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Abstract

Generalized splines are an algebraic combinatorial framework that generalizes

and unifies various established concepts across di↵erent fields, most notably the

classical notion of splines and the topological notion of GKM theory. The for-

mer consists of piecewise polynomials on a combinatorial geometric object like a

polytope, whose polynomial pieces agree to a specified degree of di↵erentiability.

The latter is a graph-theoretic construction of torus-equivariant cohomology that

Shareshian and Wachs used to reformulate the well-known Stanley–Stembridge con-

jecture, a reformulation that was recently proven to hold by Brosnan and Chow and

independently Guay-Paquet.

This paper focuses on the theory of generalized splines. A generalized spline on a

graphG with each edge labeled by an ideal in a ring R consists of a vertex-labeling by

elements of R so that the labels on adjacent vertices u, v di↵er by an element of the

ideal associated to the edge uv. We study the R-module of generalized splines and

produce minimum generating sets for several families of graphs and edge-labelings:

1) for all graphs when the set of possible edge-labelings consists of at most two

finitely-generated ideals, and 2) for cycles when the set of possible edge-labelings

consists of principal ideals generated by elements of the form (ax + by)2 in the

polynomial ring C[x, y]. We obtain the generators using a constructive algorithm

that is suitable for computer implementation and give several applications, including

contextualizing several results in the theory of classical (analytic) splines.
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1 Introduction

Splines are a fundamental tool in applied mathematics and analysis, used in fields from
data interpolation [dB01] to computer graphics and design [BBB87]. Classically, they
are defined as piecewise polynomials on a combinatorial partition of a geometric object
that agree up to some specified di↵erentiability on the intersection of the top-dimensional
pieces of the partition. The most common example of these combinatorial partitions in
the literature is a polyhedral or simplicial decomposition of a suitable region in Euclidean
space.

Splines also appear in algebraic topology under the name GKM theory. GKM theory
is a graph-theoretic construction of torus-equivariant cohomology developed by Goresky,
Kottwitz, and MacPherson [GKM98]. It has had particular impact in algebraic combi-
natorics, especially Schubert calculus [KT03, Tym16a]. More recently, Shareshian and
Wachs conjectured that GKM theory could be used to reframe what’s called the Stanley–
Stembridge conjecture in combinatorial representation theory as a conjecture about a
symmetric group action on the torus-equivariant cohomology of a particular family of
varieties [SW16]. Their geometric interpretation of the Stanley–Stembridge conjecture—
though not the conjecture itself—was recently proven to hold by Brosnan and Chow and,
independently, Guay-Paquet [BC18, GP13]. This has led to an explosion of work relying
on properties of splines in the GKM context [AHM19, HPT22, HP22].

This paper considers a simultaneous algebraic generalization of both classical splines
and the splines occurring in GKM theory: given a (combinatorial) graph G with each
edge labeled by an ideal in some fixed ring R, a generalized spline is an R-labeling of the
vertices so that the labels on adjacent vertices u, v di↵er by an element of the ideal label-
ing the edge uv. This formulation is due to work of the third author with Gilbert and Viel
[GTV16], but was first used by Billera [Bil88] and (in the context of equivariant cohomol-
ogy) by Guillemin–Zara [GZ00, GZ01a, GZ01b]. The construction of generalized splines
is essentially dual to the classical definition of splines [Bil88, Theorem 2.4] (equivalently,
Proposition 54). For example, in the case of a triangulation of a region in the plane, the
vertices of G correspond to triangles of the triangulation, and the edge-relations corre-
spond to di↵erentiability conditions across intersections of triangles. Generalized splines
coincide with the typical construction of GKM theory if the graph, the ring, and the ideals
all satisfy very particular conditions [GKM98]. (See Section 6 for more.)

One of the most important problems in the study of splines is to identify the size of the
spline space, interpreted either as the dimension of the vector space of classical splines of
degree at most d [AS87, AS90, Hon91, SSY20, SS02, Sch79, YS19, Str74] (see [LS07] for
a survey in the bivariate case) or as the (minimum) number of generators of the module
of generalized splines [AS21b, AS21a, BR91, DiP12, GZ01b, GZ03, BHKR15, GTV16,
ACFG+20].

In this paper, we compute the minimal number of generators of the module of gener-
alized splines over several families of graphs for di↵erent collections of rings. Our most
general result is Theorem 12, which gives an algorithm using graph connectivity to com-
pute a minimum set of generators for the module of generalized splines over any graph G
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whose set of edge-labels consists of at most two distinct ideals. The only hypothesis on
R is that it be a unique factorization domain (UFD). Theorem 10 specializes to the case
when all edges of G are labeled by the same ideal; in that case, if the ideal is principal
then the module of generalized splines is free over R and its rank is precisely the number
of vertices in G.

We then specialize R to be a polynomial ring, typically using the assumption that the
edge-labels are principal ideals generated by homogeneous polynomials of the same degree.
These assumptions may seem restrictive but are not. Indeed, in both classical splines and
GKM theory, splines use polynomial rings as their base ring; furthermore, all known
applications use principal ideals as edge-labels. (See Remark 9 and Sections 6.1 and 6.2
for more extensive discussion.) Moreover, the edge-labels used in GKM theory arise as
the weights of torus actions on a geometric space, and are naturally homogeneous. Even
in cases when the edge-labels are not a priori homogeneous (as in classical splines), we
can homogenize. (See Section 5.2 for more details about homogenization.) Corollary 55
proves that homogenization induces a natural vector space isomorphism between the
classical vector space of splines of degree at most d and the module of generalized splines
over the polynomial quotient

R[x1, x2, . . . , xn]/hall monomials in the xi of degree at least d+ 1i

considered as a real vector space. Corollary 55 is an application of the general framework
of quotient splines that we develop in Section 5, together with Billera’s result.

Classical splines do not naturally form a ring since multiplication generally increases
degree. This is in contrast to the setting of generalized splines, where the module of
generalized splines associated to a fixed ring and edge-labeled graph actually forms a ring.
(See the discussion after Remark 4.) However, identifying the vector space of classical
splines with the elements of this quotient space allows us to consider a ring structure on
splines. In this sense, Corollary 55 provides a new algebraic tool for classical splines.

Under the assumptions of the previous paragraph, we prove one other main result.
Theorem 30 computes explicit homogeneous generators for all generalized splines on cycles
whose edges are labeled by polynomials of the form (x + ay)2 and shows that these
generalized splines cannot be obtained from fewer generators. Indeed, it shows that these
generators form a basis. This is a remarkably uniform result that depends only on the
number of distinct edge-labels, and not the underlying geometry.

Corollary 31. Suppose Cn is a cycle with n vertices and that each edge is labeled by
a principal ideal generated by a polynomial of the form (x + ay)2. Then the module of
generalized splines has a basis of the following form:

• If there is only one distinct edge-label: one homogeneous generator of degree zero
and n� 1 of degree two.

• If there are two distinct edge-labels: one homogeneous generator of degree zero, n�2
of degree two, and one of degree four.
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• If there are at least three distinct edge-labels: one homogeneous generator of degree
zero, n� 3 of degree two, and two of degree three.

Section 6.3 focuses on applications related to the lower bound conjecture in the classical
theory of bivariate splines. Given nonnegative integers r and d, as well as a triangulation
of a region � in the plane, the space of splines Sr

d(�) is the R-vector space of functions
F : � ! R with the properties that the restriction of F to each triangle in the triangula-
tion of � is a polynomial of degree at most d, and that F is continuously di↵erentiable
of order r on �. (See Definition 52 for a definition of Sr

d(�) for more general spaces �.)
The lower bound conjecture arises from an explicit polynomial in r, d constructed

from a triangulation of a given region � of the plane. Strang conjectured that this
polynomial computes the dimension of Sr

d(�) for specific families of r, d, and � [Str74].
Schumaker showed that in fact the polynomial is a lower bound for all r, d,� [Sch79].
Considerable work has happened on this problem since: Alfeld and Schumaker showed
that the polynomial gives the dimension when d > 4r + 1 [AS87], which Hong later
tightened to d > 3r + 2 [Hon91]; at the same time, Billera proved Strang’s conjecture for
r = 1 and d = 3 as long as the triangulation � is generic [Bil88].

Our last two results provide a theoretical foundation contextualizing the lower bound
formula when r = 1 and d = 3. In this case, most mathematicians believe the formula
actually computes the dimension of S1

3(�); there are no known counterexamples to this
claim despite significant and ongoing e↵orts [SS02, YS19, SSY20]. (See [LS07, Chapter
9] for more history and context.)

We show:

• Theorem 30, Lemma 63, and Corollary 65 together give an alternative proof of
Schumaker’s characterization of classical splines on a single interior cell, namely
the “pinwheel triangulations” consisting of a single interior vertex and a number
of triangles incident to that vertex and covering a small neighborhood around that
vertex [LS07, Theorems 9.3 and 9.12].

• When r = 1 and d = 3, the lower bound formula consists of terms contributed by
boundary and interior vertices of the triangulation, a correction term for certain
interior vertices called “singular vertices,” and a constant term from polynomials
defined on the entire triangulation (not piecewise). Corollary 67 explains the correc-
tion term accounting for “singular vertices” as the unique geometrically realizable
triangulations that correspond to cycles with exactly two distinct edge-labels.

2 Generalized splines on graphs

This section reviews basic definitions and constructions, including terminology from graph
theory and essential results about generalized splines. We state most results in this
paper for generalized splines on connected graphs because splines for arbitrary graphs
can be obtained from generalized splines on the connected components via direct sum
(see Proposition 5).
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2.1 Graphs

For a graph G = (V,E), we denote its (finite) set of vertices by V and its (finite) set of
edges by E. We write elements of E as pairs of distinct vertices; for example, e = uv is
the edge that joins vertex u and vertex v, and we say u and v are adjacent. (Note that
uv = vu since edges are unoriented.) Graphs in this paper have at most one edge between
any given pair of vertices.

If G0 = (V 0
, E

0) is another graph such that V
0 ✓ V and E

0 ✓ E, then G
0 is called a

subgraph of G. The induced subgraph G[V 0] of V 0 is the graph with vertex set V 0 and edge
set consisting of all edges in E with both vertices in V

0. The neighborhood NG(V 0) of V 0

is the set of vertices in V that are adjacent to at least one vertex in V
0. We also define

the graph G� E
0 := (V,E \ E 0).

A path in G is a finite sequence of edges (u1u2, u2u3, . . . , un�2un�1, un�1un), with each
ui 2 V , such that each pair of successive edges shares a vertex. A connected component of
G is a subgraph G

0 of G with the property that any two vertices of G0 are joined by a path
lying entirely in G

0. If G has exactly one connected component, then G is a connected
graph.

Proposition 2. If G = (V,E) is a connected graph, then there is an ordering v1, . . . , v|V |
on V such that for every 1 < i 6 |V | the vertex vi is adjacent to at least one of the vertices
v1, v2, . . . , vi�1.

Proof. We proceed by induction on the number of vertices currently ordered. For the
base case, arbitrarily choose a first vertex v1 2 V . Assume as inductive hypothesis
that we have ordered v1, . . . , vk for some 1 < k < |V | so that vi is adjacent to at least
one of the vertices v1, v2, . . . , vi�1 for each i 6 k. Suppose that k < |V | and that the
neighborhood NG({v1, . . . , vk}) is contained in the set {v1, . . . , vk}. Then no vertex in
V � {v1, . . . , vk} shares an edge with any vertex in {v1, . . . , vk}. This means that G is
disconnected, contradicting our hypothesis on G. Thus if |V | > k + 1 there is some
vk+1 2 NG({v1, . . . , vk}), and the claim holds by induction.

2.2 Generalized splines and minimum generating sets

Let R be a commutative ring with identity denoted by 1. (We will add more conditions
on R as they become necessary.) Let I be the set of ideals of R. A function ↵ : E ! I
is called an edge-labeling of G. We write (G,↵) to mean a graph together with an edge-
labeling, and call it an edge-labeled graph. If |↵(E)| 6 k, then we call (G,↵) a k-labeled
graph. Note that, we have suppressed explicit mention of the vertex set and edge set in
the notation of an edge-labeled graph, but these will always be clear from context.

Definition 3. Let (G,↵) be an edge-labeled graph. A generalized spline on (G,↵) is a
vertex-labeling p 2

L
v2V R that satisfies the GKM condition:

for every edge e = uv 2 E, the di↵erence between
coordinates at the endpoints is pu � pv 2 ↵(e).
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v1 v2

v3

hii

hji hj�ii
p = (0, ij, j2)

Figure 1: An edge-labeled complete graph on three vertices together with a spline p on
it. Here i, j 2 R.

For the remainder of the paper, we write “spline” to mean “generalized spline”, unless
we specifically write “classical spline”. We also note that the definition of spline makes
sense for noncommutative rings R, but, to our knowledge, this has not been explored
deeply in the literature.

We sometimes write a spline p = (pv1 , . . . ,pv|V |) as a |V |-tuple when we have a
particular ordering on V in mind. See Figure 1 for an example of a spline on an edge-
labeled graph.

Remark 4. The name “GKM condition” (also appearing in [GTV16]) refers to work by
Goresky, Kottwitz, and MacPherson, where this condition appears while combinatorially
computing the equivariant cohomology of certain varieties carrying well-behaved torus
actions [GKM98].

We write RG,↵ for the set of splines on the edge-labeled graph (G,↵). It is well known
thatRG,↵ is itself a ring with identity [GTV16, Proposition 2.4]. The unit 1 2 RG,↵ is given
by 1v = 1 for all vertices v. (We call 1 the trivial spline.) Addition and multiplication in
RG,↵ are defined pointwise; that is, (p + q)v = pv + qv and (pq)v = pvqv for all v 2 V .
Moreover, RG,↵ carries the structure of an R-module given by r · p = (rpv)v2V for any
r 2 R.

The following proposition from [GTV16] confirms that our results extend from con-
nected graphs to arbitrary graphs. Recall if G0 = (V 0

, E
0) and G

00 = (V 00
, E

00) are graphs,
then their union is defined as

G
0 [G

00 = (V 0 [ V
00
, E

0 [ E
00).

Proposition 5 ([GTV16, Proposition 2.11]). Let (G0
,↵

0) and (G00
,↵

00) be two disjoint
edge-labeled graphs, namely V 0\V 00 = ; and E

0\E 00 = ;. If G = G
0[G00 and ↵ is the edge-

labeling on G defined by restricting to ↵
0 on G

0 and ↵
00 on G

00, then RG,↵ = RG0,↵0�RG00,↵00.

In this paper, we present algorithms for producing minimum generating sets for RG,↵

for a variety of edge-labeled graphs (G,↵).

Definition 6. A generating set B for RG,↵ is a set of splines in RG,↵ which generates
RG,↵ as an R-module. The set B is called a minimum generating set (MGS) if it is a
generating set with the property that no other generating set has fewer elements than B.

The general question of when RG,↵ is a free R-module is complicated. In topolog-
ical applications, RG,↵ is typically assumed to be free—this is the main implication of
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equivariant formality, which is one of the hypotheses in the machinery of GKM theory
(see [GKM98, Tym05] for more details). In analytic applications, they need not be (see,
for example, [DiP12]). For the most part we do not address this question, though the
following lemma applies to several of our results.

