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Abstract

Generalized splines are an algebraic combinatorial framework that generalizes
and unifies various established concepts across different fields, most notably the
classical notion of splines and the topological notion of GKM theory. The for-
mer consists of piecewise polynomials on a combinatorial geometric object like a
polytope, whose polynomial pieces agree to a specified degree of differentiability.
The latter is a graph-theoretic construction of torus-equivariant cohomology that
Shareshian and Wachs used to reformulate the well-known Stanley—Stembridge con-
jecture, a reformulation that was recently proven to hold by Brosnan and Chow and
independently Guay-Paquet.

This paper focuses on the theory of generalized splines. A generalized spline on a
graph G with each edge labeled by an ideal in a ring R consists of a vertex-labeling by
elements of R so that the labels on adjacent vertices u, v differ by an element of the
ideal associated to the edge uv. We study the R-module of generalized splines and
produce minimum generating sets for several families of graphs and edge-labelings:
1) for all graphs when the set of possible edge-labelings consists of at most two
finitely-generated ideals, and 2) for cycles when the set of possible edge-labelings
consists of principal ideals generated by elements of the form (az + by)? in the
polynomial ring C[x,y]. We obtain the generators using a constructive algorithm
that is suitable for computer implementation and give several applications, including
contextualizing several results in the theory of classical (analytic) splines.
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1 Introduction

Splines are a fundamental tool in applied mathematics and analysis, used in fields from
data interpolation [dBO1] to computer graphics and design [BBB87]. Classically, they
are defined as piecewise polynomials on a combinatorial partition of a geometric object
that agree up to some specified differentiability on the intersection of the top-dimensional
pieces of the partition. The most common example of these combinatorial partitions in
the literature is a polyhedral or simplicial decomposition of a suitable region in Euclidean
space.

Splines also appear in algebraic topology under the name GKM theory. GKM theory
is a graph-theoretic construction of torus-equivariant cohomology developed by Goresky,
Kottwitz, and MacPherson [GKMO98]. It has had particular impact in algebraic combi-
natorics, especially Schubert calculus [KT03, Tyml16a]. More recently, Shareshian and
Wachs conjectured that GKM theory could be used to reframe what’s called the Stanley-
Stembridge conjecture in combinatorial representation theory as a conjecture about a
symmetric group action on the torus-equivariant cohomology of a particular family of
varieties [SW16]. Their geometric interpretation of the Stanley—Stembridge conjecture—
though not the conjecture itself—was recently proven to hold by Brosnan and Chow and,
independently, Guay-Paquet [BC18, GP13]. This has led to an explosion of work relying
on properties of splines in the GKM context [AHM19, HPT22, HP22].

This paper considers a simultaneous algebraic generalization of both classical splines
and the splines occurring in GKM theory: given a (combinatorial) graph G with each
edge labeled by an ideal in some fixed ring R, a generalized spline is an R-labeling of the
vertices so that the labels on adjacent vertices u, v differ by an element of the ideal label-
ing the edge uv. This formulation is due to work of the third author with Gilbert and Viel
[GTV16], but was first used by Billera [Bil88] and (in the context of equivariant cohomol-
ogy) by Guillemin—Zara [GZ00, GZ0la, GZ01b]. The construction of generalized splines
is essentially dual to the classical definition of splines [Bil88, Theorem 2.4] (equivalently,
Proposition 54). For example, in the case of a triangulation of a region in the plane, the
vertices of G correspond to triangles of the triangulation, and the edge-relations corre-
spond to differentiability conditions across intersections of triangles. Generalized splines
coincide with the typical construction of GKM theory if the graph, the ring, and the ideals
all satisfy very particular conditions [GKMO98|. (See Section 6 for more.)

One of the most important problems in the study of splines is to identify the size of the
spline space, interpreted either as the dimension of the vector space of classical splines of
degree at most d [AS87, AS90, Hon91, SSY20, SS02, Sch79, YS19, Str74] (see [LS07] for
a survey in the bivariate case) or as the (minimum) number of generators of the module
of generalized splines [AS21b, AS21a, BR91, DiP12, GZ01b, GZ03, BHKR15, GTV16,
ACFG*20].

In this paper, we compute the minimal number of generators of the module of gener-
alized splines over several families of graphs for different collections of rings. Our most
general result is Theorem 12, which gives an algorithm using graph connectivity to com-
pute a minimum set of generators for the module of generalized splines over any graph G
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whose set of edge-labels consists of at most two distinct ideals. The only hypothesis on
R is that it be a unique factorization domain (UFD). Theorem 10 specializes to the case
when all edges of G are labeled by the same ideal; in that case, if the ideal is principal
then the module of generalized splines is free over R and its rank is precisely the number
of vertices in G.

We then specialize R to be a polynomial ring, typically using the assumption that the
edge-labels are principal ideals generated by homogeneous polynomials of the same degree.
These assumptions may seem restrictive but are not. Indeed, in both classical splines and
GKM theory, splines use polynomial rings as their base ring; furthermore, all known
applications use principal ideals as edge-labels. (See Remark 9 and Sections 6.1 and 6.2
for more extensive discussion.) Moreover, the edge-labels used in GKM theory arise as
the weights of torus actions on a geometric space, and are naturally homogeneous. Even
in cases when the edge-labels are not a priori homogeneous (as in classical splines), we
can homogenize. (See Section 5.2 for more details about homogenization.) Corollary 55
proves that homogenization induces a natural vector space isomorphism between the
classical vector space of splines of degree at most d and the module of generalized splines
over the polynomial quotient

Rlzy, z9, ..., x,]/(all monomials in the x; of degree at least d + 1)

considered as a real vector space. Corollary 55 is an application of the general framework
of quotient splines that we develop in Section 5, together with Billera’s result.

Classical splines do not naturally form a ring since multiplication generally increases
degree. This is in contrast to the setting of generalized splines, where the module of
generalized splines associated to a fixed ring and edge-labeled graph actually forms a ring.
(See the discussion after Remark 4.) However, identifying the vector space of classical
splines with the elements of this quotient space allows us to consider a ring structure on
splines. In this sense, Corollary 55 provides a new algebraic tool for classical splines.

Under the assumptions of the previous paragraph, we prove one other main result.
Theorem 30 computes explicit homogeneous generators for all generalized splines on cycles
whose edges are labeled by polynomials of the form (z + ay)® and shows that these
generalized splines cannot be obtained from fewer generators. Indeed, it shows that these
generators form a basis. This is a remarkably uniform result that depends only on the
number of distinct edge-labels, and not the underlying geometry.

Corollary 31. Suppose C,, is a cycle with n vertices and that each edge is labeled by
a principal ideal generated by a polynomial of the form (x + ay)®. Then the module of
generalized splines has a basis of the following form:

e [f there is only one distinct edge-label: one homogeneous generator of degree zero
and n — 1 of degree two.

e [f there are two distinct edge-labels: one homogeneous generator of degree zero, n—2
of degree two, and one of degree four.
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o [f there are at least three distinct edge-labels: one homogeneous generator of degree
zero, n — 3 of degree two, and two of degree three.

Section 6.3 focuses on applications related to the lower bound conjecture in the classical
theory of bivariate splines. Given nonnegative integers r and d, as well as a triangulation
of a region A in the plane, the space of splines S%(A) is the R-vector space of functions
F: A — R with the properties that the restriction of F' to each triangle in the triangula-
tion of A is a polynomial of degree at most d, and that F is continuously differentiable
of order r on A. (See Definition 52 for a definition of S}(A) for more general spaces A.)

The lower bound conjecture arises from an explicit polynomial in 7,d constructed
from a triangulation of a given region A of the plane. Strang conjectured that this
polynomial computes the dimension of S}j(A) for specific families of r, d, and A [Str74].
Schumaker showed that in fact the polynomial is a lower bound for all r,d, A [Sch79].
Considerable work has happened on this problem since: Alfeld and Schumaker showed
that the polynomial gives the dimension when d > 4r + 1 [AS87], which Hong later
tightened to d > 3r + 2 [Hon91]; at the same time, Billera proved Strang’s conjecture for
r =1 and d = 3 as long as the triangulation A is generic [Bil88].

Our last two results provide a theoretical foundation contextualizing the lower bound
formula when r = 1 and d = 3. In this case, most mathematicians believe the formula
actually computes the dimension of S3(A); there are no known counterexamples to this
claim despite significant and ongoing efforts [SS02, YS19, SSY20]. (See [LS07, Chapter
9] for more history and context.)

We show:

e Theorem 30, Lemma 63, and Corollary 65 together give an alternative proof of
Schumaker’s characterization of classical splines on a single interior cell, namely
the “pinwheel triangulations” consisting of a single interior vertex and a number
of triangles incident to that vertex and covering a small neighborhood around that
vertex [LS07, Theorems 9.3 and 9.12].

e When r» = 1 and d = 3, the lower bound formula consists of terms contributed by
boundary and interior vertices of the triangulation, a correction term for certain
interior vertices called “singular vertices,” and a constant term from polynomials
defined on the entire triangulation (not piecewise). Corollary 67 explains the correc-
tion term accounting for “singular vertices” as the unique geometrically realizable
triangulations that correspond to cycles with exactly two distinct edge-labels.

2 Generalized splines on graphs

This section reviews basic definitions and constructions, including terminology from graph
theory and essential results about generalized splines. We state most results in this
paper for generalized splines on connected graphs because splines for arbitrary graphs
can be obtained from generalized splines on the connected components via direct sum
(see Proposition 5).
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2.1 Graphs

For a graph G = (V, E), we denote its (finite) set of vertices by V and its (finite) set of
edges by E. We write elements of E as pairs of distinct vertices; for example, e = uwv is
the edge that joins vertex u and vertex v, and we say u and v are adjacent. (Note that
uv = vu since edges are unoriented.) Graphs in this paper have at most one edge between
any given pair of vertices.

If G = (V', FE') is another graph such that V' C V and E' C E, then G’ is called a
subgraph of G. The induced subgraph G[V'] of V' is the graph with vertex set V' and edge
set consisting of all edges in E with both vertices in V'. The neighborhood Ng(V') of V'
is the set of vertices in V' that are adjacent to at least one vertex in V'. We also define
the graph G — E' := (V,E\ E').

A path in G is a finite sequence of edges (ujus, uss, . . ., Up_oUp_1, Un_1Uy,), With each
u; € V, such that each pair of successive edges shares a vertex. A connected component of
G is a subgraph G’ of G with the property that any two vertices of G’ are joined by a path
lying entirely in G’. If G has exactly one connected component, then G is a connected
graph.

Proposition 2. If G = (V, E) is a connected graph, then there is an ordering vi, ..., vy
on V' such that for every 1 < i < |V| the vertex v; is adjacent to at least one of the vertices
V1,V2y ..., Vj—1-

Proof. We proceed by induction on the number of vertices currently ordered. For the
base case, arbitrarily choose a first vertex v; € V. Assume as inductive hypothesis
that we have ordered vy, ..., v for some 1 < k < |V| so that v; is adjacent to at least
one of the vertices vy, vy, ...,v;_1 for each i < k. Suppose that £ < |V] and that the
neighborhood Ng({v1,...,vx}) is contained in the set {vy,...,vx}. Then no vertex in
V — {v1,..., v} shares an edge with any vertex in {vi,...,vg}. This means that G is
disconnected, contradicting our hypothesis on G. Thus if |[V| > k + 1 there is some
vg+1 € Ng({v1, ..., vt}), and the claim holds by induction. O

2.2 Generalized splines and minimum generating sets

Let R be a commutative ring with identity denoted by 1. (We will add more conditions
on R as they become necessary.) Let Z be the set of ideals of R. A function a: £ — 7
is called an edge-labeling of G. We write (G, «) to mean a graph together with an edge-
labeling, and call it an edge-labeled graph. If |a(E)| < k, then we call (G, «) a k-labeled
graph. Note that, we have suppressed explicit mention of the vertex set and edge set in
the notation of an edge-labeled graph, but these will always be clear from context.

Definition 3. Let (G, «) be an edge-labeled graph. A generalized spline on (G, «) is a
vertex-labeling p € @, ., R that satisfies the GKM condition:

for every edge e = uv € E, the difference between
coordinates at the endpoints is p, — p, € a(e).

ot
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U1 V2

= (0, ij, j2
N P=O0)

Figure 1: An edge-labeled complete graph on three vertices together with a spline p on
it. Here i,j € R.

For the remainder of the paper, we write “spline” to mean “generalized spline”, unless
we specifically write “classical spline”. We also note that the definition of spline makes
sense for noncommutative rings R, but, to our knowledge, this has not been explored
deeply in the literature.

We sometimes write a spline p = (py,,- - - s Puy) 28 a |V |-tuple when we have a
particular ordering on V' in mind. See Figure 1 for an example of a spline on an edge-
labeled graph.

Remark 4. The name “GKM condition” (also appearing in [GTV16]) refers to work by
Goresky, Kottwitz, and MacPherson, where this condition appears while combinatorially
computing the equivariant cohomology of certain varieties carrying well-behaved torus
actions [GKM98].

We write R¢ ,, for the set of splines on the edge-labeled graph (G, ). It is well known
that R, is itself a ring with identity [GTV16, Proposition 2.4]. The unit 1 € Rg 4 is given
by 1, = 1 for all vertices v. (We call 1 the trivial spline.) Addition and multiplication in
R¢ o are defined pointwise; that is, (p + q), = py + q» and (pq), = pP,q, for all v € V.
Moreover, R¢, carries the structure of an R-module given by 7 - p = (rp,)yev for any
r € R.

The following proposition from [GTV16] confirms that our results extend from con-
nected graphs to arbitrary graphs. Recall if G’ = (V' E’) and G” = (V", E") are graphs,
then their union is defined as

GuUG =(V'UV" E UE".

