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A B S T R A C T   

The spatial structures of cities defined by population distribution, distribution of facilities, and mobility have a 
significant impact on lifestyles of residents and their wellbeing. In this study, we analyze millions of mobile 
phone data points to infer significant sequences of visited facilities by individuals, cluster people with similar 
patterns of life activity sequences, and define lifestyles based on the patterns in each cluster. We find that 
lifestyles of a large number of people can be captured using a small set of activity sequences, while a small 
portion of populations have lifestyles with a variety of activity sequences. Facility proximity in spatial constraints 
is positively correlated with the volume of human movements, and is a significant factor in formation of the 
majority of lifestyle patterns. Differences in facility proportions between two neighborhoods contribute to cross- 
neighborhood travels for life activities, but its effect could be mediated by the geographical distances between 
neighborhoods. Our findings demonstrate that the widely studied scaling laws in these areas are not independent 
but rather connected through a deeper underlying reality, which has important implications for urban planning 
and city management policies to enhance equal accessibility.   

1. Introduction 

City dwellers worldwide suffer from unequal access to services 
(Hong et al., 2021), traffic congestion (Saberi et al., 2020) and disease 
spread (Fan et al., 2021). These challenges primarily arise due to the 
distribution of urban facilities for people’s basic necessities and trans
portation systems for human activities (Chang et al., 2021). Equitable 
planning of public services and infrastructure facilities may hold the key 
to support different needs of people and overcome challenges faced by 
residents (Jackson, 2003). Planning of urban facilities requires a deep 
understanding of spatial structures of cities at the nexus of populations, 
activities, and facilities (Yao et al., 2018; Yuan et al., ). For the past 
several years, human activity patterns have been extensively investi
gated (Wang et al., 2018), and important contributions have been made 
in statistical models, such as the universal scaling laws (Brockmann 
et al., 2006). Existing highly abstracted probability models (Song et al., 
2010; Yan et al., 2017), however, are limited in explaining the complex 
phenomenon underlying the interactions between population and fa
cilities in urban spatial networks. Given the heterogeneity of factors that 
influence population’s activity patterns (Alexander et al., 2015), it is 

crucial to advance our understanding of the spatial structure of cities 
and its impacts on human life activity patterns. 

Many studies have explored the scope of human activities in a variety 
of aspects. A remarkable research discovery related to activity patterns 
is the spatial probability distribution of human trajectories character
ized by jump sizes and waiting times (González et al., 2008). Deriving 
from the basic laws of human motion, a collection of studies (Gallotti 
et al., 2016; Hu et al., 2011; Zhao et al., 2014) has been simulated to 
model and predict human activities. For example, Yan et al. proposed a 
universal model combining the memory effect with population-induced 
competition to enable accurate prediction of individual and collective 
activity patterns, including scaling behaviors and trajectory motifs (Yan 
et al., 2017). Sun et al. showed scaling properties in the structuring of 
physical encounters from the spatial-temporal patterns in collective 
daily regularities of activities on public transportation (Sun et al., 2013). 
With the availability of detailed call records and location-based social 
platforms, the potential exists to exploit data-driven activity prediction 
models, such as gravity models (Zipf, 1946), intervening opportunity 
models (Noulas et al., 2012; Stouffer, 1940), radiation models (Ren 
et al., 2014) and social-based models (Wang et al., 2019). Leveraging 
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large sets of empirical data, these models provide important insights 
regarding movement distance (Yan et al., 2014), commuter activities in 
large transportation networks (Ren et al., 2014), and population flux 
across regions. Despite the prevalence of computational models, activity 
patterns are purely drawn from geographical data records of pop
ulations. Without sufficient evidence related to the interactions between 
human activities and other elements in cities (such as facilities), the 
understanding on tendencies and frequencies of human activities is still 
limited. 

To obtain a comprehensive understanding of human activity pat
terns, recent studies (Barbosa et al., 2018) have explored the relation
ships between human activities and other factors, such as social 
networks (Wang et al.), job-imposed programs (Rivera et al., 2010) and 
activity memories (Liu and Yan, 2020). The interplay between social 
tiles and human activities is could have profound outcomes and conse
quences in broad domains. For example, using the activity and 
communication records of mobile phone users, a prior study showed 
that the similarity between two individuals’ activities strongly corre
lates with their proximity in the social network (Wang et al.). Further, 
Deville et al. derived a scaling relationship connecting human activity 
and communication patterns through the finding of spatial constraints in 
both behaviors (Deville et al., 2016). In addition to mobile phone data, 
empirical studies on location-based social media data also reveal the 
possibility of explaining human activities with social relationships (Gao 
et al., 2013). A typical example is Cho et al.‘s work (Cho et al., ). The 
study finds that humans experience a combination of geographically 
limited periodic activities and seemingly random jumps correlated with 
their social networks. Although these studies have uncovered the in
fluences of social factors on human mobility, they are only loosely 
related to specific movements. Hence, the findings obtained from these 
studies tend to be limited in guiding planning for public services and 
facilities in cities. 

