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Understanding the dynamics of electric-double-layer (EDL) charging in porous media
is essential for advancements in next-generation energy storage devices. Due to the
high computational demands of direct numerical simulations and a lack of interfacial
boundary conditions for reduced-order models, the current understanding of EDL
charging is limited to simple geometries. Here, we present a network model to
predict EDL charging in arbitrary networks of long pores in the Debye—Hiickel limit
without restrictions on EDL thickness and pore radii. We demonstrate that electrolyte
transport is described by Kirchhoff’s laws in terms of the electrochemical potential
of charge (the valence-weighted average of the ion electrochemical potentials) instead
of the electric potential. By employing the equivalent circuit representation suggested
by these modified Kirchhoff's laws, our methodology accurately captures the spatial
and temporal dependencies of charge density and electric potential, matching results
obtained from computationally intensive direct numerical simulations. Our network
model provides results up to six orders of magnitude faster, enabling the efficient
simulation of a triangular lattice of five thousand pores in 6 min. We employ the
framework to study the impact of pore connectivity and polydispersity on electrode
charging dynamics for pore networks and discuss how these factors affect the time scale,
energy density, and power density of capacitive charging. The scalability and versatility
of our methodology make it a rational tool for designing 3D-printed electrodes and for
interpreting geometric effects on electrode impedance spectroscopy measurements.

porous materials | electrolyte transport | charging dynamics | equivalent circuit | energy storage

Tonic transport in dilute electrolytes has been successfully predicted through the Poisson—
Nernst—Planck (PNP) equations and their derivatives (1-5) in simple geometries. Given
the central role that ionic transport plays in the porous electrodes of energy storage devices
such as electrochemical capacitors and batteries (6, 7), significant effort has been devoted
to developing continuum models that describe this phenomenon in confinement (8-11).
In these devices, electric double layers store energy through the electrostatic attraction
of counterions to the electrode surfaces. Since the capacitance of electric double layers
increases with surface area, the electrodes are usually highly porous, consisting of surface
areas as high as 3,300 mz/g (12). One of the exciting developments in the area is
the control of porous structures through 3-D printed supercapacitor electrodes, with
applications to the Internet of Things (7) and to wearable energy storage (13). However,
physical principles of ionic transport and consequently the rational design of pore network
geometries with optimal performance remain an open question.

Recent studies have demonstrated that molecular dynamics simulations provide full
descriptions of electric-double-layer charging in confinement, including nonidealities
due to concentrated electrolytes, high potentials, and surface chemistry (14). Despite
these capabilities, their high computational cost precludes the study of large systems
with complex pore networks and realistically long time scales (15, 16). Though more
computationally favorable than molecular dynamics, modified PNP equations (17-22)
and dynamic density functional theory (23, 24) are also challenging to employ in porous
media due to the geometrical complexity.

In view of these shortcomings, transmission-line (TL) models stemming from the
seminal work of de Levie (25, 26) continue to be used as a good qualitative guide of
the physics of electrolyte charging in experimental investigations (27, 28). Their use can
be justified by similar diffusion-like equations found in more detailed dynamic density
functional theory models (14) and good matches obtained with experimental results
using fitting parameters (16, 29, 30).

Nevertheless, the majority of the TL models are conceived as single-pore models.
de Levie’s model, for instance, may be formally justified by a linearization of the PNP
equations for a single pore at low electric potentials (16) in the thin-double-layer limit
(31). Variations of the TL model account for high potentials (9), surface conduction
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(10), arbitrary double-layer thickness (32, 33), ionic diffusivity
asymmetry (34), or a stack-electrode model (35). However,
none of these variations capture the geometric effect of pore
connections or pore sizes beyond a lumped-parameter approach.

In our view, this crucial knowledge gap exists because of two
primary reasons. First, the direct numerical simulation of PNP
in an arbitrary network of pores is computationally infeasible.
Second, while it is understood that the dynamics of double-
layer charging in single pores differs between the thin- and the
overlapping-double-layer limits (32, 33), the interaction of pores
of different sizes remains undescribed.

