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The spatial structures of cities defined by population distribution, distribution of facilities, and mobility have a
significant impact on lifestyles of residents and their wellbeing. In this study, we analyze millions of mobile
phone data points to infer significant sequences of visited facilities by individuals, cluster people with similar
patterns of life activity sequences, and define lifestyles based on the patterns in each cluster. We find that
lifestyles of a large number of people can be captured using a small set of activity sequences, while a small
portion of populations have lifestyles with a variety of activity sequences. Facility proximity in spatial constraints
is positively correlated with the volume of human movements, and is a significant factor in formation of the
majority of lifestyle patterns. Differences in facility proportions between two neighborhoods contribute to cross-
neighborhood travels for life activities, but its effect could be mediated by the geographical distances between
neighborhoods. Our findings demonstrate that the widely studied scaling laws in these areas are not independent
but rather connected through a deeper underlying reality, which has important implications for urban planning
and city management policies to enhance equal accessibility.

1. Introduction

City dwellers worldwide suffer from unequal access to services
(Hong et al., 2021), traffic congestion (Saberi et al., 2020) and disease
spread (Fan et al., 2021). These challenges primarily arise due to the
distribution of urban facilities for people’s basic necessities and trans-
portation systems for human activities (Chang et al., 2021). Equitable
planning of public services and infrastructure facilities may hold the key
to support different needs of people and overcome challenges faced by
residents (Jackson, 2003). Planning of urban facilities requires a deep
understanding of spatial structures of cities at the nexus of populations,
activities, and facilities (Yao et al., 2018; Yuan et al., ). For the past
several years, human activity patterns have been extensively investi-
gated (Wang et al., 2018), and important contributions have been made
in statistical models, such as the universal scaling laws (Brockmann
et al., 2006). Existing highly abstracted probability models (Song et al.,
2010; Yan et al., 2017), however, are limited in explaining the complex
phenomenon underlying the interactions between population and fa-
cilities in urban spatial networks. Given the heterogeneity of factors that
influence population’s activity patterns (Alexander et al., 2015), it is
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crucial to advance our understanding of the spatial structure of cities
and its impacts on human life activity patterns.

Many studies have explored the scope of human activities in a variety
of aspects. A remarkable research discovery related to activity patterns
is the spatial probability distribution of human trajectories character-
ized by jump sizes and waiting times (Gonzdlez et al., 2008). Deriving
from the basic laws of human motion, a collection of studies (Gallotti
et al., 2016; Hu et al., 2011; Zhao et al., 2014) has been simulated to
model and predict human activities. For example, Yan et al. proposed a
universal model combining the memory effect with population-induced
competition to enable accurate prediction of individual and collective
activity patterns, including scaling behaviors and trajectory motifs (Yan
et al., 2017). Sun et al. showed scaling properties in the structuring of
physical encounters from the spatial-temporal patterns in collective
daily regularities of activities on public transportation (Sun et al., 2013).
With the availability of detailed call records and location-based social
platforms, the potential exists to exploit data-driven activity prediction
models, such as gravity models (Zipf, 1946), intervening opportunity
models (Noulas et al., 2012; Stouffer, 1940), radiation models (Ren
et al., 2014) and social-based models (Wang et al., 2019). Leveraging
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large sets of empirical data, these models provide important insights
regarding movement distance (Yan et al., 2014), commuter activities in
large transportation networks (Ren et al., 2014), and population flux
across regions. Despite the prevalence of computational models, activity
patterns are purely drawn from geographical data records of pop-
ulations. Without sufficient evidence related to the interactions between
human activities and other elements in cities (such as facilities), the
understanding on tendencies and frequencies of human activities is still
limited.

To obtain a comprehensive understanding of human activity pat-
terns, recent studies (Barbosa et al., 2018) have explored the relation-
ships between human activities and other factors, such as social
networks (Wang et al.), job-imposed programs (Rivera et al., 2010) and
activity memories (Liu and Yan, 2020). The interplay between social
tiles and human activities is could have profound outcomes and conse-
quences in broad domains. For example, using the activity and
communication records of mobile phone users, a prior study showed
that the similarity between two individuals’ activities strongly corre-
lates with their proximity in the social network (Wang et al.). Further,
Deville et al. derived a scaling relationship connecting human activity
and communication patterns through the finding of spatial constraints in
both behaviors (Deville et al., 2016). In addition to mobile phone data,
empirical studies on location-based social media data also reveal the
possibility of explaining human activities with social relationships (Gao
et al., 2013). A typical example is Cho et al.’s work (Cho et al., ). The
study finds that humans experience a combination of geographically
limited periodic activities and seemingly random jumps correlated with
their social networks. Although these studies have uncovered the in-
fluences of social factors on human mobility, they are only loosely
related to specific movements. Hence, the findings obtained from these
studies tend to be limited in guiding planning for public services and
facilities in cities.