The spatial structures of cities defined by geography, facilities, and 
demographics have been emphasized in existing studies (Louail et al., 
2015). Urban areas are composed of facilities, such as restaurants, 
financial institutions, and grocery stores, which contribute to their 
functionality. Population flows constitute the backbone of the spatial 
networks of cities by connecting facilities and locations (Louail et al., 
2015). Human life activities occur between urban facilities to obtain 
necessities and desired activities, such as food, health care, and enter
tainment (Qin et al., 2012). Recent studies (Zeng et al., 2017) have 
attempted to characterize human activities between urban facilities. 
Examples of studies include the development of algorithms to predict 
the life activities in points of interest (POIs) (Lu et al., 2016), discovering 
regions of different functions using mobility entries between regions and 
POIs (Yuan et al., ), and modeling the demand of POIs by exploring the 
daily needs of people identified from their large-scale mobility data (Liu 
and Yan, 2020). These prior studies propose methods to explain the 
characteristics of human activities between POIs, fueling concomitant 
advances in areas of both human activities and urban facilities (Hanson 
and Schwab, 1987). Owing partly to progress enabled by this research, a 
number of recent studies (Wang et al., 2017) further leverage the 
movements among facilities to develop technologies for predicting the 
next facility visit in the activity sequence of an individual. For example, 
Yao et al. proposed a method by incorporating the degree of temporal 
matching between individuals and POIs into personalized POI recom
mendations (Yao et al., 2018). In addition, a variety of deep learning 
models, such as convolutional networks with variational attention 
mechanism (Gao et al.) and recurrent neural networks (Gao et al.), are 
employed to learn the historical movement behaviors for next-POI 
prediction. The increasing availability of large-scale location-based 
datasets enhances the resolution and predictability of human move
ments across facilities. But few existing studies have quantified the re
lationships between facility distribution and human sequential 
activities, using large-scale population activity data. Hence, a quanti
tative understanding of the extent to which the distribution of urban 

facilities shapes human activity patterns in their regular lives is still 
missing. 

To this end, building on rich and fundamental literature, we uncover 
diverse lifestyle patterns of collective activities extracted from mobile 
phone data based on the temporal order of visits to urban facilities 
(defined as human life activity sequences). The resulting lifestyle clus
ters of people and the patterns of life activity sequences are further 
associated with our proposed metrics of facility distribution. To explain 
the influence of facility distribution on human life activities, we devel
oped and tested multivariant models in each cluster. The presented work 
provides insights regarding the extent to which urban facilities can 
shape and alter the way of human life activities, implying interpretable 
behavioral patterns of the population at large. To test the generaliz
ability of the findings, we apply computational experiments on mobile 
phone data collected from 12 U.S. metropolitan counties, including Los 
Angeles, Harris (Houston), King (Seattle) and Cook (Chicago). Theo
retical contributions related to the drivers of human mobility and 
practical applications regarding urban planning strategies drawn from 
the findings are identified and discussed. 

2. Data and methods 

2.1. Dataset collection 

We analyzed mobile phone data provided by X-mode, Inc., a data 
company that collects anonymized location data from numerous appli
cations from a great number of mobile phone devices (X-mode). X-Mode 
works with more than 70 developers of more than 300 applications, 
using their proprietary software development kit (SDK) technology. 
Globally, more than 50 million active people per month are sharing their 
location every 5–7 min. The dataset used in this study consists of ano
nymized location data in 12 metropolitan counties in the United States 
in February 2020, including King County (Seattle) in Washington, Los 
Angeles County (Los Angeles) in California, Dade County (Miami) in 
Florida, and Dallas County (Dallas) in Texas. There are three main 
reasons to consider in selecting the 12 metropolitan counties. First, 
population size is an important consideration as the study would like to 
reveal the patterns that can be representative for a large population. 
These metropolitan counties are in the areas of highly populated cities 
such as Houston, Los Angeles, and Seattle. Hence, the findings from 
these counties can be representative for most urban populations. Sec
ond, the selected counties could be geographically heterogeneous so that 
the results of this study can account for the spatial heterogeneity and 
improve its representativeness. The selected counties cover the east, 
north, west, south and middle of the U.S. Finally, the selected counties 
should allow the residents to have all defined lifestyle activities. Based 
on our experiments, we find that the lifestyle activities identified from 
our study are observed in all these counties. This criterion makes the 
findings generalizable across different counties in the U.S. These con
siderations in selecting the counties in our study could ensure the results 
and findings are representative and generalizable across the country. 
(See more details in Supplementary Information.) The data sample has a 
wide set of attributes, including anonymized device ID, latitude, longi
tude, speed and UTC (Coordinated Universal Time) time of observation. 
This dataset allows us to capture the interaction of populations with 
locations (places) based on when and where a device was and how long 
it spent in a specific place. 

The data was shared under a strict contract with X-mode through 
their academic collaborative program in which they provide access to 
de-identified and privacy-enhanced mobility data for academic 
research. All researchers processed and analyzed the data under a non- 
disclosure agreement and were obligated to not share data further or to 
attempt to re-identify data. We acknowledge the issues such as biases 
and errors might be present in our mobile phone data. First, the repre
sentativeness of the mobile phone data has been verified by many 
existing studies which ensure the data could reflect the actual residents 
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in different neighborhoods, which ensure the validity of the data. Sec
ond, in preprocessing the data, we remove the devices that do not have 
consistent data points every day in the study period. These errors may be 
because the misdetection and location of the GPS signals. Removing 
these data points would allow us to have a high-quality data set that can 
well represent the trajectories of the people. 

The place data was provided by SafeGraph, Inc., a location intelli
gence data company that builds and maintains accurate POI data and 
store locations within the United States (SafeGraph, ). The dataset in
cludes basic information, such as POI IDs, location name, address, 
category, and brand association for POIs where people spent time and 
money. SafeGraph, Inc. has collected data for about 6.5 million active 
POIs. In this study, we primarily adopted the coordinates of POIs and 
their categories. SafeGraph labels each POI with its NAICS (North 
American Industry Classification System) category code (United States 
Census Bureau), which is the standard used by Federal statistical 
agencies in classifying business establishments. In this study, we used a 
four-digit NAICS code which categorizes POIs at the industry group 
level. SafeGraph Data Consortium shared the data through their aca
demic program, which provides data at no charge to the academic 
community. The program allows researchers to publish papers and un
cover insights that will lead to better policy-making, new innovations, 
and business growth. 

