliably that when close
enough to α ¼ 1, the system must be in the same phase as
the nearest neighbor Heisenberg spin chain. As we move
away from this limit, the ratio of J2=J1 increases. Based on
our knowledge of the Heisenberg chain, we expect a
transition to a VBS phase when J2=J1 ≈ 0.2411 [24].
Undoubtedly, our perturbative expansion is not controlled
and may not be valid in this regime. Nevertheless, we can
still use our leading order expressions above to estimate the
value of αc where the transition from the WZW critical
phase to the VBS occurs. This gives us αc ≈ 0.89. We will
find in Sec. IV from large-scale numerics that this estimate
is in rough agreement with the numerically determined
transition point, validating the picture emerging from
perturbation theory.

B. α ≪ 1: Majumdar-Ghosh type analysis

We now consider the limit of α ¼ 0 by switching off the
transverse field. While we will need to resort to large-scale
numerical methods to ultimately determine the ground state
at this point, we can gain insight by deforming our model to
obtain an exactly solvable point akin to the famous
Majumdar-Ghosh (MG) point of S ¼ 1=2. Inspired by
their work, we deform our model by adding a second
neighbor interaction to obtain the J-J0 model

Ĥ ¼
XL
j¼1

X4
μ¼1

ðJγμjγμjþ1 þ J0γμjγ
μ
jþ2Þ; J; J0 ≥ 0: ð9Þ

In Appendix C, we show that when J0=J ¼ 1=2, the ground
state of this deformed model is exactly solvable and it is
dimerized with twofold degeneracy. This means at least
when J0=J ¼ 1=2 the model is indeed in the VBS phase.

gapped VBS phase WZW conformal phase

FIG. 1. Phase diagram of the TFGMM, given in Eq. (2). The
critical point αc separates a VBS phase from the k ¼ 1 WZW
phase. Since the point α ¼ 1 consists of decoupled sites, it is
extensively degenerate and unphysical. In Sec. III we present
arguments to infer this phase diagram and in Sec. IV we present
numerical simulations that corroborate these inferences.
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To find what happens when J0 ¼ 0, we resort to a
numerical exact diagonalization approach and find the
ground state as we vary J0=J from 1=2 towards 0. For
these calculations, we set J ¼ 1 as we vary J0. The behavior
of the lowest three energy eigenvalues E0, E1, and E2 for
lattice sizes up to L ¼ 20 are shown in Fig. 2. When J0=J ¼
1=2 we expect E1 − E0 ¼ 0 due to the exact degeneracy of
the ground state and E2 − E0 ≠ 0, for all lattice sizes.
However, this is not guaranteed for smaller values of J0.
Indeed as the figure shows, the degeneracy of the ground
state is lifted for smaller values of J0 on small lattices, but
the gap E1 − E0 seems to close as the lattice size increases,
while E2 − E0 remains nonzero even at J0 ¼ 0. This
provides strong evidence that the entire region between
J0=J ¼ 0 and J0=J ¼ 1=2 has a dimerized twofold degen-
erate ground state. Based on this result, we conclude that
the TFGMM as given in Eq. (2) is VBS ordered at α ¼ 0.

This finding of the VBS order at α ¼ 0 is consistent with
the phase transition we found in the α≲ 1 regime,
suggesting that the TFGMM contains at least two phases,
a VBS phase when α ≈ 0 and a k ¼ 1 WZW phase at
α ≈ 1 with a phase transition at some critical coupling
0 < αc < 1 in the universality class of a similar transition
in the frustrated next-to-nearest-neighbor J1 − J2 quantum
spin-half chain. It is also interesting that the next-to-
nearest-neighbor frustration is naturally introduced in a
nearest-neighbor model via an on-site transverse field.

IV. NUMERICAL RESULTS

In this section, we report large-scale numerical studies of
the TFGMM using both exact diagonalization and density
matrix renormalization group to confirm the qualitative
phase diagram discussed in the previous section. In
particular, we locate the value of αc.
We first look at the low energy spectrum of TFGMM in