The spatial structures of cities defined by geography, facilities, and
demographics have been emphasized in existing studies (Louail et al.,
2015). Urban areas are composed of facilities, such as restaurants,
financial institutions, and grocery stores, which contribute to their
functionality. Population flows constitute the backbone of the spatial
networks of cities by connecting facilities and locations (Louail et al.,
2015). Human life activities occur between urban facilities to obtain
necessities and desired activities, such as food, health care, and enter-
tainment (Qin et al., 2012). Recent studies (Zeng et al., 2017) have
attempted to characterize human activities between urban facilities.
Examples of studies include the development of algorithms to predict
the life activities in points of interest (POIs) (Lu et al., 2016), discovering
regions of different functions using mobility entries between regions and
POIs (Yuan et al., ), and modeling the demand of POIs by exploring the
daily needs of people identified from their large-scale mobility data (Liu
and Yan, 2020). These prior studies propose methods to explain the
characteristics of human activities between POIs, fueling concomitant
advances in areas of both human activities and urban facilities (Hanson
and Schwab, 1987). Owing partly to progress enabled by this research, a
number of recent studies (Wang et al., 2017) further leverage the
movements among facilities to develop technologies for predicting the
next facility visit in the activity sequence of an individual. For example,
Yao et al. proposed a method by incorporating the degree of temporal
matching between individuals and POIs into personalized POI recom-
mendations (Yao et al., 2018). In addition, a variety of deep learning
models, such as convolutional networks with variational attention
mechanism (Gao et al.) and recurrent neural networks (Gao et al.), are
employed to learn the historical movement behaviors for next-POI
prediction. The increasing availability of large-scale location-based
datasets enhances the resolution and predictability of human move-
ments across facilities. But few existing studies have quantified the re-
lationships between facility distribution and human sequential
activities, using large-scale population activity data. Hence, a quanti-
tative understanding of the extent to which the distribution of urban
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facilities shapes human activity patterns in their regular lives is still
missing.

To this end, building on rich and fundamental literature, we uncover
diverse lifestyle patterns of collective activities extracted from mobile
phone data based on the temporal order of visits to urban facilities
(defined as human life activity sequences). The resulting lifestyle clus-
ters of people and the patterns of life activity sequences are further
associated with our proposed metrics of facility distribution. To explain
the influence of facility distribution on human life activities, we devel-
oped and tested multivariant models in each cluster. The presented work
provides insights regarding the extent to which urban facilities can
shape and alter the way of human life activities, implying interpretable
behavioral patterns of the population at large. To test the generaliz-
ability of the findings, we apply computational experiments on mobile
phone data collected from 12 U.S. metropolitan counties, including Los
Angeles, Harris (Houston), King (Seattle) and Cook (Chicago). Theo-
retical contributions related to the drivers of human mobility and
practical applications regarding urban planning strategies drawn from
the findings are identified and discussed.

2. Data and methods
2.1. Dataset collection

We analyzed mobile phone data provided by X-mode, Inc., a data
company that collects anonymized location data from numerous appli-
cations from a great number of mobile phone devices (X-mode). X-Mode
works with more than 70 developers of more than 300 applications,
using their proprietary software development kit (SDK) technology.
Globally, more than 50 million active people per month are sharing their
location every 5-7 min. The dataset used in this study consists of ano-
nymized location data in 12 metropolitan counties in the United States
in February 2020, including King County (Seattle) in Washington, Los
Angeles County (Los Angeles) in California, Dade County (Miami) in
Florida, and Dallas County (Dallas) in Texas. There are three main
reasons to consider in selecting the 12 metropolitan counties. First,
population size is an important consideration as the study would like to
reveal the patterns that can be representative for a large population.
These metropolitan counties are in the areas of highly populated cities
such as Houston, Los Angeles, and Seattle. Hence, the findings from
these counties can be representative for most urban populations. Sec-
ond, the selected counties could be geographically heterogeneous so that
the results of this study can account for the spatial heterogeneity and
improve its representativeness. The selected counties cover the east,
north, west, south and middle of the U.S. Finally, the selected counties
should allow the residents to have all defined lifestyle activities. Based
on our experiments, we find that the lifestyle activities identified from
our study are observed in all these counties. This criterion makes the
findings generalizable across different counties in the U.S. These con-
siderations in selecting the counties in our study could ensure the results
and findings are representative and generalizable across the country.
(See more details in Supplementary Information.) The data sample has a
wide set of attributes, including anonymized device ID, latitude, longi-
tude, speed and UTC (Coordinated Universal Time) time of observation.
This dataset allows us to capture the interaction of populations with
locations (places) based on when and where a device was and how long
it spent in a specific place.

The data was shared under a strict contract with X-mode through
their academic collaborative program in which they provide access to
de-identified and privacy-enhanced mobility data for academic
research. All researchers processed and analyzed the data under a non-
disclosure agreement and were obligated to not share data further or to
attempt to re-identify data. We acknowledge the issues such as biases
and errors might be present in our mobile phone data. First, the repre-
sentativeness of the mobile phone data has been verified by many
existing studies which ensure the data could reflect the actual residents
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in different neighborhoods, which ensure the validity of the data. Sec-
ond, in preprocessing the data, we remove the devices that do not have
consistent data points every day in the study period. These errors may be
because the misdetection and location of the GPS signals. Removing
these data points would allow us to have a high-quality data set that can
well represent the trajectories of the people.