To further identify the geofence of each POI, we employed the U.S. 
building geometry data from Microsoft US Building Footprints (Micro
soft, ). This dataset contains 125,192,184 computer-generated building 
footprints (polygon geometries) in all 50 US states. This data is licensed 
by Microsoft under the Open Data Commons Open Database License. We 
correlated the coordinates of POIs from SafeGraph to the polygons of the 
buildings to identify the geofence of each POI. There might be a case, 
like malls and plazas, in which one building consists of multiple POIs, 
leading to challenges of specifying the geofences for each POI. In this 

case, hence, we have to associate the building polygon with all these 
POIs. Since such cases are rare in this study, our findings will not be 
affected. The geofences of the POIs can further assist to capture the 
location of a mobile device. 

The polygon and demographic data for census block groups (CBGs) 
were obtained through the American Community Survey (ACS) Census 
5-year 2014–2018 dataset (United States Census Bureau). This dataset is 
the premier source for detailed population and geographical informa
tion about United States communities. The data is publicly available 
through the US Census Bureau. 

2.2. Human lifestyle characterization 

The first step of this study is to characterize the lifestyles of pop
ulations based on their visits to POIs. Algorithms to detect human life
style activities would take a large volume of computer memory. To 
balance the computational cost and validity of the results, this study 
focuses mainly on individuals who generated daily mobile phone re
cords in February 2020 in each county. For all entries of each individual 
device, we located coordinates in a chronological sequence within the 
geofences of POIs. The records within the geofences are labeled by the 
POI IDs and their four-digit NAICS category codes. By doing so, we 
generated the sequences of visited places of each individual device 
during February. Fig. 1a shows the distribution of visits to a variety of 
POIs based on the records in our dataset. Restaurants and other eating 
places, accounting for more than 20 % of visits, are the most frequent 
places visited. Clothing stores and offices of physicians are also 
frequently visited, but not as often as restaurants. In this study, we 
selected the POIs in the top 12 categories, which account for 90 % of 
population activities. 

Our main goal was to uncover significant human life activity se
quences hidden in normal life activities based on the records of visited 

Fig. 1. Methods for identifying lifestyles and basic analyses. a. Proportion of visits in different categories of facilities during the study period. The types of facilities 
are defined by the North American Industry Classification System (NAICS). For simplicity, the categories of facilities are represented by characters. b. Schematic 
illustration of methods of identifying life activity sequences and lifestyle clusters. c. Examples of significant words that are frequently adopted by the populations. The 
left plot shows the top 10 most frequent words with repeated facilities, and the right one shows the top 10 most frequent words with non-repeated facilities. 
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places. Hence, the methods adopted in this study encode the sequences 
of visited places in a concise representation to allow processing that 
reveals hidden “grammar rules” and that identifies significant behav
ioral patterns (Fig. 1b). To this end, we first assigned a letter to each 
selected POI category (Fig. 1a). Then, we applied the Sequitur algorithm 
(Nevill-Manning and Witten, 1997) to infer a context-free grammar from 
a sequence of letters based on the life activity sequences of all devices in 
our dataset. Using the grammar rules, we generated “words” (combi
nations of letters) to compress the sequences of visited places for de
vices. The words were of letters representing a chronological sequence 
of continuous visited places visited in succession. Since the words are 
incorporated in the grammar which ensures that each word appears in 
the records of empirical data at least twice, the words are representa
tions of human life activity sequences by individual devices. 

We aggregated the words for each individual device to characterize 
people’s movements among facilities. The words are attributed to a 
specific individual only when they occur more frequently than corre
sponding words generated from a random process with the same lengths 
of life activity sequences. To detect significant words, we generated 
1000 randomized life activity sequences for each individual device and 
applied the Sequitur algorithm to identify words (Di Clemente et al., 
2018). The significance of a word is then calculated using Z-score: 

Zi =
Nreal

i − Nrand
i

std
(
Nrand

i
) (1)  

where Nreal
i is the number of words i in the life activity sequences from 

real-world data; Nrand
i is the number of words i in the life activity se

quences generated from randomized processes. In calculating the 
Z-score Zi for a specific word i in the life activity sequences of an indi
vidual device, we took the average and standard deviation of the Nrand

i 
from the randomized processes. Referring to an existing study (Di 
Clemente et al., 2018), the significant words for an individual device are 
the words with Z-score greater than 2. By doing so, we generated a list of 
significant words, {w1, w2, …, wn}, as the representations of a device’s 
consecutive movement as a proxy of daily behavior. 

The third step was to examine the generality of lifestyle patterns 
among all individuals and to identify ubiquitous characteristics of peo
ple with different lifestyle patterns. In this step, we calculated the sim
ilarity of the lifestyles for all individuals in a county. With the lists of 
significant words for all devices, we performed a Jaccard similarity 
(Niwattanakul et al., 2013): 

J(a, b) =
|a ∩ b|

|a ∪ b|
(2)  

where J(a, b) is the Jaccard similarity score between two individuals; a 
and b represent the lists of significant words for two individuals. As 
described by the formula, the values of the Jaccard similarity ranges 
from 0 to 1. Values close to 1 indicate strong similarities between the 
lifestyle characteristics of two individuals. Using the results from Jac
card similarity, we obtained a relation matrix which describes the sim
ilarities of life activity sequences among all individuals in a county. 