Proposition 5 (|[GTV16, Proposition 2.11]). Let (G',a/) and (G",a") be two disjoint
edge-labeled graphs, namely V'OV" = and E'NE" = 0. If G = G'UG” and « is the edge-
labeling on G defined by restricting to o on G' and " on G", then Rg o = R o ® Ry o

In this paper, we present algorithms for producing minimum generating sets for R¢ o
for a variety of edge-labeled graphs (G, «).

Definition 6. A generating set B for R, is a set of splines in Rg, which generates
Ri o as an R-module. The set B is called a minimum generating set (MGS) if it is a
generating set with the property that no other generating set has fewer elements than B.

The general question of when Rg, is a free R-module is complicated. In topolog-
ical applications, Rq, is typically assumed to be free—this is the main implication of
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equivariant formality, which is one of the hypotheses in the machinery of GKM theory
(see [GKM9S8, TymO05] for more details). In analytic applications, they need not be (see,
for example, [DiP12]). For the most part we do not address this question, though the
following lemma applies to several of our results.

Lemma 7. Let R be an integral domain and (G,«) be an edge-labeled graph. If B is an
MGS for Re,o that is triangular' with respect to some vertex ordering vy, ..., vy on V,
then R o 15 a free R-module with basis B.

Proof. Since the MGS B is triangular, it has at most |V/| elements and we may order the
basis elements B = {b",b",... b} so that b} = 0 for all j < i and b}, # 0 for all
1€ {il,ig, R ,’ik/}.

Now suppose } 1icp ¢;b® = 0 is a linear dependence. We prove by induction on ¢ that
all ¢; are zero—the base case, that ¢;, = 0, is clear by triangularity. If ¢; = 0 for all 7 < 7,

then we have

Z Cibz’io - Ciobigo7

bieB
since all ¢; with ¢ < 7y are zero by the inductive hypothesis and all bim with ¢ > 1y are
zero by triangularity. We assumed the displayed expression was zero, so ciobfgo = 0. But

bfﬁ is nonzero by assumption and R is an integral domain, so ¢;, is zero. The claim
0
follows. o

The next result gives a lower bound on the number of elements of an MGS. (This
lower bound does not hold if R has zero divisors [BT15].)

Lemma 8. If R is an integral domain, then the number of elements of an MGS B is at
least |V/|.

Proof. If R is an integral domain and (G, «) is a connected edge-labeled graph, then
the module of splines Rg, contains a free R-submodule M generated by |V| elements
[GTV16, Corollary 5.2]. Now consider the image of the R-modules Rg, 2 M under the
map induced by including R into its field of fractions. The image of M is a vector space
of dimension |V| and the image of Rg , is a vector space that both contains the image of
M and is generated by the image of B. Thus there are at least |V| elements in B. O

Remark 9. Many of our key results apply to edge-labelings by finitely-generated ideals.
However, our results treat principal ideals. We do this for two reasons. First, most
applications of splines use edge-labels that are principal ideals (see Section 6 for more).
Second, our arguments usually generalize easily to finitely-generated ideals. Indeed, the
main step of many of our arguments uses triangular MGSs in which each generator also
satisfies b!, € {0,r} for all w € V and some fixed ring element r. In this context, it is
straightforward to extend the main results of this paper from edge-labels that are principal

YAn MGS B is (upper or lower) triangular with respect to a vertex ordering vy, ... ;v on V' if, after
ordering the entries of the elements of B according to the ordering on V', the matrix whose columns
are the elements of B is a (upper or lower) triangular matrix with nonzero diagonal entries.
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ideals to edge-labels that are finitely generated: instead of creating a single spline b? for
which bf)l_ generates the principal ideal associated to an edge incident to v;, we create a
set of generators {b*! b®? ... b® } that minimally generate the ideal labeling that edge.
(This kind of argument has been used previously in the literature [HT'17, Propositions 2.4
and 2.6].) Expanding the generator set in this fashion gives analogous versions for edge-
labelings with finitely-generated ideals of Theorem 10, Theorem 12, and the dimension
computations in Corollary 27.

3 Algorithm to produce an MGS on 2-labeled graphs

Recall that a k-labeled graph is an edge-labeled graph (G, «) such that |a(E)| < k; i.e.,
the set of edge-labels used consists of at most k distinct ideals. In this section, we give
an algorithm to produce an MGS for an arbitrary connected 2-labeled graph (G, «). As a
warm-up, in Section 3.1, we treat the 1-labeled case; in Section 3.2, we treat the 2-labeled
case. Throughout this section, G denotes an arbitrary connected graph.

3.1 One edge-label

Let a: E — 7 be a constant edge-labeling function; that is, the image of o consists of
a single principal ideal I = (i). For a given v € V', denote by IV the indicator spline of
the ideal I at the vertex v. In other words, I" is the spline with I!, =i and I}, = O for all

u # v.

Theorem 10. Fiz an ordering vy,...,vyy| on V as in Proposition 2, and let a: B — 1
be the constant edge-labeling a(e) =1 = (i) € Z for alle € E.

Then the set B = {1,1"2,...,I"Vi} is an MGS for Rg .. Moreover, if R is an integral
domain then Rqq s a free R-module with basis B.

Proof. Let p € Rgo be an arbitrary spline. We claim that there exist ro,..., 1y € R
such that
P =Py, 1+ 70 4o IV (1)

We will prove the following statement, which is equivalent to Equation (1): for every
2 < j < |V, there exists r; € R such that p,, — p,, = r;i. We proceed by induction on j.

When j = 2, Proposition 2 ensures that vy is adjacent to vy. Thus there exists r, € R
such that p,, — py, = m2i € a(vavy), as desired.

Our inductive hypothesis states: if j € {2,...,|V| — 1}, then for all £ with 2 < k < j
there exists r;, € R such that p,, —p,, = r%i. By Proposition 2, the vertex v;4; is adjacent
to some v, with 1 < ¢ < j. If v;4, is adjacent to vq, then the GKM condition ensures
that there exists 7;,1 € R with p,,,, — Py, = 7411 as desired. Otherwise, the spline
P — Py, 1 — 71" satisfies

0 when u = vy,

J— — Ve =
(P = Pu 1 —rd™), { Pv; — Py When u = v; for ¢ # £.
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The GKM condition when u = v;;; implies that there is some 7;4; € R such that
P 1 — Puy = Tj41i € a(vj41v¢). Equation (1) follows by induction, so B is an MGS for
Rg o by Lemma 8.

Finally, if R is an integral domain then Lemma 7 applies, proving that Rq, is free
with basis B. O]

3.2 Two edge-labels

Now suppose the edge-labeling ov: E — 7 has image {I, J} C Z with I = (i) and J = (j).
The theorem below gives an algorithm for producing an MGS for Rg,. The basic idea
of the proof is to consider the neighbors of each vertex v; successively. If v; is connected
to the first ¢ — 1 vertices only through paths with a single edge-label, then we can find
a generator that uses only that edge-label; otherwise, we need a generator that is an
indicator spline with nonzero entry given by the product of the two edge-labels.

We start with a graph-theoretic lemma. Recall that a simple path is a path in which
no vertices are repeated.

Lemma 11. Let (G,«) be a connected edge-labeled graph with edge-labeling a: E — T
such that |a(E)| = 2. Fiz a vertex w and a subset of vertices S CV — {u} with nonempty
intersection Ng({u}) NS. Then the following are equivalent:

1. Choose any u' € S. Let
G'=G—{vw e FE|a(vw) = aluu)}

and let C' = (V' E") be the connected component of G' containing w. Then V' NS
15 empty.

2. Every simple path from u to a vertex in S has at least one edge labeled a(uu’).

Proof. Let a(uu') = I and write o(F) = {1, J}. The edges in G’ are precisely the edges
in G that are labeled J. The vertex u is connected to a vertex v’ in the graph G’ if and
only if there is a path between v and v’ in G’ — in other words, if and only if there is a
path from u to «’ whose edges are all labeled J. It follows that Condition 1 fails if and
only if Condition 2 fails, as desired. O

We now prove our claim.

Theorem 12. Let R be a UFD. Let (G,«) be a connected edge-labeled graph with edge-
labeling o: E — T having image {(i), (j)}. Choose an ordering on V as in Proposition 2.
For every 1 < i < |V|, define the spline b* as follows. Choose some v; € Ng({v;}) with
J <1, and write (k) := a(v;v;). Let

G'=G—{uw € E | a(w) = (k)},

and let C' = (V'  E') be the connected component of G' containing v;.
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(a) If V' C{vi,vit1, ..., vv|}, then set bl, =k for allu € V' and b}, =0 for allu ¢ V.
(b) Otherwise, set b, =lem(i,j) and b, = 0 for all u # v;.

FEach bt depends only on the ordering of the vertices in V. and not on the choice of
vertex vj in Ng({v;}) used to define b'. Moreover Re, is a free R-module, and the set
B={1,b% ... b1} is a basis for Rq.q.

Remark 13. Note that if the image of « is a single edge-label, then C' always consists of
the single vertex v; and Case (b) never applies. Thus, Theorem 10 is a special case of
Theorem 12.

Proof. We prove that B is an MGS for Rg,. Since R is an integral domain, Lemma 7
then implies the claim.

First we show the definition of b® depends only on the order of the vertices and not on
the choice of v; € Ng({v;}). Indeed suppose we chose v; € Ng({v;}) for which Case (a)
holds. An edge is an example of a simple path; applying Lemma 11 allows us to conclude
that a(v;v;) = (k) for every edge v;v; with j' < 4. Thus if one choice of v; leads to Case
(a) then any other choice of {vq,...,v;_1} N Ng({v;}) gives rise to the same edge-label (k)
and hence the same graph G’ so also Case (a) and the same b’. Otherwise, all choices of
v; € Ng({v;}) give rise to Case (b), for which b’ is defined independent of v;.

Next we confirm that for all ¢ > 1 the function b’ is a spline. There are two cases.

(a) If b* was produced by Case (a), then for every edge uw € F

k—k=0 if both u,w are in V’,
b, —bl, =S 0-0=0 if neither w,w are in V”,
+(k — 0) = £k if exactly one of u,w are in V.

When the difference b?, —b! = 0 the function b’ satisfies the GKM condition at edge
uw trivially so the GKM condition is satisfied. If exactly one of u,w are in V' then
the edge uw was deleted from G to form G’ so a(uw) = (k). Thus b!, — b’ € a(uw)
so bt is a spline.

(b) If b’ was produced by Case (b), then for every edge uw € E the difference b!, — b’
is either zero or a nonzero element of (i) N (j). Thus b? satisfies the GKM condition
at each edge and hence is a spline.

Now we show that B = {1,b? ..., blVI} generates the set R¢ o of all splines. Let
p € Rg o be an arbitrary spline. We will confirm that p is an R-linear combination of
elements of B by explicitly identifying coefficients ry, ..., 7 € R such that

P =Pul+7rb? 4+ + bVl (2)

We induct on ¢ using the inductive hypothesis that we have a unique sequence of coeffi-
cients 71,72, ...,7i_1 € R so that i1 + ryb? + .- 4+ r,_1b""! agrees with p on the first
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1 — 1 vertices. For the base case i = 2, the assignment r; = p,, is the only coefficient for

which
Tllvl = Pu;

since 1,, is the multiplicative identity in R.
Next assume that we have a (unique) sequence of coefficients 11,79, . .., r;_1 satisfying
the inductive hypothesis. Let

q:p—rll —T2b2 —T3b3— —Tz‘_lbi_l

and note that q,; = 0 for all j <. We know q is a spline since Rg 4 is an R-module. We
will show that there is a unique coefficient r; € R solving the equation

qvi =T bl

after which the inductive claim for p follows. By Proposition 2, there is at least one
v € Ng({v;}) with k < i. Suppose without loss of generality a(vgv;) = (i). Since q,, =0
by construction, either

(i) o, € (i) N )¢ or
(i) au, € (i) N ().

By definition b{, is one of i,j, or lem(i,j). Thus in Case (ii) we know b _divides q,,. For
the same to hold in Case (i) we must show bl = i. Note first that there is no path whose
edges are all labeled (j) from v; to any v; with j < 4. Indeed, if there were, the GKM
conditions along this (j)-labeled path would imply

qvi - qu S <J>

By construction q,; = 0 so we would have q,, € (i) N (j). This contradicts the hypothesis
of Case (i). Moreover Lemma 11 shows that b’ was produced by Case (a) so b, = i.
In both cases bl divides p,,. Since R is a UFD there is a unique coefficient r; solving

_ i
pvi - ribvi

By induction, Equation (2) holds so B generates R, as an R-module.
Finally, we check that B is an MGS for Rg,. The set B has exactly |V| elements.
Lemma 8 guarantees that every MGS for Rg, has at least |V elements so the claim

follows. o
(i)
U1 (%)
Example 14. Consider the edge-labeled graph ‘ ‘ iy - Note that we have chosen
V3 (]

(i)
an ordering on the vertices as in Theorem 12 (or Proposition 2).
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To produce b?, we look at all vertices that are connected to vy by paths labeled
exclusively (j). This gives the set C" = {vy,v4}. Thus we are in Case (a), so b? is zero on
{v1,v3} and i otherwise.

Similarly, to find b® we get the connected component C’ = {v3,v,} and are again in
Case (a). In this case, b® is zero on {vy, v} and j otherwise.

However, when constructing b* we find that C" = {vs,v4}. Thus b? is lem(i, ]) on v,
and zero otherwise.

The set B = {1,b? b? b*} is an MGS for R, by Theorem 12.