The place data was provided by SafeGraph, Inc., a location intelli-
gence data company that builds and maintains accurate POI data and
store locations within the United States (SafeGraph, ). The dataset in-
cludes basic information, such as POI IDs, location name, address,
category, and brand association for POIs where people spent time and
money. SafeGraph, Inc. has collected data for about 6.5 million active
POIs. In this study, we primarily adopted the coordinates of POIs and
their categories. SafeGraph labels each POI with its NAICS (North
American Industry Classification System) category code (United States
Census Bureau), which is the standard used by Federal statistical
agencies in classifying business establishments. In this study, we used a
four-digit NAICS code which categorizes POIs at the industry group
level. SafeGraph Data Consortium shared the data through their aca-
demic program, which provides data at no charge to the academic
community. The program allows researchers to publish papers and un-
cover insights that will lead to better policy-making, new innovations,
and business growth.

To further identify the geofence of each POI, we employed the U.S.
building geometry data from Microsoft US Building Footprints (Micro-
soft, ). This dataset contains 125,192,184 computer-generated building
footprints (polygon geometries) in all 50 US states. This data is licensed
by Microsoft under the Open Data Commons Open Database License. We
correlated the coordinates of POIs from SafeGraph to the polygons of the
buildings to identify the geofence of each POIL There might be a case,
like malls and plazas, in which one building consists of multiple POIs,
leading to challenges of specifying the geofences for each POL. In this
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case, hence, we have to associate the building polygon with all these
POIs. Since such cases are rare in this study, our findings will not be
affected. The geofences of the POIs can further assist to capture the
location of a mobile device.

The polygon and demographic data for census block groups (CBGs)
were obtained through the American Community Survey (ACS) Census
5-year 2014-2018 dataset (United States Census Bureau). This dataset is
the premier source for detailed population and geographical informa-
tion about United States communities. The data is publicly available
through the US Census Bureau.

2.2. Human lifestyle characterization

The first step of this study is to characterize the lifestyles of pop-
ulations based on their visits to POIs. Algorithms to detect human life-
style activities would take a large volume of computer memory. To
balance the computational cost and validity of the results, this study
focuses mainly on individuals who generated daily mobile phone re-
cords in February 2020 in each county. For all entries of each individual
device, we located coordinates in a chronological sequence within the
geofences of POIs. The records within the geofences are labeled by the
POI IDs and their four-digit NAICS category codes. By doing so, we
generated the sequences of visited places of each individual device
during February. Fig. 1a shows the distribution of visits to a variety of
POIs based on the records in our dataset. Restaurants and other eating
places, accounting for more than 20 % of visits, are the most frequent
places visited. Clothing stores and offices of physicians are also
frequently visited, but not as often as restaurants. In this study, we
selected the POIs in the top 12 categories, which account for 90 % of
population activities.

Our main goal was to uncover significant human life activity se-
quences hidden in normal life activities based on the records of visited
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Fig. 1. Methods for identifying lifestyles and basic analyses. a. Proportion of visits in different categories of facilities during the study period. The types of facilities
are defined by the North American Industry Classification System (NAICS). For simplicity, the categories of facilities are represented by characters. b. Schematic
illustration of methods of identifying life activity sequences and lifestyle clusters. c. Examples of significant words that are frequently adopted by the populations. The
left plot shows the top 10 most frequent words with repeated facilities, and the right one shows the top 10 most frequent words with non-repeated facilities.
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places. Hence, the methods adopted in this study encode the sequences
of visited places in a concise representation to allow processing that
reveals hidden “grammar rules” and that identifies significant behav-
ioral patterns (Fig. 1b). To this end, we first assigned a letter to each
selected POI category (Fig. 1a). Then, we applied the Sequitur algorithm
(Nevill-Manning and Witten, 1997) to infer a context-free grammar from
a sequence of letters based on the life activity sequences of all devices in
our dataset. Using the grammar rules, we generated “words” (combi-
nations of letters) to compress the sequences of visited places for de-
vices. The words were of letters representing a chronological sequence
of continuous visited places visited in succession. Since the words are
incorporated in the grammar which ensures that each word appears in
the records of empirical data at least twice, the words are representa-
tions of human life activity sequences by individual devices.

We aggregated the words for each individual device to characterize
people’s movements among facilities. The words are attributed to a
specific individual only when they occur more frequently than corre-
sponding words generated from a random process with the same lengths
of life activity sequences. To detect significant words, we generated
1000 randomized life activity sequences for each individual device and
applied the Sequitur algorithm to identify words (Di Clemente et al.,
2018). The significance of a word is then calculated using Z-score:

8 ~rand
N;eal - N,

Zo=—t T 1
T std (N W

where N*? is the number of words i in the life activity sequences from
real-world data; N7°* is the number of words i in the life activity se-
quences generated from randomized processes. In calculating the
Z-score Z; for a specific word i in the life activity sequences of an indi-
vidual device, we took the average and standard deviation of the Nj**
from the randomized processes. Referring to an existing study (Di
Clemente et al., 2018), the significant words for an individual device are
the words with Z-score greater than 2. By doing so, we generated a list of
significant words, {w;, w2, ...,wn}, as the representations of a device’s
consecutive movement as a proxy of daily behavior.