Lemma 7. Let R be an integral domain and (G,↵) be an edge-labeled graph. If B is an
MGS for RG,↵ that is triangular1 with respect to some vertex ordering v1, . . . , v|V | on V ,
then RG,↵ is a free R-module with basis B.

Proof. Since the MGS B is triangular, it has at most |V | elements and we may order the
basis elements B = {bi1 ,b

i2 , . . . ,b
ik0} so that b

i
vj = 0 for all j < i and b

i
vi 6= 0 for all

i 2 {i1, i2, . . . , ik0}.
Now suppose

P
bi2B cib

i = 0 is a linear dependence. We prove by induction on i that
all ci are zero—the base case, that ci1 = 0, is clear by triangularity. If ci = 0 for all i < i0,
then we have X

bi2B

cib
i
vi0

= ci0b
i0
vi0
,

since all ci with i < i0 are zero by the inductive hypothesis and all bi
vi0

with i > i0 are

zero by triangularity. We assumed the displayed expression was zero, so ci0b
i0
vi0

= 0. But

b
i0
vi0

is nonzero by assumption and R is an integral domain, so ci0 is zero. The claim
follows.

The next result gives a lower bound on the number of elements of an MGS. (This
lower bound does not hold if R has zero divisors [BT15].)

Lemma 8. If R is an integral domain, then the number of elements of an MGS B is at
least |V |.

Proof. If R is an integral domain and (G,↵) is a connected edge-labeled graph, then
the module of splines RG,↵ contains a free R-submodule M generated by |V | elements
[GTV16, Corollary 5.2]. Now consider the image of the R-modules RG,↵ ◆ M under the
map induced by including R into its field of fractions. The image of M is a vector space
of dimension |V | and the image of RG,↵ is a vector space that both contains the image of
M and is generated by the image of B. Thus there are at least |V | elements in B.

Remark 9. Many of our key results apply to edge-labelings by finitely-generated ideals.
However, our results treat principal ideals. We do this for two reasons. First, most
applications of splines use edge-labels that are principal ideals (see Section 6 for more).
Second, our arguments usually generalize easily to finitely-generated ideals. Indeed, the
main step of many of our arguments uses triangular MGSs in which each generator also
satisfies b

i
u 2 {0, r} for all u 2 V and some fixed ring element r. In this context, it is

straightforward to extend the main results of this paper from edge-labels that are principal

1
An MGS B is (upper or lower) triangular with respect to a vertex ordering v1, . . . , v|V | on V if, after

ordering the entries of the elements of B according to the ordering on V , the matrix whose columns

are the elements of B is a (upper or lower) triangular matrix with nonzero diagonal entries.
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ideals to edge-labels that are finitely generated: instead of creating a single spline b
i for

which b
i
vi generates the principal ideal associated to an edge incident to vi, we create a

set of generators {bi,1
,b

i,2
, . . . ,b

i,k} that minimally generate the ideal labeling that edge.
(This kind of argument has been used previously in the literature [HT17, Propositions 2.4
and 2.6].) Expanding the generator set in this fashion gives analogous versions for edge-
labelings with finitely-generated ideals of Theorem 10, Theorem 12, and the dimension
computations in Corollary 27.

3 Algorithm to produce an MGS on 2-labeled graphs

Recall that a k-labeled graph is an edge-labeled graph (G,↵) such that |↵(E)| 6 k; i.e.,
the set of edge-labels used consists of at most k distinct ideals. In this section, we give
an algorithm to produce an MGS for an arbitrary connected 2-labeled graph (G,↵). As a
warm-up, in Section 3.1, we treat the 1-labeled case; in Section 3.2, we treat the 2-labeled
case. Throughout this section, G denotes an arbitrary connected graph.

3.1 One edge-label

Let ↵ : E ! I be a constant edge-labeling function; that is, the image of ↵ consists of
a single principal ideal I = hii. For a given v 2 V , denote by I

v the indicator spline of
the ideal I at the vertex v. In other words, Iv is the spline with I

v
v = i and I

v
u = 0 for all

u 6= v.

Theorem 10. Fix an ordering v1, . . . , v|V | on V as in Proposition 2, and let ↵ : E ! I
be the constant edge-labeling ↵(e) = I = hii 2 I for all e 2 E.

Then the set B = {1, Iv2 , . . . , Iv|V |} is an MGS for RG,↵. Moreover, if R is an integral
domain then RG,↵ is a free R-module with basis B.

Proof. Let p 2 RG,↵ be an arbitrary spline. We claim that there exist r2, . . . , r|V | 2 R

such that
p = pv11+ r2I

v2 + · · ·+ r|V |I
v|V | . (1)

We will prove the following statement, which is equivalent to Equation (1): for every
2 6 j 6 |V |, there exists rj 2 R such that pvj �pv1 = rj i. We proceed by induction on j.

When j = 2, Proposition 2 ensures that v2 is adjacent to v1. Thus there exists r2 2 R

such that pv2 � pv1 = r2i 2 ↵(v2v1), as desired.
Our inductive hypothesis states: if j 2 {2, . . . , |V |� 1}, then for all k with 2 6 k 6 j

there exists rk 2 R such that pvk�pv1 = rki. By Proposition 2, the vertex vj+1 is adjacent
to some v` with 1 6 ` 6 j. If vj+1 is adjacent to v1, then the GKM condition ensures
that there exists rj+1 2 R with pvj+1 � pv1 = rj+1i as desired. Otherwise, the spline
p� pv11� r`I

v` satisfies

(p� pv11� r`I
v`)u =

⇢
0 when u = v`,

pvi � pv1 when u = vi for i 6= `.

the electronic journal of combinatorics 31(1) (2024), #P1.29 8



The GKM condition when u = vj+1 implies that there is some rj+1 2 R such that
pvj+1 � pv1 = rj+1i 2 ↵(vj+1v`). Equation (1) follows by induction, so B is an MGS for
RG,↵ by Lemma 8.

Finally, if R is an integral domain then Lemma 7 applies, proving that RG,↵ is free
with basis B.

3.2 Two edge-labels

Now suppose the edge-labeling ↵ : E ! I has image {I, J} ✓ I with I = hii and J = hji.
The theorem below gives an algorithm for producing an MGS for RG,↵. The basic idea
of the proof is to consider the neighbors of each vertex vi successively. If vi is connected
to the first i � 1 vertices only through paths with a single edge-label, then we can find
a generator that uses only that edge-label; otherwise, we need a generator that is an
indicator spline with nonzero entry given by the product of the two edge-labels.

We start with a graph-theoretic lemma. Recall that a simple path is a path in which
no vertices are repeated.

Lemma 11. Let (G,↵) be a connected edge-labeled graph with edge-labeling ↵ : E ! I
such that |↵(E)| = 2. Fix a vertex u and a subset of vertices S ✓ V � {u} with nonempty
intersection NG({u}) \ S. Then the following are equivalent:

1. Choose any u
0 2 S. Let

G
0 = G� {vw 2 E | ↵(vw) = ↵(uu0)}

and let C = (V 0
, E

0) be the connected component of G0 containing u. Then V
0 \ S

is empty.

2. Every simple path from u to a vertex in S has at least one edge labeled ↵(uu0).

Proof. Let ↵(uu0) = I and write ↵(E) = {I, J}. The edges in G
0 are precisely the edges

in G that are labeled J . The vertex u is connected to a vertex u
0 in the graph G

0 if and
only if there is a path between u and u

0 in G
0 — in other words, if and only if there is a

path from u to u
0 whose edges are all labeled J . It follows that Condition 1 fails if and

only if Condition 2 fails, as desired.

We now prove our claim.

Theorem 12. Let R be a UFD. Let (G,↵) be a connected edge-labeled graph with edge-
labeling ↵ : E ! I having image {hii, hji}. Choose an ordering on V as in Proposition 2.
For every 1 < i 6 |V |, define the spline b

i as follows. Choose some vj 2 NG({vi}) with
j < i, and write hki := ↵(vivj). Let

G
0 = G� {uv 2 E | ↵(uv) = hki},

and let C = (V 0
, E

0) be the connected component of G0 containing vi.
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(a) If V 0 ✓ {vi, vi+1, . . . , v|V |}, then set bi
u = k for all u 2 V

0 and b
i
u = 0 for all u 62 V

0.

(b) Otherwise, set bi
vi = lcm(i, j) and b

i
u = 0 for all u 6= vi.

Each b
i depends only on the ordering of the vertices in V and not on the choice of

vertex vj in NG({vi}) used to define b
i. Moreover RG,↵ is a free R-module, and the set

B = {1,b2
, . . . ,b

|V |} is a basis for RG,↵.

Remark 13. Note that if the image of ↵ is a single edge-label, then C always consists of
the single vertex vi and Case (b) never applies. Thus, Theorem 10 is a special case of
Theorem 12.

Proof. We prove that B is an MGS for RG,↵. Since R is an integral domain, Lemma 7
then implies the claim.

First we show the definition of bi depends only on the order of the vertices and not on
the choice of vj 2 NG({vi}). Indeed suppose we chose vj 2 NG({vi}) for which Case (a)
holds. An edge is an example of a simple path; applying Lemma 11 allows us to conclude
that ↵(vivj0) = hki for every edge vivj0 with j

0
< i. Thus if one choice of vj leads to Case

(a) then any other choice of {v1, . . . , vi�1}\NG({vi}) gives rise to the same edge-label hki
and hence the same graph G

0 so also Case (a) and the same b
i. Otherwise, all choices of

vj 2 NG({vi}) give rise to Case (b), for which b
i is defined independent of vj.

Next we confirm that for all i > 1 the function b
i is a spline. There are two cases.

(a) If bi was produced by Case (a), then for every edge uw 2 E

b
i
u � b

i
w =

8
<

:

k� k = 0 if both u, w are in V
0
,

0� 0 = 0 if neither u, w are in V
0
,

±(k� 0) = ±k if exactly one of u, w are in V
0
.

When the di↵erence bi
u�b

i
w = 0 the function b

i satisfies the GKM condition at edge
uw trivially so the GKM condition is satisfied. If exactly one of u, w are in V

0 then
the edge uw was deleted from G to form G

0 so ↵(uw) = hki. Thus bi
u�b

i
w 2 ↵(uw)

so b
i is a spline.

(b) If bi was produced by Case (b), then for every edge uw 2 E the di↵erence b
i
u � b

i
w

is either zero or a nonzero element of hii \ hji. Thus bi satisfies the GKM condition
at each edge and hence is a spline.

Now we show that B = {1,b2
, . . . ,b

|V |} generates the set RG,↵ of all splines. Let
p 2 RG,↵ be an arbitrary spline. We will confirm that p is an R-linear combination of
elements of B by explicitly identifying coe�cients r2, . . . , r|V | 2 R such that

p = pv11+ r2b
2 + · · ·+ r|V |b

|V |
. (2)

We induct on i using the inductive hypothesis that we have a unique sequence of coe�-
cients r1, r2, . . . , ri�1 2 R so that r11 + r2b

2 + · · · + ri�1b
i�1 agrees with p on the first
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i� 1 vertices. For the base case i = 2, the assignment r1 = pv1 is the only coe�cient for
which

r11v1 = pv1

since 1v1 is the multiplicative identity in R.
Next assume that we have a (unique) sequence of coe�cients r1, r2, . . . , ri�1 satisfying

the inductive hypothesis. Let

q = p� r11� r2b
2 � r3b

3 � · · ·� ri�1b
i�1

and note that qvj = 0 for all j < i. We know q is a spline since RG,↵ is an R-module. We
will show that there is a unique coe�cient ri 2 R solving the equation

qvi = rib
i

after which the inductive claim for p follows. By Proposition 2, there is at least one
vk 2 NG({vi}) with k < i. Suppose without loss of generality ↵(vkvi) = hii. Since qvk = 0
by construction, either

(i) qvi 2 hii \ hjic or

(ii) qvi 2 hii \ hji.

By definition b
i
vi is one of i, j, or lcm(i, j). Thus in Case (ii) we know b

i
vi divides qvi . For

the same to hold in Case (i) we must show b
i
vi = i. Note first that there is no path whose

edges are all labeled hji from vi to any vj with j < i. Indeed, if there were, the GKM
conditions along this hji-labeled path would imply

qvi � qvj 2 hji

By construction qvj = 0 so we would have qvi 2 hii \ hji. This contradicts the hypothesis
of Case (i). Moreover Lemma 11 shows that bi was produced by Case (a) so b

i
vi = i.

In both cases bi
vi divides pvi . Since R is a UFD there is a unique coe�cient ri solving

pvi = rib
i
vi

By induction, Equation (2) holds so B generates RG,↵ as an R-module.
Finally, we check that B is an MGS for RG,↵. The set B has exactly |V | elements.

Lemma 8 guarantees that every MGS for RG,↵ has at least |V | elements so the claim
follows.

Example 14. Consider the edge-labeled graph

v1 v2

v3 v4

hii

hji hji

hii

. Note that we have chosen

an ordering on the vertices as in Theorem 12 (or Proposition 2).
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To produce b
2, we look at all vertices that are connected to v2 by paths labeled

exclusively hji. This gives the set C 0 = {v2, v4}. Thus we are in Case (a), so b
2 is zero on

{v1, v3} and i otherwise.
Similarly, to find b

3 we get the connected component C 0 = {v3, v4} and are again in
Case (a). In this case, b3 is zero on {v1, v2} and j otherwise.

However, when constructing b
4 we find that C 0 = {v2, v4}. Thus b4 is lcm(i, j) on v4

and zero otherwise.
The set B = {1,b2

,b
3
,b

4} is an MGS for RG,↵ by Theorem 12.

Remark 15. In the theory of classical splines, the previous example (that is, a four-
cycle with two distinct edge-labels) is the unique edge-labeled graph that is dual to a
certain triangulation called, in the classical spline literature, an interior cell (or pinwheel
triangulation) containing a singular vertex. See the left picture in Figure 7 for such a
triangulation with singular vertex v. In Section 6.3, more will be said about the interesting
role that such singular vertices play in (bounds for) dimension formulas of the space of
classical splines.

4 Polynomial splines on cycles

In Section 3, we produced MGSs for arbitrary connected 2-labeled graphs. In this section,
we treat an arbitrary number of edge-labels, but we restrict the types of graphs and ideals
under consideration.

4.1 Degree sequences for splines

Let R = k[x1, . . . , xm] with k a field, and let (G,↵) be an arbitrary edge-labeled graph.
Recall that throughout this paper, we assume that all ideals in the image of ↵ are principal
(see Remark 9). We now add the assumption that the ideals are generated by homogeneous
elements and introduce an invariant of (G,↵) called the “degree sequence”. (As described
in the introduction and in Section 6, homogeneity is a very natural condition in geometric
and classical (analytic) applications.)

Definition 16. An MGS B = {b1
, . . . ,b

n} is called homogeneous if, for each 1 6 i 6 n,
every nonzero entry of bi is a homogeneous polynomial of the same degree, which we
denote as degbi.

Definition 17. Let B be a homogeneous MGS. For each j 2 Z>0, let dj =
��{b 2 B |

degb = j}
��. Then the degree sequence of B is defined as dB = (d0, d1, d2, d3, . . .).