Remark 15. In the theory of classical splines, the previous example (that is, a four-
cycle with two distinct edge-labels) is the unique edge-labeled graph that is dual to a
certain triangulation called, in the classical spline literature, an interior cell (or pinwheel
triangulation) containing a singular vertez. See the left picture in Figure 7 for such a
triangulation with singular vertex v. In Section 6.3, more will be said about the interesting
role that such singular vertices play in (bounds for) dimension formulas of the space of
classical splines.

4 Polynomial splines on cycles

In Section 3, we produced MGSs for arbitrary connected 2-labeled graphs. In this section,
we treat an arbitrary number of edge-labels, but we restrict the types of graphs and ideals
under consideration.

4.1 Degree sequences for splines

Let R = k[zy,...,z,] with k a field, and let (G, «) be an arbitrary edge-labeled graph.
Recall that throughout this paper, we assume that all ideals in the image of « are principal
(see Remark 9). We now add the assumption that the ideals are generated by homogeneous
elements and introduce an invariant of (G, «) called the “degree sequence”. (As described
in the introduction and in Section 6, homogeneity is a very natural condition in geometric
and classical (analytic) applications.)

Definition 16. An MGS B = {b',... b"} is called homogeneous if, for each 1 < i < n,
every nonzero entry of b’ is a homogeneous polynomial of the same degree, which we
denote as deg b’.

Definition 17. Let B be a homogeneous MGS. For each j € Zz, let d; = |[{b € B |
degb = ]}‘ Then the degree sequence of B is defined as dg = (dy, d,ds, ds, . . .).

Remark 18. The degree sequence only has a finite number of nonzero entries. For instance,
when edge-labels are principal ideals, no generator need have larger degree than that of
the product of the edge-labels. In particular, d,, = 0 if m is greater than the sum of the
degrees of the generators of the edge-labels. (See also [GTV16, Corollary 5.2].)
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For the remainder of the paper, we only consider principal ideals generated by degree-
two elements of the form (z + ay)? with 0 # a € k. (See Section 6 for how this case
appears in the study of classical splines.) For convenience, we denote these edge-labels
using a sans-serif letter; for example, we write a := (x + ay)>.

Example 19. Let k be a field, and let R = k[x,y]. Consider the edge-labeled graph
(G, a) given by

Uy

where 0 # a,b € k. This is a specialization of the edge-labeled graph in Example 14.
Theorem 12 asserts that

B =1{1,(0,a,0,a),(0,0,b,b), (0,0,0,ab)}
is a homogeneous MGS for Rq ,. The degree sequence of B is thus ds = (1,0,2,0,1).
We next prove that the degree sequence is an invariant of an edge-labeled graph.

Proposition 20. Let (G, a) be a connected edge-labeled graph with edges labeled by prin-
cipal polynomial ideals with homogeneous generators. Let B and B’ be two homogeneous
MGSs for Ra,o with degree sequences dg and dp:, respectively. Then dg = dp.

Proof Let B={b',...,b"} and B = {b", ..., b™} be two homogeneous MGSs for R ,
with degree sequences dg = (do,dy,dy,...) and dg = (d,d},dy,...). (If needed, add
terminal zeros so both sequences have the same length.) We show that d, = d. for each
r by induction on the index r and prove as our base case that dy = df,. The degree-zero
splines in Rg, generate a k-vector space. The degree-zero splines in B form an MGS
for the degree-zero splines in R¢ ,, and likewise for B’. Since MGSs in vector spaces are
bases, and in particular have the same number of elements, the base case of our induction
holds. Now assume that dy = df,,d; =d},...,d,—1 =d,_;.

Given b € B, we can write b" = k;1b' + k;job® + - -+ + k;,,b" for some coefficients
kii,...,kin € R. Note that

> kbl =0,

bies
deg b’l<deg b’

so we may assume k; ; = 0 for all deg b < degb?. It follows that

{b" € B' | degb” < r} C span({b’ € B | degb’ < r}).
A symmetric argument shows that

{b' € B| degb’ < r} Cspan({b” € B | degb” < r}).

This contradicts minimality of B or B’ unless > ;_ d; = >.._,d;. By the inductive
hypothesis, this implies d, = d... ]
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4.2 Linear algebraic background

We use the following two linear-algebraic results about the k-vector space of polynomials.

Lemma 21. Leta,b,c,d, D € k, with a,b, ¢ distinct. Then we can find unique A, B, C' € k
such that
Aa+ Bb+ Cc = Dd. (3)

Proof. We rewrite Equation (3), collecting coefficients, as
(A+ B+ C)2® + (2aA + 2bB + 2cCxy + (a®* A + b*C + *C)y* = Dz? + 2Ddxy + Dd*y*.
Solving for A, B, C' amounts to solving the following system of linear equations:

A+B+C=D
2aA + 2bB 4 2¢C = 2dD
a?A+ b B+ c*C = d*D.

The coeflicient matrix

1 1 1
2a 2b 2c¢
a? b A

can be reduced to the identity matrix via elementary row operations. (Some of the row
operations require division, but we avoid division by zero because a, b, ¢ are distinct.) This
implies that the coefficient matrix is invertible; thus, there exists a unique solution to the
system of equations. O

Lemma 22. Let a,b,c,Cy,Cy € k, with a and b distinct. There we can find unique
Ay, A, B, By € k such that

(Ale + Agy)a + (Bll‘ + Bgy>b = (Cll' + ng)c. (4)
Proof. Expanding Equation (4) and equating coefficients of like terms leads to the follow-

ing system of linear equations:
Al + By = Cl
2&141 + A2 + QbBl + B2 = 2001 + 02
a’Ay 4 2aAy + 2By + 208y = 2Cy + 2¢Cs
CL2A2 + b232 = CQCQ.

The coefficient matrix

1 0 1 O
2¢ 1 2b 1
a’> 2a b 2b

0 a2 0 V?

can be reduced to the identity matrix via elementary row operations. (Some of the row
operations require division, but we avoid division by zero because a # b.) This implies
that the coefficient matrix is invertible; thus, there exists a unique solution to the system
of equations. n
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4.3 Constructions to reduce graphs

A product module has a collection of forgetful maps to different factors in the module.
Suppose (G', ) is an edge-labeled graph obtained from another edge-labeled graph (G, «)
by adding a single vertex v together with some labeled edges from v to vertices in G. Then
we can use the forgetful map to relate the splines on (G’, /) to those on (G, «).

This is what we do in the next result. We then specialize to the case of cycles in
Corollary 27. We note that Lemma 23 below also applies to general edge-labelings «,
which we will restrict in more ways throughout this section.

Lemma 23. Suppose that (G, «) and (G',a’) are edge-labeled graphs with vertices V' =
V U {v}, edges
E'=FEU{vu|ueU}

where U C 'V is nonempty, and edge-labeling o/|g = «. Then the projection map
D.cv R = D,y R induces an R-module homomorphism ¢: Reror — Ra.a, and

RG”@’ & ker 2 D im @.

Moreover, suppose that every pair u,u’ € U is connected by a path of edges in E all
labeled I, and suppose that o/ (vu) = I for allu € U. Then

Rew = 1® R

Proof. We first show that restricting a spline p in R¢r o to the set of vertices V' produces
a spline in R . Indeed, for each edge uu’ € E we have

Pu — Pw € &' (ut') = auu).

Thus the projection map induces an R-module homomorphism ¢: R o — Rgo. We
conclude that
Rer o = ker o @ im .

Now we consider the special case where every pair u,u’ € U is connected by a path
of edges in E all labeled I, and o/(vu) = I for all u € U. Note that ker ¢ consists of all
splines in R¢r o that are zero at all of V. Consider a spline in ker ¢. If at least one edge
incident to v is labeled I, then the vertex v must be labeled by an element of I by the
GKM condition; if all edges incident to v are labeled I, then every element of I works.
Thus ker ¢ = I.

Given a spline q € Rg o, we define p € Rgr o such that ¢(p) = q according to the
rule p, = q, for all w € V and p, = qu for some v’ € U. The GKM condition implies
that q, — qu € I for any u € U, since u and v’ are connected by a path of edges labeled
I by hypothesis. Thus, we have p, — Py, = qu — qu € [ for all u € U. By inspection of
the GKM conditions, we conclude p € R o and thus im ¢ = Rg ,. O

We can (and will) use Lemma 23 to eliminate those vertices whose incident edges all
have the same label. This leads us to the following definition.
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Definition 24. An edge-labeled graph is called reduced if no two edges that are incident
to the same vertex have the same edge-label.

We note that the edge-labels in a reduced cycle have to be at least somewhat evenly
distributed, in the following sense.

Lemma 25. Suppose (G, ) is a reduced edge-labeled graph. Moreover, suppose (G, )
contains n distinct vertices vg,v1, Vs, ..., v, = vy that form a cycle and assume that
la(E)| = 3. Then there is at least one sequence of three successive distinct edge-labels
on the edges v1v9, Va3, . .., Up_1Upn, UpV1.

Proof. Read clockwise around the cycle starting at an arbitrary edge, and suppose the
first two edges are labeled I and J. If a sequence of three successive edge-labels does not
contain three distinct edge-labels, then it must alternate between two of them since the
graph is reduced. An edge-label that is neither I nor J appears somewhere on the graph
by hypothesis of at least three distinct edge-labels. Look at the first occurrence of this
edge-label in the sequence; the two edges preceding it have labels from the set {I, J},
without repetition. This proves the claim. ]

In the next lemma, we refine Lemma 23 to keep track of MGSs. While we use this
lemma to prove results about polynomial edge-labelings, the same proof works for edge-
labelings over UFDs as long as each edge is labeled by a principal ideal.

Lemma 26. Let (G,a) and (G',a') be defined as in Lemma 23, with the condition that
every pair u,u’ € U is connected by a path of edges in E all labeled (i) and o/ (vu) = (i)
for allu € U. Let V| =n and fixt some v € U. If B={b',b% ... b"} is an MGS for
Rg.a, then B = {b" b? ... b” b1} where

v by ifu=o,

and

i ifu=w,
is an MGS for Rer o .
Proof. Tt is clear that b™™! is a spline in R o. If ¢ is the map from Lemma 23, then
@(b’') = b’ for all 1 < i < n by construction, so (the last paragraph of the proof of)

Lemma 23 implies that b"’ € R o again for all 1 <i < n.
We now show that B’ is a generating set for R . Each spline p € R¢ o satisfies

Pv = Puw + ki (5)

for some k € R by the GKM condition for the edge vu’. The spline ¢(p) is an element of
RG@ with
©(P)u = Pu for all u € V. (6)
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Because B is an MGS for R o, we can write ¢(p) as a linear combination
¢o(p) = b +rb* + -+ +1,b", (7)

where each r; € R. For all u € V, we have

Py = ¢(P)u by Equation (6),
=rb, +7b2 + -+, b+ k-0 by Equation (7),
= rbL + b2 + - 4 b + kb by the definition of 5.
Furthermore,
Pv = Pw + ki by Equation (5),
=ribL, +1ob2 + - + 1, b + ki by the previous argument,
= bl + b2 o 4, bV + kb by the definition of B'.

We have obtained the equation
pP= lel’ + 7’2b2/ bt Tnbn/ + kbn+1’

which assures that B’ is a generating set for Rev o
Moreover, the set B’ is an MGS by Lemma 8 because it consists of n+ 1 elements and
G' is a graph with n + 1 vertices. ]

We now apply the ideas in the previous lemma to the case of cycles, which is the
special case on which we focus.

Corollary 27. Let (C,,ay,) be an edge-labeled n-cycle. Create an edge-labeled (n + 1)-
cycle (Cpi1, 1) from (Cy, ) by inserting a vertex v,y1 into the edge v,vy with both
new edges vV,V,11 and v,11v1 labeled the same as v,v; was. Then

Reyann = ay(vav1) @ Re, a,-

Moreover, suppose (C,, ) has edges labeled with principal ideals generated by homoge-
neous polynomials, that (C,,a,) has MGS B, and that the generator of the edge-label

a,(vav1) s a homogeneous polynomial of degree e. Then (Cpi1, pi1) has an MGS B’
that

1. extends B in the sense that if ¢ is the map from Lemma 23 then p(B') 2 B,

2. has exactly one more generator than B and the degree of this additional generator
1s e, and

3. is minimal in the sense that if B” is any other generating set that extends B then
B" has at least one more element of degree e than B (and possibly other additional
elements of other degrees).
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In particular, the degree sequence of B’ satisfies
dg =dg+ (0°7,1,0m7°) .

Proof. Taking (G, «) to be (Cy, a,) and (G', @) to be the (non-cyclic) edge-labeled graph
formed from (C,,«,) by adding a new vertex v,,; and new edges v,v,,1 and v, 1v;
labeled the same as v,v;, we can apply Lemma 23 to conclude

RG’,O/ = an<vnvl) S RCn,an'

We note that Rer o C Re,,,a,,, because (G',a/) consists of the edge-labeled graph
(Cpi1, any1) together with precisely one additional edge. The three edges v,v1, VU1,
and v,11v1 in (G',a’) all have the same label, so every spline in R¢, ., satisfies the
GKM conditions on (G',a’). Thus Rgror = Re,,ya,,,- In particular, if a,(v,v1) is a
principal ideal generated by a homogeneous polynomial of degree e and if B is an MGS
of (Cp, o), then Lemma 26 constructs an MGS for (C), 41, oy, 11) that satisfies Conditions
1 and 2 of our claim. The explicit description of the degree sequence dg of (Cpy1, tpy1)
follows from the definition of degree sequence and from Conditions 1 and 2.

The minimality in Condition 3 results from the direct sum decomposition

Re, iy ami = an (v,01) © Re, an

as follows. Suppose B’ generates Rc, ..., and extends B. Lemma 23 identifies each
spline in the image of ¢ with an element of the subring 0 ® R¢, . and each spline in
ker ¢ with an element of a,(v,v1) ®0. The set B C ¢(B') is contained in 0@ Re,, , so B’
contains at least one element b € B’ Nker ¢ to generate the first summand «, (v,v1) @ 0.
This shows |B'| > |B|.