In this article, we devise a comprehensive network model to
predict the electric-double-layer charging of a binary electrolyte in
arbitrary networks of long pores in the Debye—Hiickel limit. The
proposed approach provides reduced-order transport equations
in each pore and describes voltage and charge relationships across
junctions and loops of pores, i.e., effective Kirchhoff’s laws for
electrolyte transport in porous media that close the system of
equations. We emphasize that these modified Kirchhoff’s laws
are required to capture the simultaneous effects of diffusion and
electromigration, whereas the original Kirchhoff’s laws of TL
circuits are only valid for purely electromigrative transport. These
effective Kirchhoff’s laws are written for the electrochemical
potential of charge, i.e., for the valence-weighted average of the
ion electrochemical potentials, instead of the electric potential.
We compare our approach against direct numerical simulations
of the PNP equations for a range of different geometries and
demonstrate that our approach is able to recover the spatial and
temporal dependencies of charge density and electric potential.
The TL model devised is computationally inexpensive and
enables the simulation of a triangular network consisting of
~5,000 pores in 6 min (Fig. 3), whereas our direct numerical
simulations of the full PNP equations take upward of a month
for a 3-pore network using 28 cores (Materials and Methods). The
scalability of the proposed TL methodology enables us to quantify
the impact of pore size distribution and pore connectivity, and
consequently to uncover guiding principles for optimizing the
design of porous electrodes.

Results and Discussion

Charging Dynamics. Throughout the article, we represent
dimensionless variables by asterisks to distinguish them from
their dimensional counterparts. We consider a network of
N long cylindrical pores within a perfectly conducting and
ideally blocking electrode at a potential ¢p relative to an ion
reservoir. Supercapacitor electrode materials are typically highly
conductive (6). However, a finite electrode conductivity could
be incorporated through Ohm’s law for the solid phase (36—
38). The reservoir is connected to the inlet pores through static
diffusion layers, as illustrated in Fig. 14. The pore network is
arbitrary, allowing us to study the effects of pore size distribution,
connectivity, and spatial arrangement. We assume that the porous
network is filled with a binary and symmetric electrolyte with
ion diffusivity D, though it is straightforward to extend this work
to asymmetric ion diffusivities and valences (34). We neglect
convection in the species transport equations. In the Debye—
Hiickel regime, where the applied potential is low compared
to the thermal voltage #7 /e, ie.,, € = ¢pe/(FT) K 1, this
approach is justifiable since electroosmotic flows are O(e?),
whereas diffusive and electromigrative fluxes are O(¢). We note
that electroosmotic flow loops in porous media can affect charge

transport for applied potentials above ~0.4 V (39).
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In our model, variables indexed by 7 pertain to the i-th pore,
with dimensionless radial and axial coordinates 7; € [0, #;] and
z; € [0,4,]. 4;/¢ < 1 is the long-pore requirement, where ¢
is the average pore length. The reservoir concentration ¢y of
either ionic species is taken as the concentration scale, thus the

Debye length takes the form Ap = /ekT/(2¢%cx) where €

is the electrolyte permittivity. The key question that we seek
to address is how pores of different sizes interact to collectively
encode an effective charging time scale in the network. To answer
this question, we derive a TL model from the PNP equations. A
brief presentation of the derivation is given in the main text along
with the physical interpretation of the results of the model and
the definitions of the variables. Additional details of steps of the
derivation of the governing equation and initial and boundary
conditions can be found in S/ Appendix.

In the Debye-Hiickel regime, the charge density p is
produced by gradients of the electrochemical potentials of the
ions according to

D — U
a_/’ _ _zgvz <M+ M ) [1a]
at AD 2e
and
—eV2p=p=clc; —c_), [1b]

where # is time, p4 are the electrochemical potentials of cation
and anion, respectively, ¢4 are their concentrations, and ¢ is
the electric potential. For dilute electrolytes, the electrochemical
potentials of the ions take the forms pt = 47 Inct £ egp. Due
to its role as the effective potential for charge transport, we define
the electrochemical potential of charge ¢ = (ut+ — p—)/(2e),
where the dimensions of ¢ are purposefully kept the same as
those of the electric potential ¢ to allow for direct comparisons
between the two when deriving effective Kirchhoff’s laws. As
the prefactor of the Laplacian of the effective electrochemical
potential, o = De /A%, can be interpreted as a conductivity. In
the low-applied-potential limit, ¢ takes the asymptotic form