Remark 18. The degree sequence only has a finite number of nonzero entries. For instance,
when edge-labels are principal ideals, no generator need have larger degree than that of
the product of the edge-labels. In particular, dm = 0 if m is greater than the sum of the
degrees of the generators of the edge-labels. (See also [GTV16, Corollary 5.2].)
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For the remainder of the paper, we only consider principal ideals generated by degree-
two elements of the form (x + ay)2 with 0 6= a 2 k. (See Section 6 for how this case
appears in the study of classical splines.) For convenience, we denote these edge-labels
using a sans-serif letter; for example, we write a := (x+ ay)2.

Example 19. Let k be a field, and let R = k[x, y]. Consider the edge-labeled graph
(G,↵) given by

v1 v2

v3 v4

hai

hbi hbi

hai

where 0 6= a, b 2 k. This is a specialization of the edge-labeled graph in Example 14.
Theorem 12 asserts that

B = {1, (0, a, 0, a), (0, 0, b, b), (0, 0, 0, ab)}

is a homogeneous MGS for RG,↵. The degree sequence of B is thus dB = (1, 0, 2, 0, 1).

We next prove that the degree sequence is an invariant of an edge-labeled graph.

Proposition 20. Let (G,↵) be a connected edge-labeled graph with edges labeled by prin-
cipal polynomial ideals with homogeneous generators. Let B and B0 be two homogeneous
MGSs for RG,↵ with degree sequences dB and dB0, respectively. Then dB = dB0.

Proof. Let B = {b1
, . . . ,b

n} and B0 = {b10
, . . . ,b

n0} be two homogeneous MGSs for RG,↵

with degree sequences dB = (d0, d1, d2, . . .) and dB0 = (d00, d
0
1, d

0
2, . . .). (If needed, add

terminal zeros so both sequences have the same length.) We show that dr = d
0
r for each

r by induction on the index r and prove as our base case that d0 = d
0
0. The degree-zero

splines in RG,↵ generate a k-vector space. The degree-zero splines in B form an MGS
for the degree-zero splines in RG,↵, and likewise for B0. Since MGSs in vector spaces are
bases, and in particular have the same number of elements, the base case of our induction
holds. Now assume that d0 = d

0
0, d1 = d

0
1, . . . , dr�1 = d

0
r�1.

Given b
i0 2 B0, we can write b

i0 = ki,1b
1 + ki,2b

2 + · · · + ki,nb
n for some coe�cients

ki,1, . . . , ki,n 2 R. Note that X

bj2B
degbi0<degbj

ki,jb
j = 0,

so we may assume ki,j = 0 for all degbi0
< degbj. It follows that

{bi0 2 B0 | degbi0 6 r} ✓ span({bi 2 B | degbi 6 r}).

A symmetric argument shows that

{bi 2 B | degbi 6 r} ✓ span({bi0 2 B0 | degbi0 6 r}).

This contradicts minimality of B or B0 unless
Pr

i=0 di =
Pr

i=0 d
0
i. By the inductive

hypothesis, this implies dr = d
0
r.
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4.2 Linear algebraic background

We use the following two linear-algebraic results about the k-vector space of polynomials.

Lemma 21. Let a, b, c, d,D 2 k, with a, b, c distinct. Then we can find unique A,B,C 2 k
such that

Aa+Bb+ Cc = Dd. (3)

Proof. We rewrite Equation (3), collecting coe�cients, as

(A+B +C)x2 + (2aA+ 2bB + 2cC)xy + (a2A+ b
2
C + c

2
C)y2 = Dx

2 + 2Ddxy +Dd
2
y
2
.

Solving for A,B,C amounts to solving the following system of linear equations:

A+B + C = D

2aA+ 2bB + 2cC = 2dD

a
2
A+ b

2
B + c

2
C = d

2
D.

The coe�cient matrix 2

4
1 1 1
2a 2b 2c
a
2

b
2

c
2

3

5

can be reduced to the identity matrix via elementary row operations. (Some of the row
operations require division, but we avoid division by zero because a, b, c are distinct.) This
implies that the coe�cient matrix is invertible; thus, there exists a unique solution to the
system of equations.

Lemma 22. Let a, b, c, C1, C2 2 k, with a and b distinct. There we can find unique
A1, A2, B1, B2 2 k such that

(A1x+ A2y)a+ (B1x+B2y)b = (C1x+ C2y)c. (4)

Proof. Expanding Equation (4) and equating coe�cients of like terms leads to the follow-
ing system of linear equations:

A1 +B1 = C1

2aA1 + A2 + 2bB1 +B2 = 2cC1 + C2

a
2
A1 + 2aA2 + b

2
B1 + 2bB2 = c

2
C1 + 2cC2

a
2
A2 + b

2
B2 = c

2
C2.

The coe�cient matrix 2

664

1 0 1 0
2a 1 2b 1
a
2 2a b

2 2b
0 a

2 0 b
2

3

775

can be reduced to the identity matrix via elementary row operations. (Some of the row
operations require division, but we avoid division by zero because a 6= b.) This implies
that the coe�cient matrix is invertible; thus, there exists a unique solution to the system
of equations.
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4.3 Constructions to reduce graphs

A product module has a collection of forgetful maps to di↵erent factors in the module.
Suppose (G0

,↵
0) is an edge-labeled graph obtained from another edge-labeled graph (G,↵)

by adding a single vertex v together with some labeled edges from v to vertices in G. Then
we can use the forgetful map to relate the splines on (G0

,↵
0) to those on (G,↵).

This is what we do in the next result. We then specialize to the case of cycles in
Corollary 27. We note that Lemma 23 below also applies to general edge-labelings ↵,
which we will restrict in more ways throughout this section.

Lemma 23. Suppose that (G,↵) and (G0
,↵

0) are edge-labeled graphs with vertices V
0 =

V [ {v}, edges
E

0 = E [ {vu | u 2 U}

where U ✓ V is nonempty, and edge-labeling ↵
0|E = ↵. Then the projection mapL

u2V 0 R !
L

u2V R induces an R-module homomorphism ' : RG0,↵0 ! RG,↵, and

RG0,↵0 ⇠= ker'� im'.

Moreover, suppose that every pair u, u
0 2 U is connected by a path of edges in E all

labeled I, and suppose that ↵0(vu) = I for all u 2 U . Then

RG0,↵0 ⇠= I �RG,↵.

Proof. We first show that restricting a spline p in RG0,↵0 to the set of vertices V produces
a spline in RG,↵. Indeed, for each edge uu

0 2 E we have

pu � pu0 2 ↵
0(uu0) = ↵(uu0).

Thus the projection map induces an R-module homomorphism ' : RG0,↵0 ! RG,↵. We
conclude that

RG0,↵0 ⇠= ker'� im'.

Now we consider the special case where every pair u, u
0 2 U is connected by a path

of edges in E all labeled I, and ↵
0(vu) = I for all u 2 U . Note that ker' consists of all

splines in RG0,↵0 that are zero at all of V . Consider a spline in ker'. If at least one edge
incident to v is labeled I, then the vertex v must be labeled by an element of I by the
GKM condition; if all edges incident to v are labeled I, then every element of I works.
Thus ker' ⇠= I.

Given a spline q 2 RG,↵, we define p 2 RG0,↵0 such that '(p) = q according to the
rule pu = qu for all u 2 V and pv = qu0 for some u

0 2 U . The GKM condition implies
that qu � qu0 2 I for any u 2 U , since u and u

0 are connected by a path of edges labeled
I by hypothesis. Thus, we have pu � pv = qu � qu0 2 I for all u 2 U . By inspection of
the GKM conditions, we conclude p 2 RG0,↵0 and thus im' ⇠= RG,↵.

We can (and will) use Lemma 23 to eliminate those vertices whose incident edges all
have the same label. This leads us to the following definition.
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Definition 24. An edge-labeled graph is called reduced if no two edges that are incident
to the same vertex have the same edge-label.

We note that the edge-labels in a reduced cycle have to be at least somewhat evenly
distributed, in the following sense.

Lemma 25. Suppose (G,↵) is a reduced edge-labeled graph. Moreover, suppose (G,↵)
contains n distinct vertices v0, v1, v2, . . . , vn = v0 that form a cycle and assume that
|↵(E)| > 3. Then there is at least one sequence of three successive distinct edge-labels
on the edges v1v2, v2v3, . . . , vn�1vn, vnv1.

Proof. Read clockwise around the cycle starting at an arbitrary edge, and suppose the
first two edges are labeled I and J . If a sequence of three successive edge-labels does not
contain three distinct edge-labels, then it must alternate between two of them since the
graph is reduced. An edge-label that is neither I nor J appears somewhere on the graph
by hypothesis of at least three distinct edge-labels. Look at the first occurrence of this
edge-label in the sequence; the two edges preceding it have labels from the set {I, J},
without repetition. This proves the claim.

In the next lemma, we refine Lemma 23 to keep track of MGSs. While we use this
lemma to prove results about polynomial edge-labelings, the same proof works for edge-
labelings over UFDs as long as each edge is labeled by a principal ideal.

Lemma 26. Let (G,↵) and (G0
,↵

0) be defined as in Lemma 23, with the condition that
every pair u, u

0 2 U is connected by a path of edges in E all labeled hii and ↵
0(vu) = hii

for all u 2 U . Let |V | = n and fix some u
0 2 U . If B = {b1

,b
2
, . . . ,b

n} is an MGS for
RG,↵, then B0 = {b10

,b
20
, . . . ,b

n0
,b

n+1}, where

b
i
u
0
=

⇢
b
i
u if u 2 V,

b
i
u0 if u = v,

and

b
n+1
u =

⇢
0 if u 2 V,

i if u = v,

is an MGS for RG0,↵0.

Proof. It is clear that b
n+1 is a spline in RG0,↵0 . If ' is the map from Lemma 23, then

'(bi0) = b
i for all 1 6 i 6 n by construction, so (the last paragraph of the proof of)

Lemma 23 implies that bi0 2 RG0,↵0 again for all 1 6 i 6 n.
We now show that B0 is a generating set for RG0,↵0 . Each spline p 2 RG0,↵0 satisfies

pv = pu0 + ki (5)

for some k 2 R by the GKM condition for the edge vu0. The spline '(p) is an element of
RG,↵ with

'(p)u = pu for all u 2 V. (6)

the electronic journal of combinatorics 31(1) (2024), #P1.29 16



Because B is an MGS for RG,↵, we can write '(p) as a linear combination

'(p) = r1b
1 + r2b

2 + · · ·+ rnb
n
, (7)

where each ri 2 R. For all u 2 V , we have

pu = '(p)u by Equation (6),

= r1b
1
u + r2b

2
u + · · ·+ rnb

n
u + k · 0 by Equation (7),

= r1b
1
u
0
+ r2b

2
u
0
+ · · ·+ rnb

n
u
0 + kb

n+1
u by the definition of B0

.

Furthermore,

pv = pu0 + ki by Equation (5),

= r1b
1
u0 + r2b

2
u0 + · · ·+ rnb

n
u0 + ki by the previous argument,

= r1b
1
v
0
+ r2b

2
v
0
+ · · ·+ rnb

n
v
0 + kb

n+1
v by the definition of B0

.

We have obtained the equation

p = r1b
10 + r2b

20 + · · ·+ rnb
n0 + kb

n+1
,

which assures that B0 is a generating set for RG0,↵0 .
Moreover, the set B0 is an MGS by Lemma 8 because it consists of n+1 elements and

G
0 is a graph with n+ 1 vertices.

We now apply the ideas in the previous lemma to the case of cycles, which is the
special case on which we focus.

Corollary 27. Let (Cn,↵n) be an edge-labeled n-cycle. Create an edge-labeled (n + 1)-
cycle (Cn+1,↵n+1) from (Cn,↵n) by inserting a vertex vn+1 into the edge vnv1 with both
new edges vnvn+1 and vn+1v1 labeled the same as vnv1 was. Then

RCn+1,↵n+1
⇠= ↵n(vnv1)�RCn,↵n .

Moreover, suppose (Cn,↵n) has edges labeled with principal ideals generated by homoge-
neous polynomials, that (Cn,↵n) has MGS B, and that the generator of the edge-label
↵n(vnv1) is a homogeneous polynomial of degree e. Then (Cn+1,↵n+1) has an MGS B0

that

1. extends B in the sense that if ' is the map from Lemma 23 then '(B0) ◆ B,

2. has exactly one more generator than B and the degree of this additional generator
is e, and

3. is minimal in the sense that if B00 is any other generating set that extends B then
B00 has at least one more element of degree e than B (and possibly other additional
elements of other degrees).
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In particular, the degree sequence of B0 satisfies

dB0 = dB +
�
0e�1

, 1, 0m�e
�
.

Proof. Taking (G,↵) to be (Cn,↵n) and (G0
,↵

0) to be the (non-cyclic) edge-labeled graph
formed from (Cn,↵n) by adding a new vertex vn+1 and new edges vnvn+1 and vn+1v1

labeled the same as vnv1, we can apply Lemma 23 to conclude

RG0,↵0 ⇠= ↵n(vnv1)�RCn,↵n .

We note that RG0,↵0 ✓ RCn+1,↵n+1 because (G0
,↵

0) consists of the edge-labeled graph
(Cn+1,↵n+1) together with precisely one additional edge. The three edges vnv1, vnvn+1,
and vn+1v1 in (G0

,↵
0) all have the same label, so every spline in RCn+1,↵n+1 satisfies the

GKM conditions on (G0
,↵

0). Thus RG0,↵0 ⇠= RCn+1,↵n+1 . In particular, if ↵n(vnv1) is a
principal ideal generated by a homogeneous polynomial of degree e and if B is an MGS
of (Cn,↵n), then Lemma 26 constructs an MGS for (Cn+1,↵n+1) that satisfies Conditions
1 and 2 of our claim. The explicit description of the degree sequence dB0 of (Cn+1,↵n+1)
follows from the definition of degree sequence and from Conditions 1 and 2.

The minimality in Condition 3 results from the direct sum decomposition

RCn+1,↵n+1
⇠= ↵n(vnv1)�RCn,↵n

as follows. Suppose B0 generates RCn+1,↵n+1 and extends B. Lemma 23 identifies each
spline in the image of ' with an element of the subring 0 � RCn,↵n

and each spline in
ker' with an element of ↵n(vnv1)� 0. The set B ✓ '(B0) is contained in 0�RCn,↵n

so B0

contains at least one element b 2 B0 \ ker' to generate the first summand ↵n(vnv1)� 0.
This shows |B0| > |B|.

The spline b satisfies bvi = 0 for all i 6= n + 1 by definition of ker' and is identified
with (bvn+1 , 0) 2 ↵n(vn, v1) � 0 in the direct sum decomposition. By hypothesis, the
minimal generator p 2 ↵n(vnv1) is a homogeneous polynomial of degree e. Since bvn+1 is
divisible by p we conclude b has degree at least e as desired.

4.4 Producing an MGS for polynomial edge-labeled cycles

We now construct an algorithm that produces a homogeneous MGS for cycles whose edges
are labeled by principal polynomial ideals with generator of the form a := (x + ay)2 for
a 6= 0. Part of our proof proceeds by induction; the following lemma proves the base case
of a triangle.