The spline b satisfies b,, = 0 for all ¢ # n + 1 by definition of ker ¢ and is identified
with (b,,.,,0) € ay(v,,v1) @ 0 in the direct sum decomposition. By hypothesis, the
minimal generator p € o, (v,v1) is a homogeneous polynomial of degree e. Since b, ,, is
divisible by p we conclude b has degree at least e as desired. O]

4.4 Producing an MGS for polynomial edge-labeled cycles

We now construct an algorithm that produces a homogeneous MGS for cycles whose edges
are labeled by principal polynomial ideals with generator of the form a := (z + ay)? for
a # 0. Part of our proof proceeds by induction; the following lemma proves the base case
of a triangle.

Lemma 28. Let (G, ) be a 3-cycle with edge-labeling oo: E— I having a(vivy) = (a),
a(vavs) = (b), and a(vsvy) = (c) so that a,b,c are all distinct. Let fi, fa, g1, g2 € K[z, 9]
denote the homogeneous degree-one polynomials with ra = fib + gic and ya = fob + goc,
whose existence is guaranteed by Lemma 22. Then the set

B={1,b* b’} ={1,(0,za, gic), (0,ya, goc)}
is a homogeneous basis for R¢ 4.
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Proof. We will prove that B is a homogeneous MGS that is also free. Note that (0, za, g;c)
is a spline: the GKM condition on the edges labeled a and c are trivially satisfied, and the
condition on the edge labeled b is satisfied because za = fib + ¢g;c. The same argument
shows that (0,ya, goc) is a spline. Moreover, the GKM condition for spline b? on edge
vou3 implies g; # x since b = (x + by)? cannot divide the polynomial

ra — xc = xy(2ax — 2cx + a*y — c*y)

by direct computation (or by noting that both b and the right-hand side of the displayed
equation are factored into irreducibles, and that the polynomial ring k[x, y] is a UFD). A
similar argument shows gy # v.

Now we demonstrate that B generates the spline (0,0, bc). We have

ygic = xya —yfib and xgoc = xya — xfob.

Subtracting, we obtain the equality

(yg1 — xg2)c = (xf2 — yf1)b.

If (yg1 — xg2)c = 0 then the degree-two factor yg; — xg, is identically zero, and so g; = rx
and g, = ry for some scalar r. Plugging this back into the equation yg,c = xya—yfib and
then rearranging, we obtain xz(a — rc) = fib and similarly y(a — rc) = fob. Multiplying
these two equations by y and x respectively, we obtain yf; = xf,. Analyzing degree
constraints once more, we conclude f; = sz and f, = sy for some scalar s. Plugging this
back into the equation xa = f1b+ ¢,c, we have ra = sxb +rxzc. In particular a = sb + rc,
which contradicts the linear independence of a, b, and ¢ over k proved in Lemma 21.

Thus (yg1 — zg2)c is a homogeneous degree-four polynomial that is divisible by both
b and c. It must be a scalar multiple of bc because b and ¢ have no irreducible factors in
common. Consequently, the spline

q:= yb2 - ZEb3 = (07 07 (ygl - ng)C)

is a nonzero scalar multiple of (0,0, bc).
Now we show the generators are actually free, namely that if

il + pab® — p3b® = (0,0,0)

then p; = 0 for all i € {1,2,3}. The first coordinate shows that p; = 0 since on the
left-hand side we have

(pll + pob® — ]9:3133)“1 =p1ly, +0—-0=pr.
Using p; = 0 and the explicit equations for b, b?, we obtain

(0, p2ra — psya, pagic — psgac) = (0,0,0).
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Since pora — psya = 0 in a UFD, we conclude as above that x divides p3 and y divides p,.
Write p3 = phe and ps = phy. Then we have

phyxa — phrya = (py — phy)rya =0

and so py, = ps. Now examining the last coordinate, we see

Phygic — p3rgac = (ph) ((yg1 — 2g2)c) = 0.

We just proved that (yg; — zgs)c is a nonzero scalar multiple of bc, so this entry is zero
if and only if p), = 0. Hence all p; are zero, as desired.
Finally we show that B generates an arbitrary spline p € Rg . We have

pP— pvll - (O7pv2 — Puys Pus — pvl)-

By the GKM conditions on edges v;v, and v3v;, we have p,, —p,, = ka and p,, —p,, = {c
for some k, ¢ € k[x,y]. The GKM condition on edge vyv3 gives the equation

(Puy — Po,) — (Pv; — Pvy) = ka — lc='b

for some ¢’ € k[z,y]. Lemma 21 showed that a, b, and c are linearly independent over
the base field k, so the only scalar solution to ka —flc —¥¢'b =0is k = (¢ = /¢ = 0.
Thus k, ¢, ¢ are polynomials without constant terms. Assume that hy, he € k[x, y] satisfy
k = hix + hoy. We have
Pu, — Py = (M1 + hoy)a

and

pP— pv1]— - h1b2 - h2b3 = (07 07 Pvs — Pv; — hlglc - hQQQC)'
The nonzero entry in this spline must be a multiple of both b and ¢ by the GKM conditions
on edges vou3 and v3vy, respectively. Hence

P — Py, 1 — hib* — hyb® = tq

for some t € k[z, y] because we showed above that q is a scalar multiple of (0,0, bc). We
conclude that B generates R¢ . Lemma 8 asserts that B is an MGS as desired. O

The heart of the proof of Theorem 30, our main theorem about cycles, is the following
lemma. After proving the lemma, Theorem 30 will follow easily by applying the reduction
lemmas from Section 4.3.

Lemma 29. Let (G, ) be an edge-labeled n-cycle containing a sequence of three successive
distinct edge-labels. Order the vertices vy, vy, vs, ..., v, = v of (G,«) clockwise around
the cycle such that a(v;_1v;) = (a;) and a,_1,a,, and ay are all distinct.

We give an explicit homogeneous MGS B = {1,b? ... . b"} for Rg, as follows. For
every 1 <i<n—2, let a;pn_1,0n,a;1 €k be the base field elements with a; = a; ,—1ap—1+
a; nan + a;1a1, whose existence is guaranteed by Lemma 21, and define b’ by

0 ifj <1,
v d; — am_lan_l ij =n — 1,

Q; — Ajp—1ap—1 — Ajpap if j =n.
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Asin Lemma 28, let f1, fo, g1, g2 € K[z, y] denote the homogeneous degree-one polynomials
with xa,_1 = fia,+gi1a1 and ya,_1 = fsa,+goa1 that are guaranteed by Lemma 22. Define
bn—l by

0 ifj<n—2,
by t=4 za, ifj=n-1,
gi1a1 Zf] =n,
and b™ by
ij = Yan—1 ij =n-— 17
g1 ifj=n.
Then B = {1,b% ... ,b"} is a homogeneous basis for Rg. as a free module over the

polynomial ring. Consequently, the degree sequence of (G, ) is (1,0,n — 3,2).

Proof. We will check that B is a homogeneous MGS and that it is free, whence we will
conclude that it is a homogeneous basis for the free module R 4.

We first check that b? is a spline in Rg o for all 7 > 1. For the b’ with1 <i<n—2
this is clear by the definition of b?, and for b"™! (respectively b") this follows from the
GKM condition together with rewriting the defining equation as za,_; — g1a1 = fia,
(respectively as ya,_1 — goa; = foa,).

Now we show that B generates an arbitrary spline p € Rg,. We claim that there
exist ri, 79, ..., 7, € k[z,y| such that

p:r11—|—7’2b2—}—---+7”nbn. (8>

For this, it is sufficient to prove that for all 1 < m < n, we can find coefficients
T1,T2, ..., Tm € K[z,y] such that the spline r;1 + r9b? + -+ + r,,b™ agrees with p when
evaluated at the first m vertices. We will use induction up to n — 2, then deal with b™~!
and b™ separately. For the base case, note that the spline p — p,, 1 has (p — py, 1), = 0.

The inductive hypothesis asserts that we can find coefficients r1, 79, ..., 7, € k[z,y| with
m < n — 2 so that the spline 71 + r9b? + - - - 4+ r,,b™ agrees with p when evaluated at
the first m vertices. In other words, assume we have found ry,ry, ..., 7, € klz,y] with

2 m

for all j < m. Thus by the GKM condition on edge v,,v,,11, there exists r,,+1 € kz, 1]
such that
(p—ril—rb*—- - — T D™ )oris = Tmt13mt1-

Hence the spline 11 +ryb? +- - -+ 7, b™ 41, 1 b™ ! agrees with p when evaluated at the
first m + 1 vertices, as desired. By induction, we have produced 7,79, ..., 7,2 € K[z, y]
such that 1 + rob? + - -+ + r,_sb" 2 agrees with p when evaluated at the first n — 2
vertices.

To conclude the proof, we essentially use the same argument as in the proof of
Lemma 28. Indeed, suppose (T, a’) is the edge-labeled 3-cycle with vertices vy, v,_1, vy,
and with edge-labeling given by o/(v1v,-1) = (an-1), &/ (Vy—1v,) = (an), and o/ (v,v1) =
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(a1). Let G be the subset of Rg, in which all vertices vy, va, ..., v,_o are labeled zero.
Note that G is isomorphic to the subset of Ry, in which vertex v; is labeled zero, via the
map G — Ry that erases the initial n — 1 zeros from each spline p € G. Thus inserting
n — 1 leading zeros into the nontrivial generators from Lemma 28 gives generators for G.

It follows that B generates Rg,. Indeed, we first proved that for any spline p €
R, we can find a unique linear combination of the splines {1,b!,... b" 2} so that
p— 719l — Z?;f r;b’ is zero when evaluated at the first n — 2 vertices. Lemma 28 then
proved that if a spline in R¢ , is zero at the first n — 2 vertices, it is uniquely generated
by {b"~! b"}. The generating set B is thus minimal and a free set of generators for the
module of splines R¢ , over the polynomial ring.

Finally, the statement on the degree sequence follows because 1 is a degree-zero spline,
b’ is a degree-two spline for all 1 < i < n — 2, and b"! and b™ are both degree-three
splines. O

Theorem 30. Let (C,, ) be an n-cycle with three or more distinct (not necessarily
successive) edge-labels. The following algorithm constructs a homogeneous MGS B, for
Rc

n,0n *

1. Let C,_y be the reduced cycle with edge-labeling o, obtained from C,, by eliminating
vertices whose incident edges have the same label.

2. Let B, _i be the homogeneous MGS for R¢ from Lemma 29.

n—k:&n—k

3. Create B,, from B, _j by successively reinserting vertices on repeated edges according
to Corollary 27.

Proof. Suppose C,, = (V,,, E,,) is a cycle in which k vertices are incident to two edges
with the same label. Without loss of generality, label the vertices sequentially around the
cycle so that v, is one of the vertices incident to two edges with the same label. Using
Corollary 27, write

ch,an = Oén_l(’Un_l’Ul) S¥) ch—lyan—l

where (C,,_1, a,,—1) is an edge-labeled (n— 1)-cycle with only k& — 1 vertices are incident to
two edges with the same label. Repeat this process until no vertices are incident to edges
with the same label, leaving a reduced (n — k)-cycle (C),_g, o, i) with edge-labeling ay,
obtained from «,.

Lemma 25 proves that the reduced cycle C,_, contains three successive distinct
edge-labels. Thus we may apply Lemma 29 to obtain the homogeneous MGS B,,_ for
Re, . o, .- Reinserting each repeated edge according to Corollary 27 (with explicit for-
mula given in Lemma 26) gives a generating set for C),. Because it has the same number
of elements as vertices, the final output B,, is an MGS for C), per Lemma 8. O]

Example 32 shows an example of how to use the algorithm in Theorem 30 to produce a
homogeneous MGS. First, we give the following corollary, which classifies degree sequences
for all splines on cycles whose edge-labels are principal ideals generated by homogeneous
degree-two polynomials in k[x, y].
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Corollary 31. Let G = (V, E) be an n-cycle and let T be the set of principal ideals of
R =Kl[x,y] of the form {(x + ky)?), where k € k. Let a: E — T be an edge-labeling of G.
Then the following hold:

1. If (G,«) has exactly one distinct edge label, then its degree sequence is (1,0,n —1).

i
2. If (G,«a) has exactly two distinct edge labels, then its degree sequence is (1,0,n —
2 0,1).

3. If (G, «) has three or more distinct edge labels, then its degree sequence is (1,0,n —
3,2).

Proof. We prove each of 1-3 separately.

Proof of 1. This follows immediately from Theorem 10: in the MGS {1,1"2,... TI"vi},
the trivial spline 1 is a degree-zero spline and each of the (|V'|—1)-many I" is a degree-two
spline.

Proof of 2. The proof is essentially an analysis of the MGS B produced by Theorem 12
for a certain nice vertex ordering. Since (G, a) has exactly two distinct edge-labels, we
choose an ordering of the vertices satisfying Proposition 2 by choosing the last vertex
v, € V to be any vertex incident to two edges with different labels; the vertex v; is
chosen as the next vertex clockwise from v,,, and we continue choosing vertices vo, ..., v,_1
clockwise until all vertices have been ordered. Without loss of generality, suppose that
a(v,_1v,) = (b) and a(v,v1) = (a).

Figure 2: The idea of the proof of 2.

We claim that

e 1 is a degree-zero spline,

e b’ is a degree-two spline for all 2 < i < n, and
e b" is a degree-four spline.

The first assertion is clear. For the second assertion, let us assume that while producing
b’ using Theorem 12, we chose Vj = Vjq.