PBC as a function of α. As discussed in Sec. III B, at α ¼ 0
we have two degenerate ground states associated with the
VBS phase and the expected finite gap to excitations. It is
well known from previous studies [24,33] that the transition
between the dimerized phase and the k ¼ 1 WZW model
can be detected by studying the lowest five energy eigen-
values. In the dimerized phase, one expects two low-lying
singlets and a gapped triplet. While in the k ¼ 1 WZW
phase, the low-lying spectrum is a unique singlet and a
gapped triplet. Thus the phase transition roughly occurs
when the singlet on the dimerized side crosses the triplet and
becomes higher in energy. The degeneracy between the
singlet and the triplet at the critical point is related to the
dynamical enhancement of the SU(2) symmetry to SUð2Þ ×
SUð2Þ at the critical point due to the vanishing of a marginal
operator there.
In Fig. 3, on the left side, we plot the singlet gap E1 − E0

and the triplet gap E2 − E0 as a function of α for a lattice

FIG. 2. Lowest three energy eigenvalues for the J-J0 model of
Eq. (9). We fix J ¼ 1, and increase J0 from 0.0 to 0.5. Solid lines
are for E1 − E0, whereas dashed lines are for E2 − E0. Dashed
and solid lines of the same color have the same L. This numerical
analysis allows us to conclude that the exactly solvable MG point
J0=J ¼ 0.5 and Eq. (2) at α ¼ 0 are in the same phase, i.e. they
are both in a valence-bond-solid ordered phase.

FIG. 3. In the left figure we plot the energy gap between the lowest singlet state and the ground state and lowest triplet state and the
ground state, obtained using exact diagonalization of TFGMM for L ¼ 10, as a function of α. At the transition between the VBS phase
and k ¼ 1WZW phase, the two gaps are supposed to be equal. Here we find that this occurs at around αST ≈ 0.801. In the right figure we
plot αST as a function of L−2 for 14 ≤ L ≤ 34. The shown data fits well to the functional form αSTðLÞ ¼ 0.80417 − 0.37508L−2,
suggesting that αc ≈ 0.804.
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size of L ¼ 10. We observe that as α increases, the triplet
crosses the singlet around αSTðL ¼ 10Þ ≈ 0.801. We have
studied how the crossing point αSTðLÞ changes for increas-
ing L for 14 ≤ L ≤ 34 using DMRG. These results are
plotted on the right side of Fig. 3. Since the data fits well to
the form αSTðLÞ ¼ 0.80417 − 0.37508L−2 we estimate the
critical point to be αc ≈ 0.804. We note that the L−2

dependence of αSTðLÞ is well known for J1-J2 spin-1
2

chain [24,34], thus, given our analysis in Sec. III A, the
right-hand plot in Fig. 3 is expected.
Exact diagonalization on small values of L with PBC

reveals another interesting property of the ground state jψ0i
and the first excited singlet state jψ1i. They are eigenstates
of the translation operator with eigenvalues þ1 and −1,
respectively if L∈ 4Z and with eigenvalues −1 and þ1,
respectively if L − 2∈ 4Z. Further, both are eigenstates of
the global Z2 spin-flip symmetry at α ¼ 0 as described in
Appendix A, with eigenvalue þ1. This means that this
spin-flip symmetry remains unbroken, which is unlike what
was recently found [32].
We have also studied the TFGMM using DMRG for

various values of L in the range 28 ≤ L ≤ 148 with OBC
since those calculations are easier compared to PBC. More
specifically, we wrote the DMRG algorithm using the
ITensor software library in Julia [35,36]. In these studies,
we focused on measuring the connected correlation func-
tions of local operators Oj in the ground state. Here j
represents the lattice site and we have focused on the
correlation function between sites j ¼ L=4 and j ¼
3L=4þ 1 defined as

GOðLÞ ¼ hΨ0jOj¼L=4Oj¼3L=4þ1jΨ0i
− hΨ0jOj¼L=4jΨ0ihΨ0jOj¼3L=4þ1jΨ0i; ð10Þ

where jΨ0i is the ground state approximated as a matrix
product state (MPS).
The local operators we have studied include the

spin operator Szj at site j, dimer operator Dj centered at
j, bond energy Hj between sites j, jþ 1, and the bond
energy difference Bj centered at j. These are defined
quantitatively as

Szj ¼ ð−1Þjþ1M−
z;j; ð11Þ

Dj ¼
1

2
ð−1ÞjðSzjSzjþ1 − Szj−1S

z
jÞ; ð12Þ

Hj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
γμjγ

μ
jþ1 þ

α

2
ðγ5j þ γ5jþ1Þ; ð13Þ

Bj ¼
1

2
ð−1ÞjðHj −Hj−1Þ; ð14Þ

where M−
z;j is z component of the SUð2Þ− generator at site

j, as defined in Appendix A. We will label the four

correlation functions obtained using these four operators
as GS, GD, GH, and GB.
For these studies, we focused on α ¼ 0.8 which, accord-

ing to our estimate above, is very near the critical point αc.
At the critical point, we expect all correlation functions to
be well approximated by the following ansatze3:

GD ≔ hDL=4D1þ3L=4i − hDL=4ihD1þ3L=4i ≈
AD

LPD
; ð15aÞ

GB ≔ hBL=4B3L=4−1i − hBL=4ihB3L=4−1i ≈
AB

LPB
; ð15bÞ

GH ≔ hHL=4H3L=4i − hHL=4ihH3L=4i ≈
AH

LPH
; ð15cÞ

GS ≔ hSL=4S1þ3L=4i − hSL=4ihS1þ3L=4i

≈
AS

LPS
þ ð−1ÞL=4 CS

LP0
S
: ð15dÞ

From conformal field theoretic arguments we expect
PS ¼ PD ¼ PH ¼ 1 [33,37]. This also suggests that
PB ¼ 1. In Figs. 4 and 5 we plot these correlation functions
at α ¼ 0.8 obtained using DMRG as a function of L. The fit
parameters obtained using a nonlinear fit to the form
Eq. (15) are given in Table I and the fit functions are
shown as solid lines in the figures. The powers PD, PB, PH,
and PS are close to the expected value of 1. Moreover, GS
shows oscillations qualitatively expected in Eq. (15d) while
the remaining three correlations seem to be captured by the
leading terms. We believe the discrepancy between the
expected results and our fit parameters is because our
analysis is done at a fixed α ¼ 0.8 which is not exactly at
the critical point. Extracting the exact parameters at the

FIG. 4. The plot of the correlation functions GS and GD, as
defined in Eq. (15), obtained using DMRG at α ¼ 0.8. The
DMRG data are shown as dots, whereas the solid lines are the
power-law fits obtained using a nonlinear model fit package in
Mathematica [38]. The fit parameters are given in Table I. The
DMRG data forGS show large oscillations which are captured by
the fit function Eq. (15d).

3Note that Eqs. (15b) and (15c) are slightly different from the
form of Eq. (10).
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critical point typically requires a more careful finite-size
scaling analysis, which was not the goal of our work.
Instead, our goal was to provide evidence of a quantum
phase transition, and based on the evidence we have
provided here there is little doubt that it belongs to the
same universality class as the phase transition in the
frustrated next-to-nearest-neighbor spin-half antiferromag-
netic chain.

V. CONCLUSIONS

In this work, we have introduced a new class of quantum
spin models with SO(4) symmetry realized through a
projective representation. We hope that these models,
which we refer to as γ-matrix models, potentially have a
rich phase structure with exotic second-order critical points
where quantum field theories with topological terms can
emerge. To demonstrate this possibility, in this work, we
used DMRG to study one of the simplest GMMs in one
spatial dimension. Interestingly, even though our model
only has nearest-neighbor interactions, we argued that it
naturally maps to the well-known next-to-nearest-neighbor,
frustrated quantum spin-half antiferromagnetic chain. We
provided analytic and numerical evidence that our model
has a quantum critical point between the critical k ¼ 1

WZW phase and the dimerized phase, analogous to the
frustrated quantum spin-half antiferromagnetic chain.
In the future, we plan to study other GMMs in higher

spatial dimensions. While such models can naturally be
studied on quantum computers and quantum simulators,
some of them are free of sign problems and can be studied
using efficient worm-type algorithms. These models will
naturally have an SO(4) symmetry realized projectively on
Hilbert spaces made out of Spinð4Þ representations. It
seems likely to us that exotic critical points can arise which
are naturally described by quantum field theories with new
types of topological terms. To discover them, a systematic
study of several models in this space may be needed.
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APPENDIX A: GAMMA MATRICES
AND THE SO(5) GROUP

The five 4 × 4 Dirac matrices γμ; μ ¼ 1; 2; 3; 4; 5 satisfy
the Clifford algebra defined by relation

fγμ; γνg ¼ 2δμν1; ðA1Þ

where 1 is the 4 × 4 unit matrix. While there are several
choices for the matrix representation of γμ, we will choose
the Weyl basis given by

γj ¼ −σ2 ⊗ σj ¼
�

0 iσj

−iσj 0

�
; j ¼ 1; 2; 3; ðA2Þ

γ4 ¼ σ1 ⊗ σ0 ¼
�

0 σ0

σ0 0

�
; ðA3Þ

γ5 ¼ −γ1γ2γ3γ4 ¼ σ3 ⊗ σ0 ¼
�
σ0 0

0 −σ0

�
; ðA4Þ

TABLE I. Parameter fit for α ¼ 0.8. We used Mathematica’s
NonlinearModelFit function to fit the DMRG data to the expressions
in Eq. (15). The numbers in the parentheses are the standard error
of the fitting function; they do not reflect the DMRG algorithm’s
error.