Lemma 28. Let (G,↵) be a 3-cycle with edge-labeling ↵ : E ! I having ↵(v1v2) = hai,
↵(v2v3) = hbi, and ↵(v3v1) = hci so that a, b, c are all distinct. Let f1, f2, g1, g2 2 k[x, y]
denote the homogeneous degree-one polynomials with xa = f1b+ g1c and ya = f2b+ g2c,
whose existence is guaranteed by Lemma 22. Then the set

B = {1,b2
,b

3} = {1, (0, xa, g1c), (0, ya, g2c)}

is a homogeneous basis for RG,↵.
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Proof. We will prove that B is a homogeneous MGS that is also free. Note that (0, xa, g1c)
is a spline: the GKM condition on the edges labeled a and c are trivially satisfied, and the
condition on the edge labeled b is satisfied because xa = f1b + g1c. The same argument
shows that (0, ya, g2c) is a spline. Moreover, the GKM condition for spline b

2 on edge
v2v3 implies g1 6= x since b = (x+ by)2 cannot divide the polynomial

xa� xc = xy(2ax� 2cx+ a
2
y � c

2
y)

by direct computation (or by noting that both b and the right-hand side of the displayed
equation are factored into irreducibles, and that the polynomial ring k[x, y] is a UFD). A
similar argument shows g2 6= y.

Now we demonstrate that B generates the spline (0, 0, bc). We have

yg1c = xya� yf1b and xg2c = xya� xf2b.

Subtracting, we obtain the equality

(yg1 � xg2)c = (xf2 � yf1)b.

If (yg1�xg2)c = 0 then the degree-two factor yg1�xg2 is identically zero, and so g1 = rx

and g2 = ry for some scalar r. Plugging this back into the equation yg1c = xya�yf1b and
then rearranging, we obtain x(a � rc) = f1b and similarly y(a � rc) = f2b. Multiplying
these two equations by y and x respectively, we obtain yf1 = xf2. Analyzing degree
constraints once more, we conclude f1 = sx and f2 = sy for some scalar s. Plugging this
back into the equation xa = f1b+ g1c, we have xa = sxb+ rxc. In particular a = sb+ rc,
which contradicts the linear independence of a, b, and c over k proved in Lemma 21.

Thus (yg1 � xg2)c is a homogeneous degree-four polynomial that is divisible by both
b and c. It must be a scalar multiple of bc because b and c have no irreducible factors in
common. Consequently, the spline

q := yb
2 � xb

3 = (0, 0, (yg1 � xg2)c)

is a nonzero scalar multiple of (0, 0, bc).
Now we show the generators are actually free, namely that if

p11+ p2b
2 � p3b

3 = (0, 0, 0)

then pi = 0 for all i 2 {1, 2, 3}. The first coordinate shows that p1 = 0 since on the
left-hand side we have

�
p11+ p2b

2 � p3b
3
�
v1

= p11v1 + 0� 0 = p1.

Using p1 = 0 and the explicit equations for b1
,b

2, we obtain

(0, p2xa� p3ya, p2g1c� p3g2c) = (0, 0, 0).
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Since p2xa� p3ya = 0 in a UFD, we conclude as above that x divides p3 and y divides p2.
Write p3 = p

0
3x and p2 = p

0
2y. Then we have

p
0
2yxa� p

0
3xya = (p02 � p

0
3)xya = 0

and so p
0
2 = p

0
3. Now examining the last coordinate, we see

p
0
2yg1c� p

0
3xg2c = (p02) ((yg1 � xg2)c) = 0.

We just proved that (yg1 � xg2)c is a nonzero scalar multiple of bc, so this entry is zero
if and only if p02 = 0. Hence all pi are zero, as desired.

Finally we show that B generates an arbitrary spline p 2 RG,↵. We have

p� pv11 = (0,pv2 � pv1 ,pv3 � pv1).

By the GKM conditions on edges v1v2 and v3v1, we have pv2�pv1 = ka and pv3�pv1 = `c
for some k, ` 2 k[x, y]. The GKM condition on edge v2v3 gives the equation

(pv2 � pv1)� (pv3 � pv1) = ka� `c = `
0b

for some `
0 2 k[x, y]. Lemma 21 showed that a, b, and c are linearly independent over

the base field k, so the only scalar solution to ka � `c � `
0b = 0 is k = ` = `

0 = 0.
Thus k, `, `0 are polynomials without constant terms. Assume that h1, h2 2 k[x, y] satisfy
k = h1x+ h2y. We have

pv2 � pv1 = (h1x+ h2y)a

and
p� pv11� h1b

2 � h2b
3 = (0, 0,pv3 � pv1 � h1g1c� h2g2c).

The nonzero entry in this spline must be a multiple of both b and c by the GKM conditions
on edges v2v3 and v3v1, respectively. Hence

p� pv11� h1b
2 � h2b

3 = tq

for some t 2 k[x, y] because we showed above that q is a scalar multiple of (0, 0, bc). We
conclude that B generates RG,↵. Lemma 8 asserts that B is an MGS as desired.

The heart of the proof of Theorem 30, our main theorem about cycles, is the following
lemma. After proving the lemma, Theorem 30 will follow easily by applying the reduction
lemmas from Section 4.3.

Lemma 29. Let (G,↵) be an edge-labeled n-cycle containing a sequence of three successive
distinct edge-labels. Order the vertices v0, v1, v2, . . . , vn = v0 of (G,↵) clockwise around
the cycle such that ↵(vi�1vi) = haii and an�1, an, and a1 are all distinct.

We give an explicit homogeneous MGS B = {1,b2
, . . . ,b

n} for RG,↵ as follows. For
every 1 < i 6 n�2, let ai,n�1, ai,n, ai,1 2 k be the base field elements with ai = ai,n�1an�1+
ai,nan + ai,1a1, whose existence is guaranteed by Lemma 21, and define b

i by

b
i
vj =

8
>><

>>:

0 if j < i,

ai if i 6 j 6 n� 2,
ai � ai,n�1an�1 if j = n� 1,
ai � ai,n�1an�1 � ai,nan if j = n.
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As in Lemma 28, let f1, f2, g1, g2 2 k[x, y] denote the homogeneous degree-one polynomials
with xan�1 = f1an+g1a1 and yan�1 = f2an+g2a1 that are guaranteed by Lemma 22. Define
b
n�1 by

b
n�1
vj =

8
<

:

0 if j 6 n� 2,
xan�1 if j = n� 1,
g1a1 if j = n,

and b
n by

b
n
vj =

8
<

:

0 if j 6 n� 2,
yan�1 if j = n� 1,
g2a1 if j = n.

Then B = {1,b2
, . . . ,b

n} is a homogeneous basis for RG,↵ as a free module over the
polynomial ring. Consequently, the degree sequence of (G,↵) is (1, 0, n� 3, 2).

Proof. We will check that B is a homogeneous MGS and that it is free, whence we will
conclude that it is a homogeneous basis for the free module RG,↵.

We first check that bi is a spline in RG,↵ for all i > 1. For the b
i with 1 < i 6 n� 2

this is clear by the definition of bi, and for bn�1 (respectively b
n) this follows from the

GKM condition together with rewriting the defining equation as xan�1 � g1a1 = f1an
(respectively as yan�1 � g2a1 = f2an).

Now we show that B generates an arbitrary spline p 2 RG,↵. We claim that there
exist r1, r2, . . . , rn 2 k[x, y] such that

p = r11+ r2b
2 + · · ·+ rnb

n
. (8)

For this, it is su�cient to prove that for all 1 6 m 6 n, we can find coe�cients
r1, r2, . . . , rm 2 k[x, y] such that the spline r11 + r2b

2 + · · · + rmb
m agrees with p when

evaluated at the first m vertices. We will use induction up to n� 2, then deal with b
n�1

and b
n separately. For the base case, note that the spline p� pv11 has (p� pv11)v1 = 0.

The inductive hypothesis asserts that we can find coe�cients r1, r2, . . . , rm 2 k[x, y] with
m < n � 2 so that the spline r11 + r2b

2 + · · · + rmb
m agrees with p when evaluated at

the first m vertices. In other words, assume we have found r1, r2, . . . , rm 2 k[x, y] with
m < n� 2 such that

(p� r11� r2b
2 � · · ·� rmb

m)vj = 0

for all j 6 m. Thus by the GKM condition on edge vmvm+1, there exists rm+1 2 k[x, y]
such that

(p� r11� r2b
2 � · · ·� rmb

m)vm+1 = rm+1am+1.

Hence the spline r11+r2b
2+ · · ·+rmb

m+rm+1b
m+1 agrees with p when evaluated at the

first m + 1 vertices, as desired. By induction, we have produced r1, r2, . . . , rn�2 2 k[x, y]
such that r11 + r2b

2 + · · · + rn�2b
n�2 agrees with p when evaluated at the first n � 2

vertices.
To conclude the proof, we essentially use the same argument as in the proof of

Lemma 28. Indeed, suppose (T,↵0) is the edge-labeled 3-cycle with vertices v1, vn�1, vn,
and with edge-labeling given by ↵

0(v1vn�1) = han�1i, ↵0(vn�1vn) = hani, and ↵
0(vnv1) =
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ha1i. Let G be the subset of RG,↵ in which all vertices v1, v2, . . . , vn�2 are labeled zero.
Note that G is isomorphic to the subset of RT,↵0 in which vertex v1 is labeled zero, via the
map G ! RT,↵0 that erases the initial n� 1 zeros from each spline p 2 G. Thus inserting
n� 1 leading zeros into the nontrivial generators from Lemma 28 gives generators for G.

It follows that B generates RG,↵. Indeed, we first proved that for any spline p 2
RG,↵ we can find a unique linear combination of the splines {1,b1

, . . . ,b
n�2} so that

p � r01 �
Pn�2

i=1 rib
i is zero when evaluated at the first n � 2 vertices. Lemma 28 then

proved that if a spline in RG,↵ is zero at the first n � 2 vertices, it is uniquely generated
by {bn�1

,b
n}. The generating set B is thus minimal and a free set of generators for the

module of splines RG,↵ over the polynomial ring.
Finally, the statement on the degree sequence follows because 1 is a degree-zero spline,

b
i is a degree-two spline for all 1 < i 6 n � 2, and b

n�1 and b
n are both degree-three

splines.

Theorem 30. Let (Cn,↵n) be an n-cycle with three or more distinct (not necessarily
successive) edge-labels. The following algorithm constructs a homogeneous MGS Bn for
RCn,↵n:

1. Let Cn�k be the reduced cycle with edge-labeling ↵n�k obtained from Cn by eliminating
vertices whose incident edges have the same label.

2. Let Bn�k be the homogeneous MGS for RCn�k,↵n�k
from Lemma 29.

3. Create Bn from Bn�k by successively reinserting vertices on repeated edges according
to Corollary 27.

Proof. Suppose Cn = (Vn, En) is a cycle in which k vertices are incident to two edges
with the same label. Without loss of generality, label the vertices sequentially around the
cycle so that vn is one of the vertices incident to two edges with the same label. Using
Corollary 27, write

RCn,↵n
⇠= ↵n�1(vn�1v1)�RCn�1,↵n�1

where (Cn�1,↵n�1) is an edge-labeled (n�1)-cycle with only k�1 vertices are incident to
two edges with the same label. Repeat this process until no vertices are incident to edges
with the same label, leaving a reduced (n�k)-cycle (Cn�k,↵n�k) with edge-labeling ↵n�k

obtained from ↵n.
Lemma 25 proves that the reduced cycle Cn�k contains three successive distinct

edge-labels. Thus we may apply Lemma 29 to obtain the homogeneous MGS Bn�k for
RCn�k,↵n�k

. Reinserting each repeated edge according to Corollary 27 (with explicit for-
mula given in Lemma 26) gives a generating set for Cn. Because it has the same number
of elements as vertices, the final output Bn is an MGS for Cn per Lemma 8.

Example 32 shows an example of how to use the algorithm in Theorem 30 to produce a
homogeneous MGS. First, we give the following corollary, which classifies degree sequences
for all splines on cycles whose edge-labels are principal ideals generated by homogeneous
degree-two polynomials in k[x, y].
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Corollary 31. Let G = (V,E) be an n-cycle and let I be the set of principal ideals of
R = k[x, y] of the form h(x+ ky)2i, where k 2 k. Let ↵ : E ! I be an edge-labeling of G.
Then the following hold:

1. If (G,↵) has exactly one distinct edge label, then its degree sequence is (1, 0, n� 1).

2. If (G,↵) has exactly two distinct edge labels, then its degree sequence is (1, 0, n �
2, 0, 1).

3. If (G,↵) has three or more distinct edge labels, then its degree sequence is (1, 0, n�
3, 2).

Proof. We prove each of 1–3 separately.
Proof of 1. This follows immediately from Theorem 10: in the MGS {1, Iv2 , . . . , Iv|V |},

the trivial spline 1 is a degree-zero spline and each of the (|V |�1)-many I
vi is a degree-two

spline.
Proof of 2. The proof is essentially an analysis of the MGS B produced by Theorem 12

for a certain nice vertex ordering. Since (G,↵) has exactly two distinct edge-labels, we
choose an ordering of the vertices satisfying Proposition 2 by choosing the last vertex
vn 2 V to be any vertex incident to two edges with di↵erent labels; the vertex v1 is
chosen as the next vertex clockwise from vn, and we continue choosing vertices v2, . . . , vn�1

clockwise until all vertices have been ordered. Without loss of generality, suppose that
↵(vn�1vn) = hbi and ↵(vnv1) = hai.

vn

vn�1 v1

vn�2 v2

haihbi

hai or hbihai or hbi

Figure 2: The idea of the proof of 2.

We claim that

• 1 is a degree-zero spline,

• b
i is a degree-two spline for all 2 6 i < n, and

• b
n is a degree-four spline.

The first assertion is clear. For the second assertion, let us assume that while producing
b
i using Theorem 12, we chose vj = vi�1.

Case 1: The edge-label ↵(vivi�1) = hai.

Case 2: The edge-label ↵(vivi�1) = hbi.
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The graph C = (V 0
, E

0) has vertex set V 0 a subset of the set {vi, vi+1, . . . , vn} in Case
1 (resp. {vi, vi+1, . . . , vn�1} in Case 2). In both cases, Theorem 12 (a) must have been
applied in the production of bi, so the spline bi is a degree-two spline, and we have verified
the second assertion.

For the third assertion, we again assume that while producing b
n using Theorem 12,

we chose vj = vi�1 = vn�1. Now the graph C contains the edge vnv1, so Theorem 12 (b)
must have been applied in the production of bn. Hence bn is a degree-four spline, and we
have verified the third and final assertion.

Proof of 3. This is a consequence of Theorem 30. By Corollary 27, the homogeneous
MGS Bn�k for RCn�k,↵n�k

has degree sequence (1, 0, n � k � 3, 2). For every 0 6 j 6
k � 1, the homogeneous MGS Bn�k+(j+1) for RCn�k+(j+1),↵n�k+(j+1)

has degree sequence
(1, 0, n�k+(j+1)�3, 2). After all iterations (when j = k�1), we obtain the homogeneous
MGS Bn with degree sequence (1, 0, n� 3, 2) as desired.

Example 32. We produce a homogeneous MGS B6 for the following edge-labeled six-cycle
by using the algorithm in Theorem 30.