The third step was to examine the generality of lifestyle patterns
among all individuals and to identify ubiquitous characteristics of peo-
ple with different lifestyle patterns. In this step, we calculated the sim-
ilarity of the lifestyles for all individuals in a county. With the lists of
significant words for all devices, we performed a Jaccard similarity
(Niwattanakul et al., 2013):

_lanp)

T laUb 2

J(a,b)

where J(a, b) is the Jaccard similarity score between two individuals; a
and b represent the lists of significant words for two individuals. As
described by the formula, the values of the Jaccard similarity ranges
from O to 1. Values close to 1 indicate strong similarities between the
lifestyle characteristics of two individuals. Using the results from Jac-
card similarity, we obtained a relation matrix which describes the sim-
ilarities of life activity sequences among all individuals in a county.
Finally, we created a network of individuals using the relationship
matrix. The edges between two individuals are created only if the Jac-
card similarity between these two individuals is greater than a set
threshold. Here, the selection of a threshold depends on the connectivity
and sparsity of the network. The trade-off is made to identify appro-
priate number of clusters in the network. After several tests, we used a
Jaccard similarity of 0.2 for the network in King County. Then, we
applied the Louvain algorithm to identify communities (a.k.a., clusters)
in the network (Waltman and Van Eck). The Louvain algorithm is an
unsupervised algorithm that maximizes the modularity of the network
and partitions the network into communities where the nodes within
communities are more highly connected than the nodes between com-
munities (Fan et al., 2020). As such, we identified multiple clusters by
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grouping individuals with similar lifestyle patterns. In each cluster, we
decomposed the words into pairs between two consecutive POI cate-
gories, indicating the chronological orders to visiting places in human
life activities. We aggregated the pairs of POI categories for all indi-
vidual in the same cluster and calculated the average frequencies of the
pairs per individual (i.e., fi, fo, ..., f7 in Fig. 1b). Based on the average
frequencies, we obtained a matrix of the patterns of life activity se-
quences for each cluster of individuals (Supplementary Information),
considered as a representation of the human lifestyle. In the Sequitur
algorithm where we aim to obtain the sequence of activities of the
humans, we set the sequence of activities to be two. We split the higher
order activities and the sequence of two activities to represent the
behavioral patterns of the humans, which can enhance the generaliz-
ability of this study and findings. The parameters for Jaccard similarity
and Louvain algorithms are determined by our experiments. Based on
existing studies and the consideration of generalizability, we consider
the number of life patterns in a city could be 3 to 5. Setting this
parameter in our algorithm, we can then determine the threshold for
Jaccard similarity and Louvain algorithm. We also tested different
values for many parameters. However, as prior knowledge provides us
with sufficient assumption for our experimental settings, the results are
stable from our experiments. Hence, we use these parameters in our
analyses.

3. Results
3.1. Characteristics of words and human lifestyles

We analyzed the sequences of human life activities for 12 metro-
politan counties in the United States. In the main text of this paper, we
show the results for King County (Seattle) in the state of Washington.
(The results for the rest of the counties can be found in the Supple-
mentary Information.) Fig. 1c displays the occurrences of significant
words among all individuals in King County. We find that the occurrence
of the word representing the activity sequences from restaurants to
restaurants is particularly higher than other words. This type of life
activity sequences could imply a pattern of some people who prefer
dining out. The words representing the sequences from clothing stores to
clothing stores and the sequences from jewelry stores to jewelry stores
also indicate the shopping behaviors of the people. Regarding the non-
repeated visited places, the words showing the sequences from health
care facilities to clothing stores and the sequences from clothing stores to
restaurants, are the most commonly adopted lifestyles among the
people.

We detected, in total, more than 10,000 significant words for in-
dividuals in King County as presented in Fig. 2a. The distribution of the
occurrences of the words, to some extent, are close to a power-law dis-
tribution. A large set of words unique to individuals rarely recurs. There
is, however, still a certain proportion of words that have a high proba-
bility of frequently appearing in the lives of different people, which leads
to this fat-tailed distribution of word frequencies. The distribution de-
cays faster at around 3000 frequencies, and the tail diminishes at 10,000
frequencies. Such distribution of word frequencies has been observed in
all 12 metropolitan counties investigated in this study (Fig. 2b). Despite
differences in demographic characteristics across these counties, the
word frequencies follow almost the same probability functions. The
properties of this universal distribution indicate that, in a certain
number of populations, human lifestyles are concentrated in a small set
of words, along with a variety of other words, but the frequencies of the
concentrated words are bounded by certain values. Multiple factors,
such as the distribution and capacities of urban facilities, may influence
and result in such a distribution of human life activities. This study will
explore mainly the influence of facility distributions.

We also noticed that the time intervals for movements between two
consecutive places in a word vary between groups based on their
number of occurrences among the population (Fig. 2c). For example,
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Fig. 2. Semantic analysis of embedded words and lifestyle clusters. a. Probability density function plot of the frequencies of words and its complementary cumulative
density function of the frequencies of words. The y-axis scale is exponents of 10. b. Complementary cumulative density function of the frequencies of words in 12
metropolitan counties. As shown in the figure, the frequencies of word occurrences follow a similar probability function. c¢. Cumulative density function of the time
interval between two places in a word. The words are categorized into five groups based on their frequencies in human lives. The words in the group of 0-20 %
represents the words that are the rarest words, while the words in the group of 80-100 % represent the most commonly occurring words. The x-axis is a logarithmic
scale with base e. d. Lifestyle patterns for four clusters of the population based on their visiting behaviors. Here, we show some unique and most frequent life activity
sequences in each cluster to highlight people’s unique characteristics. e. Illustration of networks of lifestyle patterns indicating frequent life activity sequences across
different types of facilities in other 11 metropolitan counties in the United States. The nodes represent different types of facilities, and the directed links represent the

life activity sequences. (More details are provided in the Appendix).