Case 1: The edge-label a(v,v;—1) = (a).

Case 2: The edge-label a(v;v;—1) = (b).
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The graph C' = (V', E’) has vertex set V' a subset of the set {v;, v;y1,...,v,} in Case
1 (resp. {vi,Vit1,...,vp—1} in Case 2). In both cases, Theorem 12 (a) must have been
applied in the production of b?, so the spline b is a degree-two spline, and we have verified
the second assertion.

For the third assertion, we again assume that while producing b™ using Theorem 12,
we chose v; = v;_; = v,,_;. Now the graph C contains the edge v,v1, so Theorem 12 (b)
must have been applied in the production of b”. Hence b" is a degree-four spline, and we
have verified the third and final assertion.

Proof of 3. This is a consequence of Theorem 30. By Corollary 27, the homogeneous
MGS B,,—i for Re, _, ,_, has degree sequence (1,0,n — k — 3,2). For every 0 < j <
k — 1, the homogeneous MGS B,,_j4(j4+1) for Re, i stn—ns e has degree sequence
(1,0,n—k+(j+1)—3,2). After all iterations (when j = k—1), we obtain the homogeneous
MGS B,, with degree sequence (1,0,n — 3,2) as desired. ]

Example 32. We produce a homogeneous MGS Bg for the following edge-labeled six-cycle
by using the algorithm in Theorem 30.

oy.wo

(k) (i)

.m\.A.

Figure 3: An edge-labeled six-cycle.

This is illustrated explicitly in Figure 4: one picture is shown for each reinsertion of
a vertex on a repeated edge according to Corollary 27, along with the associated MGS
obtained at that step via Lemma 26.

5 Quotient splines and homogenization

In Section 5.1, we describe quotient splines, especially those that arise from a quotient map
R — R/I on the coefficient ring. The most important applications of splines involve subtle
questions about quotient splines in the case when the coefficient ring R = k|xy, ..., z,],
where the field is usually k = R or C. In this case, splines inherit a notion of degree from
the degree of the polynomial at each vertex. Classical splines usually consist of elements
of degree at most d; we will show below that this is essentially equivalent to either of two
different quotient constructions on splines. In GKM theory, splines model the equivariant
cohomology ring of certain algebraic varieties with torus-actions; in this case, the quotient
ring is isomorphic to ordinary cohomology (see Proposition 51).
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Figure 4: An illustration of the algorithm in the proof of Theorem 30.

The results in this section use the more general language of graded rings to streamline
proofs. The reader interested primarily in applications can translate everything in this
section to polynomial rings as follows:

e Homogeneous polynomials are those for which every nonzero term has the same
degree (where the degree of a term is the sum of the exponents of all the variables
in that term).

e The " graded part of the polynomial ring consists of 0 together with the homoge-
neous polynomials of degree 1.

e The edge-label a(uv) is homogeneous if every generator of a(uv) is a homogeneous
polynomial.

e The degree of a spline p is the maximal degree of the polynomials p, over all vertices
v.
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e A spline p is homogeneous of degree i if every nonzero p, is a homogeneous poly-
nomial of degree i.

In this section, we establish the following:

e Given any ideal Z C R ,, the quotient splines are the elements of the quotient ring
R o/Z. This quotient inherits the structure of an R-module.

e Suppose that R is a graded ring. Suppose that « is an edge-labeling of G for
which every a(uv) is a homogeneous ideal, called a homogeneous edge-labeling. Then
the splines Rg,, also form a graded ring whose " graded part consists of splines
p € Rg o for which p, is homogeneous of degree i for each vertex v.

e Every surjective ring homomorphism 7: R — S induces a change-of-coefficients
map on splines from Rg o t0 Sg roa- We use this most for the usual projection map

m: R— R/I.

e Suppose that [ is a homogeneous ideal and that 7: R — R/I is the quotient map.
Assume that « is a homogeneous edge-labeling, and let Z denote the splines p with
7m(py) € I for all vertices v. Then the ring of quotient splines is isomorphic to the
ring of splines over the quotient ring. In other words, we have:

(Rea) /T = (B/1)G ron

In Section 5.2, we restrict to the case when our coefficient ring is a polynomial ring. The
key point for applications is that when the coefficients are polynomials and the edge-
labeling is homogeneous, the (quotient) ring of splines of degree at most k is isomorphic
to the ring obtained by restricting degree on the entries of the original collection of splines.
Moreover, we describe how to homogenize an edge-labeling so we can use these results for
non-homogeneous edge-labelings. This will be the main tool used when we interpret the
results of this paper for classical splines in Section 6.

5.1 Quotient splines

We start with the basic definition of quotient splines as well as a natural quotient map on
splines. The underlying ideas are similar to that of Bowden and the third author [BT15,
Theorem 3.7].

Definition 33. Let 7: R — S be a surjective ring homomorphism. If (G, «) is an edge-
labeled graph over R, then define (G, 7 o a) to be the edge-labeled graph over the ring S
in which each edge e is labeled m(a(e)). We call Sg roq the splines induced by m over S
or, when context is clear, the splines on (G, «) over S. The map 7 may be referred to as
a change of coefficients for the splines.

In particular if [ is an ideal in R and m: R — R/I is the quotient map, then the
elements of (R/I) ., are called splines reduced mod I or just splines mod I.
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Not every ring homomorphism sends ideals in the domain to ideals in the codomain,
but all surjective ring homomorphisms do. Thus the previous definition makes sense.

We give the following proposition for completeness; it simply confirms that the map
7 induces a homomorphism from splines on (G, «) over R to splines on the same graph
over S.

Proposition 34. Suppose m: R — S is a surjective ring homomorphism. For each spline
p € Rg.o and vertex v € V, the rule

T (p)v = 7T<pv)

defines a map m.: Rga — SGroa that is a homomorphism of both graded rings and R-
modules when S o 15 endowed with the R-action

r - (p) = 7(r)m(p).

Proof. The image 7.(p) is a spline because for each edge uv € E we have

T(Pu) — 7(Py) = T(Pu — Pu) € T(a(uv)).
The rest of the claim follows by definition of the map . m

Recall that a homogeneous ideal in a graded ring is characterized by the property that
if f € I decomposes into homogeneous parts f = fo+ f1+- - -+ fr then each homogeneous
part f; € I as well. When R is a graded ring and each edge is labeled by a homogeneous
ideal, the ring of splines ¢, admits a grading induced by the grading on RV as follows.

Proposition 35. Suppose that R is a graded ring with Ry denoting the collection of
degree-zero ring elements. Further suppose that (G, «) is a graph whose edges are all
labeled by homogeneous ideals a(uv).

Then the ring of splines R is graded with homogeneous parts (Rg.a); containing
precisely those splines p for which p, has degree v for allv € V.

Proof. Suppose that p € R¢.o, and that for each v € V' the ring element p, € R decom-
poses into homogeneous parts denoted

Pv = Pow +p1,v + +pi,v

with degrees 0, 1,. .., respectively. (Each part may be zero.) The homogeneous part p;
of the spline p is defined at each vertex v by

Pjv = Pjw-

We need to show that for each j the homogeneous part p; is also a spline in R¢ 4.
Suppose that uv is an edge in GG. Expanding p,, p, into homogeneous parts yields for
Pu — Po the expression

(pO,u + pl,u + - +pz,u) - (pO,v +p1,v + - +pi,v) )

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.29 27



which is in a(uv) by the spline condition on p. Using associativity and commutativity,
the above expression is equal to

(pO,u - pO,v) + (pl,u - pl,v) +---+ (pz,u - pi,v) .

Homogeneous ideals contain each homogeneous part of each element of the ideal, so

Pju — Pjv € a(uv)

for each j. Thus p; satisfies the spline condition at each edge wv for each j and so
p; € Rg o for all j as desired. O

Example 36. If edge-labels are not homogeneous ideals, then the ring of splines might
not be graded by degree. For instance, consider the edge-labeled graph in Figure 5 with
coefficient ring of polynomials in one variable.

(22— 1)

u (Y

Figure 5: Example of an edge-labeled graph with non-homogeneous polynomial labeling.

Consider the spline p on this edge-labeled graph with p, = 0 and p, = 2? — 1. Under
the typical grading on polynomials, the homogeneous parts of p would be the splines
(0, —1) in degree zero and (0, x?) in degree two. However neither of these are in Rg .

Proposition 35 means that we can define the following.

Definition 37. An edge-labeling « is homogeneous if a(uv) is a homogeneous ideal for
every edge uv. The homogeneous degree-i part of the ring R¢ , with grading defined in
Proposition 35 is denoted (Rg,q); and called the collection of (homogeneous) splines of
degree i. We denote the Ry-submodule of splines of degree at most d by

Sd(G, Oé) = (RG,Q)O @ (RG,a)l EB et EB (Rgﬂ)d

The next result connects quotient splines with splines over the quotient ring. We will
be most interested in the case when I ; C R consists of all polynomials of degree at least
k + 1, in which case the following result will compare all splines of degree at most k£ to
the splines whose coefficients are reduced mod I .

Proposition 38. Suppose that R is a graded ring and denote the collection of ring ele-
ments of degree zero by Ry. Suppose that (G, «) is an edge-labeled graph and that o is a
homogeneous edge-labeling.

Let I be a homogeneous ideal with quotient map 7: R — R/I, and let T C R be the
collection of splines p with p, € I for all vertices v.
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Then I forms a homogeneous ideal in the graded ring of splines Rq o, and there is a
unique ring homomorphism p' so that the following diagram commutes:

Rgo —— (R/I)
L /
z

(RG,a) /

G,mox

Moreover the ring homomorphism p' is injective and graded.

Proof. First we confirm that Z forms an ideal, and in fact that Z = ker 7,. Note that the
projection
Ty Rga — R
P =Py
is a surjective ring homomorphism for each vertex v. Indeed, the principal ideal R1
generated by the trivial spline surjects onto R at each vertex. Moreover the following
diagram commutes for each v since 7, and 7, are both defined vertex-wise:

RG,a L> (R/I)G,Trooz

lﬂ,, |

R—T" 5 R/I

Note that Z is defined as the intersection of the preimage of I under all of the 7,, namely:
="
veV

This means 7 is the intersection of a finite number of ideals, and thus an ideal. It also
shows

momy(T) =m0 () = {0} (9)

for all v € V. By definition the only spline q € (R/I)g roa With m,(q) =0 for all v € V' is
the zero spline. Thus 7,(Z) = {0}, and we conclude Z C ker(m,). Conversely, if q € ker .,
Equation (9) implies

m(q) € kerm =1

for all v € V. It follows that kerm, = Z as desired. In particular, given two splines
di,92 € Z and any p € Rg o, we have

(P +d1) = (P + q2).
Thus we obtain a natural ring homomorphism
P (Raa) /T — (R/1)G roa
defined by p'(p +ZI) = m.(p).
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Next we show that Z is homogeneous in R¢ . Proposition 35 showed that Rg, is a
graded ring and that its graded parts are defined by

(Raa); = [ 7" (Ri),

veV

where R; is the 1" graded part of R for each i. Write p € Z as a sum of homogeneous
parts as

P=Po+P1+P2+ "+ Pdg,

where each p; is homogeneous of degree ¢ in Rg,. We want to show that p; is in Z for
each i. Consider 7,(p) for each vertex v. Since 7, is a ring homomorphism, we have

Pv = (pO)v + (p1>v + -+ (pd>v-

By definition of Z, we know that p, € I for all v. By definition of the grading on splines,
we know (p;), € R; is homogeneous of degree i for all 0 < i < d and all v. Since the ideal
I is homogeneous, we conclude that (p;), € I for all v and all 4. Thus 7,(p;) € I for all
v and all 7. In other words, we have p; € Z for all ¢, so by definition Z is homogeneous.

The grading induced on the quotient ring (Rg.)/Z by the homogeneous ideal 7 is
defined by

(Re.a)/T); = (Rg.a); + Z/T.

Thus our proof of homogeneity also shows that for each graded degree i we have
p(pi+I) = mp:).

Since the restriction of the spline 7, (p;) to each vertex v is given by (p;), + I and (p;), is
by construction homogeneous of degree ¢ in R, we conclude that m,(p;) is homogeneous
of degree i according to the grading on splines over R/I from Proposition 35.

Thus p is an injective, graded ring homomorphism as desired. O]

It is natural to wonder when the map p’ is surjective. The next lemma gives a condition
that may seem contrived. Indeed the only example we know of where it is useful is when
R is a polynomial ring, /.1 C R is the ideal generated by all monomials of degree at least
d+ 1, and Zyy, is generated by all homogeneous splines of degree at least d + 1. (Indeed,
this setting will be the main one in our Section 6 on applications.) However, the general
language of the lemma makes the proof transparent.

Lemma 39. Suppose R, «, I, and T all satisfy the hypotheses of Proposition 38. Suppose
that each graded part R; of the coefficient ring can be written as a direct sum

for some Ry-module J; and that this extends to the Ry-submodule a(uv) for each edge uv
via
a(uww) N R; = (a(uv) N J;) & (a(uww) N R;NI)
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for alli. Then the map m.: Rgo — (R/I)G roa 15 surjective and hence the map

p/i (RG,O{)/I — (R/I)G’,ﬂ'oa
s an isomorphism of graded rings.

Proof. Suppose that q € (R/I)gron and assume that q is homogeneous of degree i.
We will show that q is in the image of m,. Surjectivity for general q will then follow,
since (R/I)G.roa is a graded ring and so every spline q can be expressed as a sum of
homogeneous splines, each of which we will have shown to be in the image of m,. Since
T, is a homomorphism, we will thus conclude that every spline q € (R/I)g ron is in the
image of 7, as desired.