AD PD AB PB AH PH

0.027(3) 0.931(2) 4.36(2) 0.954(1) 0.214(6) 1.055(7)
AS PS CS P0

S
0.1114(6) 0.981(1) −0.219ð4Þ 1.441(5)

FIG. 5. The plot of the correlation functions GB and GH , as
defined in Eq. (15), obtained using DMRG at α ¼ 0.8. The
DMRG data are shown as dots whereas the solid lines are the
power-law fits obtained using a nonlinear model fit package in
Mathematica. The fit parameters are given in Table I. The DMRG
data for GH show small oscillations about the blue fitting curve.
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where σj are the usual Pauli matrices, σ0 is the 2 × 2 unit
matrix, and the 0 stands for a 2 × 2 zero matrix. Note that
these gamma matrices are Hermitian: ðγμÞ† ¼ γμ.
It is well known that the four-dimensional Hilbert space

on which the γμ’s act can be viewed as a representation of
the SO(5) group. Indeed the ten Hermitian matrices

σμν ≔
i
4
½γμ; γν� ðA5Þ

satisfy the soð5Þ Lie algebra relations

½σμν;σκλ� ¼ iðδνκσμλ − δνλσμκ − δμκσνλþ δμλσνκÞ: ðA6Þ

This is the spinorial irreducible representation (irrep) of SO
(5) or equivalently Spinð5Þ which is the simply connected
double cover of SO(5). Thus, we can also view the Lie
algebra as soð5Þ ≃ spinð5Þ. The four-dimensional Hilbert
space on which the Dirac matrices act can be used to
construct lattice models that have various types of sym-
metries related to the SO(5) group and its subgroups. Here
we will be focusing on the SO(4) subgroup.
Note that if we restrict μ ¼ 1; 2; 3; 4 in Eq. (A6) we

obtain the soð4Þ ≃ spinð4Þ Lie algebra. From this per-
spective, we can also view the four-dimensional Hilbert
space of the Dirac matrices as representations of the
spinð4Þ. But recall the Lie algebra isomorphism
soð4Þ ≅ suð2Þ ⊕ suð2Þ. Indeed by defining

M�
i ≔ −

1

2

�
1

2
ϵijkσjk � σi4

�
ði; j; k ¼ 1; 2; 3Þ ðA7Þ

where we assume the repeated indices are summed over, we
see that the soð4Þ algebra splits into two mutually com-
muting copies of suð2Þ:

½Mþ
i ;M

−
j � ¼ 0; ½M�

i ;M
�
j � ¼ iϵijkM�

k : ðA8Þ

For this reason, any irreducible representation (irrep) of the
Lie algebra spinð4Þ ¼ suð2Þ ⊕ suð2Þ can be labeled by a
pair of non-negative half-integers, ðsþ; s−Þ, where s�
specifies the SU(2) irreps for the operators M�. If we
substitute Eq. (A5) into Eq. (A7) we obtain

Mþ
i ¼

� 1
2
σi 0

0 0

�
; M−

i ¼
�
0 0

0 1
2
σi

�
; ðA9Þ

which shows that the four-dimensional Hilbert space on
which γμ acts is in fact a reducible representation of Spin(4)
and splits into ð1=2; 0Þ ⊕ ð0; 1=2Þ.
From the perspective of global properties of groups

Spinð4Þ ¼ SUð2Þ × SUð2Þ is the double cover of SO(4).
Interestingly, one notices that

M�
i ¼ ðγ4Þ†M∓

i γ
4; ðA10Þ

which means that f1; γ4g is a Z2 group that flips the two
SU(2) subgroups in Spin(4) into each other. We refer to
this Z2 as the spin-flip symmetry. Thus, along with this Z2

group, the Spin(4) group enhances to the semidirect
product group Pinð4Þ ¼ Spinð4Þ⋊Z2. This is analogous
to Oð4Þ ¼ SOð4Þ⋊Z2. Just as the spin group Spin(4) is the
double cover of the special orthogonal group SO(4), the
pin group Pin(4) is the double cover of the orthogonal
group O(4).