about 45 % of the words within the top 80-100 % most frequent words
were the most frequently occurring words, with less than 16-h intervals.
In other groups of words, however, the proportion of words with less
than 16-h intervals are much smaller (less than 30 %). Hence, in general,
the words that more commonly reflect individuals’ lives tend to have
shorter time intervals between the two consecutive facilities, while the
words that are rarely in human lives tend to have longer time intervals.
This may be because the facilities in the rarely adopted words are far
from each other, forming geographical barriers preventing the in-
dividuals to access them in a consecutive manner. This result highlights
the influence of geographical proximity on human lifestyles and the

tendencies of the population moving across a long geographical distance
for their life needs. In the following sections, we explore the influences
of facility distribution on human lifestyles and population flow across
CBGs.

With the representations of human life activities, we further identi-
fied four clusters of people who share similarities in their life activity
sequences (Fig. 2d). As displayed in the figure, some sequences
frequently occurred across all lifestyle clusters, while some are unique in
specific clusters. People in the same cluster, however, tend to have
similar significant and frequent life activity sequences, while those who
are in different clusters have evident variations of lifestyles. The activity
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sequences across different POI categories are not equal, indicating the
tendencies of people to have specific lifestyles. Nevertheless, based on
the uniqueness and frequencies of the life activity sequences, we named
the four clusters of people: (1) health-care, (2) dining-out, (3)
commuter, and (4) young. People in each cluster have distinct charac-
teristics. Specifically, people in cluster 1, health care, have particularly
more life activity sequences between different health care facilities and
more sequences between health care and restaurants, compared to those
in other clusters. The second cluster, dining-out, mainly contains people
who prefer dining out evidenced by the most commonly adopted word is
from restaurants to restaurants. Meanwhile, people in cluster 2 have
very few life activity sequences, compared to people in other clusters.
The first two clusters account for about 70 % of the individuals in our
dataset. The sizes of the rest two clusters are similar. People in cluster 3,
commuters, seem to be households with significant life activity se-
quences from electronics and appliance stores to other stores, such as
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health care, music, jewelry, telecommunication and s hoe stores. These
people take care of many errands related to daily lives. The last cluster,
the young, shows unique life activity sequences, such as the movement
from music stores to shoe and clothing stores. The lives of these people
mimic conventional behaviors of young individuals. Based on the dis-
cussion of people with various lifestyles, we observed that the focuses of
life activity sequences vary across different clusters of people in a
county, and the frequencies of life activity sequences also vary among
people within a cluster.

The variations of life activity sequences among the population in a
county were also examined in different counties. Fig. 2e uses surrogate
network models to represent the lifestyle patterns in 12 metropolitan
counties using directed networks of POIs. Each county may have three or
four lifestyle clusters. Unique and frequent life activity sequences form
different lifestyle patterns in clusters. It is obvious that some categories
of facilities are closely connected or at the core of the network, while
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some categories of facilities are isolated due to the patterns of life ac-
tivity sequences. Such variations of life activity sequences raise an
important question regarding underlying factors, such as the distribu-
tion and proximity of urban facilities. In the following sections, we
quantify urban facility proximity and quantitatively examine its rela-
tionship with the lifestyle patterns.

3.2. Quantifying urban facility distribution

To examine the influence of urban facility distribution, we created
two metrics to measure the characteristics of facility distribution in
cities. The first metric is the proximity of urban facilities, the importance
of which has been highlighted in existing studies (Chen et al., 2008;
Zhang et al., 2016). Considering the facilities across the entire county,
the distances between individual facilities of two POI categories may not
provide sufficient information to understand the facility proximity for
all other facilities within the same category. In addition, the relationship
between population mobility and the levels of movement scales (char-
acteristic spatial scales in how people travel) is non-linear (Alessandretti
et al., 2020): Daily human mobility does contain meaningful scales
corresponding to spatial ““containers” that restrict their movement be-
haviors. That is, movement frequencies and facility preferences of the
population within a certain moving scale are stable. Beyond the scale,
the movement frequencies and tendencies of the population signifi-
cantly decrease.

To this end, we propose a scale-based proximity measure that in-
dicates the overall location proximity of the facilities in the entire
county. According to an existing study (Alessandretti et al., 2020), we
assume that the smallest spatial moving scale of the population is
approximately 2-3 km (km). We draw a bounding box of about 2 km for
each facility (Fig. 3a). We measure the probability of one type of facility
having another type of facility within its bounding box. For example, as
shown in Fig. 3a-a proportion, p;, of depository intermediations having
electronics stores within its bounding box, while there is p, of elec-
tronics stores having depository intermediations within its bounding
box. In the illustration, since the personal care services are not in any of
the bounding boxes of other types of POIs, the probability is zero. By
calculating all the probabilities of other types of facilities being located
within their bounding boxes, we generate a proximity matrix that de-
scribes the extent to which one type of facility in a county has other
types of facilities within the spatial moving scale of the population
(Fig. 3b). The values in the proximity matrix range from 0 to 100 %. As
shown in the proximity matrix of the top 12 facilities in King County, we
find that a great number of facilities are located in proximity to each
other. For example, most of the clothing stores have depository in-
termediations, restaurants, and offices of physicians within their
bounding boxes. In addition, we notice that the proximity matrix is
asymmetric, indicating that all bounding boxes of one type of facilities
could have another type of facilities, but not vice versa. For example, the
shoe stores have the majority of other types of facilities within their
bounding boxes, while the shoe stores are not often located in the boxes
of other facilities. The asymmetry of the proximity matrix is due mainly
to the variation in the numbers of facilities in different categories. This
property of the metric also allows us to explore the relationship of the
asymmetry to life activity sequences.