)’2
p=¢+ ?Dp. [2]

The prefactor /1%) /€ can be interpreted as the required unit
conversion from charge density to electric potential, as seen from
Poisson’s equation Eq. 1b. The long-pore condition allows us
to invoke radial equilibrium (i.e., no radial flux) at each time to
impose the radial homogeneity of @, thus constraining the radial
dependencies of the charge density p; and the potential ¢; by the
relation

AZ
©i(2i ) = ¢i(ri, zir t) + ?Dpi(ri’ i t). [3]

Eq. 3 could also be understood as a Boltzmann distribution
in the radial direction, linearized for low potentials. The axial
charge flux averaged over a cross-section is proportional to
_aiz, ((j_;l + ep;/ /1%3), where bars represent the averages. The
derivatives of the averages of electric potential and charge density
describe the electromigrative and diffusive flux, respectively.

We perform an order-of-magnitude analysis to estimate the
contributions of these fluxes for pores of different sizes. In the
thin-double-layer limit, ; > Ap. Assuming that the electric
potential is of the order of the applied potential over formed
double layers and drops to zero in the electroneutral bulk, it
follows from Eq. 3 that the average charge density is given by
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Fig. 1. TL model for electric-double-layer charging in networks of long pores. (A) Schematic of an arbitrary porous electrode geometry representable by a
network of long pores, with cations in purple and anions in blue. The electroneutral reservoir (transparent ions) has a reference potential ¢ = 0, connected
through static diffusion layers (SDLs) (opaque ions outside the electrode) to the inlet pores. The perfectly conducting electrode is at a potential ¢p. The pores
can be cylinders or slits. The length, radius, and area of the i-th pore are, respectively, ¢;, aj, and A;. (B) EDL charging in a group of pores represented by a circuit
loop. The balance of diffusion and electromigration requires effective forms of Kirchhoff's laws written in terms of the electrochemical potential of charge
0 = ¢j + /I%p,-/e of each pore, which is continuous across junctions as seen from Eq. 5b. The impedance of each pore is written as Zj(a;) and the current at
zj = 0 by /j|p. Features that differ from de Levie's circuit in parts B and C are represented in light blue. (C) Transmission-line representation of EDL charging in
each pore of the network for arbitrary Debye lengths. The pore-size-dependent impedance is consistent with ref. 33 for an isolated pore. From Eq. 1a, each
resistor has the same conductivity De//% and from Eq. 4, each capacitor has a capacitance per unit volume Ds/(D,'/%).

ﬁi/(e/ﬂ%) ~ Ap¢p/a; < ¢p for thin double layers in charged
regions. Due to a low contrast to the uncharged regions, the
diffusive charge flux can therefore be neglected. The thin-double-
layer limit thus greatly simplifies the analysis and has been widely
explored in the literature (9, 10, 25, 26, 40). For an arbitrary
a;, however, one cannot further simplify the axial flux as both
diffusion and electromigration could be important.

The relative importance of electromigration and diffusion
could change across a junction, depending on the radii of the
connected pores. As an example, let us consider a simple scenario
with only two pores connected by a junction: one pore has a
radius in the thin-double-layer limit such that 4; > Ap, and
the other pore has a radius in the overlapping-double-layer limit
such that aj <K Ap. For the pore with a thin double layer, as the
charge density and the potential screening are restricted to the
double layer, the argument of the previous paragraph holds, such
that ¢; ~ Apdp/a; < ¢p and p;A%/e ~ Appp/a; K Pp.
However, for the pore with an overlapping double layer, as
charges are present throughout the cross-section and not fully
screened, electric potentials are of order ¢pp throughout the cross-
section, implying ¢; ~ ¢p and consequently /3]-/12D/ e~ ¢p. As
evident from the above discussion, the steady-state charge and
potential distributions in the pores will be different. Therefore,
the junction will present sharp changes in potential and charge
to adhere to the individual behavior of the pores (32-34).
The preceding discussion focuses on two pores, but in reality,
there could be a large number of connected pores and multiple
junctions, which could further complicate the analysis.