APPENDIX B: GAMMA MATRIX MODELS

In quantum spin-half models, the two-dimensional
Hilbert space on which the Pauli matrices act forms the
spinorial representation of the SO(3) group. As we dis-
cussed in Appendix A, the four-dimensional Hilbert space
on which the Dirac matrices γμ, μ ¼ 1; 2; 3; 4; 5 act forms
the spinorial representation of the SO(5) group. Thus, in
analogy with quantum spin models constructed with the
three Pauli matrices on each lattice site, we can envision a
whole class of quantum models with more interesting
symmetries constructed with the five anticommuting
Dirac matrices. In this appendix, we discuss some simple
models constructed using the Dirac matrices and refer to
them as gamma matrix models.
Since the five Dirac matrices, γμ; μ ¼ 1;…; 5, transform

as a 5-vector under the SO(5) group, models of the form

H ¼
X
i≠j

X5
μ¼1

Jð5Þij γμi γ
μ
j ðB1Þ

are invariant under Spin(5). This model is a natural
extension of Heisenberg spin-half models that are invariant
under Spinð3Þ ≃ SUð2Þ symmetry. An interesting question
is whether these classes of models in three spatial dimen-
sions can naturally lead to topological θ terms involving the
SO(5) symmetry, in analogy to Heisenberg spin-half chains
which lead to such terms involving the SO(3) symmetry.
From the perspective of Pin(4) symmetry, the four

matrices γμ; μ ¼ 1, 2, 3, 4 transform irreducibly as 4-vectors
under the O(4) group. Further, γ5 is invariant under Spin(4)
but not under Pin(4) since it breaks the Z2 symmetry. Thus,
the model

H ¼
X
i≠j

X4
μ¼1

Jð4Þij γ
μ
i γ

μ
j þ h

X
j

γ5j ðB2Þ

is invariant under Spin(4) when h ≠ 0 and not Pin(4). In this
work, we study the nearest neighbor version of this model in

one spatial dimension with Jð4Þij ¼ J and argue that the
model contains the well-known transition between the two
phases predicted by the LSM theorem as we vary h. This is
because breaking the Pin(4) symmetry makes the model
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similar to the SU(2) spin model but with induced frustrating
interactions that allow for a phase transition.
By restricting the values of μ that enter in the defining

Hamiltonians, like in Eqs. (B1) and (B2), we can get more
models, many of which have local symmetries. This
implies that the Hilbert space of the models decomposes
into sectors that do not mix. Breaking these local sym-
metries by small amounts can lead to interesting physics.
This feature of gamma matrix models is illustrated by
considering the

H ¼
X
i≠j

X3
μ¼1

Jð3Þij γ
μ
i γ

μ
j þ h

X
j

γ5j : ðB3Þ

Note that when h ¼ 0, the Hamiltonian H defined in
Eq. (B3) has a local symmetry U(1) generated by Qk ¼
iγ4kγ

5
k at every spatial site k, i.e., ½H;Qk� ¼ 0. The set of

eigenvalues of Qk, which we will define as fbkg, can be
used to label Hilbert space sectors of the model that do not
mix. Interestingly, in each of these sectors the Hamiltonian
describes a spin-half model sinceH also has a global SU(2)
symmetry generated by σ23, σ31, σ21. If we now switch on
the h term, the local symmetry is broken and the various

local symmetry sectors can begin to mix. By choosing Jð3Þij

carefully, we believe that models of this type can induce
interesting long-distance physics.

APPENDIX C: EXACT GROUND STATE

Following the ideas of Majumdar and Ghosh [39], it is
possible to find the exact ground state of a modified GMM
model with a next-to-nearest-neighbor interaction, with the
Hamiltonian

HNNGMM ¼
X
j

X4
μ¼1

ðJγμjγμjþ1 þ J0γμjγ
μ
jþ2Þ: ðC1Þ

When J ¼ 2J0 ≥ 0, we obtain the Majumdar-Ghosh
gamma matrix model

HMGGMM ¼ J
4

X
j

�X4
μ¼1

ðγμj þ γμjþ1 þ γμjþ2Þ2 − 12

�
: ðC2Þ

We can show rigorously that the ground state of HMGGMM
on a periodic lattice with an even number of lattice sites
L ≥ 6 is doubly degenerate. The two linearly independent
but nonorthogonal ground states are given by

jψi� ¼ ⊗
i¼1;3;5…

ji; i� 1i ðC3Þ

where ji; ji is defined as the Spin(4) singlet ground state of
the two-site Hamiltonian

hij ¼
X4
μ¼1

γμi γ
μ
j : ðC4Þ

In the Weyl basis introduced in Appendix A, this is

ji;ji¼1

2
ðe1i ⊗e2j −e2i ⊗e1j −e3i ⊗e4j þe4i ⊗e3jÞ; ðC5Þ

where eμi is the unit vector pointing in the μth direction in
the site-i local Hilbert space.
While it is easy to see that the two states given by