Assume q is a homogeneous spline of degree i in (R/I)g roa- We first show that for
each v € V the inverse image satisfies

7'['71(qU> =Py + I

for a unique polynomial p, € J;. To do this, recall that the i graded part of the quotient
R/I'is R;+ I/I. Thus q, € R; + I/I implies there is a polynomial f, € R; with

mqu) = fo+ 1.

Now let p, be the unique element of J; with

pv_fvej

guaranteed by our hypothesis R; = J; ® (R; N I).
We next show that p is in fact a spline. (If so, it is by construction homogeneous of
degree i.) For each edge uv, note that

Pu _pv+[ = W(pu) _W(pv) =qu — Qv

by construction of p. Since q is a spline on the quotient ring, there is g € I for which

Since a(uv) is homogeneous, we may assume ¢ is homogeneous of degree i without loss of
generality. Now by the assumption that a(uv)NR; respects the direct-sum decomposition,
we conclude

Pu — Pv € a(uv)
as well. This is true for all edges uv, so p € R, and 7.(p) = q.

Thus we have proven our claim that m, is surjective. Moreover the map m, is the
composition

T.=pop
and p is surjective because it is a quotient map. So p/ must also be surjective. Proposi-
tion 38 showed that p’ is an injective homomorphism, so it is an isomorphism. O]
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Corollary 40. Suppose that R is a graded ring and (G, «) an edge-labeled graph with ho-
mogeneous edge-labeling. Suppose that 1511 C R is the ideal generated by all homogeneous
elements of degree at least d + 1, namely

Ijgt1 = Rip1 © Rayo @ Rgpz @ -+,

and that Zy1 C Rgo is the ideal of splines generated by the homogeneous splines of
degree at least d+ 1. Then the quotient splines (Rg ) /Zasr1 are isomorphic to the ring of
splines reduced mod Iyyq. Furthermore, taking Sy(G, a) to be the Ry-submodule of splines
of degree at most d as in Definition 37, we have a commutative diagram

Sa( ) —— (R/1qs1)

G, a
b=

(RG,a) /Id+1

G,mox

in which all maps are graded Ry-module isomorphisms and p' is an isomorphism of graded
TINgs.

Proof. Whenever [ is a homogeneous ideal in a graded ring .S, the quotient S/1 is a graded
ring with graded parts

S/I=EP(Si+1)/1

120
Suppose [ is generated by all homogeneous elements of degree at least d + 1. Then the
intersection S; N I is empty or all of 5;, depending on whether ¢ < d + 1 or not. So
the quotient (S; + I)/I is either isomorphic to S; or {0} as an Ry-module depending on
whether @ < d 4+ 1 or not. We conclude that as additive groups and as Ry-modules,

d
S/1=EPs. (10)

When S = Rg, and I = Z;q, this gives us the isomorphism p in the commutative
diagram. When S = R and I = I, this gives us an isomorphism

R/[d+1 gRo@Rl@RQ@@Rd
The ideal I, satisfies the hypotheses of Lemma 39 vacuously since

and I, N R; is one of those two summands for each ¢. For the same reason, the edge-
labeling « also satisfies the hypotheses of Lemma 39. Hence we conclude that p’ is a
(graded) isomorphism of graded rings. Since m, = p o p, this completes our proof. O
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Example 41. We note that the hypothesis of homogeneity is also essential in Corollary 40.
To see this, we continue our analysis of the graph in Figure 5.

Consider the spline condition over the edge labeled (z*—1). When we take coefficients
in C[z]/1,, the edge-label becomes —1 and so all vertex-labelings satisfy the spline con-
dition. However, zero is the only polynomial with degree at most one that is divisible by
x? — 1. This means that only constant splines are in the image of the map from S;(G, )

to (R/12)c ron-

The next result uses Corollary 40 to show that the image of a homogeneous MGS
under the quotient map is again a homogeneous MGS.

Corollary 42. Let R be a graded ring, and let (G, «) be an edge-labeled graph with homo-
geneous edge-labeling a. Fiz a nonnegative integer d. Let 15,1 be the ideal in R generated
by all homogeneous elements of degree at least d 4+ 1, and let L1 be the ideal in Rg o
generated by all homogeneous splines of degree at least d + 1.

Suppose B is an MGS for Rq, consisting of homogeneous splines. Then the nonzero
elements in m.(B) form a homogeneous MGS for (R/I411)G xoa, and the degree sequence
of m«(B) consists of the first d + 1 terms of the degree sequence of B.

Proof. Write B, for the elements of B that have degree at most d. Every element of B
is homogeneous, so the R-linear combinations of elements of B that are not in B, have
degree at least d + 1 and hence are in the set-theoretic complement of S;(G, ). Thus
B, generates Sy(G, ) and hence p(B,) generates (Rg.o)/Za+1 under the isomorphism p
of Corollary 40.

If B; were not an MGS for S;(G, «), then we could find an MGS B C §;(G, «) of
strictly smaller cardinality than B, that also generated Sy4(G, «). Replacing the elements
of By in B with those of B’ would give a generating set for Rg , of strictly smaller cardi-
nality than B. This contradicts the hypothesis that B is an MGS.

Finally, the degrees of By in S4(G, ) C Rg o are the first d + 1 terms of the degree
sequence of B by definition of B,. Since the maps p and p’ are degree-preserving isomor-
phisms, we know that the same is true for p(B;) and 7.(Bg) as well. This proves the
claim. O

5.2 Splines over polynomial rings and homogenization

The case most relevant to classical splines is when R is a polynomial ring and [, is the
ideal generated by all monomials of degree at least k£ + 1. This is also the case on which
our examples focused.

What we address in this section is non-homogeneous edge-labelings, which are typ-
ical in applications of classical splines. We also describe homogenization, an algebraic
process to transform a non-homogeneous polynomial into a homogeneous polynomial of
the same degree by inserting a new variable. Our main result shows that the process of
homogenization creates an isomorphic module of splines over the original polynomial ring.
Thus all of our results about module bases—including minimal generating sets—hold in
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a reasonable sense for non-homogeneous splines. The main subtlety is that the dimension
as a vector space may change if we do not carefully keep track of the additional variable.

In this section, we use k to denote a field of characteristic zero, in practice
usually R or C, and denote the polynomial ring

R" :=k[x1, T2y .., Ty

Remark 43. If k had finite characteristic, then the definitions in this section would still
make sense but specific analyses would be more complicated; for instance, the kernel of
the evaluation map e"*! defined in Proposition 47 below would be larger. Understanding
the case of finite characteristic remains an open question.

We start by defining underlying terminology and then define homogenization of poly-
nomials and splines. Homogenizing polynomials is common in algebraic geometry, where
it is used to associate a projective variety to an affine variety; see, e.g., [CLO15, Section
8.4] or [SKKTO00, Section 3.3]. For examples of the use of homogenization of polynomials
in the theory of splines see, e.g., [BR91] or [DS20].

Definition 44. Monomials in R" are in bijective correspondence with vectors v € N”
where N denotes the nonnegative integers, according to the rule ¥ = z* x5 - - - xl». The
degree of a monomial z¥ in R" is

n

deg 2’ = Z Vj.

i=1
The degree of a polynomial f € R"™ is the maximal degree of its nonzero monomials;

namely, if f(21,...,2n) = D sene C7z® with only a finite number of nonzero coefficients
cy € k then

deg(f) = max{deg 2"}.

Cy

Given a polynomial f € R", its homogenization fe R™1 is the polynomial

ry 7 _deg(f)—deg(z¥) V1,02,...,Un,de -2 vi
fx1, . o Tn, Tngr) E cyx” an = E cyp (VL2 vndeg(f) =02 v0)
vEN ve N
>ivi <degf

We note that if f were already homogeneous, then the exponent of x,, 1 in the middle of
the above displayed equation is zero; thus, homogeneous f are unchanged by homogeniza-
tion. The homogenization of an ideal I of R™ is the ideal generated by the homogenizations
of all elements of [.

The degree of a spline p € Rf;,, was defined in the fourth bullet point of Section 5
(for the current case under consideration, i.e. when the coefficient ring is a polynomial
ring). Given a spline p € Rg, , over the polynomial ring, its homogenization p is defined
vertex-wise by

(D)o = (py)aiP)mdes®),
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Given an edge-labeling « for the graph G, its homogenization « is defined at all edges uv
by the rule that a(uv) is the smallest ideal containing

{F1f€au);

equivalently, « is obtained by homogenizing all of the edge-labeling ideals.

In Proposition 48 below, we will show that p € R?fal

Remark 45. The homogenizations of polynomials, splines, and edge-labelings are similar
but have several differences.

e The homogenization fof any polynomial is a homogeneous polynomial of the same
degree as f. Indeed, the homogenization of a polynomial f of degree d can be
defined as

flz1, 29, ... Tpy1) = xflﬂf(xl/xnﬂ,@/xnﬂ, e T [ Tpg)-

e The degree of the homogenization p is the degree of the original spline p but the
homogenization of a spline p may change the degree of some of the polynomials p,,.

e Note that the homogenization of any ideal is a homogeneous ideal since it can be
generated by homogeneous polynomials. This means that « is a homogeneous edge-
labeling, as our terminology suggests.

Example 46. The polynomial 22 — 1 has degree two, so its homogenization is z? — 32
Consider the (non-homogeneously) edge-labeled graph (G, «) of Figure 5. The polynomi-
als p, = v and p, = v + 22 — 1 define a spline p € Réa. Note that p, is homogeneous,
so its homogenization is p, = * = p,. However the homogenization p of the spline has
p. = zy and P, = 2y + 2 — .

For polynomials over an integral domain, degree respects multiplication in the sense
that

deg(fg) = deg(f) + deg(g)

for all polynomials f,g. It follows that homogenization respects multiplication in the
sense that L
fg=19.
However homogenization is not always additive since, e.g. 22+ y + —x2 + x has degree
two so is not the homogenization of the sum 2% +y — 22 + 2 = y + .
Nonetheless we have an evaluation map e"*!: R"*! — R" that is both a ring homo-

morphism and the inverse map of homogenization, as follows. We state the following
result for convenience; its proof can be found in undergraduate algebra texts.
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ntls Rl — R™ be the evaluation ring homomorphism defined by

n+lg .\ Z; 1f1<2<n7
‘ (”””)_{ 1 ifi=n+1.

Proposition 47. Let e

Then et is surjective, inverts the homogenization map in the sense that
et (f) = 1.
and 1s degree-preserving on homogenized polynomaials in the sense that
deg ("1(f)) = deg(f) = deg(f).

In particular, if f € (R")g C R"™ is homogeneous of degree d, then e""(f) = f.
Moreover the kernel of the map e™*! is the principal ideal

+1

ker e = (z,41 — 1).

In particular, observe that the only homogeneous element of ker e"*! is 0.
We now show that the homogenization of a spline is in fact a spline on the homogenized
edge-labeling and describe the induced map e?*! from Proposition 34 in this case.

Proposition 48. For each spline p € Rt , the homogenization p is a spline in R?;ral The

ring homomorphism induced by ™+

namely

on the homogenized splines Rgg has image Rf, ,,

n+1 . n—+1 n
e RG,& — R,

+1

15 surjective. Moreover el™ inverts the homogenization map in the sense that

' (p) = p,

n+1

and el preserves degree of homogenized splines in the sense that

deg(e}™!(p)) = deg(p) = deg(p).
The kernel of e is the ideal (x,,1 — 1) inside the ring R’gal

Proof. First we show that e"' o & = « for each edge. If f € a(uwv) then by definition of
the homogenized edge-labeling, we know f € a(uv). Proposition 47 says e""(f ) f so
we conclude "™ (a(uv)) 2 a(uwv) for all edges uv. Now we show the opposite inclusion.
Let S gif; € &(uv) be arbitrary, in the sense that g; € R™! and f; € a(uv) are arbitrary

for each 7. Then _
et (Z gifi) = Z en+1(gi)fi

by Proposition 47. We conclude that e"*t(a(uv)) C a(uv) for all edges uv and so e"t! o
a = « as desired.
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Next we show that the induced map e™*! is surjective. Our strategy is to show that

for each spline p € R, the homogenization p is a spline in Rgral For each edge uv, the
difference p, — p, is a homogeneous polynomial. Moreover the difference

Pu —Pv = f € @<UU)7

since p € R, is a spline. If f =0 then p, = p,, s0 p, = P, and the spline condition is
satisfied at edge uv. Thus assume f # 0. We know deg f < max{deg p,, degp,} which
means there is a nonnegative ¢ > 0 so that

(Pu— Do) — x:‘wlf

is homogeneous in R"*!. By construction we also know that
et <(§u —DPy) — xfl+1f> ="t (Pu— Do) — et (xiuﬂf) =f-f=0.

Proposition 47 implies that the only homogeneous polynomial in kere™*! is 0, so we
conclude that

ﬁu - ﬁv = xfm—i—lf € a(uv)
as desired. Thus p is a spline in RZEI and e is surjective.
For the rest of the proof, we use the fact that e”™! is defined vertex-wise and so

commutes with the projection 7, to each vertex in the sense that

n+1

1
myoeltt =e"lo

Ty

+1

Since ™! inverts the homogenization map on polynomials it follows that e”*! does, too,

by commuting with m,. When homogenizing splines, there is at least one vertex v with

o (P) = my(P), and for all other vertices u there is an integer d,, > 0 with

—_—

Ty (P) = xg;ilﬂu(p)'

We conclude that for this vertex v we have

—_~—

deg (m,(p)) = deg(m,(p)) = deg(m,(p)),

and for all other vertices u we have

deg (m,(p)) = deg(mu(p)).