The complexity of the charge and electric potential profiles
across junctions is reduced by the usage of the electrochemical
potential of charge to represent charge transport. @; does not vary
along a cross-section—Eq. 3—or across a junction due to flux
matching across short connections compared to the pore lengths.
Physically, the continuity of the electrochemical potential of
charge across junctions is similar to the continuity of electric
potential across a node of an electric circuit (41), of temperature
across an interface (42), or of electrochemical potentials across a
liquid junction (43). In summary, while ¢; and p; could present
sharp changes across a junction, @; is continuous throughout the
region. As such, @; is a natural quantity to describe the transport
of a symmetric electrolyte inside a porous network.

PNAS 2024 Vol. 121 No. 22 e2401656121

The usage of ¢; simplifies the description of double-layer
charging in a porous network in two primary ways. First, the total
De 3(,01'

axial charge flux is given by 2 T and thus the conductivity

of all pores is equal. We underscore that this would not be
true if we had defined conductivity based on electric potential,
as the conductivity would need to be adjusted depending on
a;. Second, since @; is continuous across a junction, it can be
used in TL circuit representations without introducing circuit
elements to represent the junctions. On the other hand, ¢;
would be modeled as discontinuous since it can change across
junctions due to different extents of double-layer screening as
a function of 4;. Though ionic electrochemical potentials have
been used as the thermodynamic force driving electroosmotic
flow in confinement (44, 45), the continuity of the effective
electrochemical potential of charge in porous media had not
been leveraged in TL representations of double-layer charging.

Before presenting the junction boundary conditions, we briefly
describe the transport equations for each pore. Solving Eq. 1b
asymptotically for the dominant radial dependency and using
this result to average Eq. 1a over a cross-section with no-flux
boundary conditions,

dp; 9% @i
P_p Y [4]
atr 0z;

where D; = Daily(a;/Ap)/(2Apli(a;/Ap)) is the effective
charge diffusivity in the 7-th cylindrical pore and 7, is the modified
Bessel function of the first kind of order 7. For 2; > Ap, i.e., the
thin-double-layer regime, D; ~ Da,;/(24p) and the diffusion
coefficient is set by electromigration alone. For the overlapping
double layer regime, where 2; < Ap and D; ~ D, the diffusion
coefficient is set by diffusion alone. For moderate 4;/Ap, the
diffusion coefficient is set by a balance of electromigration and
diffusion.

We stress that D; is different in different pores. By controlling
the rate of charge transport (or equivalently the ratio of the
electrochemical potential of charge that is converted into average
charge density of a cross-section), D; sets the rate of local
charge accumulation, such that it is inversely proportional to
the pore capacitance per unit volume De/(D;A%); see Fig. 1C.
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The relationship described in Eq. 4 for arbitrary a; was first
recognized in our work for a single pore (33), where it was
reported in terms of the average electric potential.

Eq. 4isaTL equation, buta circuit interpretation also requires
that the boundary conditions be such that Kirchhoff’s laws hold.
Therefore, we now focus on the junction boundary conditions,
which are a crucial element of this work. We write current
conservation across each junction as

Z Aim; - Vigil, Gunciion) = 0> [5a]

i€junction

where A; is the cross-sectional area of a pore, 1, is the unit normal
vector to A; pointing away from the junction volume, and the
sum is effected over all the pores connected to the junction.

Physically, Eq. 5a is essentially Kirchhoff’s current law for
the identical conductivities of the electrochemical potentials of
charge of all pores. However, Eq. 5a only provides a single
equation relating the potentials @; across a junction. The next set
of equations states the continuity of the electrochemical potential
of charge across any junction:

[5b]

(4,j) € junction,

(pi|zi(junction) = (pj|zj(junction) ’

where i and j are any distinct pores connected to a junction,

while z;(junction) and z;(junction) are the axial coordinates
of the points where their centerlines intersect the junction; see

A B

0.8
inlet pore

0.6

0.4

| 4

0.2

electrochem. potential of charge

Fig. 2A. This boundary condition is equivalent to the continuity
of voltage across nodes of electrical circuits. We reiterate that, for
confined electrolytes, Eq. 5b cannot be written for the average
electric potentials since ¢; could experience a sharp change across
a junction. For a circuit represented in terms of @;, Eq. 5b
enables one to write that the drop of electrochemical potentials
of charge across a loop of pores is zero, i.c., Zieloop Ap, =0
where Ap;, = @i(z = £;) — @i(z; = 0), or a modified
Kirchhoff’s voltage law. As such, Eq. 5 represent a set of modified
Kirchhoffs laws in terms of ¢;, which enable us to close the
system of equations in an arbitrary network of pores; see Fig. 1
B and C. We highlight that ¢; provides the ability to capture
both electromigrative and diffusive fluxes in the system and
thus expands the ability to study ionic transport in confined
geometries.