Eq. (C3) are ground states ofHMGGMM, it is subtle to prove
they are the only ground states. From numerical studies, we
observe that there are only two ground states for even L in
the range 6 ≤ L ≤ 20, see Fig. 2. Here we sketch steps of a
rigorous proof that the ground state is twofold degenerate
for all even system sizes L ≥ 6.
The essential idea is to begin with the ground state

subspace of the three-site Hamiltonian K1 where we define

Ki ¼
X4
μ¼1

ðγμi þ γμiþ1 þ γμiþ2Þ2 ðC6Þ

as the Hamiltonian for the three-site problem involving the
sites i, iþ 1, and iþ 2. We will not impose periodic
boundary conditions until the end. While the full Hilbert
space of the three-site problem is 64 dimensional, one can
show that the ground-state subspace is only 12 dimen-
sional. While an orthonormal basis of this subspace
contains states that entangle all three sites, one can choose
a linearly independent (nonorthogonal) basis that is rather
simple to visualize. This basis can be represented picto-
rially using two-site singlets, as shown in Fig. 6.
We then add one additional neighboring lattice site and

consider the four-site problem with a 256-dimensional
Hilbert space. When we consider the ground state subspace
of the Hamiltonian K1 þ K2, the Hilbert space is reduced
to 18-dimensional subspace spanned by the linearly

FIG. 6. The 12-dimensional ground state subspace of Ki where
the three sites are i, iþ 1, and iþ 2 shown as crosses. The red
bond between the sites represents the SO(4) singlet state ji; ji. An
isolated cross, not connected to its neighbors, represents a four-
dimensional Hilbert space of a single site. We refer to such sites
as “dangling” sites in our discussion. Thus each diagram shown
represents a four-dimensional subspace of the 64-dimensional
three-site Hilbert space. All the vectors shown can be shown to be
linearly independent.

FIG. 7. The 18 linearly independent states that span the ground
state of the four-site Hamiltonian K1 þ K2 are shown. The bonds
and the free sites have the same meaning as Fig. 6.
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independent states shown in Fig. 7. One can view this
reduced subspace as the intersection of the ground state
subspaces K1 and K2 in the four-site Hilbert space, each of
which is 48 dimensional.
We can then repeat this process by adding one additional

site. In the five-site problem, the intersection of the 72-
dimensional ground state subspace of K1 þ K2 and the
192-dimensional ground state subspace of K3 turns out to
be eight dimensional, which is pictorially shown in Fig. 8.
Going to six sites, the intersection of the 32-dimensional
ground state subspace of K1 þ K2 þ K3 and 768-
dimensional ground state subspace of K4 turns out to be
17 dimensional, shown pictorially in Fig. 9.
Beyond six sites, as we add more sites, the analysis can

be shown to repeat. In general, for L sites we can show that
the low-energy subspace of the Hamiltonian K1 þ K2 þ
� � � þ KL−2 is eight dimensional if L is odd and 17
dimensional if L is even. Pictorially the linearly indepen-
dent states can be understood as extensions of Figs. 8 and 9.
When L is odd, there is a dangling site on the right or a
dangling site on the left, with Spin(4) singlets connecting
all other nearest neighbors. Each dangling site counts as
four states. When L is even, either the Spin(4) singlets
connect all neighboring sites starting from one end, or there
are two dangling sites at the ends while the remaining sites
are connected as Spin(4) singlets. The former counts as one
state while the latter counts as 16 states.
If we impose periodic boundary conditions and only

consider even L ≥ 6, the ground state subspace reduces to
being two dimensional. Now there are no dangling spins
allowed and the two dangling spins at the two ends are
connected as a Spin(4) singlet. These are the two states
given in Eq. (C3).

APPENDIX D: LIEB-SHULTZ-MATTIS
THEOREM

In this section, we prove that the LSM theorem applies to
our model, in that the TFGMM cannot have a unique
gapped ground state in the thermodynamic limit.