•

• •

• •

•

hki hii

hki hii

hji hji

Figure 3: An edge-labeled six-cycle.

This is illustrated explicitly in Figure 4: one picture is shown for each reinsertion of
a vertex on a repeated edge according to Corollary 27, along with the associated MGS
obtained at that step via Lemma 26.

5 Quotient splines and homogenization

In Section 5.1, we describe quotient splines , especially those that arise from a quotient map
R ! R/I on the coe�cient ring. The most important applications of splines involve subtle
questions about quotient splines in the case when the coe�cient ring R = k[x1, . . . , xn],
where the field is usually k = R or C. In this case, splines inherit a notion of degree from
the degree of the polynomial at each vertex. Classical splines usually consist of elements
of degree at most d; we will show below that this is essentially equivalent to either of two
di↵erent quotient constructions on splines. In GKM theory, splines model the equivariant
cohomology ring of certain algebraic varieties with torus-actions; in this case, the quotient
ring is isomorphic to ordinary cohomology (see Proposition 51).
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v3 v2

hki hii

hji
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!)
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v3 v2

hki
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hji
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>:
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0
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B@
0
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k
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>=

>;

v4

v3 v5

v2 v1

hki hii

hki hii

hji
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8
>><

>>:
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0
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xi
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g1k
0

0

1
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0

BB@

yi
g2k
g2k
0

0

1

CCA ,

0

BB@

0

0

k
0

0

1

CCA ,

0

BB@

0

0

0

0

i

1

CCA

9
>>=

>>;

v3

v2 v4

v1 v5

v6

hki hii

hki hii

hji hji

B6 =

8
>>>><

>>>>:

1,

0

BBBB@

g1k
g1k
0

0

xi
xi

1
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,

0

BBBB@

g2k
g2k
0

0

yi
yi

1
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,

0

BBBB@

0

k
0

0

0

0

1

CCCCA
,

0

BBBB@

0

0

0

i
0

0

1

CCCCA
,

0

BBBB@

0

0

0

0

0

j

1

CCCCA

9
>>>>=

>>>>;

Figure 4: An illustration of the algorithm in the proof of Theorem 30.

The results in this section use the more general language of graded rings to streamline
proofs. The reader interested primarily in applications can translate everything in this
section to polynomial rings as follows:

• Homogeneous polynomials are those for which every nonzero term has the same
degree (where the degree of a term is the sum of the exponents of all the variables
in that term).

• The i
th graded part of the polynomial ring consists of 0 together with the homoge-

neous polynomials of degree i.

• The edge-label ↵(uv) is homogeneous if every generator of ↵(uv) is a homogeneous
polynomial.

• The degree of a spline p is the maximal degree of the polynomials pv over all vertices
v.
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• A spline p is homogeneous of degree i if every nonzero pv is a homogeneous poly-
nomial of degree i.

In this section, we establish the following:

• Given any ideal I ✓ RG,↵, the quotient splines are the elements of the quotient ring
RG,↵/I. This quotient inherits the structure of an R-module.

• Suppose that R is a graded ring. Suppose that ↵ is an edge-labeling of G for
which every ↵(uv) is a homogeneous ideal, called a homogeneous edge-labeling. Then
the splines RG,↵ also form a graded ring whose i

th graded part consists of splines
p 2 RG,↵ for which pv is homogeneous of degree i for each vertex v.

• Every surjective ring homomorphism ⇡ : R ! S induces a change-of-coe�cients
map on splines from RG,↵ to SG,⇡�↵. We use this most for the usual projection map
⇡ : R ! R/I.

• Suppose that I is a homogeneous ideal and that ⇡ : R ! R/I is the quotient map.
Assume that ↵ is a homogeneous edge-labeling, and let I denote the splines p with
⇡(pv) 2 I for all vertices v. Then the ring of quotient splines is isomorphic to the
ring of splines over the quotient ring. In other words, we have:

(RG,↵) /I ⇠= (R/I)G,⇡�↵

In Section 5.2, we restrict to the case when our coe�cient ring is a polynomial ring. The
key point for applications is that when the coe�cients are polynomials and the edge-
labeling is homogeneous, the (quotient) ring of splines of degree at most k is isomorphic
to the ring obtained by restricting degree on the entries of the original collection of splines.
Moreover, we describe how to homogenize an edge-labeling so we can use these results for
non-homogeneous edge-labelings. This will be the main tool used when we interpret the
results of this paper for classical splines in Section 6.

5.1 Quotient splines

We start with the basic definition of quotient splines as well as a natural quotient map on
splines. The underlying ideas are similar to that of Bowden and the third author [BT15,
Theorem 3.7].

Definition 33. Let ⇡ : R ! S be a surjective ring homomorphism. If (G,↵) is an edge-
labeled graph over R, then define (G, ⇡ � ↵) to be the edge-labeled graph over the ring S

in which each edge e is labeled ⇡(↵(e)). We call SG,⇡�↵ the splines induced by ⇡ over S

or, when context is clear, the splines on (G,↵) over S. The map ⇡ may be referred to as
a change of coe�cients for the splines.

In particular if I is an ideal in R and ⇡ : R ! R/I is the quotient map, then the
elements of (R/I)G,⇡�↵ are called splines reduced mod I or just splines mod I.
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Not every ring homomorphism sends ideals in the domain to ideals in the codomain,
but all surjective ring homomorphisms do. Thus the previous definition makes sense.

We give the following proposition for completeness; it simply confirms that the map
⇡ induces a homomorphism from splines on (G,↵) over R to splines on the same graph
over S.

Proposition 34. Suppose ⇡ : R ! S is a surjective ring homomorphism. For each spline
p 2 RG,↵ and vertex v 2 V , the rule

⇡⇤(p)v = ⇡(pv)

defines a map ⇡⇤ : RG,↵ ! SG,⇡�↵ that is a homomorphism of both graded rings and R-
modules when SG,⇡�↵ is endowed with the R-action

r · ⇡⇤(p) := ⇡(r)⇡⇤(p).

Proof. The image ⇡⇤(p) is a spline because for each edge uv 2 E we have

⇡(pu)� ⇡(pv) = ⇡(pu � pv) 2 ⇡(↵(uv)).

The rest of the claim follows by definition of the map ⇡⇤.

Recall that a homogeneous ideal in a graded ring is characterized by the property that
if f 2 I decomposes into homogeneous parts f = f0+f1+ · · ·+fk then each homogeneous
part fj 2 I as well. When R is a graded ring and each edge is labeled by a homogeneous
ideal, the ring of splines RG,↵ admits a grading induced by the grading on R

|V | as follows.

Proposition 35. Suppose that R is a graded ring with R0 denoting the collection of
degree-zero ring elements. Further suppose that (G,↵) is a graph whose edges are all
labeled by homogeneous ideals ↵(uv).

Then the ring of splines RG,↵ is graded with homogeneous parts (RG,↵)i containing
precisely those splines p for which pv has degree i for all v 2 V .

Proof. Suppose that p 2 RG,↵, and that for each v 2 V the ring element pv 2 R decom-
poses into homogeneous parts denoted

pv = p0,v + p1,v + · · ·+ pi,v

with degrees 0, 1, . . . , i respectively. (Each part may be zero.) The homogeneous part pj

of the spline p is defined at each vertex v by

pj,v = pj,v.

We need to show that for each j the homogeneous part pj is also a spline in RG,↵.
Suppose that uv is an edge in G. Expanding pu,pv into homogeneous parts yields for

pu � pv the expression

(p0,u + p1,u + · · ·+ pi,u)� (p0,v + p1,v + · · ·+ pi,v) ,

the electronic journal of combinatorics 31(1) (2024), #P1.29 27



which is in ↵(uv) by the spline condition on p. Using associativity and commutativity,
the above expression is equal to

(p0,u � p0,v) + (p1,u � p1,v) + · · ·+ (pi,u � pi,v) .

Homogeneous ideals contain each homogeneous part of each element of the ideal, so

pj,u � pj,v 2 ↵(uv)

for each j. Thus pj satisfies the spline condition at each edge uv for each j and so
pj 2 RG,↵ for all j as desired.

Example 36. If edge-labels are not homogeneous ideals, then the ring of splines might
not be graded by degree. For instance, consider the edge-labeled graph in Figure 5 with
coe�cient ring of polynomials in one variable.

u v
hx2 � 1i

Figure 5: Example of an edge-labeled graph with non-homogeneous polynomial labeling.

Consider the spline p on this edge-labeled graph with pu = 0 and pv = x
2 � 1. Under

the typical grading on polynomials, the homogeneous parts of p would be the splines
(0,�1) in degree zero and (0, x2) in degree two. However neither of these are in RG,↵.

Proposition 35 means that we can define the following.

Definition 37. An edge-labeling ↵ is homogeneous if ↵(uv) is a homogeneous ideal for
every edge uv. The homogeneous degree-i part of the ring RG,↵ with grading defined in
Proposition 35 is denoted (RG,↵)i and called the collection of (homogeneous) splines of
degree i. We denote the R0-submodule of splines of degree at most d by

Sd(G,↵) = (RG,↵)0 � (RG,↵)1 � · · ·� (RG,↵)d

The next result connects quotient splines with splines over the quotient ring. We will
be most interested in the case when Ik+1 ✓ R consists of all polynomials of degree at least
k + 1, in which case the following result will compare all splines of degree at most k to
the splines whose coe�cients are reduced mod Ik+1.

Proposition 38. Suppose that R is a graded ring and denote the collection of ring ele-
ments of degree zero by R0. Suppose that (G,↵) is an edge-labeled graph and that ↵ is a
homogeneous edge-labeling.

Let I be a homogeneous ideal with quotient map ⇡ : R ! R/I, and let I ✓ RG,↵ be the
collection of splines p with pv 2 I for all vertices v.
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Then I forms a homogeneous ideal in the graded ring of splines RG,↵, and there is a
unique ring homomorphism ⇢

0 so that the following diagram commutes:

RG,↵ (R/I)G,⇡�↵

(RG,↵) /I

⇡⇤

⇢
⇢0

Moreover the ring homomorphism ⇢
0 is injective and graded.

Proof. First we confirm that I forms an ideal, and in fact that I = ker ⇡⇤. Note that the
projection

⇡v : RG,↵ ! R

p 7! pv

is a surjective ring homomorphism for each vertex v. Indeed, the principal ideal R1

generated by the trivial spline surjects onto R at each vertex. Moreover the following
diagram commutes for each v since ⇡⇤ and ⇡v are both defined vertex-wise:

RG,↵ (R/I)G,⇡�↵

R R/I

⇡⇤

⇡v ⇡v

⇡

Note that I is defined as the intersection of the preimage of I under all of the ⇡v, namely:

I =
\

v2V

⇡
�1
v (I).

This means I is the intersection of a finite number of ideals, and thus an ideal. It also
shows

⇡ � ⇡v(I) = ⇡v � ⇡⇤(I) = {0} (9)

for all v 2 V . By definition the only spline q 2 (R/I)G,⇡�↵ with ⇡v(q) = 0 for all v 2 V is
the zero spline. Thus ⇡⇤(I) = {0}, and we conclude I ✓ ker(⇡⇤). Conversely, if q 2 ker ⇡⇤
Equation (9) implies

⇡v(q) 2 ker ⇡ = I

for all v 2 V . It follows that ker ⇡⇤ = I as desired. In particular, given two splines
q1,q2 2 I and any p 2 RG,↵, we have

⇡⇤(p+ q1) = ⇡⇤(p+ q2).

Thus we obtain a natural ring homomorphism

⇢
0 : (RG,↵) /I ! (R/I)G,⇡�↵

defined by ⇢
0(p+ I) = ⇡⇤(p).
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Next we show that I is homogeneous in RG,↵. Proposition 35 showed that RG,↵ is a
graded ring and that its graded parts are defined by

(RG,↵)i =
\

v2V

⇡
�1
v (Ri) ,

where Ri is the i
th graded part of R for each i. Write p 2 I as a sum of homogeneous

parts as
p = p0 + p1 + p2 + · · ·+ pd,

where each pi is homogeneous of degree i in RG,↵. We want to show that pi is in I for
each i. Consider ⇡v(p) for each vertex v. Since ⇡v is a ring homomorphism, we have

pv = (p0)v + (p1)v + · · ·+ (pd)v.

By definition of I, we know that pv 2 I for all v. By definition of the grading on splines,
we know (pi)v 2 Ri is homogeneous of degree i for all 0 6 i 6 d and all v. Since the ideal
I is homogeneous, we conclude that (pi)v 2 I for all v and all i. Thus ⇡v(pi) 2 I for all
v and all i. In other words, we have pi 2 I for all i, so by definition I is homogeneous.

The grading induced on the quotient ring (RG,↵)/I by the homogeneous ideal I is
defined by

((RG,↵)/I)i = (RG,↵)i + I/I.

Thus our proof of homogeneity also shows that for each graded degree i we have

⇢
0(pi + I) = ⇡⇤(pi).

Since the restriction of the spline ⇡⇤(pi) to each vertex v is given by (pi)v + I and (pi)v is
by construction homogeneous of degree i in R, we conclude that ⇡⇤(pi) is homogeneous
of degree i according to the grading on splines over R/I from Proposition 35.

Thus ⇢0 is an injective, graded ring homomorphism as desired.

It is natural to wonder when the map ⇢
0 is surjective. The next lemma gives a condition

that may seem contrived. Indeed the only example we know of where it is useful is when
R is a polynomial ring, Id+1 ✓ R is the ideal generated by all monomials of degree at least
d+ 1, and Id+1 is generated by all homogeneous splines of degree at least d+ 1. (Indeed,
this setting will be the main one in our Section 6 on applications.) However, the general
language of the lemma makes the proof transparent.

Lemma 39. Suppose R, ↵, I, and I all satisfy the hypotheses of Proposition 38. Suppose
that each graded part Ri of the coe�cient ring can be written as a direct sum

Ri = Ji � (Ri \ I)

for some R0-module Ji and that this extends to the R0-submodule ↵(uv) for each edge uv

via
↵(uv) \Ri = (↵(uv) \ Ji)� (↵(uv) \Ri \ I)
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for all i. Then the map ⇡⇤ : RG,↵ ! (R/I)G,⇡�↵ is surjective and hence the map

⇢
0 : (RG,↵)/I ! (R/I)G,⇡�↵

is an isomorphism of graded rings.

Proof. Suppose that q 2 (R/I)G,⇡�↵ and assume that q is homogeneous of degree i.
We will show that q is in the image of ⇡⇤. Surjectivity for general q will then follow,
since (R/I)G,⇡�↵ is a graded ring and so every spline q can be expressed as a sum of
homogeneous splines, each of which we will have shown to be in the image of ⇡⇤. Since
⇡⇤ is a homomorphism, we will thus conclude that every spline q 2 (R/I)G,⇡�↵ is in the
image of ⇡⇤ as desired.

Assume q is a homogeneous spline of degree i in (R/I)G,⇡�↵. We first show that for
each v 2 V the inverse image satisfies

⇡
�1(qv) = pv + I

for a unique polynomial pv 2 Ji. To do this, recall that the ith graded part of the quotient
R/I is Ri + I/I. Thus qv 2 Ri + I/I implies there is a polynomial fv 2 Ri with

⇡
�1(qv) = fv + I.