Finally, we created a network of individuals using the relationship 
matrix. The edges between two individuals are created only if the Jac
card similarity between these two individuals is greater than a set 
threshold. Here, the selection of a threshold depends on the connectivity 
and sparsity of the network. The trade-off is made to identify appro
priate number of clusters in the network. After several tests, we used a 
Jaccard similarity of 0.2 for the network in King County. Then, we 
applied the Louvain algorithm to identify communities (a.k.a., clusters) 
in the network (Waltman and Van Eck). The Louvain algorithm is an 
unsupervised algorithm that maximizes the modularity of the network 
and partitions the network into communities where the nodes within 
communities are more highly connected than the nodes between com
munities (Fan et al., 2020). As such, we identified multiple clusters by 

grouping individuals with similar lifestyle patterns. In each cluster, we 
decomposed the words into pairs between two consecutive POI cate
gories, indicating the chronological orders to visiting places in human 
life activities. We aggregated the pairs of POI categories for all indi
vidual in the same cluster and calculated the average frequencies of the 
pairs per individual (i.e., f1, f2, …, f7 in Fig. 1b). Based on the average 
frequencies, we obtained a matrix of the patterns of life activity se
quences for each cluster of individuals (Supplementary Information), 
considered as a representation of the human lifestyle. In the Sequitur 
algorithm where we aim to obtain the sequence of activities of the 
humans, we set the sequence of activities to be two. We split the higher 
order activities and the sequence of two activities to represent the 
behavioral patterns of the humans, which can enhance the generaliz
ability of this study and findings. The parameters for Jaccard similarity 
and Louvain algorithms are determined by our experiments. Based on 
existing studies and the consideration of generalizability, we consider 
the number of life patterns in a city could be 3 to 5. Setting this 
parameter in our algorithm, we can then determine the threshold for 
Jaccard similarity and Louvain algorithm. We also tested different 
values for many parameters. However, as prior knowledge provides us 
with sufficient assumption for our experimental settings, the results are 
stable from our experiments. Hence, we use these parameters in our 
analyses. 

3. Results 

3.1. Characteristics of words and human lifestyles 

We analyzed the sequences of human life activities for 12 metro
politan counties in the United States. In the main text of this paper, we 
show the results for King County (Seattle) in the state of Washington. 
(The results for the rest of the counties can be found in the Supple
mentary Information.) Fig. 1c displays the occurrences of significant 
words among all individuals in King County. We find that the occurrence 
of the word representing the activity sequences from restaurants to 
restaurants is particularly higher than other words. This type of life 
activity sequences could imply a pattern of some people who prefer 
dining out. The words representing the sequences from clothing stores to 
clothing stores and the sequences from jewelry stores to jewelry stores 
also indicate the shopping behaviors of the people. Regarding the non- 
repeated visited places, the words showing the sequences from health 
care facilities to clothing stores and the sequences from clothing stores to 
restaurants, are the most commonly adopted lifestyles among the 
people. 

We detected, in total, more than 10,000 significant words for in
dividuals in King County as presented in Fig. 2a. The distribution of the 
occurrences of the words, to some extent, are close to a power-law dis
tribution. A large set of words unique to individuals rarely recurs. There 
is, however, still a certain proportion of words that have a high proba
bility of frequently appearing in the lives of different people, which leads 
to this fat-tailed distribution of word frequencies. The distribution de
cays faster at around 3000 frequencies, and the tail diminishes at 10,000 
frequencies. Such distribution of word frequencies has been observed in 
all 12 metropolitan counties investigated in this study (Fig. 2b). Despite 
differences in demographic characteristics across these counties, the 
word frequencies follow almost the same probability functions. The 
properties of this universal distribution indicate that, in a certain 
number of populations, human lifestyles are concentrated in a small set 
of words, along with a variety of other words, but the frequencies of the 
concentrated words are bounded by certain values. Multiple factors, 
such as the distribution and capacities of urban facilities, may influence 
and result in such a distribution of human life activities. This study will 
explore mainly the influence of facility distributions. 

We also noticed that the time intervals for movements between two 
consecutive places in a word vary between groups based on their 
number of occurrences among the population (Fig. 2c). For example, 
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about 45 % of the words within the top 80–100 % most frequent words 
were the most frequently occurring words, with less than 16-h intervals. 
In other groups of words, however, the proportion of words with less 
than 16-h intervals are much smaller (less than 30 %). Hence, in general, 
the words that more commonly reflect individuals’ lives tend to have 
shorter time intervals between the two consecutive facilities, while the 
words that are rarely in human lives tend to have longer time intervals. 
This may be because the facilities in the rarely adopted words are far 
from each other, forming geographical barriers preventing the in
dividuals to access them in a consecutive manner. This result highlights 
the influence of geographical proximity on human lifestyles and the 

tendencies of the population moving across a long geographical distance 
for their life needs. In the following sections, we explore the influences 
of facility distribution on human lifestyles and population flow across 
CBGs. 

With the representations of human life activities, we further identi
fied four clusters of people who share similarities in their life activity 
sequences (Fig. 2d). As displayed in the figure, some sequences 
frequently occurred across all lifestyle clusters, while some are unique in 
specific clusters. People in the same cluster, however, tend to have 
similar significant and frequent life activity sequences, while those who 
are in different clusters have evident variations of lifestyles. The activity 

Fig. 2. Semantic analysis of embedded words and lifestyle clusters. a. Probability density function plot of the frequencies of words and its complementary cumulative 
density function of the frequencies of words. The y-axis scale is exponents of 10. b. Complementary cumulative density function of the frequencies of words in 12 
metropolitan counties. As shown in the figure, the frequencies of word occurrences follow a similar probability function. c. Cumulative density function of the time 
interval between two places in a word. The words are categorized into five groups based on their frequencies in human lives. The words in the group of 0–20 % 
represents the words that are the rarest words, while the words in the group of 80–100 % represent the most commonly occurring words. The x-axis is a logarithmic 
scale with base e. d. Lifestyle patterns for four clusters of the population based on their visiting behaviors. Here, we show some unique and most frequent life activity 
sequences in each cluster to highlight people’s unique characteristics. e. Illustration of networks of lifestyle patterns indicating frequent life activity sequences across 
different types of facilities in other 11 metropolitan counties in the United States. The nodes represent different types of facilities, and the directed links represent the 
life activity sequences. (More details are provided in the Appendix). 
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sequences across different POI categories are not equal, indicating the 
tendencies of people to have specific lifestyles. Nevertheless, based on 
the uniqueness and frequencies of the life activity sequences, we named 
the four clusters of people: (1) health-care, (2) dining-out, (3) 
commuter, and (4) young. People in each cluster have distinct charac
teristics. Specifically, people in cluster 1, health care, have particularly 
more life activity sequences between different health care facilities and 
more sequences between health care and restaurants, compared to those 
in other clusters. The second cluster, dining-out, mainly contains people 
who prefer dining out evidenced by the most commonly adopted word is 
from restaurants to restaurants. Meanwhile, people in cluster 2 have 
very few life activity sequences, compared to people in other clusters. 
The first two clusters account for about 70 % of the individuals in our 
dataset. The sizes of the rest two clusters are similar. People in cluster 3, 
commuters, seem to be households with significant life activity se
quences from electronics and appliance stores to other stores, such as 