In addition, urban facilities are distributed heterogeneously in
different CBGs (i.e., census block groups). The CBGs with a greater
number of facilities may attract people from other CBGs, leading to
higher population in-flow from the outside CBGs. Here, we capture the
distribution of facilities by a simple metric, the portion of a specific type
of facilities in the CBG among all facilities in the same category in the
county. In Fig. 3¢, we plot the distributions of three types of facilities in
CBGs in King County. The distributions are extremely unequal,
approximately following a fat-tailed distribution, and indicating that
facilities tend to concentrate in a few CBGs, and but are scarce in other
areas (Fig. 3d). The types of concentrated facilities in a neighborhood
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also vary greatly in different CBGs. For example, restaurants distribute
widely in the majority of King County CBGs, while clothing stores are
mainly operated on the west side of the county. Such an unequal spatial
distribution may relate to the volume and direction of the cross-CBG
population flow due to the needs and incentives of human activity
governing their mobility.

3.3. Influences of facility distribution

To uncover the influence of facility distributions, we coupled the
human lifestyle matrix with the facility proximity matrix (Fig. 4a). The
frequencies of life activity sequences are plotted against the physical
proximity of urban facilities. We observed that the frequencies of life
activity sequences also follow a fat-tailed distribution (Fig. 4a, the ver-
tical distributions on the right side of the subplots), indicating that the
majority of lifestyle sequences occur when one type of facility is often
located in the bounding boxes of the other. There are only a few life
activity sequences occurring when the two facilities are not closely
located. This result demonstrates the presence of spatial movement scale
related to mobility behaviors of the population across different POIs.
People are most likely to move from an origin POI to a destination POI
which is located within the spatial proximity (called “container” (Ales-
sandretti et al., 2020)) of the origin POl In addition, people with
different lifestyles have a varying distribution of frequencies on life
activity sequences at the proximity scale. For example, the life activity
sequences of people in cluster 1 (health-care) are concentrated in
high-frequency activity sequences, while people in cluster 4 (young)
have a broader spectrum of sequence frequencies. Despite the existence
of variations in the joint distributions of sequence frequencies and fa-
cility proximity among different clusters of people, the finding related to
the existence of spatial movement scaling as an influence on lifestyle
patterns of people is universal across four clusters of lifestyles.

To further explore variations in the joint distribution of life activity
sequence frequencies and facility proximity, we examined the popu-
larity of the facilities using a multivariant model, analogous to standard
gravity models (Mazzoli et al., 2019). Here, we defined the popularity of
a type of facility as the number of life activity sequences that include this
type of facility. In the gravity model, the more popular the destination
facility, the higher the population flow directed to the destination fa-
cility. Hence, to better quantify the influence of facility proximity on
human lifestyle sequences and to explain variations in joint distribution,
we used a multivariant model that takes the frequency of lifestyle se-
quences as the dependent variable, and the popularity of the facilities
and the facility proximity as the independent variables. The model can
be formulated as follows:

log Lj ~ oy logm;+a,logm; +azlogp;+u+e 3

where L; represents the frequencies of the lifestyle sequence from fa-
cility type i to facility type j, m; is the popularity of the facility type i, m;
is the popularity of the facility type j, p; is the facility proximity factor
which represents the proportion of facility type i having facility typej in
its bounding boxes, a1, a2, and as are coefficients, u is the intercept, and
e is the regression error. It should be noted that all values for the vari-
ables are normalized in order to capture both the importance and sig-
nificance of the variables.

Table 1 shows the results obtained from ordinary linear regression on
the model for the four clusters of lifestyles. The popularity of facilities is
always significant across four lifestyle clusters. Specifically, the co-
efficients for the popularity of the facilities in both POIs are positive and
close to each other, meaning that both factors have a positive impact on
the occurrences of the life activity sequences. Based on the results for
clusters 2 (dining-out) and 3 (commuter), we find that the most influ-
ential factor is the facility proximity: the closer the two types of facilities
in the county, the higher frequencies the life activity sequences would
be. This finding has also been found in lifestyle patterns of other counties
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(Fig. 4c). Additionally, we noticed that in clusters 1 and 4, since the
majority of the life activity sequences occur between proximate facil-
ities, the facility proximity may not have a high influence on the pres-
ence of life activity sequences. In this context, instead, the popularity of
the facilities plays a more important role to explain the population’s life
activity sequences among the proximate facilities.

In addition to the life activity sequences between proximate facil-
ities, people also travel across neighborhoods to satisfy their needs due
to the lack of specific facilities in some neighborhoods. As a result, life
activity sequences may lead to cross-CBG movements. Due to the in-
fluence of facility discrepancy among different CBGs, human lifestyles
stimulate the incentives of cross-CBG mobility, which may be one reason
for cross-CBG movement. To examine the extent to which the interplay
between human lifestyles and CBG-level facility distribution shapes the
human movements between CBGs (i.e., frequencies of life activity se-
quences across CBGs), we plotted the cross-CBG life activity sequences
on the geographical map of King County (Fig. 4b).