Now let pv be the unique element of Ji with

pv � fv 2 I

guaranteed by our hypothesis Ri = Ji � (Ri \ I).
We next show that p is in fact a spline. (If so, it is by construction homogeneous of

degree i.) For each edge uv, note that

pu � pv + I = ⇡(pu)� ⇡(pv) = qu � qv

by construction of p. Since q is a spline on the quotient ring, there is g 2 I for which

pu � pv + g 2 ↵(uv).

Since ↵(uv) is homogeneous, we may assume g is homogeneous of degree i without loss of
generality. Now by the assumption that ↵(uv)\Ri respects the direct-sum decomposition,
we conclude

pu � pv 2 ↵(uv)

as well. This is true for all edges uv, so p 2 RG,↵ and ⇡⇤(p) = q.
Thus we have proven our claim that ⇡⇤ is surjective. Moreover the map ⇡⇤ is the

composition
⇡⇤ = ⇢

0 � ⇢
and ⇢ is surjective because it is a quotient map. So ⇢

0 must also be surjective. Proposi-
tion 38 showed that ⇢0 is an injective homomorphism, so it is an isomorphism.
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Corollary 40. Suppose that R is a graded ring and (G,↵) an edge-labeled graph with ho-
mogeneous edge-labeling. Suppose that Id+1 ✓ R is the ideal generated by all homogeneous
elements of degree at least d+ 1, namely

Id+1 = Rd+1 �Rd+2 �Rd+3 � · · · ,

and that Id+1 ✓ RG,↵ is the ideal of splines generated by the homogeneous splines of
degree at least d+ 1. Then the quotient splines (RG,↵)/Id+1 are isomorphic to the ring of
splines reduced mod Id+1. Furthermore, taking Sd(G,↵) to be the R0-submodule of splines
of degree at most d as in Definition 37, we have a commutative diagram

Sd(G,↵) (R/Id+1)G,⇡�↵

(RG,↵) /Id+1

⇡⇤

⇢
⇢0

in which all maps are graded R0-module isomorphisms and ⇢
0 is an isomorphism of graded

rings.

Proof. Whenever I is a homogeneous ideal in a graded ring S, the quotient S/I is a graded
ring with graded parts

S/I =
M

i>0

(Si + I)/I.

Suppose I is generated by all homogeneous elements of degree at least d + 1. Then the
intersection Si \ I is empty or all of Si, depending on whether i < d + 1 or not. So
the quotient (Si + I)/I is either isomorphic to Si or {0} as an R0-module depending on
whether i < d+ 1 or not. We conclude that as additive groups and as R0-modules,

S/I ⇠=
dM

i=0

Si. (10)

When S = RG,↵ and I = Id+1, this gives us the isomorphism ⇢ in the commutative
diagram. When S = R and I = Id+1, this gives us an isomorphism

R/Id+1
⇠= R0 �R1 �R2 � · · ·�Rd.

The ideal Id+1 satisfies the hypotheses of Lemma 39 vacuously since

Ri = Ri � {0}

and Id+1 \ Ri is one of those two summands for each i. For the same reason, the edge-
labeling ↵ also satisfies the hypotheses of Lemma 39. Hence we conclude that ⇢

0 is a
(graded) isomorphism of graded rings. Since ⇡⇤ = ⇢

0 � ⇢, this completes our proof.
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Example 41. We note that the hypothesis of homogeneity is also essential in Corollary 40.
To see this, we continue our analysis of the graph in Figure 5.

Consider the spline condition over the edge labeled hx2�1i. When we take coe�cients
in C[x]/I2, the edge-label becomes �1 and so all vertex-labelings satisfy the spline con-
dition. However, zero is the only polynomial with degree at most one that is divisible by
x
2 � 1. This means that only constant splines are in the image of the map from S1(G,↵)

to (R/I2)G,⇡�↵.

The next result uses Corollary 40 to show that the image of a homogeneous MGS
under the quotient map is again a homogeneous MGS.

Corollary 42. Let R be a graded ring, and let (G,↵) be an edge-labeled graph with homo-
geneous edge-labeling ↵. Fix a nonnegative integer d. Let Id+1 be the ideal in R generated
by all homogeneous elements of degree at least d + 1, and let Id+1 be the ideal in RG,↵

generated by all homogeneous splines of degree at least d+ 1.
Suppose B is an MGS for RG,↵ consisting of homogeneous splines. Then the nonzero

elements in ⇡⇤(B) form a homogeneous MGS for (R/Id+1)G,⇡�↵, and the degree sequence
of ⇡⇤(B) consists of the first d+ 1 terms of the degree sequence of B.

Proof. Write Bd for the elements of B that have degree at most d. Every element of B
is homogeneous, so the R-linear combinations of elements of B that are not in Bd have
degree at least d + 1 and hence are in the set-theoretic complement of Sd(G,↵). Thus
Bd generates Sd(G,↵) and hence ⇢(Bd) generates (RG,↵)/Id+1 under the isomorphism ⇢

of Corollary 40.
If Bd were not an MGS for Sd(G,↵), then we could find an MGS B0 ✓ Sd(G,↵) of

strictly smaller cardinality than Bd that also generated Sd(G,↵). Replacing the elements
of Bd in B with those of B0 would give a generating set for RG,↵ of strictly smaller cardi-
nality than B. This contradicts the hypothesis that B is an MGS.

Finally, the degrees of Bd in Sd(G,↵) ✓ RG,↵ are the first d + 1 terms of the degree
sequence of B by definition of Bd. Since the maps ⇢ and ⇢

0 are degree-preserving isomor-
phisms, we know that the same is true for ⇢(Bd) and ⇡⇤(Bd) as well. This proves the
claim.

5.2 Splines over polynomial rings and homogenization

The case most relevant to classical splines is when R is a polynomial ring and Ik+1 is the
ideal generated by all monomials of degree at least k + 1. This is also the case on which
our examples focused.

What we address in this section is non-homogeneous edge-labelings, which are typ-
ical in applications of classical splines. We also describe homogenization, an algebraic
process to transform a non-homogeneous polynomial into a homogeneous polynomial of
the same degree by inserting a new variable. Our main result shows that the process of
homogenization creates an isomorphic module of splines over the original polynomial ring.
Thus all of our results about module bases—including minimal generating sets—hold in
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a reasonable sense for non-homogeneous splines. The main subtlety is that the dimension
as a vector space may change if we do not carefully keep track of the additional variable.

In this section, we use k to denote a field of characteristic zero, in practice

usually R or C, and denote the polynomial ring

Rn
:= k[x1, x2, . . . , xn].

Remark 43. If k had finite characteristic, then the definitions in this section would still
make sense but specific analyses would be more complicated; for instance, the kernel of
the evaluation map e

n+1 defined in Proposition 47 below would be larger. Understanding
the case of finite characteristic remains an open question.

We start by defining underlying terminology and then define homogenization of poly-
nomials and splines. Homogenizing polynomials is common in algebraic geometry, where
it is used to associate a projective variety to an a�ne variety; see, e.g., [CLO15, Section
8.4] or [SKKT00, Section 3.3]. For examples of the use of homogenization of polynomials
in the theory of splines see, e.g., [BR91] or [DS20].

Definition 44. Monomials in R
n are in bijective correspondence with vectors ~v 2 Nn

where N denotes the nonnegative integers, according to the rule x
~v = x

v1
1 x

v2
2 · · · xvn

n . The
degree of a monomial x~v in R

n is

deg x~v =
nX

i=1

vi.

The degree of a polynomial f 2 R
n is the maximal degree of its nonzero monomials;

namely, if f(x1, . . . , xn) =
P

~v2Nn c~vx
~v with only a finite number of nonzero coe�cients

c~v 2 k then
deg(f) = max

c~v 6=0
{deg x~v}.

Given a polynomial f 2 R
n, its homogenization ef 2 R

n+1 is the polynomial

ef(x1, . . . , xn, xn+1) =
X

~v2Nn

c~vx
~v
x
deg(f)�deg(x~v)
n+1 =

X

~v 2 Nn :P
i vi 6 deg f

c~vx
(v1,v2,...,vn,deg(f)�(

P
i vi)).

We note that if f were already homogeneous, then the exponent of xn+1 in the middle of
the above displayed equation is zero; thus, homogeneous f are unchanged by homogeniza-
tion. The homogenization of an ideal I of Rn is the ideal generated by the homogenizations
of all elements of I.

The degree of a spline p 2 R
n
G,↵ was defined in the fourth bullet point of Section 5

(for the current case under consideration, i.e. when the coe�cient ring is a polynomial
ring). Given a spline p 2 R

n
G,↵ over the polynomial ring, its homogenization ep is defined

vertex-wise by

(ep)v = g(pv)x
deg(p)�deg(pv)
n+1 .
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Given an edge-labeling ↵ for the graph G, its homogenization e↵ is defined at all edges uv
by the rule that e↵(uv) is the smallest ideal containing

{ ef | f 2 ↵(uv)};

equivalently, e↵ is obtained by homogenizing all of the edge-labeling ideals.

In Proposition 48 below, we will show that ep 2 R
n+1
G,e↵ .

Remark 45. The homogenizations of polynomials, splines, and edge-labelings are similar
but have several di↵erences.

• The homogenization ef of any polynomial is a homogeneous polynomial of the same
degree as f . Indeed, the homogenization of a polynomial f of degree d can be
defined as

ef(x1, x2, . . . , xn+1) = x
d
n+1f(x1/xn+1, x2/xn+1, . . . , xn/xn+1).

• The degree of the homogenization ep is the degree of the original spline p but the
homogenization of a spline p may change the degree of some of the polynomials pu.

• Note that the homogenization of any ideal is a homogeneous ideal since it can be
generated by homogeneous polynomials. This means that e↵ is a homogeneous edge-
labeling, as our terminology suggests.

Example 46. The polynomial x2 � 1 has degree two, so its homogenization is x
2 � y

2.
Consider the (non-homogeneously) edge-labeled graph (G,↵) of Figure 5. The polynomi-
als pu = x and pv = x + x

2 � 1 define a spline p 2 R
2
G,↵. Note that pu is homogeneous,

so its homogenization is fpu = x = pu. However the homogenization ep of the spline has
epu = xy and epv = xy + x

2 � y
2.

For polynomials over an integral domain, degree respects multiplication in the sense
that

deg(fg) = deg(f) + deg(g)

for all polynomials f, g. It follows that homogenization respects multiplication in the
sense that

ffg = efeg.

However homogenization is not always additive since, e.g. x̂2 + y + �̂x2 + x has degree
two so is not the homogenization of the sum x

2 + y � x
2 + x = y + x.

Nonetheless we have an evaluation map e
n+1 : Rn+1 ! R

n that is both a ring homo-
morphism and the inverse map of homogenization, as follows. We state the following
result for convenience; its proof can be found in undergraduate algebra texts.
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Proposition 47. Let en+1 : Rn+1 ! R
n be the evaluation ring homomorphism defined by

e
n+1(xi) =

⇢
xi if 1 6 i 6 n,

1 if i = n+ 1.

Then e
n+1 is surjective, inverts the homogenization map in the sense that

e
n+1
⇣
ef
⌘
= f,

and is degree-preserving on homogenized polynomials in the sense that

deg
⇣
e
n+1( ef)

⌘
= deg( ef) = deg(f).

In particular, if f 2 (Rn)d ✓ R
n+1 is homogeneous of degree d, then e

n+1(f) = f .
Moreover the kernel of the map e

n+1 is the principal ideal

ker en+1 = hxn+1 � 1i.

In particular, observe that the only homogeneous element of ker en+1 is 0.
We now show that the homogenization of a spline is in fact a spline on the homogenized

edge-labeling and describe the induced map e
n+1
⇤ from Proposition 34 in this case.

Proposition 48. For each spline p 2 R
n
G,↵ the homogenization ep is a spline in R

n+1
G,e↵ . The

ring homomorphism induced by e
n+1 on the homogenized splines R

n+1
G,e↵ has image R

n
G,↵,

namely
e
n+1
⇤ : Rn+1

G,e↵ ! R
n
G,↵

is surjective. Moreover e
n+1
⇤ inverts the homogenization map in the sense that

e
n+1
⇤ (ep) = p,

and e
n+1
⇤ preserves degree of homogenized splines in the sense that

deg(en+1
⇤ (ep)) = deg(ep) = deg(p).

The kernel of en+1
⇤ is the ideal hxn+1 � 1i inside the ring R

n+1
G,e↵ .

Proof. First we show that en+1 � e↵ = ↵ for each edge. If f 2 ↵(uv) then by definition of
the homogenized edge-labeling, we know ef 2 e↵(uv). Proposition 47 says en+1( ef) = f so
we conclude e

n+1(e↵(uv)) ◆ ↵(uv) for all edges uv. Now we show the opposite inclusion.
Let

P
gi
efi 2 e↵(uv) be arbitrary, in the sense that gi 2 R

n+1 and fi 2 ↵(uv) are arbitrary
for each i. Then

e
n+1
⇣X

gi
efi
⌘
=
X

e
n+1(gi)fi

by Proposition 47. We conclude that en+1(e↵(uv)) ✓ ↵(uv) for all edges uv and so e
n+1 �

e↵ = ↵ as desired.
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Next we show that the induced map e
n+1
⇤ is surjective. Our strategy is to show that

for each spline p 2 R
n
G,↵ the homogenization ep is a spline in R

n+1
G,e↵ . For each edge uv, the

di↵erence epu � epv is a homogeneous polynomial. Moreover the di↵erence

pu � pv = f 2 ↵(uv),

since p 2 R
n
G,↵ is a spline. If f = 0 then pu = pv, so epu = epv and the spline condition is

satisfied at edge uv. Thus assume f 6= 0. We know deg f 6 max{degpu, degpv} which
means there is a nonnegative i > 0 so that

(epu � epv)� x
i
n+1
ef

is homogeneous in R
n+1. By construction we also know that

e
n+1
⇣
(epu � epv)� x

i
n+1
ef
⌘
= e

n+1 (epu � epv)� e
n+1
⇣
x
i
n+1
ef
⌘
= f � f = 0.

Proposition 47 implies that the only homogeneous polynomial in ker en+1 is 0, so we
conclude that

epu � epv = x
i
n+1
ef 2 e↵(uv)

as desired. Thus ep is a spline in R
n+1
G,e↵ and e

n+1
⇤ is surjective.

For the rest of the proof, we use the fact that e
n+1
⇤ is defined vertex-wise and so

commutes with the projection ⇡v to each vertex in the sense that

⇡v � en+1
⇤ = e

n+1 � ⇡v.

Since en+1 inverts the homogenization map on polynomials it follows that en+1
⇤ does, too,

by commuting with ⇡v. When homogenizing splines, there is at least one vertex v with

⇡v (ep) = ⇡̂v(p), and for all other vertices u there is an integer du > 0 with

⇡u (ep) = x
du
n+1⇡̂u(p).

We conclude that for this vertex v we have

deg (⇡v(ep)) = deg(]⇡v(p)) = deg(⇡v(p)),

and for all other vertices u we have

deg (⇡u(ep)) > deg(⇡u(p)).