health care, music, jewelry, telecommunication and s hoe stores. These 
people take care of many errands related to daily lives. The last cluster, 
the young, shows unique life activity sequences, such as the movement 
from music stores to shoe and clothing stores. The lives of these people 
mimic conventional behaviors of young individuals. Based on the dis
cussion of people with various lifestyles, we observed that the focuses of 
life activity sequences vary across different clusters of people in a 
county, and the frequencies of life activity sequences also vary among 
people within a cluster. 

The variations of life activity sequences among the population in a 
county were also examined in different counties. Fig. 2e uses surrogate 
network models to represent the lifestyle patterns in 12 metropolitan 
counties using directed networks of POIs. Each county may have three or 
four lifestyle clusters. Unique and frequent life activity sequences form 
different lifestyle patterns in clusters. It is obvious that some categories 
of facilities are closely connected or at the core of the network, while 

Fig. 3. Distribution patterns of urban facilities. a. A schematic illustration for quantifying facility proximity. The bounding box is set for each facility; the probability 
of a type of facility having another type of facility within its bounding box. b. The proximity matrix of 12 types of facilities in King County. The light color indicates 
that two types of facilities tend to locate closely, while dark color indicates that two types of facilities tend to be far away from each other. c. The distribution of three 
types of facilities in King County. The density of facilities is the proportion of a specific facility in a neighborhood among all the same facilities in the county. To better 
visualize the distribution, the density values on the maps are transformed using gamma transformation. d. The probability density functions of 12 facilities that 
describe the distributions of the facilities at the CBG level in the King County. The x and y axis are in logarithmic scale with base e. The plots are titled using the 
representative characters of POI categories. 
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some categories of facilities are isolated due to the patterns of life ac
tivity sequences. Such variations of life activity sequences raise an 
important question regarding underlying factors, such as the distribu
tion and proximity of urban facilities. In the following sections, we 
quantify urban facility proximity and quantitatively examine its rela
tionship with the lifestyle patterns. 

3.2. Quantifying urban facility distribution 

To examine the influence of urban facility distribution, we created 
two metrics to measure the characteristics of facility distribution in 
cities. The first metric is the proximity of urban facilities, the importance 
of which has been highlighted in existing studies (Chen et al., 2008; 
Zhang et al., 2016). Considering the facilities across the entire county, 
the distances between individual facilities of two POI categories may not 
provide sufficient information to understand the facility proximity for 
all other facilities within the same category. In addition, the relationship 
between population mobility and the levels of movement scales (char
acteristic spatial scales in how people travel) is non-linear (Alessandretti 
et al., 2020): Daily human mobility does contain meaningful scales 
corresponding to spatial “‘containers” that restrict their movement be
haviors. That is, movement frequencies and facility preferences of the 
population within a certain moving scale are stable. Beyond the scale, 
the movement frequencies and tendencies of the population signifi
cantly decrease. 

To this end, we propose a scale-based proximity measure that in
dicates the overall location proximity of the facilities in the entire 
county. According to an existing study (Alessandretti et al., 2020), we 
assume that the smallest spatial moving scale of the population is 
approximately 2–3 km (km). We draw a bounding box of about 2 km for 
each facility (Fig. 3a). We measure the probability of one type of facility 
having another type of facility within its bounding box. For example, as 
shown in Fig. 3a–a proportion, p1, of depository intermediations having 
electronics stores within its bounding box, while there is p2 of elec
tronics stores having depository intermediations within its bounding 
box. In the illustration, since the personal care services are not in any of 
the bounding boxes of other types of POIs, the probability is zero. By 
calculating all the probabilities of other types of facilities being located 
within their bounding boxes, we generate a proximity matrix that de
scribes the extent to which one type of facility in a county has other 
types of facilities within the spatial moving scale of the population 
(Fig. 3b). The values in the proximity matrix range from 0 to 100 %. As 
shown in the proximity matrix of the top 12 facilities in King County, we 
find that a great number of facilities are located in proximity to each 
other. For example, most of the clothing stores have depository in
termediations, restaurants, and offices of physicians within their 
bounding boxes. In addition, we notice that the proximity matrix is 
asymmetric, indicating that all bounding boxes of one type of facilities 
could have another type of facilities, but not vice versa. For example, the 
shoe stores have the majority of other types of facilities within their 
bounding boxes, while the shoe stores are not often located in the boxes 
of other facilities. The asymmetry of the proximity matrix is due mainly 
to the variation in the numbers of facilities in different categories. This 
property of the metric also allows us to explore the relationship of the 
asymmetry to life activity sequences. 

In addition, urban facilities are distributed heterogeneously in 
different CBGs (i.e., census block groups). The CBGs with a greater 
number of facilities may attract people from other CBGs, leading to 
higher population in-flow from the outside CBGs. Here, we capture the 
distribution of facilities by a simple metric, the portion of a specific type 
of facilities in the CBG among all facilities in the same category in the 
county. In Fig. 3c, we plot the distributions of three types of facilities in 
CBGs in King County. The distributions are extremely unequal, 
approximately following a fat-tailed distribution, and indicating that 
facilities tend to concentrate in a few CBGs, and but are scarce in other 
areas (Fig. 3d). The types of concentrated facilities in a neighborhood 

also vary greatly in different CBGs. For example, restaurants distribute 
widely in the majority of King County CBGs, while clothing stores are 
mainly operated on the west side of the county. Such an unequal spatial 
distribution may relate to the volume and direction of the cross-CBG 
population flow due to the needs and incentives of human activity 
governing their mobility. 