The cross-CBG movements in four clusters of people based on their
life activity sequences form different networks of CBGs connected by

activity sequences. The in-degree distributions of the CBGs in the net-
works are fat-tailed (Fig. 4b). Observed from the geographic map, we
found that most of the movements occur between the center of the
county and other peripheral CBGs. The involvement of peripheral CBGs,
however, distinctly varies across the four clusters of lifestyles. For
example, the movements for life activity sequences in cluster 1 connect a
large number of CBGs, including the CBGs distant from the center CBG.
The movements in cluster 4, however, only connect the CBGs in the
Northwest corner of the county. The CBGs where the life activity se-
quences are concentrated are not always the CBGs at the center of the
county. For example, the movements in clusters 1 and 2 are concen-
trated in the CBGs in the northwest corner of the county, while the
movements in cluster 3 are concentrated in the CBGs in the west part of
the county.

Based on these results, we find that the difference in facility pro-
portions among various CBGs could be an important factor influencing
cross-CBG movements. Also highlighted by existing studies (Kadar and
Pletikosa, 2018), the popularity of the specific facilities in a CBG and the
physical distance between two CBGs also have an impact on the
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Table 1
Regression results for the relationship between population flow across facilities
and facility proximity.

Dependent variable (L;)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Model Information

Number of 144 144 144 144
observations

F-statistic 20.53%*** 13.41%** 19.06%** 13.05%**

Coefficients

Popularity of 1.047%** 0.772%%* 0.931%** 0.635%**
facility (0.193) (0.202) (0.190) (0.183)
category i
(m;)

Popularity of 0.966*** 0.727%%* 1.073%** 0.967***
facility (0.210) (0.203) (0.194) (0.190)
category j
(m;)

Facility 1.602 (1.399) 3.997%** 3.350%* 2.766 (1.777)
proximity (1.492) (1.599)
between i
and j (py)

Intercept —16.594%** —9.580*** —18.387%** —13.176%**

(3.676) (3.209) (3.730) (3.558)

Model performance metrics

R-squared 0.306 0.223 0.290 0.218

AIC 688.9 728.4 746.2 770.6

Note: ***p < 0.01; **p < 0.05; *p < 0.1.

cross-CBG travels. To further quantify the influences of facility distri-
bution in conjunction with other factors, we used a multivariant model
to incorporate related factors and compared their importance and sig-
nificance on the cross-CBG life activity frequencies.

log T,, ~ P logmy+p,logky, + f3logd,, +u+e (C)]

where T, is the frequencies of life activity sequences from facilities in
CBG p to facilities in CBG g, m, is the popularity of the specific type of
facilities in CBG q (frequencies of life activity sequences directing to the
specific type of facilities in CBG q), kpq is the difference of facility pro-
portions between CBG p and CBG q for a specific type of facility (zero for
negative values), d,, is the physical distance between CBG p and CBG q
(measured based on the centroid of the CBG), f;, f, and f; are co-
efficients, y is the intercept, and ¢ is the regression error.

Table 2
Regression results for the relationship between population flow across neigh-
borhoods and facility distributions.

Dependent variable (T,q)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Model Information

Number of 6372 2346 2430 1792
observations

F-statistic 326%** 113%%** 2177%** 169.5%**

Coefficients

Popularity of a 0.124%** 0.142%** 0.121%** 0.166%***
type of facilities (0.004) (0.008) (0.006) (0.008)
in CBG q (mg)

Facility proportion ~ 0.017*** 0.003 0.012%** 0.026%***
differences (0.002) (0.004) (0.003) (0.004)
between CBG p
and CBG q (kyq)

Physical distance —0.093%** —0.057*** —0.033%** —0.085%**
between CBG p (0.006) (0.009) (0.009) (0.011)
and CBG q (dpq)

Intercept —0.198%** —0.166*** —0.026 —0.105%*

(0.026) (0.042) (0.035) (0.045)

Model performance metrics

R-squared 0.133 0.126 0.146 0.221

AIC 6818 2069 2177 1998

Note: ***p < 0.01; **p < 0.05; *p < 0.1.
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Table 2 shows the results obtained from ordinary linear regression on
the models for four clusters of individuals. In all lifestyle clusters, the
frequencies of lifestyle sequences are significantly proportional to the
popularity of specific facilities in the destination CBG. The difference in
facility proportions is a significant positive factor influencing the
movements of people in clusters 1, 3, and 4, but not as important for
cluster 4. Based on the observations of the lifestyle patterns in all
counties (Fig. 4c), facility proportion differences tend to have a signif-
icant impact on population movements across CBGs. In addition, the
physical distance between two CBGs tends to restrict the movement,
even for the needs of lives (Fig. 4c). The farther apart the two CBGs, the
lesser the movements for life activities between them. It is realistic that
people would be attracted by the popularity of the facilities and their life
needs, but may not move frequently due to mobility expenses and time
constraints. Hence, although the differences in facility proportions could
enhance human mobility between neighborhoods, physical distance
creates barriers for people to move and diminishes the effects of facility
popularity and proportion differences.