We note that to solve Eq. 4 in each pore, in addition to
Eq. 5 as boundary conditions across junctions, we also need
initial conditions as well as the boundary conditions at the
SDL/pore interfaces and pore dead ends. These conditions are
straightforward and are omitted here for brevity; they are listed
in the Materials and Methods and systematically deduced in S/
Appendix.

Validation. To probe the accuracy of the proposed asymptotic
model, we perform direct numerical simulations (DNS) of the
full PNP equations for a simple geometry—the Y-junction shown
in Fig. 24. There, an inlet slit pore is connected on one end
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Fig. 2. Validation of the TL model for a Y-junction of slit pores. Dimensionless properties are defined by yi* = y;/h;, zF = z;/¢, t* = t/(¢2/D), éF = ¢i/ép,
pF= p,‘/(eqﬁD//%), and ¢f = (ut — u—)/(2edp). (A) Schematic of the Y-junction geometry of slit pores used for the comparison of the TL model with DNS. The
junction is shown in green. (B) Electrochemical potential of charge ¢ and (C) Centerline electric potential ¢} (yi* = 0) vs. axial positions z} along the pores and
the SDL for ten equally spaced times t* in the interval [0.008, 0.098], with x» = 2. TL analytical results (S/ Appendix) represented by solid lines and DNS results by
half-filled orbs for all plots in parts B-F. The use of effective Kirchhoff's laws for the junction gives accurate results in the pore domains up to a distance on the
order of the largest radius away from the intersection of the centerlines. Good matching with the DNS is observed for all the times examined. (D) Centerline
charge density vs. axial position along the pores and the SDL and (£) Dead-end pore charge density at z5 = 0.1, p3(z5 = 0.1) vs. transversal coordinate y3,
both for all dead-end pore relative sizes «, € {0.4,0.8, 2, 8}. The TL model presents good agreement with DNS even at z5 = 0.1, approximately 100 nm from
the transition region. For higher pore sizes, with larger junction widths, some disagreement may be found in the double layers close to the junction. (F) Charge
density at the centerline midpoint C of the dead-end pore, p3(y5 = 0,25 = 0.5,t*), vs. the half-angle between the centerlines of the dead-end pores, ¢, for four
equally spaced times t* € [0.01, 0.04]. The TL model predictions of continuity of ¢ and independence of all variables on 6 for long pores are supported by the
DNS.

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2401656121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2401656121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2401656121#supplementary-materials

Downloaded from https://www.pnas.org by Ankur Gupta on May 24, 2024 from IP address 122.161.51.69.

to the reservoir through an SDL and on the other end to two
identical dead-end slit pores. We note that slits were adopted
to facilitate the DNS; S7 Appendix shows that the only change
required in the model to capture this geometry is in the effective
diffusivity function, given by D(k;) = Dk;coth(k;) for slits,
where the relative size of the i-th pore, k;, is given in terms
of its half-width, 4;, by x; = h;/Ap. Fig. 2 B and C compare
the dimensionless electrochemical potential of charge ¢} (2}, *)
and centerline potential ¢} (y} = 0, 2}, #*) as predicted by the
TL model and the DNS. We note that there is an excellent
agreement for both the early and late dynamics. Fig. 2 B and
C demonstrate that while @} is continuous across the SDL/pore
interface as well as the junction, the centerline electric potential
has sharp changes; see also insets of zoom-ins of these results in
SI Appendix. Note that these sharp changes are also present at
steady-state since double layers are screened to different extents
according to the relative pore sizes.