3.3. Influences of facility distribution 

To uncover the influence of facility distributions, we coupled the 
human lifestyle matrix with the facility proximity matrix (Fig. 4a). The 
frequencies of life activity sequences are plotted against the physical 
proximity of urban facilities. We observed that the frequencies of life 
activity sequences also follow a fat-tailed distribution (Fig. 4a, the ver
tical distributions on the right side of the subplots), indicating that the 
majority of lifestyle sequences occur when one type of facility is often 
located in the bounding boxes of the other. There are only a few life 
activity sequences occurring when the two facilities are not closely 
located. This result demonstrates the presence of spatial movement scale 
related to mobility behaviors of the population across different POIs. 
People are most likely to move from an origin POI to a destination POI 
which is located within the spatial proximity (called “container” (Ales
sandretti et al., 2020)) of the origin POI. In addition, people with 
different lifestyles have a varying distribution of frequencies on life 
activity sequences at the proximity scale. For example, the life activity 
sequences of people in cluster 1 (health-care) are concentrated in 
high-frequency activity sequences, while people in cluster 4 (young) 
have a broader spectrum of sequence frequencies. Despite the existence 
of variations in the joint distributions of sequence frequencies and fa
cility proximity among different clusters of people, the finding related to 
the existence of spatial movement scaling as an influence on lifestyle 
patterns of people is universal across four clusters of lifestyles. 

To further explore variations in the joint distribution of life activity 
sequence frequencies and facility proximity, we examined the popu
larity of the facilities using a multivariant model, analogous to standard 
gravity models (Mazzoli et al., 2019). Here, we defined the popularity of 
a type of facility as the number of life activity sequences that include this 
type of facility. In the gravity model, the more popular the destination 
facility, the higher the population flow directed to the destination fa
cility. Hence, to better quantify the influence of facility proximity on 
human lifestyle sequences and to explain variations in joint distribution, 
we used a multivariant model that takes the frequency of lifestyle se
quences as the dependent variable, and the popularity of the facilities 
and the facility proximity as the independent variables. The model can 
be formulated as follows: 

log Lij ∼ α1 log mi + α2 log mj + α3 log pij + μ + ϵ (3)  

where Lij represents the frequencies of the lifestyle sequence from fa
cility type i to facility type j, mi is the popularity of the facility type i, mj 

is the popularity of the facility type j, pij is the facility proximity factor 
which represents the proportion of facility type i having facility type j in 
its bounding boxes, α1, α2, and α3 are coefficients, μ is the intercept, and 
ϵ is the regression error. It should be noted that all values for the vari
ables are normalized in order to capture both the importance and sig
nificance of the variables. 

Table 1 shows the results obtained from ordinary linear regression on 
the model for the four clusters of lifestyles. The popularity of facilities is 
always significant across four lifestyle clusters. Specifically, the co
efficients for the popularity of the facilities in both POIs are positive and 
close to each other, meaning that both factors have a positive impact on 
the occurrences of the life activity sequences. Based on the results for 
clusters 2 (dining-out) and 3 (commuter), we find that the most influ
ential factor is the facility proximity: the closer the two types of facilities 
in the county, the higher frequencies the life activity sequences would 
be. This finding has also been found in lifestyle patterns of other counties 
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(Fig. 4c). Additionally, we noticed that in clusters 1 and 4, since the 
majority of the life activity sequences occur between proximate facil
ities, the facility proximity may not have a high influence on the pres
ence of life activity sequences. In this context, instead, the popularity of 
the facilities plays a more important role to explain the population’s life 
activity sequences among the proximate facilities. 

In addition to the life activity sequences between proximate facil
ities, people also travel across neighborhoods to satisfy their needs due 
to the lack of specific facilities in some neighborhoods. As a result, life 
activity sequences may lead to cross-CBG movements. Due to the in
fluence of facility discrepancy among different CBGs, human lifestyles 
stimulate the incentives of cross-CBG mobility, which may be one reason 
for cross-CBG movement. To examine the extent to which the interplay 
between human lifestyles and CBG-level facility distribution shapes the 
human movements between CBGs (i.e., frequencies of life activity se
quences across CBGs), we plotted the cross-CBG life activity sequences 
on the geographical map of King County (Fig. 4b). 

The cross-CBG movements in four clusters of people based on their 
life activity sequences form different networks of CBGs connected by 

activity sequences. The in-degree distributions of the CBGs in the net
works are fat-tailed (Fig. 4b). Observed from the geographic map, we 
found that most of the movements occur between the center of the 
county and other peripheral CBGs. The involvement of peripheral CBGs, 
however, distinctly varies across the four clusters of lifestyles. For 
example, the movements for life activity sequences in cluster 1 connect a 
large number of CBGs, including the CBGs distant from the center CBG. 
The movements in cluster 4, however, only connect the CBGs in the 
Northwest corner of the county. The CBGs where the life activity se
quences are concentrated are not always the CBGs at the center of the 
county. For example, the movements in clusters 1 and 2 are concen
trated in the CBGs in the northwest corner of the county, while the 
movements in cluster 3 are concentrated in the CBGs in the west part of 
the county. 