Since p is homogeneous, the definition of degree of splines implies that

degp = degel ™ (p) = degp

n+1

so e preserves degree of homogenized splines.
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Finally we confirm the kernel of e"*! is as claimed. Suppose that p € kere™*!. Since

a is a homogeneous edge-labeling, we can write

P=Po+P1+ - +Pd

as a sum of splines p; € Rgral that are homogeneous of degree ¢ (though not necessarily
in the kernel). Now consider the sum of splines

d—1 d
qi=p+» (2 -1)p;i=) 24p;:
=0 1=0

Note that q is
e in the kernel of ¢! because each summand on the left-hand side is, and
e is homogeneous of degree d because each summand on the right-hand side is.

Again use the commuting maps

myoeltt =elo

o
to conclude that for each vertex, the image m,(q) is a homogeneous polynomial of degree
d that is in the kernel of e"*!. The only homogeneous polynomial in the kernel of e"** is
0, so the image m,(q) = 0 for all vertices v. Thus the spline q = 0 and hence

S
ISH

—1 -1
p=> (1-22)pi=> (1 —20r)L+app +22, +- + 250 piy

i

s
Il
=)
I

)

which is in the ideal (z,,+1 — 1) of R’C‘;g Conversely, direct computation shows that

el (1 = Da) = (1 = el (q) = 0
for all q € RZE, so the kernel is as claimed. This completes the proof. O]

This gives our main result: that the map e"*! restricts to a degree-preserving R"-
module isomorphism between (non-homogenized) splines over R" and a natural R"-
submodule of the homogenized splines over R"".

Corollary 49. Suppose that B is a homogeneous MGS in RZEI, and let R™(B) denote the
collection of linear combinations of B with coefficients in R".

The restricted map e*': R"(B) — Rg ., 1s an R"-module isomorphism. In particular,
the number of elements in a homogeneous MGS for R’C‘fg 1s the same as the number of
elements in an MGS for RE .

Suppose, in addition, that for each edge uv the ideal a(uv) is principal. Then e

preserves degree of the generators B.
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Proof. We begin by showing that ™ (R"(B)) contains all of R ,. Proposition 48 showed

that e : RGY — R§, is surjective, so for each p € Ry, we may pick an element

q € (em)) ™" (p). Every spline in R can be written as an R"™-linear combination of

the elements b’ in the MGS B, so write
a=) [

"1 to get polynomials g; = e""1(f;) in

"1 and expand as

*

for some polynomials f; € R"*'. Now apply e
R™. Consider the image of >, g;b’ under the module homomorphism e

follows:
ertt (Z gibi> = Zenﬂ(gi)efﬂ(bi)-

Since each g; € R™ we have e"*!(g;) = g;. Substitute the definition g; = e""1(f;) to get:

S e g)ert (b = 3 e (f)ent (b).

) )

But this is simply €”"!(q), which is p by definition. In other words, every p € R, is in
the image of R"(B) under e™!.
Suppose that C is an MGS for R, , and denote the homogenization of all of its elements

by C. By definition R™(C) is all of Rg - It will be helpful in what follows to recall that
for every p € Rf, ,, we have e*!(p) = p via Proposition 48. We now show that the map

*

e is an isomorphism of R"-modules

el R"(C) = R"(C) = R{,,.

It is surjective because the image e"™'(R"(C)) must contain all of R"(C). We deduce
injectivity as follows. Suppose Y f;p; is an element of the kernel when z,,; is evaluated
at 1. Then > f;p; = 0 is a relation satisfied by the original elements p; € C.

Now consider the quotient R?fal /kere™1. By the first isomorphism theorem, it is

isomorphic to the image R ,. We just confirmed that R"(C) gives a complete set of coset

representatives. So R"(C) generates the quotient.
We claim that R"™1(C) is all of RLY. Suppose q € kere™! is a minimal-degree

*

element not generated by C. Then q = (2n41 — 1)ap for some q; € REY of strictly

)

smaller degree than q. The previous paragraph together with our hypothesis on q implies
that R"™!(C) contains all elements of Rgral of degree less than q. In particular, we know

q: € R"(C) and so after multiplying by (2,41 — 1), we conclude that q is, too.
So C is a homogeneous generating set for R’G”%} If B had smaller cardinality than C
then eZ*(B) would be a smaller generating set for R, than C, which contradicts the

*

definition of MGS. But B can not be larger than C since B is an MGS. Thus any MGS
of R¢ , has the same cardinality as a homogeneous MGS for R’C‘fa} and so et must be

injective on R™(B).
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Finally suppose that for each edge uv the ideal a(uv) is principal. We note first that
ifpe Rgral and x,1|p, for all vertices u, then in fact x,1|p. Indeed, let uv be an edge
and suppose «a(uv) is generated by the polynomial p,, € R™. Since p is a spline we have

pu_pv:fﬁ;v

for some polynomial f € R**! and since z,,; divides each p, we know that z,,; divides
the righthand side of this equation. The definition of homogenization implies that at least
one term in p,, is not divisible by x,,;. The coefficient ring R"*! is an integral domain
so the degree of every product is additive. In particular, all terms in f must be divisible
by Z,41 in order to guarantee that all terms in the product fp,, are divisible by x, ;.
Thus z,41|f. We thus have polynomials q, and ¢g with f = x,.,¢ and p, = 2,419, for
all v and furthermore have
Qu — Qv = gﬁ;:}a

soq€ Rgral is a spline.

We may thus assume that for each spline b in B, there is at least one vertex u such
that b, is a nonzero polynomial in R". Otherwise, by the previous paragraph, we could
write b = z,,,1q for some homogeneous spline q and then replace b by q in the MGS B.
Hence e™*! preserves the degree of the splines in B. O

*

We now describe classical spline theory as it relates to our constructions.

6 Applications

The purpose of this section is to connect the theoretical apparatus of the previous parts
of the paper to the spline theory arising in applications. In particular, we show that our
hypothesis on the homogeneity of polynomial splines in Section 4 is a very common one
in applications. In fact, it is satisfied by all graphs arising from GKM constructions of
equivariant cohomology and by most applications involving classical splines. We then
use our results to recover well-known results that classify classical splines on “pinwheel”
triangulations in the plane.

6.1 Splines in equivariant cohomology: GKM theory

GKM theory is the name given to an algebraic combinatorial approach to studying torus-
equivariant cohomology of certain algebraic varieties by restricting to the torus-fixed
points. We omit details and instead refer to the original source on GKM theory by
Goresky, Kottwitz, and MacPherson [GKM98| and to surveys like [Tym16b] (for a spline-
centric approach to GKM theory) or [Tym05]. We use this subsection only to summarize
the key points.

GKM theory gives conditions on algebraic varieties X with an action of a torus
T = (C*)" under which we can construct an edge-labeled graph (Gx,ay) giving an
isomorphism between T-equivariant cohomology and splines

H;;“(X7 (C) = RGX@X

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.29 40



over the ring R = C[t,...,t,]. The map is an isomorphism both of rings and of
Clt1, ..., ty)-modules.

The topological conditions on the torus actions have the following consequence for the
graphs that arise in GKM theory.

Proposition 50. All edge-labeled graphs (Gx,ax) that arise from GKM constructions
have principal ideals generated by homogeneous polynomials of degree one.

In addition, the quotient construction of Section 5, and especially Corollary 49, arises
naturally in GKM theory as follows.

Proposition 51. Suppose that X is an algebraic variety and T s a torus acting on
X so that T and X satisfy the topological conditions of GKM theory. Let I, denote the
(homogeneous) ideal of polynomials in Clty, ..., t,| generated by the variables ty,to, . .. t,.
Then the ordinary cohomology of X can be written as

HY(X) = Hp(X)/ L Hp(X).

6.2 Classical results on splines

The remainder of this article deals with classical splines. Classical splines are defined
as piecewise polynomials on a particular form of geometric decomposition of a space
(triangulation, polyhedral, etc.), usually restricted to degree at most d and differentiability
at least r. For our purposes, it is sufficient to take A to be a finite n-dimensional simplicial
complex embedded in R" with set of n-dimensional simplices {o,}. We view A as both
an abstract set of simplices and as a subset of R", depending on context.

Definition 52. Let r and d be nonnegative integers. The space of splines S;(A) is the
R-vector space defined by the property that F' € S5(A) if and only if F': A — R is a
function that

e has degree at most d in the sense that each restriction F'|,, is a polynomial of degree
at most d, and

e is continuously differentiable of order r as a function defined on a subspace of R",
namely F'is in C".

The splines we consider elsewhere in this paper are a dualization of the classical splines
defined in Definition 52, as follows.

Definition 53. Suppose A is an n-dimensional simplicial complex with n-simplices {o,}.

e The dual graph Ga is the graph whose vertex set Va is indexed by the collection
of n-dimensional simplices o, € A and whose edge set Ea contains the edge uv
whenever the corresponding n-simplices intersect in an (n — 1)-dimensional simplex
Oy MOy
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e The dual edge-labeling aa is the edge-labeling in which uwv is labeled by the princi-
pal ideal aa(uv) generated by any nonzero affine linear form in R[zy,...,x,] that
vanishes on o, N o,.

e The dual map is a map from elements of S;(A) to functions on the vertex set Va
of Ga. If F € SJ(A), then the dual map sends F' to the function F*: VA —
Rlzy,...,z,| defined by F*(v) = F|,, for all vertices v.

Note that if A is a triangulation embedded in the plane, we may consider its vertices
and edges as a planar graph, in which case G is the usual (combinatorial) dual graph
to A. In this case, the dual edge-labeling aa is the function that assigns to each edge uv
in G the ideal generated by the equation of the line at the intersection of the triangles
corresponding to u and v. We note that the edge-labeling of Figure 5 cannot occur in a
graph G dual to a standard triangulation A because all edge-labels aa(uv) are ideals
with generator of the form (az + by + ¢)"** for some a,b, c € R.

Billera proved that the dual map is actually an isomorphism of vector spaces between
classical splines and splines as defined in Definition 3. In other words, the splines used
in this paper are a kind of dualization of classical splines. We describe Billera’s result in
Proposition 54 below. We do not give a formal definition of simplex, strongly connected,
or link and instead refer the interested reader to either [Bil88] or any introductory text
on polytopes (see, for example, [Zie95]). Recall also that for principal ideals, a power of
an ideal is equal to the ideal generated by that power of the generator.

Proposition 54 (Billera [Bil88, Theorem 2.4]). Suppose A is a strongly-connected n-
dimensional simplicial complex so that the link of each simplex in A is also strongly
connected.

Define the (r + 1)™-power of aa to be the edge-labeling /™' that associates to each
edge uv the ideal (aa(uv)) ™. Consider the module of splines R, arr with: coefficients
in the polynomial ring R = Rlxq, ..., z,].

Then F' € S5(A) if and only if F* € R, ars is a spline whose localizations F*(v) have
degree at most d for all v € Va. As R-vector spaces, this dual map is an isomorphism.

The hypotheses in the first sentence of Proposition 54 are satisfied by most decom-
positions that arise in applications. For instance, suppose the simplicial complex A is a
triangulation of a region in the plane. In this case, that the link of a vertex is strongly
connected means that there are no “pinch points” in the region; that is, the region’s
boundary is a disjoint union of subspaces homotopic to circles.

Splines are strictly more general than classical splines in various ways: dual graphs to
triangulations must have trivalent interior vertices (or other regularity conditions on most
vertices, in the case of more general simplices); indeed, dual graphs to planar graphs are
planar. On the algebraic side, the ideals that arise in the image of aa must be principal
(unlike most ideals), and the underlying ring is a polynomial ring or quotient thereof
(unlike most rings).

We now specialize Corollary 40 to splines on dual graphs, using Billera’s result from
Proposition 54 to show the vector space of classical splines S;(A) is the space of splines
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(R/1441)Ga mo(an)+1 OVer a quotient polynomial ring. Note that this endows Sj(A) with
a product structure.

Corollary 55. Assume that A satisfies the hypotheses of Proposition 54 and let R =
Rlzy,...,x,]. Suppose that every ideal an(uv) is a principal ideal generated by a homo-
geneous element in R, let ;.1 be the ideal in R generated by all homogeneous elements of
degree d+1 and let m: R — R/Iq41 be the quotient map. Let (R/1j41)c ro(an)+1 denote
the ring of splines on the edge-labeled dual graph over the quotient ring R/Iz .

Define ¢: SH(A) = (R/1q41)G 4 ro(an)+ to be the dual map

SHA) = Sg(Ga, ™)
that sends a classical spline F' to the spline F* composed with the map
Tt Sa(Ga, ™) = (R/Li41)aa mo(an)r

defined in Proposition 38, so that p(F) = m.(F™).
Then the map ¢ is an R-vector space isomorphism and respects multiplication in the
following senses:

o If f €Rlzy,...,x,) and F € S}(A) satisfy fF € Si(A), then
e(fF) = fo(F) =n(f)e(F) € (R/la11)Gmo(an)+1-
o [f Fy, Fy € SH(A) satisfy FiFy € SH(A), then
p(F1F2) = o(F1)p(F2) € (R/1441)G,mo(an) -

Proof. Billera’s original result proved that the dual map sending F' +— F™* is a well-
defined isomorphism of real vector spaces. Corollary 40 composes with the quotient map
and completes the proof. O

Remark 56. As mentioned earlier, the edge-labeling of Figure 5 cannot occur in a graph
Ga dual to a standard triangulation A because all edge-labels aa(uv) have the form
(ax + by + ¢)"™! for some a,b,c € R. Moreover, we can always homogenize an edge-
labeling over a polynomial ring R[zy,...,x,], generally via an additional variable. In
other words, Corollary 55 applies to all splines arising in classical (analytic) contexts and
in applied mathematics.