4. Discussion and concluding remarks

This study characterizes human lifestyles using large-scale aggre-
gated mobile phone data and examines the influences of facility distri-
bution on life activity sequences of urban population in metropolitan
counties in the United States. Human lifestyles capture the ubiquitous
life activity sequences and population flows across facilities. Quantita-
tive investigation of lifestyles remains challenging in existing research.
With high-resolution data, our study first extracted facilities visited by
individuals in chronological order and then applied the Sequitur algo-
rithm to identify significant life activity sequences for each individual.
Furthermore, Jaccard similarity analysis was implemented to measure
the number of shared life activity sequences among populations. The
results reveal categorized clusters of people in based on their unique and
frequent life activity sequences within counties. The frequencies of
human life activity sequences displayed a fat-tailed distribution,
showing variations of life activity sequences within and between life-
style clusters. This pattern was observed in all 12 counties in this study,
indicating a universal patterns of life activities in urban populations. To
explain the variations and the universal distributions of human life ac-
tivity sequences, we propose two metrics—scale-based facility prox-
imity matrix and proportion of facilities in a neighborhood—to
characterize the distribution of facilities. We observed that some facil-
ities are often located within the moving scale of a specific type of fa-
cility, but not vice versa. We further explore the influence of the
asymmetric property of facility proximity and fat-tailed distribution of
facilities in CBGs on the frequencies of human life activity sequences.
The results indicate the significant positive influence of facility prox-
imity and facility proportion differences among CBGs on the frequencies
of life activity sequences. But the positive effects of these factors may be
mediated by the physical distances of two CBGs, which leads to insig-
nificance of the factors in some lifestyle clusters.

The findings obtained in this study have multiple theoretical con-
tributions and implications. In particular, understanding human lifestyle
patterns has been a fundamental problem in urban science and city
planning. The past few decades have witnessed a great amount of efforts
in understanding dynamic human life activities in urban populations
(Widhalm et al., 2015). While the universal laws and predictability of
the activity patterns have been unveiled, the interactions among popu-
lation, activities and locations, are still not fully understood. This study
exhibits the fat-tailed distribution of life activity sequences, describing
human movements motivated by the needs of individual lives. People
not only share a few general life activity sequences, but also have their
unique styles of movements. The distribution of life activity sequences
and the clusters of lifestyles describe the statistical and scaling patterns
of human behaviors at the county level, which expand our capabilities of
capturing human activity patterns and exploring other phenomena
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associated with human activities. A typical example is the equity of
human access to facilities in disasters. People usually lose access to
urban facilities due to disruptions of infrastructure. To prioritize disaster
response and mitigation in different urban areas, assessing the needs of
access to facilities in urban populations is important. Assessments based
on human lifestyle patterns could provide additional information of life
activities at different facilities. With the strategic planning of facility
distribution and response actions, we could enhance the equity of
human access to life services in disasters.

In addition, our work provides insights and opportunities for urban
planning and development. Human activity is a complex phenomenon
emerging as a result of confounding effects of a great number of factors
(Wilson, 2008). The fat-tailed distribution of urban facilities and their
proximity do significantly influence the frequencies of life activity se-
quences. Our observations from this study could advance the under-
standing of how people may interact with each other at urban facilities
and to what extent facility planning can make a difference in the dy-
namic interaction among people. This implication gives us the confi-
dence to propose urban plans as an effective tool to moderate mobility
demand and to alleviate congestion at urban facilities in the long run.
Examples of urban plans include redistributing existing facilities and
developing new facilities to fulfill the needs of human lives. By doing so,
human life activity sequences could be fulfilled within smaller spatial
scales. Furthermore, human interactions, especially contact at facilities,
would also be changed. People can have lower probabilities of con-
tacting individuals from a variety of CBGs, with an optimal distribution
of facilities in a county. This planning strategy and subsequent outcomes
are typically important for mitigating disease propagation in health
emergencies such as COVID-19, as it could particularly benefit the
development of location-specific policies and reduction of contact
probabilities.

Despite the significance of the findings and their contributions, this
work has some limitations that could be addressed in future research
with other datasets. First, daily movements and facility-visiting behav-
iors are the most common activities, but our dataset may fail to capture
movement activities when people did not carry their mobile phones.
Hence, it is important to also adopt other fine-grained datasets, such as
credit card transaction data and banknotes of anonymized individuals to
capture a comprehensive picture of the place-visiting and shopping
behaviors. Second, the lifestyle patterns may vary among people with
different social-demographic attributes, such as race and gender.
Quantifying the relationship between social-demographic characteris-
tics and lifestyle patterns contributes to the understanding of social
variations of human lives. The individuals in our dataset, however, are
de-identified for privacy protection purposes. We cannot obtain accurate
social-demographic information about the individuals. Future studies
could find ways to integrate anonymized location-based data with other
data sets, such as surveys and social network data, to examine the in-
fluence of social-demographic features on human lifestyles. Finally, this
study looks mainly into the similarities and consistency of results and
findings across counties. It should be noted that different counties have
different urban typologies, road networks, and service qualities, which
may lead to variations of human lifestyles. Future studies are suggested
to incorporate datasets about road networks and quality of services to
unravel the disparities of human activities in different counties. Mobile
phone data is only one type of the data that can indicate the lifestyle
patterns of the populations. Future studies should consider different data
sets and methods to test the stability of the findings from our study.
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