Based on these results, we find that the difference in facility pro
portions among various CBGs could be an important factor influencing 
cross-CBG movements. Also highlighted by existing studies (Kadar and 
Pletikosa, 2018), the popularity of the specific facilities in a CBG and the 
physical distance between two CBGs also have an impact on the 

Fig. 4. The influences of facility distribution in King County, Washington State. a. Relationships between urban facility proximity and population lifestyles. b. 
Population flows between different neighborhoods for the individuals in four lifestyle clusters. The subplot on the top right corner shows the weighted in-degree 
distribution dp of the CBGs in the King County. dp =

∑
q∈Neigh(p)Tqp, where the Tpq is the population flow from CBG q to CBG p, and CBG q is one of connected 

neighbors of CBG p. The x and y axis are in logarithmic scale with base 10. c. The effects of facility and CBG characteristics on human lifestyle patterns indicated by 
population flow for 12 metropolitan counties in the United States. Note: ***p < 0.01; **p < 0.05; *p < 0.1; and NS (not significant) p ≥ 0.1. 
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cross-CBG travels. To further quantify the influences of facility distri
bution in conjunction with other factors, we used a multivariant model 
to incorporate related factors and compared their importance and sig
nificance on the cross-CBG life activity frequencies. 

log Tpq ∼ β1 log mq + β2 log kpq + β3 log dpq + μ + ϵ (4)  

where Tpq is the frequencies of life activity sequences from facilities in 
CBG p to facilities in CBG q, mq is the popularity of the specific type of 
facilities in CBG q (frequencies of life activity sequences directing to the 
specific type of facilities in CBG q), kpq is the difference of facility pro
portions between CBG p and CBG q for a specific type of facility (zero for 
negative values), dpq is the physical distance between CBG p and CBG q 
(measured based on the centroid of the CBG), β1, β2 and β3 are co
efficients, μ is the intercept, and ϵ is the regression error. 

Table 2 shows the results obtained from ordinary linear regression on 
the models for four clusters of individuals. In all lifestyle clusters, the 
frequencies of lifestyle sequences are significantly proportional to the 
popularity of specific facilities in the destination CBG. The difference in 
facility proportions is a significant positive factor influencing the 
movements of people in clusters 1, 3, and 4, but not as important for 
cluster 4. Based on the observations of the lifestyle patterns in all 
counties (Fig. 4c), facility proportion differences tend to have a signif
icant impact on population movements across CBGs. In addition, the 
physical distance between two CBGs tends to restrict the movement, 
even for the needs of lives (Fig. 4c). The farther apart the two CBGs, the 
lesser the movements for life activities between them. It is realistic that 
people would be attracted by the popularity of the facilities and their life 
needs, but may not move frequently due to mobility expenses and time 
constraints. Hence, although the differences in facility proportions could 
enhance human mobility between neighborhoods, physical distance 
creates barriers for people to move and diminishes the effects of facility 
popularity and proportion differences. 

4. Discussion and concluding remarks 

This study characterizes human lifestyles using large-scale aggre
gated mobile phone data and examines the influences of facility distri
bution on life activity sequences of urban population in metropolitan 
counties in the United States. Human lifestyles capture the ubiquitous 
life activity sequences and population flows across facilities. Quantita
tive investigation of lifestyles remains challenging in existing research. 
With high-resolution data, our study first extracted facilities visited by 
individuals in chronological order and then applied the Sequitur algo
rithm to identify significant life activity sequences for each individual. 
Furthermore, Jaccard similarity analysis was implemented to measure 
the number of shared life activity sequences among populations. The 
results reveal categorized clusters of people in based on their unique and 
frequent life activity sequences within counties. The frequencies of 
human life activity sequences displayed a fat-tailed distribution, 
showing variations of life activity sequences within and between life
style clusters. This pattern was observed in all 12 counties in this study, 
indicating a universal patterns of life activities in urban populations. To 
explain the variations and the universal distributions of human life ac
tivity sequences, we propose two metrics—scale-based facility prox
imity matrix and proportion of facilities in a neighborhood—to 
characterize the distribution of facilities. We observed that some facil
ities are often located within the moving scale of a specific type of fa
cility, but not vice versa. We further explore the influence of the 
asymmetric property of facility proximity and fat-tailed distribution of 
facilities in CBGs on the frequencies of human life activity sequences. 
The results indicate the significant positive influence of facility prox
imity and facility proportion differences among CBGs on the frequencies 
of life activity sequences. But the positive effects of these factors may be 
mediated by the physical distances of two CBGs, which leads to insig
nificance of the factors in some lifestyle clusters. 

The findings obtained in this study have multiple theoretical con
tributions and implications. In particular, understanding human lifestyle 
patterns has been a fundamental problem in urban science and city 
planning. The past few decades have witnessed a great amount of efforts 
in understanding dynamic human life activities in urban populations 
(Widhalm et al., 2015). While the universal laws and predictability of 
the activity patterns have been unveiled, the interactions among popu
lation, activities and locations, are still not fully understood. This study 
exhibits the fat-tailed distribution of life activity sequences, describing 
human movements motivated by the needs of individual lives. People 
not only share a few general life activity sequences, but also have their 
unique styles of movements. The distribution of life activity sequences 
and the clusters of lifestyles describe the statistical and scaling patterns 
of human behaviors at the county level, which expand our capabilities of 
capturing human activity patterns and exploring other phenomena 

Table 1 
Regression results for the relationship between population flow across facilities 
and facility proximity.   

Dependent variable (Lij) 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Model Information 
Number of 

observations 
144 144 144 144 

F-statistic 20.53*** 13.41*** 19.06*** 13.05*** 
Coefficients 
Popularity of 

facility 
category i 
(mi) 

1.047*** 
(0.193) 

0.772*** 
(0.202) 

0.931*** 
(0.190) 

0.635*** 
(0.183) 

Popularity of 
facility 
category j 
(mj) 

0.966*** 
(0.210) 

0.727*** 
(0.203) 

1.073*** 
(0.194) 

0.967*** 
(0.190) 

Facility 
proximity 
between i 
and j (pij) 

1.602 (1.399) 3.997*** 
(1.492) 

3.350** 
(1.599) 

2.766 (1.777) 

Intercept −16.594*** 
(3.676) 

−9.580*** 
(3.209) 

−18.387*** 
(3.730) 

−13.176*** 
(3.558) 

Model performance metrics 
R-squared 0.306 0.223 0.290 0.218 
AIC 688.9 728.4 746.2 770.6 

Note: ***p < 0.01; **p < 0.05; *p < 0.1. 