Since ep is homogeneous, the definition of degree of splines implies that

deg ep = deg en+1
⇤ (ep) = degp

so e
n+1
⇤ preserves degree of homogenized splines.
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Finally we confirm the kernel of en+1
⇤ is as claimed. Suppose that p 2 ker en+1

⇤ . Since
e↵ is a homogeneous edge-labeling, we can write

p = p0 + p1 + · · ·+ pd

as a sum of splines pi 2 R
n+1
G,e↵ that are homogeneous of degree i (though not necessarily

in the kernel). Now consider the sum of splines

q := p+
d�1X

i=0

�
x
d�i
n+1 � 1

�
pi =

dX

i=0

x
d�i
n+1pi.

Note that q is

• in the kernel of en+1
⇤ because each summand on the left-hand side is, and

• is homogeneous of degree d because each summand on the right-hand side is.

Again use the commuting maps

⇡v � en+1
⇤ = e

n+1 � ⇡v

to conclude that for each vertex, the image ⇡v(q) is a homogeneous polynomial of degree
d that is in the kernel of en+1. The only homogeneous polynomial in the kernel of en+1 is
0, so the image ⇡v(q) = 0 for all vertices v. Thus the spline q = 0 and hence

p =
d�1X

i=0

�
1� x

d�i
n+1

�
pi =

d�1X

i=0

�
(1� xn+1)(1 + xn+1 + x

2
n+1 + · · ·+ x

d�i�1
n+1 )

�
pi,

which is in the ideal hxn+1 � 1i of Rn+1
G,e↵ . Conversely, direct computation shows that

e
n+1
⇤ ((xn+1 � 1)q) = (1� 1)en+1

⇤ (q) = 0

for all q 2 R
n+1
G,e↵ , so the kernel is as claimed. This completes the proof.

This gives our main result: that the map e
n+1
⇤ restricts to a degree-preserving R

n-
module isomorphism between (non-homogenized) splines over R

n and a natural R
n-

submodule of the homogenized splines over Rn+1.

Corollary 49. Suppose that B is a homogeneous MGS in R
n+1
G,e↵ , and let Rn(B) denote the

collection of linear combinations of B with coe�cients in R
n.

The restricted map e
n+1
⇤ : Rn(B) ! R

n
G,↵ is an R

n-module isomorphism. In particular,
the number of elements in a homogeneous MGS for R

n+1
G,e↵ is the same as the number of

elements in an MGS for R
n
G,↵.

Suppose, in addition, that for each edge uv the ideal ↵(uv) is principal. Then e
n+1
⇤

preserves degree of the generators B.
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Proof. We begin by showing that en+1
⇤ (Rn(B)) contains all of Rn

G,↵. Proposition 48 showed
that e

n+1
⇤ : Rn+1

G,e↵ ! R
n
G,↵ is surjective, so for each p 2 R

n
G,↵ we may pick an element

q 2 (en+1
⇤ )�1 (p). Every spline in R

n+1
G,e↵ can be written as an R

n+1-linear combination of
the elements bi in the MGS B, so write

q =
X

i

fib
i

for some polynomials fi 2 R
n+1. Now apply e

n+1 to get polynomials gi = e
n+1(fi) in

R
n. Consider the image of

P
i gib

i under the module homomorphism e
n+1
⇤ and expand as

follows:

e
n+1
⇤

 
X

i

gib
i

!
=
X

i

e
n+1(gi)e

n+1
⇤ (bi).

Since each gi 2 R
n we have e

n+1(gi) = gi. Substitute the definition gi = e
n+1(fi) to get:

X

i

e
n+1(gi)e

n+1
⇤ (bi) =

X

i

e
n+1(fi)e

n+1
⇤ (bi).

But this is simply e
n+1
⇤ (q), which is p by definition. In other words, every p 2 R

n
G,↵ is in

the image of Rn(B) under en+1
⇤ .

Suppose that C is an MGS for Rn
G,↵ and denote the homogenization of all of its elements

by eC. By definition R
n(C) is all of Rn

G,↵. It will be helpful in what follows to recall that
for every p 2 R

n
G,↵, we have e

n+1
⇤ (ep) = p via Proposition 48. We now show that the map

e
n+1
⇤ is an isomorphism of Rn-modules

e
n+1
⇤ : Rn(C̃) ! R

n(C) = R
n
G,↵.

It is surjective because the image e
n+1
⇤ (Rn(eC)) must contain all of Rn(C). We deduce

injectivity as follows. Suppose
P

fi epi is an element of the kernel when xn+1 is evaluated
at 1. Then

P
fipi = 0 is a relation satisfied by the original elements pi 2 C.

Now consider the quotient R
n+1
G,e↵ / ker e

n+1
⇤ . By the first isomorphism theorem, it is

isomorphic to the image Rn
G,↵. We just confirmed that Rn(eC) gives a complete set of coset

representatives. So R
n(eC) generates the quotient.

We claim that R
n+1(eC) is all of R

n+1
G,e↵ . Suppose q 2 ker en+1

⇤ is a minimal-degree

element not generated by eC. Then q = (xn+1 � 1)q1 for some q1 2 R
n+1
G,e↵ of strictly

smaller degree than q. The previous paragraph together with our hypothesis on q implies
that Rn+1(eC) contains all elements of Rn+1

G,e↵ of degree less than q. In particular, we know

q1 2 R
n+1(eC) and so after multiplying by (xn+1 � 1), we conclude that q is, too.

So eC is a homogeneous generating set for Rn+1
G,e↵ . If B had smaller cardinality than C

then e
n+1
⇤ (B) would be a smaller generating set for R

n
G,↵ than C, which contradicts the

definition of MGS. But B can not be larger than eC since B is an MGS. Thus any MGS
of Rn

G,↵ has the same cardinality as a homogeneous MGS for Rn+1
G,e↵ and so e

n+1
⇤ must be

injective on R
n(B).
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Finally suppose that for each edge uv the ideal ↵(uv) is principal. We note first that
if p 2 R

n+1
G,e↵ and xn+1|pu for all vertices u, then in fact xn+1|p. Indeed, let uv be an edge

and suppose ↵(uv) is generated by the polynomial puv 2 R
n. Since p is a spline we have

pu � pv = ffpuv

for some polynomial f 2 R
n+1 and since xn+1 divides each pu we know that xn+1 divides

the righthand side of this equation. The definition of homogenization implies that at least
one term in fpuv is not divisible by xn+1. The coe�cient ring R

n+1 is an integral domain
so the degree of every product is additive. In particular, all terms in f must be divisible
by xn+1 in order to guarantee that all terms in the product ffpuv are divisible by xn+1.
Thus xn+1|f . We thus have polynomials qu and g with f = xn+1g and pu = xn+1qu for
all u and furthermore have

qu � qv = gfpuv,
so q 2 R

n+1
G,e↵ is a spline.

We may thus assume that for each spline b in B, there is at least one vertex u such
that bu is a nonzero polynomial in R

n. Otherwise, by the previous paragraph, we could
write b = xn+1q for some homogeneous spline q and then replace b by q in the MGS B.
Hence e

n+1
⇤ preserves the degree of the splines in B.

We now describe classical spline theory as it relates to our constructions.

6 Applications

The purpose of this section is to connect the theoretical apparatus of the previous parts
of the paper to the spline theory arising in applications. In particular, we show that our
hypothesis on the homogeneity of polynomial splines in Section 4 is a very common one
in applications. In fact, it is satisfied by all graphs arising from GKM constructions of
equivariant cohomology and by most applications involving classical splines. We then
use our results to recover well-known results that classify classical splines on “pinwheel”
triangulations in the plane.

6.1 Splines in equivariant cohomology: GKM theory

GKM theory is the name given to an algebraic combinatorial approach to studying torus-
equivariant cohomology of certain algebraic varieties by restricting to the torus-fixed
points. We omit details and instead refer to the original source on GKM theory by
Goresky, Kottwitz, and MacPherson [GKM98] and to surveys like [Tym16b] (for a spline-
centric approach to GKM theory) or [Tym05]. We use this subsection only to summarize
the key points.

GKM theory gives conditions on algebraic varieties X with an action of a torus
T ⇠= (C⇤)n under which we can construct an edge-labeled graph (GX ,↵X) giving an
isomorphism between T -equivariant cohomology and splines

H
⇤
T (X;C) ⇠= RGX ,↵X
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over the ring R = C[t1, . . . , tn]. The map is an isomorphism both of rings and of
C[t1, . . . , tn]-modules.

The topological conditions on the torus actions have the following consequence for the
graphs that arise in GKM theory.

Proposition 50. All edge-labeled graphs (GX ,↵X) that arise from GKM constructions
have principal ideals generated by homogeneous polynomials of degree one.

In addition, the quotient construction of Section 5, and especially Corollary 49, arises
naturally in GKM theory as follows.

Proposition 51. Suppose that X is an algebraic variety and T is a torus acting on
X so that T and X satisfy the topological conditions of GKM theory. Let I1 denote the
(homogeneous) ideal of polynomials in C[t1, . . . , tn] generated by the variables t1, t2, . . . , tn.
Then the ordinary cohomology of X can be written as

H
⇤(X) ⇠= H

⇤
T (X)/I1H

⇤
T (X).

6.2 Classical results on splines

The remainder of this article deals with classical splines. Classical splines are defined
as piecewise polynomials on a particular form of geometric decomposition of a space
(triangulation, polyhedral, etc.), usually restricted to degree at most d and di↵erentiability
at least r. For our purposes, it is su�cient to take � to be a finite n-dimensional simplicial
complex embedded in Rn with set of n-dimensional simplices {�v}. We view � as both
an abstract set of simplices and as a subset of Rn, depending on context.

Definition 52. Let r and d be nonnegative integers. The space of splines S
r
d(�) is the

R-vector space defined by the property that F 2 S
r
d(�) if and only if F : � ! R is a

function that

• has degree at most d in the sense that each restriction F |�v is a polynomial of degree
at most d, and

• is continuously di↵erentiable of order r as a function defined on a subspace of Rn,
namely F is in Cr.

The splines we consider elsewhere in this paper are a dualization of the classical splines
defined in Definition 52, as follows.

Definition 53. Suppose � is an n-dimensional simplicial complex with n-simplices {�v}.

• The dual graph G� is the graph whose vertex set V� is indexed by the collection
of n-dimensional simplices �v 2 � and whose edge set E� contains the edge uv

whenever the corresponding n-simplices intersect in an (n� 1)-dimensional simplex
�u \ �v.
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• The dual edge-labeling ↵� is the edge-labeling in which uv is labeled by the princi-
pal ideal ↵�(uv) generated by any nonzero a�ne linear form in R[x1, . . . , xn] that
vanishes on �u \ �v.

• The dual map is a map from elements of Sr
d(�) to functions on the vertex set V�

of G�. If F 2 S
r
d(�), then the dual map sends F to the function F

⇤ : V� !
R[x1, . . . , xn] defined by F

⇤(v) = F |�v for all vertices v.

Note that if � is a triangulation embedded in the plane, we may consider its vertices
and edges as a planar graph, in which case G� is the usual (combinatorial) dual graph
to �. In this case, the dual edge-labeling ↵� is the function that assigns to each edge uv
in G� the ideal generated by the equation of the line at the intersection of the triangles
corresponding to u and v. We note that the edge-labeling of Figure 5 cannot occur in a
graph G� dual to a standard triangulation � because all edge-labels ↵�(uv) are ideals
with generator of the form (ax+ by + c)r+1 for some a, b, c 2 R.

Billera proved that the dual map is actually an isomorphism of vector spaces between
classical splines and splines as defined in Definition 3. In other words, the splines used
in this paper are a kind of dualization of classical splines. We describe Billera’s result in
Proposition 54 below. We do not give a formal definition of simplex, strongly connected,
or link and instead refer the interested reader to either [Bil88] or any introductory text
on polytopes (see, for example, [Zie95]). Recall also that for principal ideals, a power of
an ideal is equal to the ideal generated by that power of the generator.

Proposition 54 (Billera [Bil88, Theorem 2.4]). Suppose � is a strongly-connected n-
dimensional simplicial complex so that the link of each simplex in � is also strongly
connected.

Define the (r + 1)th-power of ↵� to be the edge-labeling ↵
r+1
� that associates to each

edge uv the ideal (↵�(uv))
r+1. Consider the module of splines RG�,↵r+1

�
with coe�cients

in the polynomial ring R = R[x1, . . . , xn].
Then F 2 S

r
d(�) if and only if F ⇤ 2 RG�,↵r+1

�
is a spline whose localizations F ⇤(v) have

degree at most d for all v 2 V�. As R-vector spaces, this dual map is an isomorphism.

The hypotheses in the first sentence of Proposition 54 are satisfied by most decom-
positions that arise in applications. For instance, suppose the simplicial complex � is a
triangulation of a region in the plane. In this case, that the link of a vertex is strongly
connected means that there are no “pinch points” in the region; that is, the region’s
boundary is a disjoint union of subspaces homotopic to circles.

Splines are strictly more general than classical splines in various ways: dual graphs to
triangulations must have trivalent interior vertices (or other regularity conditions on most
vertices, in the case of more general simplices); indeed, dual graphs to planar graphs are
planar. On the algebraic side, the ideals that arise in the image of ↵� must be principal
(unlike most ideals), and the underlying ring is a polynomial ring or quotient thereof
(unlike most rings).

We now specialize Corollary 40 to splines on dual graphs, using Billera’s result from
Proposition 54 to show the vector space of classical splines Sr

d(�) is the space of splines
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(R/Id+1)G�,⇡�(↵�)r+1 over a quotient polynomial ring. Note that this endows Sr
d(�) with

a product structure.

Corollary 55. Assume that � satisfies the hypotheses of Proposition 54 and let R =
R[x1, . . . , xn]. Suppose that every ideal ↵�(uv) is a principal ideal generated by a homo-
geneous element in R, let Id+1 be the ideal in R generated by all homogeneous elements of
degree d+1 and let ⇡ : R ! R/Id+1 be the quotient map. Let (R/Id+1)G�,⇡�(↵�)r+1 denote
the ring of splines on the edge-labeled dual graph over the quotient ring R/Id+1.

Define ' : Sr
d(�) ! (R/Id+1)G�,⇡�(↵�)r+1 to be the dual map

S
r
d(�) ! Sd(G�,↵

r+1
� )

that sends a classical spline F to the spline F
⇤ composed with the map

⇡⇤ : Sd(G�,↵
r+1
� ) ! (R/Id+1)G�,⇡�(↵�)r+1

defined in Proposition 38, so that '(F ) = ⇡⇤(F ⇤).
Then the map ' is an R-vector space isomorphism and respects multiplication in the

following senses:

• If f 2 R[x1, . . . , xn] and F 2 S
r
d(�) satisfy fF 2 S

r
d(�), then

'(fF ) = f'(F ) = ⇡(f)'(F ) 2 (R/Id+1)G,⇡�(↵�)r+1 .

• If F1, F2 2 S
r
d(�) satisfy F1F2 2 S

r
d(�), then

'(F1F2) = '(F1)'(F2) 2 (R/Id+1)G,⇡�(↵�)r+1 .

Proof. Billera’s original result proved that the dual map sending F 7! F
⇤ is a well-

defined isomorphism of real vector spaces. Corollary 40 composes with the quotient map
and completes the proof.