The LSM theorem has two parts. First, we need to show
there is a state jψ twisti orthogonal to the unique ground state
jψ0i of HL for any L; then, we show this state’s energy
expectation value converges to the ground state energy E0

as L → ∞. The first part will follow from standard argu-
ments once we find a translation-invariant global U(1)
symmetry generator whose local density operator has half-
odd-integer eigenvalues. This part is independent of the
specific form of the Hamiltonian. The second part deviates
from the original proof of the LSM theorem [40] because it
depends on the specifics of the Hamiltonian. In particular,
unlike the Heisenberg spin chain, the TFGMM bond
operator ĥi;j is not a product of the symmetry generators.
Nevertheless, the spectral gap can be shown to be bounded
above by 1

L using a trick we learned from [41,42].
The lattice is modeled by Λ ¼ Z>0, i.e. the set of all

positive integers, and we define the length-L intervals
ΛL ¼ fx∈Λj1 ≤ x ≤ Lg for any even integer L. For each
L, the periodic Hamiltonian is

HL ¼ ĥL;1 þ
XL−1
j¼1

ĥj;jþ1; ðD1Þ

where the symmetrized bond energy operator is

ĥi;j ¼ Jγμi γ
μ
j þ

h
2
ðγ5i þ γ5jÞ: ðD2Þ

The ground state and ground state energy of HLi
are

denoted by jψ0i and E0, respectively, where we do not
explicitly show the dependence on lattice size L.
If there is an infinite strictly increasing sequence of

lattice sizes L for which the TFGMM has a degenerate
ground state, we would have obtained the desired result,
and nothing else needs to be done. Thus, from now on we
assume we are given a sequence of sublattices fΛLi

ji∈Ng
with the associated periodic Hamiltonian HLi

such that
Li ∈ 2Z, Li < Liþ1, and the ground state jψ0i of HLi

is
unique for each sufficiently large finite Li.
Define the twist operator to be

Ûtwist ¼ exp

�
−i

XL
j¼1

2πj
L

ŜðzÞj

�
: ðD3Þ

Here

ŜðzÞj ¼ 3Mþ
3;j þM−

3;j; ðD4Þ

where M�
3;j are site-j operators as in Appendix A:

M�
3;j ¼ −

1

2
ðσ12j � σ34j Þ: ðD5Þ

FIG. 8. The ground state subspace of the five-site Hamiltonian
K1 þ K2 þ K3 is eight dimensional and is shown here pictorially.

FIG. 9. The ground state subspace of the six-site Hamiltonian
K1 þ K2 þ K3 þ K4 is 17 dimensional and is shown here
pictorially. Note that it is no longer 18 dimensional since one
of the states shown in Fig. 7 is not allowed.
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The specific linear combinations ofM�
3;j in the definition of

ŜðzÞj is chosen so that, in the Weyl basis, the matrix of ŜðzÞj is
diagonal with half-odd-integer eigenvalues � 3

2
;� 1

2
. Since

ŜðzÞj is a linear combination of M�
3;j, the operator ŜðzÞtot ¼P

L
j¼1 Ŝ

ðzÞ
j is a global U(1) symmetry generator of TFGMM.

These two facts, that ŜðzÞj has half-odd-integer eigenvalues

and ŜðzÞtot being a global U(1) symmetry generator of our
theory, are essential to proving the first part of the LSM
theorem. The rest of the argument is standard.
Define the twisted state jψ twisti ¼ Ûtwistjψ0i. If jψ0i is

normalized, then so is jψ twisti, because Ûtwist is unitary.
Define Etwist as the energy expectation value with respect to
jψ twisti:

Etwist ¼ hψ twistjHLjψ twisti: ðD6Þ

Lemma D.1. The twisted state jψ twisti is orthogonal to the
unique ground state jψ0i:

hψ twistjψ0i ¼ 0: ðD7Þ

Proof. The translation T̂ acts on ¼ ŜðzÞi by

T̂†ŜðzÞj T̂ ¼ ŜðzÞj−1; T̂†ŜðzÞ1 T̂ ¼ ŜðzÞL ðD8Þ

for any j ¼ 2; 3;…; L. It follows that

T̂†ÛtwistT̂ ¼ ei2πŜ
ðzÞ
L Ûtwiste−ið2π=LÞŜ

ðzÞ
tot ðD9Þ

¼ −Ûtwiste−ið2π=LÞŜ
ðzÞ
tot ; ðD10Þ

where the second line follows from the fact that the

eigenvalues of 2ŜðzÞL are odd integers. The unique ground
state must be a singlet under all symmetry operators: for the