We compare the charge profiles in Fig. 2 D—F. Fig. 2D shows
that the theory predicts the centerline charge density profile
adequately from x» = 0.4 to k, = 8, a range that extends
from the overlapping- to the thin-double-layer limit. We find
a very good agreement between the proposed model and the
DNS. To further understand the dependency of the matching
on the junction characteristics, we show the dead-end pore
charge profile vs. the transversal coordinate y5 in Fig. 2F at
2y = 0.1, dimensionally 100 nm away from the intersection of
centerlines of the inlet and dead-end pores. We note that there
is good agreement between the theoretical profiles and DNS for
moderately to highly overlapping double layers. For larger dead-
end pore sizes, the length scale of the influence of the junction
region on the charging profile becomes more pronounced, such
that a slight quantitative disagreement is noticed in the thin
double layers.

A key inference of the proposed model is the independence
of the charge and potential profiles on the angles between long
pores in a junction. In fact, in the assumed asymptotic regime of
slender pores, transport becomes one-dimensional and the split
of current at any junction becomes only a function of the two
properties: the number of connected pores and their radii, as seen
from Kirchhoffs current law—Eq. 5a. We test this hypothesis
by comparing the time evolution of the charge density at the
midpoint of the centerlines of both dead-end pores for multiple
angles between these centerlines. Fig. 2F shows that, as predicted
by the model, the charge profile is roughly independent of this
angle over time. This result is valid across a wide range of angles,
from 20 = 60° to 240°. It implies that our results should hold
for pore connections in three-dimensional networks, provided
the pores are slender.

The above analysis demonstrates that the proposed approach
based on effective Kirchhoff's laws in terms of ¢; is able to
recover all the crucial features of the double-layer charging in the
Y-junction. We reiterate that this approach applies to arbitrary
networks of long pores and does not require that the electric
double layers be thin or that the porous structure be periodic, and
it is computationally affordable. In fact, while the DNS of the Y-
shaped junction takes 4 million seconds for each second elapsed
in the simulation (Materials and Methods), a numerical solution
of the TL equations takes under a second, i.e., it is up to six orders
of magnitude faster than the DNS and thus is highly scalable.
In the remainder of the article, we focus on the insights of the
model on pore connectivity and spatial arrangement effects. To
this end, we undertake case studies of simple lattice geometries,
though the model can be applied to arbitrary three-dimensional
networks of slender pores.

PNAS 2024 Vol. 121 No. 22 e2401656121

Effects of the Spatial Arrangement of Pores. A limitation of
the existing theoretical frameworks for EDL charging in porous
media, such as porous-electrode theories (9, 10, 46) and stack-
(35) and laminate-electrode (47) theories, is the inability to
resolve microstructural features of arbitrary porous structures,
such as coordination numbers and distinct arrangements of pore
sizes. To illustrate the application of the current TL model to
the study of such effects, we first consider the porous network
shown in Fig. 34. Counterions are transported from the reservoir
into the pores through the SDLs. The network consists of a
4 x 5 array of nodes, representing electrode inlets, junctions, or
pore dead ends. These nodes may be connected by horizontal or
vertical pores, represented by light yellow rectangles. To focus on
the characterization of distinct configurations at the microscale,
we compare structures with the same number of pores, but in
different positions of the lattice. We fix 12 horizontal pores
connecting the first three columns of all four rows and let an
arbitrary number X of pores be moved. They may be placed in
any of the positions outlined by dashed lines in Fig. 34. The
rules of pore placement resemble a matchsticks puzzle, but the
question here is “What spatial arrangement of pores achieves the
lowest charging time scale?”

For each number of movable pores, X, there is at least one
configuration with a minimal charging time scale. These minimal
charging time scales (normalized by the distance between the
vertical endpoints of the lattice to allow for comparisons between
lattices of different lengths) are plotted as a function of the
number of movable pores in Fig. 3B, along with the optimal
configurations. We see that the strategy for achieving optimal
charging consists in placing the mobile pores close to the
reservoir, such that the length traversed by the ions to reach their
equilibrium positions is reduced. In fact, Fig. 3C shows that
moving vertical connections away from the reservoir does not
affect the early stage of the charging process, but it decelerates
the late-time dynamics. Perhaps surprisingly, placing the mobile
pores near the reservoir is the optimal strategy despite causing
early divisions of the current at the vertical connections. Another
available option would be to place the mobile pores horizontally
after the fixed pores, making an effectively longer capillary
bundle, but it also turns out to be suboptimal since the time scale
increases quadratically with pore length, but only linearly with
divisions of current; a detailed discussion of this phenomenon
can be found in S7 Appendix.