The main tool in the final section is the following lemma, which establishes that
generators for edge-labeled graphs (G,«) can be assumed to be in a certain kind of
general position. More importantly, the lemma constrains the edge-labeled graphs (G, )
that can arise as the duals to a simplicial complex. In essence, it says that we may change
coordinates to assume that any particular interior vertex in a simplicial complex is the
origin of the plane, and then reinterprets that for the edge-labeling of the dual graph.

This lemma reinforces the point that generalized splines are more general than splines
dual to simplicial complexes. It is not generally true that every edge-labeling can be
modified by an affine linear operator so that any individual vertex is incident only to
ideals generated by polynomials with nonconstant terms! This is a constraint on the
graph inherited from the geometry of graphs embedded in Euclidean space.
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Lemma 57. Let R denote the polynomial ring k[x1, ..., x,| where k is a field of charac-
teristic zero, especially R or C. Suppose that (G, «) is a graph for which each edge-label
a(uv) is the principal ideal generated by some power of an affine form, namely

r
(&1,uvx1 + A2 yo 2 +-+ Qpuvn + Cuv) “

for some positive integer 1y, and constants ai yy, - - ., Ay, Cuv € K.
For each vertex vy, there is an edge-labeling o/ so that

I
1,UV

1. all edge-labels o/ (uv) are generated by polynomials having every coefficient a
nonzero,

2. ' is constructed by composing o with a linear operator that acts as a rotation, and

3. Roo ™ Rao.

Furthermore, suppose A is any triangulation in the plane that satisfies the hypotheses
of Proposition 54, with dual graph Ga and dual edge-labeling O/"A“. Fiz a bounded face C
in Ga. Then the edge-labeling o can also be chosen to satisfy

4. all edge-labels o (uv) bounding C are generated by homogeneous polynomials, and

5. ' can be constructed by composing an with the linear operator that translates the
vertex C' € A to the origin and then performs a rotation of Fuclidean space around
the origin.

Proof. Choose a vector € k™ and an invertible n x n matrix A € GL, (k) and denote
the entries of A by A;;. Define maps ¢4 and ¢z on the variables x4, ..., z, by the rules

oalr;) = Z Ajix; and wp(x;) =z + p;i
7=1

and extend this to a ring homomorphism on all of k[zq,...,2,]. The map ¢4 can be
thought of as a change of variables between z; and y; := @4(z;) and similarly for ;. In
particular, we obtain ring isomorphisms

oaklxy, .oz = Ky, o,y and op klz, .oz = Ky, -y

with inverse maps induced from A~! and —p respectively.

Now suppose that (G, «) is any edge-labeled graph for which each edge-label a(uv) is
generated by some power of an affine form, as per the hypothesis. Using Proposition 34
we obtain maps (¢a4). and (pp). that are isomorphisms on the corresponding rings of
splines. Moreover suppose we write aZy, = (a1,u0%1, @240 T2, - - -, Anuwy) for each edge uv,
with a;,, € k and x; € R. Then the ideal (p4 o a)(uv) is generated by

(AdZyy + Cup)™ .

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.29 44



We now find an invertible matrix A so that for all edges uv the expression Aat,, has n
nonzero terms. Indeed, consider the |F| hyperplanes

a1, uvl1 + A2 yv2 + -+ QpuvTn = 0

obtained over all edges wv. This is a finite set of hyperplanes and GL, (k) consists of
an infinite number of matrices. In particular, consider the subgroup of rotations around
the origin. This is a unitary group and so intersects each hyperplane in a subspace of
codimension one. No finite union of these codimension-one subspaces can cover the entire
space of possible rotations. Thus there exists a rotation A that satisfies Condition 1 from
the claim, as desired.

In addition, suppose (Ga,aa) arises as the dual of a triangulation A satisfying the
hypotheses of Proposition 54. Each vertex C € k2 of the simplicial complex A satisfies
the equations

2
E Q5 + Cuw = 0
=1

of each line segment through C' € A. The translation ©_ & moves C to the origin in the
plane. Thus the translation induces a ring homomorphism for which the equations o/(uv)
have no constant term whenever uv is an edge bounding the face corresponding to C
in the dual graph Ga. Thus o/(uv) is homogeneous for all edges uv bounding the face
corresponding to C.

Composing these maps as necessary proves the claim. O]

6.3 Applications to splines on planar triangulations

In this final subsection, we apply earlier work in this paper to the lower bound formula
described in the introduction.

Throughout this subsection, we denote by A a triangulation of a region in the plane
R? satisfying the hypotheses of Proposition 54. For all undefined terms and for a detailed
history of the lower bound formula and lower bound conjecture, we point to [L.S07, Section
9]. We now explicitly state what’s often called Schumaker’s lower bound formula.

Theorem 58 (Schumaker’s lower bound formula [LS07, Theorem 9.9]). Let Vi be the
set of interior vertices of A. For each v € Vi, denote by m, the number of distinct
slopes among all edges incident to v. Write Viy := [Vint|, and similarly denote by Ein the
number of interior edges of A. Then for all 0 < r < d, we have

D+ 7 < dim S5(A),

(1) (e () ()

T = g Tus

'Uevint

where

and
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Figure 6: A pinwheel with its dual graph shown in red.

where
d—r

Ty 1= Z(T +i+1—jm,)..
j=1
Here, the subscript + denotes the function (—);: R — Ryq defined by x +— z if x > 0 and
x +— 0 otherwise.

This lower bound for the dimension of the space of classical splines S;(A) holds for
all 7, d, and A and one active area of research looks for tighter upper- and lower-bounds
for S5(A) in general. We focus instead on another active open question: the case when
A is a planar triangulation and the smoothness r is one. Indeed, our focus on quadratic
edge-labels and low-degree splines in parts of this paper is precisely because of the lower
bound conjecture.

Conjecture 59. The inequality in the lower bound formula of Theorem 58 is an equality
in the case that » = 1 and d > 3; that is, in the notation of Theorem 58,

D + 7 = dim Sj(A).

Some authors call this Schumaker’s conjecture, though he credits Strang. Alfeld—
Schumaker and Hong proved it when d > 4 [AS90, Hon91] and Billera proved it for
generic triangulations when d = 3 [Bil88]. (The case when d = 2 is so mysterious that it
has no conjectural formula.)

For most of the remainder of the paper, we will be focused on the special case whenever
A is an interior cell (or pinwheel triangulation), which is a triangulation that has a unique
interior vertex around which triangles radiate like the spokes of a wheel. This is shown
in Figure 6 together with its dual graph, which is a cycle.

Note that in the case of interior cells A, the lower bound formula of Theorem 58
reduces to the formula below, and it actually computes the dimension of the space S} (A).

Theorem 60 ([LS07, Theorem 9.3]). Let A be an interior cell (or pinwheel triangulation)
with single interior vertex v. For any 0 < r < d, we have

N fd—r+1
(r; )+( ;* )EintJrTv:dimSQ(A).
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Figure 7: On the left, an interior cell consisting of a singular vertex. On the right, an
interior cell consisting of a vertex that is not singular. Both dual graphs are 4-cycles but
the example on the left has fewer distinct edge-labels.

Example 61. We illustrate Theorem 60 for the two interior cells A and Ayigne of
Figure 7 in the case r =1 and d = 3.

Note that both A and Ayigns have Eyyy = 4. However, for Ay we have m,, = 2, and
for Ayigne we have m,, = 4. Substituting these values into the formula in Theorem 60 gives

dim S3(Agr) =16 and  dim S5 (Aigne) = 15.

One of our main results, Corollary 65 below, uses our results about minimal generating
sets from earlier sections of this paper to recover Theorem 60 of Lai—Schumaker in the
case r = 1. We first establish some preliminary results.

Theorem 62. Let A be an interior cell, i.e. a pinwheel triangulation, with n triangles.
Let 111 C Rz, y| be the ideal generated by all monomials of degree d+ 1, and let m: R —
R/I441 be the quotient map. Then there is an isomorphism of R-vector spaces Si(A) =
(R/I441)c, moas where Cy is an n-cycle and o is an edge-labeling so that every ideal a(uv)
is principal and generated by (z + auy)"™ for a nonzero a,, € R. Moreover, for each
(. there is at most one other edge u'v' with a,., = a., and that edge cannot immediately

follow or precede uv.

Proof. Consider the map ¢ of Corollary 55. Corollary 55 proves that ¢ is an isomorphism
of R-vector spaces, and notes that the dual graph to a pinwheel triangulation with n
triangles is a cycle on n vertices, with edge-labeling o given by the (r + 1) power of the
equations of the lines through the central vertex in A.

By Lemma 57, we may translate the central vertex of the triangulation to the origin
and assume each edge uv is labeled by (x + a,,y) ! for nonzero coefficients a,,. Finally,
at most two rays through a given point lie on the same line, so no more than two of the
edge-labels can coincide; if two successive rays going clockwise around the central vertex
are the same, then they describe whose interior angle-sum is more than 180°, which is
impossible. This proves the claim. O]

We use the previous theorem to reinterpret the main results of earlier sections. The
key observation is the following, which characterizes cycles that can be realized as the
dual of a triangulation.
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Lemma 63. All edge-labeled cycles (C, ) that are geometrically realizable as the dual of
a triangulation must have at least three edge-labels unless the cycle is a four-cycle with
two distinct edge-labels that alternate around the cycle.

Proof. A cycle is dual to a triangulation only if that triangulation is an interior cell
(namely pinwheel triangulation). Suppose (C,«) is dual to a triangulation. Theorem
62 implies that if C' has three edges, then they are all labeled distinctly; if C' has at
least five edges, then at least three successive edges must be labeled distinctly. The only
four-cycles with fewer than three distinct edge-labels are precisely those dual to pinwheel
triangulations formed by the intersection of two lines. This gives a four-cycle whose
edge-labels alternate between two distinct edge-labels as one moves clockwise. O]

Classically, interior vertices formed by the intersection of two lines play a special role
in the theory of classical splines on triangulations. We give this terminology in the context
of splines on the dual graph.

Definition 64. The interior vertices of the triangulations corresponding to 4-cycles with
two distinct edge-labels are called singular vertices.

We note that the interior vertex v on the left side in Figure 7 is a singular vertex, but
the vertex v on the right side is not singular. Remark 15 discussed this in the context of
the corresponding dual edge-labeled graph.

Lemma 63 thus shows that singular vertices are special insofar as they correspond to
the only geometrically realizable edge-labeled cycles with two distinct edge labels.

Combining these results with those from earlier sections gives an explicit algorithm for
constructing a minimal generating set for splines on interior cells. The first consequence
is a classical result for general r and d [LS07, Theorems 9.3 and 9.12].

Corollary 65. Denote the number of monomials of degree at most d by mg, namely

d+1)(d+2
md:1+---+(d+1):%.
The dimension of the space S}(A) of classical splines on a pinwheel triangulation A (i.e.
an interior cell) with n triangles has two formulas.

If the pinwheel has four triangles and a singular vertez, then the dimension of Si(A)

18
mgy ifd < 1,
md—l—Zmd_g 1f2<d<3,
Mg+ 2mg_o+mg_y ifd> 4.

If the pinwheel has n > 3 triangles and no singular vertex, then the dimension of Si(A)

is
mq itd <1,

mq + (n — 3)mg_2 if d =2,
mq + (n - 3)md,2 +2mgy_3 ifd > 3.
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Proof. From Lemma 63, we know that the pinwheel with a singular vertex is the only
geometrically-realizable cycle with just two distinct edge-labels. Theorem 12 built an
upper-triangular basis for the module of splines over the polynomial ring in the two-label
case. Fach module generator of degree j contributes mq_; elements to the vector space
basis in degree at most d because each module generator can be multiplied by each of the
mq—; monomials of degree at most d — j.

If A is not the pinwheel with a singular vertex, Theorem 62 showed that A must
have at least three successive distinct labels. Lemma 29 gave a homogeneous basis for
the spline space as a module over the polynomial ring in this case. Thus each module
generator of degree j contributes my_; elements to the vector space basis in degree at
most d. This proves the claim. O

Example 66. Consider the interior cells Ay and Ayigne from Figure 7. Corollary 65
computes dim S3(Ajr) and dim S5 (A gy ) in a different way than in Example 61.

Indeed, note that ms = 10, m; = 3, and mg = 1. Substituting these values into the
formulas in Corollary 65, we again obtain

dim S5 (Ajey) =16 and  dim S3(Avign) = 15.

These results also allow us to contextualize the lower bound conjecture. In particular,
we can bound the dimension of S}(A) by building the triangulation A one interior vertex
at a time, and by using Corollary 65 to bound the contribution of each interior vertex.

Corollary 67. Suppose A and A" are triangulations of a region in the plane satisfying
the hypotheses of Proposition 54 and that A’ is obtained by adding a new interior cell to
A with k triangles radiating around the new interior vertew.

Then the complex vector space Sy(A’) may have more basis elements than S}(A). The
number of additional (vector space) basis elements is at most

dim (Sé(Ao)) — My,

where Ag is the pinwheel triangulation with k triangles and mg is the number of monomaials
of degree at most d.

Proof. The preimage of the restriction map Rg,, a,, — Rga,as consists of the nonconstant
splines in Rg A The dimension of nonconstant splines is an upper bound on the total
dimension of Rg,,q,, since the restriction might not be surjective. This dimension was
given in Corollary 65, proving the claim. ]

The condition that the link of a vertex is strongly connected in fact implies that any
triangulation satisfying the constraints of Proposition 54 can be built one interior vertex at
a time. We sketch the argument here. Since the link of each vertex is strongly connected,
the link of each interior vertex is a cycle. If A’ has an interior vertex, then there is an
interior vertex lying on a triangle with a boundary edge. Removing this vertex and the
triangles on which it lies leaves a triangulation A. If A is connected, then it still satisfies
the conditions of Proposition 54. For some choice of vertex A is connected, because A’ is
strongly connected.
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