Remark 56. As mentioned earlier, the edge-labeling of Figure 5 cannot occur in a graph
G� dual to a standard triangulation � because all edge-labels ↵�(uv) have the form
(ax + by + c)r+1 for some a, b, c 2 R. Moreover, we can always homogenize an edge-
labeling over a polynomial ring R[x1, . . . , xn], generally via an additional variable. In
other words, Corollary 55 applies to all splines arising in classical (analytic) contexts and
in applied mathematics.

The main tool in the final section is the following lemma, which establishes that
generators for edge-labeled graphs (G,↵) can be assumed to be in a certain kind of
general position. More importantly, the lemma constrains the edge-labeled graphs (G,↵)
that can arise as the duals to a simplicial complex. In essence, it says that we may change
coordinates to assume that any particular interior vertex in a simplicial complex is the
origin of the plane, and then reinterprets that for the edge-labeling of the dual graph.

This lemma reinforces the point that generalized splines are more general than splines
dual to simplicial complexes. It is not generally true that every edge-labeling can be
modified by an a�ne linear operator so that any individual vertex is incident only to
ideals generated by polynomials with nonconstant terms! This is a constraint on the
graph inherited from the geometry of graphs embedded in Euclidean space.
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Lemma 57. Let R denote the polynomial ring k[x1, . . . , xn] where k is a field of charac-
teristic zero, especially R or C. Suppose that (G,↵) is a graph for which each edge-label
↵(uv) is the principal ideal generated by some power of an a�ne form, namely

(a1,uvx1 + a2,uvx2 + · · ·+ an,uvxn + cuv)
ruv

for some positive integer ruv and constants a1,uv, . . . , an,uv, cuv 2 k.
For each vertex v0, there is an edge-labeling ↵

0 so that

1. all edge-labels ↵
0(uv) are generated by polynomials having every coe�cient a

0
i,uv

nonzero,

2. ↵
0 is constructed by composing ↵ with a linear operator that acts as a rotation, and

3. RG,↵
⇠= RG,↵0.

Furthermore, suppose � is any triangulation in the plane that satisfies the hypotheses
of Proposition 54, with dual graph G� and dual edge-labeling ↵

r+1
� . Fix a bounded face C

in G�. Then the edge-labeling ↵
0 can also be chosen to satisfy

4. all edge-labels ↵0(uv) bounding C are generated by homogeneous polynomials, and

5. ↵
0 can be constructed by composing ↵� with the linear operator that translates the

vertex C 2 � to the origin and then performs a rotation of Euclidean space around
the origin.

Proof. Choose a vector ~p 2 kn and an invertible n ⇥ n matrix A 2 GLn(k) and denote
the entries of A by Aij. Define maps 'A and '~p on the variables x1, . . . , xn by the rules

'A(xi) =
nX

j=1

Ajixj and '~p(xi) = xi + pi

and extend this to a ring homomorphism on all of k[x1, . . . , xn]. The map 'A can be
thought of as a change of variables between xi and yi := 'A(xi) and similarly for '~p. In
particular, we obtain ring isomorphisms

'A : k[x1, . . . , xn] ! k[y1, . . . , yn] and '~p : k[x1, . . . , xn] ! k[y1, . . . , yn]

with inverse maps induced from A
�1 and �~p respectively.

Now suppose that (G,↵) is any edge-labeled graph for which each edge-label ↵(uv) is
generated by some power of an a�ne form, as per the hypothesis. Using Proposition 34
we obtain maps ('A)⇤ and ('~p)⇤ that are isomorphisms on the corresponding rings of
splines. Moreover suppose we write ~axuv = (a1,uvx1, a2,uvx2, . . . , an,uvxn) for each edge uv,
with ai,uv 2 k and xi 2 R. Then the ideal ('A � ↵)(uv) is generated by

(A ~axuv + cuv)
ruv .
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We now find an invertible matrix A so that for all edges uv the expression A ~axuv has n
nonzero terms. Indeed, consider the |E| hyperplanes

a1,uvx1 + a2,uvx2 + · · ·+ an,uvxn = 0

obtained over all edges uv. This is a finite set of hyperplanes and GLn(k) consists of
an infinite number of matrices. In particular, consider the subgroup of rotations around
the origin. This is a unitary group and so intersects each hyperplane in a subspace of
codimension one. No finite union of these codimension-one subspaces can cover the entire
space of possible rotations. Thus there exists a rotation A that satisfies Condition 1 from
the claim, as desired.

In addition, suppose (G�,↵�) arises as the dual of a triangulation � satisfying the
hypotheses of Proposition 54. Each vertex ~C 2 k2 of the simplicial complex � satisfies
the equations

2X

i=1

ai,uvxi + cuv = 0

of each line segment through ~C 2 �. The translation '� ~C moves ~C to the origin in the
plane. Thus the translation induces a ring homomorphism for which the equations ↵0(uv)
have no constant term whenever uv is an edge bounding the face corresponding to ~C

in the dual graph G�. Thus ↵
0(uv) is homogeneous for all edges uv bounding the face

corresponding to ~C.
Composing these maps as necessary proves the claim.

6.3 Applications to splines on planar triangulations

In this final subsection, we apply earlier work in this paper to the lower bound formula
described in the introduction.

Throughout this subsection, we denote by � a triangulation of a region in the plane
R2 satisfying the hypotheses of Proposition 54. For all undefined terms and for a detailed
history of the lower bound formula and lower bound conjecture, we point to [LS07, Section
9]. We now explicitly state what’s often called Schumaker’s lower bound formula.

Theorem 58 (Schumaker’s lower bound formula [LS07, Theorem 9.9]). Let Vint be the
set of interior vertices of �. For each v 2 Vint, denote by mv the number of distinct
slopes among all edges incident to v. Write Vint := |Vint|, and similarly denote by Eint the
number of interior edges of �. Then for all 0 6 r 6 d, we have

D + ⌧ 6 dimS
r
d(�),

where

D :=

✓
d+ 2

2

◆
+

✓
d� r + 1

2

◆
Eint �

✓
d+ 2

2

◆
�
✓
r + 2

2

◆�
Vint,

and
⌧ :=

X

v2Vint

⌧v,
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Figure 6: A pinwheel with its dual graph shown in red.

where

⌧v :=
d�rX

j=1

(r + j + 1� jmv)+.

Here, the subscript + denotes the function (�)+ : R ! R>0 defined by x 7! x if x > 0 and
x 7! 0 otherwise.

This lower bound for the dimension of the space of classical splines S
r
d(�) holds for

all r, d, and � and one active area of research looks for tighter upper- and lower-bounds
for Sr

d(�) in general. We focus instead on another active open question: the case when
� is a planar triangulation and the smoothness r is one. Indeed, our focus on quadratic
edge-labels and low-degree splines in parts of this paper is precisely because of the lower
bound conjecture.

Conjecture 59. The inequality in the lower bound formula of Theorem 58 is an equality
in the case that r = 1 and d > 3; that is, in the notation of Theorem 58,

D + ⌧ = dimS
1
d(�).

Some authors call this Schumaker’s conjecture, though he credits Strang. Alfeld–
Schumaker and Hong proved it when d > 4 [AS90, Hon91] and Billera proved it for
generic triangulations when d = 3 [Bil88]. (The case when d = 2 is so mysterious that it
has no conjectural formula.)

For most of the remainder of the paper, we will be focused on the special case whenever
� is an interior cell (or pinwheel triangulation), which is a triangulation that has a unique
interior vertex around which triangles radiate like the spokes of a wheel. This is shown
in Figure 6 together with its dual graph, which is a cycle.

Note that in the case of interior cells �, the lower bound formula of Theorem 58
reduces to the formula below, and it actually computes the dimension of the space Sr

d(�).

Theorem 60 ([LS07, Theorem 9.3]). Let � be an interior cell (or pinwheel triangulation)
with single interior vertex v. For any 0 6 r 6 d, we have

✓
r + 2

2

◆
+

✓
d� r + 1

2

◆
Eint + ⌧v = dimS

r
d(�).
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v
v

Figure 7: On the left, an interior cell consisting of a singular vertex. On the right, an
interior cell consisting of a vertex that is not singular. Both dual graphs are 4-cycles but
the example on the left has fewer distinct edge-labels.

Example 61. We illustrate Theorem 60 for the two interior cells �left and �right of
Figure 7 in the case r = 1 and d = 3.

Note that both �left and �right have Eint = 4. However, for �left we have mv = 2, and
for �right we have mv = 4. Substituting these values into the formula in Theorem 60 gives

dimS
1
3(�left) = 16 and dimS

1
3(�right) = 15.

One of our main results, Corollary 65 below, uses our results about minimal generating
sets from earlier sections of this paper to recover Theorem 60 of Lai–Schumaker in the
case r = 1. We first establish some preliminary results.

Theorem 62. Let � be an interior cell, i.e. a pinwheel triangulation, with n triangles.
Let Id+1 ✓ R[x, y] be the ideal generated by all monomials of degree d+1, and let ⇡ : R !
R/Id+1 be the quotient map. Then there is an isomorphism of R-vector spaces S

r
d(�) ⇠=

(R/Id+1)Cn,⇡�↵, where Cn is an n-cycle and ↵ is an edge-labeling so that every ideal ↵(uv)
is principal and generated by (x + auvy)r+1 for a nonzero auv 2 R. Moreover, for each
auv there is at most one other edge u

0
v
0 with au0v0 = auv and that edge cannot immediately

follow or precede uv.

Proof. Consider the map ' of Corollary 55. Corollary 55 proves that ' is an isomorphism
of R-vector spaces, and notes that the dual graph to a pinwheel triangulation with n

triangles is a cycle on n vertices, with edge-labeling ↵ given by the (r+ 1)th power of the
equations of the lines through the central vertex in �.

By Lemma 57, we may translate the central vertex of the triangulation to the origin
and assume each edge uv is labeled by (x+ auvy)r+1 for nonzero coe�cients auv. Finally,
at most two rays through a given point lie on the same line, so no more than two of the
edge-labels can coincide; if two successive rays going clockwise around the central vertex
are the same, then they describe whose interior angle-sum is more than 180�, which is
impossible. This proves the claim.

We use the previous theorem to reinterpret the main results of earlier sections. The
key observation is the following, which characterizes cycles that can be realized as the
dual of a triangulation.
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Lemma 63. All edge-labeled cycles (C,↵) that are geometrically realizable as the dual of
a triangulation must have at least three edge-labels unless the cycle is a four-cycle with
two distinct edge-labels that alternate around the cycle.

Proof. A cycle is dual to a triangulation only if that triangulation is an interior cell
(namely pinwheel triangulation). Suppose (C,↵) is dual to a triangulation. Theorem
62 implies that if C has three edges, then they are all labeled distinctly; if C has at
least five edges, then at least three successive edges must be labeled distinctly. The only
four-cycles with fewer than three distinct edge-labels are precisely those dual to pinwheel
triangulations formed by the intersection of two lines. This gives a four-cycle whose
edge-labels alternate between two distinct edge-labels as one moves clockwise.

Classically, interior vertices formed by the intersection of two lines play a special role
in the theory of classical splines on triangulations. We give this terminology in the context
of splines on the dual graph.

Definition 64. The interior vertices of the triangulations corresponding to 4-cycles with
two distinct edge-labels are called singular vertices.

We note that the interior vertex v on the left side in Figure 7 is a singular vertex, but
the vertex v on the right side is not singular. Remark 15 discussed this in the context of
the corresponding dual edge-labeled graph.

Lemma 63 thus shows that singular vertices are special insofar as they correspond to
the only geometrically realizable edge-labeled cycles with two distinct edge labels.

Combining these results with those from earlier sections gives an explicit algorithm for
constructing a minimal generating set for splines on interior cells. The first consequence
is a classical result for general r and d [LS07, Theorems 9.3 and 9.12].

Corollary 65. Denote the number of monomials of degree at most d by md, namely

md = 1 + · · ·+ (d+ 1) =
(d+ 1)(d+ 2)

2
.

The dimension of the space S
1
d(�) of classical splines on a pinwheel triangulation � (i.e.

an interior cell) with n triangles has two formulas.
If the pinwheel has four triangles and a singular vertex, then the dimension of S1

d(�)
is 8

><

>:

md if d 6 1,

md + 2md�2 if 2 6 d 6 3,

md + 2md�2 +md�4 if d > 4.

If the pinwheel has n > 3 triangles and no singular vertex, then the dimension of S1
d(�)

is 8
><

>:

md if d 6 1,

md + (n� 3)md�2 if d = 2,

md + (n� 3)md�2 + 2md�3 if d > 3.
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Proof. From Lemma 63, we know that the pinwheel with a singular vertex is the only
geometrically-realizable cycle with just two distinct edge-labels. Theorem 12 built an
upper-triangular basis for the module of splines over the polynomial ring in the two-label
case. Each module generator of degree j contributes md�j elements to the vector space
basis in degree at most d because each module generator can be multiplied by each of the
md�j monomials of degree at most d� j.

If � is not the pinwheel with a singular vertex, Theorem 62 showed that � must
have at least three successive distinct labels. Lemma 29 gave a homogeneous basis for
the spline space as a module over the polynomial ring in this case. Thus each module
generator of degree j contributes md�j elements to the vector space basis in degree at
most d. This proves the claim.

Example 66. Consider the interior cells �left and �right from Figure 7. Corollary 65
computes dimS

1
3(�left) and dimS

1
3(�right) in a di↵erent way than in Example 61.

Indeed, note that m3 = 10, m1 = 3, and m0 = 1. Substituting these values into the
formulas in Corollary 65, we again obtain

dimS
1
3(�left) = 16 and dimS

1
3(�right) = 15.

These results also allow us to contextualize the lower bound conjecture. In particular,
we can bound the dimension of S1

d(�) by building the triangulation � one interior vertex
at a time, and by using Corollary 65 to bound the contribution of each interior vertex.

Corollary 67. Suppose � and �0 are triangulations of a region in the plane satisfying
the hypotheses of Proposition 54 and that �0 is obtained by adding a new interior cell to
� with k triangles radiating around the new interior vertex.

Then the complex vector space S
1
d(�

0) may have more basis elements than S
1
d(�). The

number of additional (vector space) basis elements is at most

dim
�
S
1
d(�0)

�
�md,

where �0 is the pinwheel triangulation with k triangles and md is the number of monomials
of degree at most d.

Proof. The preimage of the restriction map RG�0 ,↵�0 ! RG�,↵� consists of the nonconstant
splines in RG�0 ,↵

. The dimension of nonconstant splines is an upper bound on the total
dimension of RG�0 ,↵�0 since the restriction might not be surjective. This dimension was
given in Corollary 65, proving the claim.

The condition that the link of a vertex is strongly connected in fact implies that any
triangulation satisfying the constraints of Proposition 54 can be built one interior vertex at
a time. We sketch the argument here. Since the link of each vertex is strongly connected,
the link of each interior vertex is a cycle. If �0 has an interior vertex, then there is an
interior vertex lying on a triangle with a boundary edge. Removing this vertex and the
triangles on which it lies leaves a triangulation �. If � is connected, then it still satisfies
the conditions of Proposition 54. For some choice of vertex � is connected, because �0 is
strongly connected.
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