In Fig. 3 D and E, we show that we can also simulate larger and
more complex networks with the TL model; see also Movie S1.
They display square domains with 30 inlets and triangular lattices
where the slanted pores are added pseudorandomly. For each
location, the placement of a slanted pore is decided based on
the value of a pseudorandom number drawn from the uniform
distribution. If the random number is greater than a threshold,
the pore is added. Fig. 3£ shows the network when all 4,988
pores are present. In this case, the equations are solved in 6 min;
see Materials and Methods for our computational methodology.
For each probabilities of acceptance shown in Fig. 3F, the charge
evolution is exponential at long times, with a single time constant.
As in Fig. 3B, the inclusion of additional pores alters the time
scale of relaxation to steady-state.

Combined Effects of Polydispersity and Spatial Arrangement.
The analysis in the prior section highlights the sensitive de-
pendency of the net charging time scale on the arrangement
of the pores. However, the literature primarily uses the pore
size distribution to characterize the electrode structure (48, 49).
This invites the following question: given the polydispersity of

https://doi.org/10.1073/pnas.2401656121
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Fig. 3. Effects of spatial arrangement on the charging time scale of lattices. Times are normalized by a scale of diffusion lz(Ny —1)2/D based on the height of
the lattice, where Ny is the number of inlets. The network charge is normalized by its steady-state limit Q. (A) Schematic of the possible pore arrangements
on the 4 x 5 lattice. Pores are shown as light yellow rectangles; inlets, junctions, and dead ends are shown as red circles. Counterions are transported from
the reservoir into the pores. The 12 horizontal pores outlined by solid lines, which connect the first three columns of each row, are fixed. X pores are movable;
they may be placed in any of the positions outlined by the dashed rectangles. (B) Normalized minimal charging time scale of all possible configurations vs.
the number of movable pores. Optimal configurations are achieved by placing the pores as close to the reservoir as possible. (C) Normalized lattice charge vs.
normalized time for the configurations shown in the plot, with X = 3. The smaller distances traversed by ions in pores close to the reservoir optimize late-time
charging. Early-time charging is not influenced by these arrangements. (D and E) Triangular lattices with 30 inlets in a square domain, with slanted-pore
acceptance probabilities of 0.5 (D) and 1 (E). (F) Normalized lattice charge for different acceptance probabilities of the slanted pores. An increasing porosity

slows down the long-time exponential charging.

a pore network, how sensitive is its charging time scale to the
arrangement of the pores?

To address this question, we consider 8 x 8 fully connected
pore lattices with pore sizes sampled from log-normal distribu-
tions with different polydispersities and arrange them in three
different configurations. The first one, which we refer to as
converging, is shown in Fig. 4A4. In this case, the horizontal and
vertical pore sizes both decrease in the direction of charging. A
second one, “random,” is realized when the placement of pores is
determined randomly by the order in which their sizes are drawn.
The last one, diverging, shown in Fig. 4B, has increasing pore
sizes in the direction of charging. The top and bottom halves of
the lattices in Fig. 4 A and B show, respectively, the contours of
the electrochemical potential of charge and the electric potential
at a given time. As shown in the zoomed-in pores of Fig. 44, the
electrochemical potential of charge is predicted to be constant
across the junctions, whereas the electric potential changes across
junctions to reflect the contrast in steady-state profiles arising
from the different extents of electric field screening in pores of
unequal sizes. In the zoomed-in junction, the contours of the
narrowest pore have a lighter purple color, indicating the smaller
extent of double-layer screening.

Qualitatively, Fig. 4 A and B show that the profiles of the
converging and diverging arrangements of the pores are different,
even if the polydispersity is identical. Specifically, we observe that
the converging arrangement charges faster, as further shown in
Movies S2 and S3. In the converging scenario, the relative pore
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sizes k; are larger near the reservoir, which causes the effective
diffusion coefficients D; to be larger as they are dominated
by electromigration. In contrast, in the diverging scenario, the
narrow inlet pores are bottlenecks; their D; are smaller since
they are diffusion-dominated. Recent molecular dynamics results
have reported a similar strategy of a converging cross-section of
a nanometer-wide pore for ion transport optimization (50)—
though at this length scale, it is a result of the reduction of
steric hindrance of co-ion desorption, not addressed in this
work.