U(1) generator, ŜðzÞtot jψ0i ¼ 0, whereas it can at most gain a
phase under translation, T̂jψ0i ¼ e−iθjψ0i. Then

hψ0jψ twisti ¼ hψ0jÛtwistjψ0i ðD11Þ

¼ hψ0jT̂†ÛtwistT̂jψ0i ðD12Þ

¼ −hψ0jÛtwiste−ið2π=LÞŜ
ðzÞ
tot jψ0i ðD13Þ

¼ −hψ0jÛtwistjψ0i ðD14Þ

¼ −hψ0jψ twisti: ðD15Þ

Therefore hψ0jψ twisti ¼ 0. ▪
Now we will prove the second part of the LSM theorem,

using the specific form of the TFGMM Hamiltonian. We
will make use of the concept of an operator norm: the

operator norm kÂk of a self-adjoint operator Â is the
smallest upper bound to the magnitude of the operator’s
eigenvalues.
Lemma D.2. For all L ≥ 10,

0 ≤ Etwist − E0 ≤
C
L

ðD16Þ

where C ¼ 40π2jJj.
Proof. The upper bound of the spectral gap Etwist − E0 is

typically derived by evaluating the operator norm of some
local operator Âj constructed out of ĥi;iþ1 and Ûtwist. We
note that

0 ≤ E0
twist − E0 ¼ hψ0jÛtwist½HL; Û

†
twist�jψ0i; ðD17Þ

where

E0
twist ¼ hψ 0

twistjHLjψ 0
twisti; ðD18Þ

jψ 0
twisti ¼ Û†

twistjψ0i: ðD19Þ

Hence,

Etwist − E0 ¼ hψ0jÛ†
twist½HL; Ûtwist�jψ0i ðD20Þ

≤ hψ0jÛ†
twist½HL; Ûtwist�jψ0i

þ hψ0jÛtwist½HL; Û
†
twist�jψ0i ðD21Þ

¼ hψ0j½Û†
twist½HL; Ûtwist��jψ0i ðD22Þ

¼
XL
j¼1

hψ0j½Û†
twist½ĥj;jþ1; Ûtwist��jψ0i

≤
XL
j¼1

kÂjk; ðD23Þ

where, Âj ¼ ½Û†
twist½ĥj;jþ1; Ûtwist�� with ĥL;Lþ1 ≡ ĥL;1. We

now show that, for all sufficiently large L,

kÂjk ¼ k½Û†
twist; ½ĥj;jþ1; Ûtwist��k ≤

C
L2

ðD24Þ

for some constant C > 0 that does not depend on j, L. We
find that the nonzero eigenvalues of Âj are

� 8Jsin2
�
π

L

�
; �8Jsin2

�
2π

L

�
; ðD25Þ

�8J

�
3þ 2 cos

�
2π

L

��
sin2

�
π

L

�
; ðD26Þ

TRANSVERSE FIELD γ-MATRIX SPIN CHAINS PHYS. REV. D 110, 094510 (2024)

094510-11



�8J sin

�
3π

L

�
sin

�
π

L

�
: ðD27Þ

These eigenvalues are bounded above by 40π2jJj
L2 for any

L ≥ 3π, because

0 ≤ sinðxÞ ≤ x; ∀ x∈ ½0; 1�: ðD28Þ

Therefore,

0 ≤ Etwist − E0 ≤
XL
j¼1

40π2jJj
L2

¼ 40π2jJj
L

ðD29Þ

for all L ≥ 10. ▪
Lemmas D.1 and D.2 lead to the LSM theorem:
Theorem D.3. The TFGMM cannot have a unique

gapped ground state in the thermodynamic limit.

Proof. Assuming the TFGMM has a unique ground
state in the thermodynamic limit, we will show that it
cannot be gapped. If the unique ground state were gapped
in the thermodynamic limit, then all states orthogonal to
jψ0i must have energy expectation higher than E0 by at
least ΔE > 0. However, by Lemma D.1, there is a
normalized state jψ twisti orthogonal to jψ0i for any L,
and, by Lemma D.2, its energy expectation Etwist con-
verges to E0 as L → ∞. Therefore, the TFGMM cannot
have a unique gapped ground state in the thermody-
namic limit. ▪
While we proved the second part of the theorem

specifically for the TFGMM, a more general proof can
be extended to a large class of γ-matrix models without
making assumptions of the specific form of the model,
see [41].
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