Table 2 
Regression results for the relationship between population flow across neigh
borhoods and facility distributions.   

Dependent variable (Tpq) 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Model Information 
Number of 

observations 
6372 2346 2430 1792 

F-statistic 326*** 113*** 2177*** 169.5*** 
Coefficients 
Popularity of a 

type of facilities 
in CBG q (mq) 

0.124*** 
(0.004) 

0.142*** 
(0.008) 

0.121*** 
(0.006) 

0.166*** 
(0.008) 

Facility proportion 
differences 
between CBG p 
and CBG q (kpq) 

0.017*** 
(0.002) 

0.003 
(0.004) 

0.012*** 
(0.003) 

0.026*** 
(0.004) 

Physical distance 
between CBG p 
and CBG q (dpq) 

−0.093*** 
(0.006) 

−0.057*** 
(0.009) 

−0.033*** 
(0.009) 

−0.085*** 
(0.011) 

Intercept −0.198*** 
(0.026) 

−0.166*** 
(0.042) 

−0.026 
(0.035) 

−0.105** 
(0.045) 

Model performance metrics 
R-squared 0.133 0.126 0.146 0.221 
AIC 6818 2069 2177 1998 

Note: ***p < 0.01; **p < 0.05; *p < 0.1. 

C. Fan et al.                                                                                                                                                                                                                                      



Developments in the Built Environment 17 (2024) 100348

10

associated with human activities. A typical example is the equity of 
human access to facilities in disasters. People usually lose access to 
urban facilities due to disruptions of infrastructure. To prioritize disaster 
response and mitigation in different urban areas, assessing the needs of 
access to facilities in urban populations is important. Assessments based 
on human lifestyle patterns could provide additional information of life 
activities at different facilities. With the strategic planning of facility 
distribution and response actions, we could enhance the equity of 
human access to life services in disasters. 

In addition, our work provides insights and opportunities for urban 
planning and development. Human activity is a complex phenomenon 
emerging as a result of confounding effects of a great number of factors 
(Wilson, 2008). The fat-tailed distribution of urban facilities and their 
proximity do significantly influence the frequencies of life activity se
quences. Our observations from this study could advance the under
standing of how people may interact with each other at urban facilities 
and to what extent facility planning can make a difference in the dy
namic interaction among people. This implication gives us the confi
dence to propose urban plans as an effective tool to moderate mobility 
demand and to alleviate congestion at urban facilities in the long run. 
Examples of urban plans include redistributing existing facilities and 
developing new facilities to fulfill the needs of human lives. By doing so, 
human life activity sequences could be fulfilled within smaller spatial 
scales. Furthermore, human interactions, especially contact at facilities, 
would also be changed. People can have lower probabilities of con
tacting individuals from a variety of CBGs, with an optimal distribution 
of facilities in a county. This planning strategy and subsequent outcomes 
are typically important for mitigating disease propagation in health 
emergencies such as COVID-19, as it could particularly benefit the 
development of location-specific policies and reduction of contact 
probabilities. 

Despite the significance of the findings and their contributions, this 
work has some limitations that could be addressed in future research 
with other datasets. First, daily movements and facility-visiting behav
iors are the most common activities, but our dataset may fail to capture 
movement activities when people did not carry their mobile phones. 
Hence, it is important to also adopt other fine-grained datasets, such as 
credit card transaction data and banknotes of anonymized individuals to 
capture a comprehensive picture of the place-visiting and shopping 
behaviors. Second, the lifestyle patterns may vary among people with 
different social-demographic attributes, such as race and gender. 
Quantifying the relationship between social-demographic characteris
tics and lifestyle patterns contributes to the understanding of social 
variations of human lives. The individuals in our dataset, however, are 
de-identified for privacy protection purposes. We cannot obtain accurate 
social-demographic information about the individuals. Future studies 
could find ways to integrate anonymized location-based data with other 
data sets, such as surveys and social network data, to examine the in
fluence of social-demographic features on human lifestyles. Finally, this 
study looks mainly into the similarities and consistency of results and 
findings across counties. It should be noted that different counties have 
different urban typologies, road networks, and service qualities, which 
may lead to variations of human lifestyles. Future studies are suggested 
to incorporate datasets about road networks and quality of services to 
unravel the disparities of human activities in different counties. Mobile 
phone data is only one type of the data that can indicate the lifestyle 
patterns of the populations. Future studies should consider different data 
sets and methods to test the stability of the findings from our study. 
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Alexander, L., Jiang, S., Murga, M., González, M.C., 2015. Origin–destination trips by 
purpose and time of day inferred from mobile phone data. Transport. Res. C Emerg. 
Technol. 58, 240–250. 

Barbosa, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., 
Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M., 2018. Human mobility: models 
and applications. Phys. Rep. 734, 1–74. 

Brockmann, D., Hufnagel, L., Geisel, T., 2006. The scaling laws of human travel. Nature 
439 (7075), 462–465. 

Chang, S., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., Leskovec, J., 
2021. Mobility network models of COVID-19 explain inequities and inform 
reopening. Nature 589, 82–87. 

Chen, H., Jia, B., Lau, S.S.Y., 2008. Sustainable urban form for Chinese compact cities: 
challenges of a rapid urbanized economy. Habitat Int. 32 (1), 28–40. 

E. Cho, S. A. Myers, and J. Leskovec, "Friendship and mobility: user movement in 
location-based social networks," Proceedings of the 17th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 1082–1090. 

Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabási, A.-L., Wang, D., 2016. Scaling 
identity connects human mobility and social interactions. Proc. Natl. Acad. Sci. USA 
113 (26), 7047–7052. 

Di Clemente, R., Luengo-Oroz, M., Travizano, M., Xu, S., Vaitla, B., González, M.C., 2018. 
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