Quantitatively, the charging time scale and power density
(Egs. 12 and 13) for all the configurations are shown in
Fig. 4 C and D. We find that for higher polydispersities,
the difference between the three configurations becomes more
pronounced. For a moderate polydispersity of 0.17, the relative
pore sizes of the largest and smallest horizontal pores were
2.35 and 1.18, differing by a factor of two. In this case, the
charging time scales of the converging and diverging time scales
differ by a factor of 2.2. Even when compared to the random
lattice, the converging configuration showed a power density
1.3 times higher. Interestingly, higher polydispersity may be
even desirable for the converging scenario since inlet pores
significantly influence the charging time scale. However, such
a preference is only likely to hold for a low porosity system
since volume constraints, which are currently not accounted
for in the aforementioned results, will start to impact the
analysis.
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Fig. 4. Effects of polydispersity and configuration in the charging characteristics of lattices. (A and B) Contour plots of charge density in 8 x 8 fully connected
pore network lattices with different arrangements of a set of relative pore sizes drawn from a log-normal distribution with average relative pore size (x) = 2 and
polydispersity = (x)/sd(x) = 0.17. Pore sizes are (A) decreasing (“converging”) and (B) increasing (“diverging”) in the direction of charging. Insets of two junctions
of pores in equivalent positions are indicated by the light blue transparent boxes and dashed lines. (C) Lattice net charging time scale, i.e., the time required to
reach 70.18% of steady-state charge, and (D) lattice power density (Egs. 12 and 13) vs. polydispersity for converging, random, and diverging orders of pore sizes
in the direction of charging. The importance of the pore size arrangement increases with the polydispersity. For converging configurations, the largest pores are
near the reservoir. Their effective screening of the electric potential boosts electromigration, promoting faster charging. Since they hold the highest fractions
of charge and are charged first, the net charging time scale decreases. On the other hand, in a diverging configuration, the diffusion-dominated transport in
the inlet pores is a bottleneck. While it does not affect the capacitance, the power density decreases by a factor of 2.2 compared to the previous case.

Crucially, our results highlight that polydispersity alone is not
sufficient to understand the charging and discharging dynamics
of an electrode, and more consideration should be given to
parameters describing the connectivity and spatial arrangement
of pores. These particular effects and analyses are made possible
due to the network model developed in this manuscript and, as
such, had not been explored in prior literature.

Conclusions

We propose a model for the electric-double-layer charging in
arbitrary networks of long pores which demonstrates effective
Kirchhoff's laws based on the electrochemical potential of
charge, defined here as the valence-weighted average of the
ion electrochemical potentials ¢ = (u4 — p—)/(2¢). The
proposed methodology is able to recover the spatial and temporal
dependencies of charge density and electric potential obtained
from direct numerical simulations but with a speed that is up to
six orders of magnitude faster. We briefly discuss the implications
of the model on the effects of pore arrangement and polydispersity
and uncover the interplay of these factors on the dynamics of
electrode charging for idealized pore networks.

Our work has broad implications for the characterization of
fonic transport in porous media. For instance, it provides a
framework to explore the impact of pore network morphology
through connectivity, tortuosity, and polydispersity simultane-
ously to connect the microstructure to macroscopic properties,
which is a crucial knowledge gap in the literature (35, 51). One
of the promising avenues of our work is its impact on electrode
impedance spectroscopy (EIS) and mapping out effective circuits
for different porous networks. The electrochemical experiments
rely significantly on EIS but do not currently have a methodology
to map out the impact of connectivity, apart from the single-pore
TL models. As an example, one can take a 3D microstructure

PNAS 2024 Vol. 121 No. 22 e2401656121

of an electrode, convert it into a ball-stick model, and employ
our methodology to forecast Nyquist plots of impedance. Since
we do not apply restrictions on double-layer thickness, this can
provide insights into the charging dynamics that were not possible
previously.

The work also opens up opportunities for incorporating
the effects of the geometry of the pores and other interaction
potentials, which have been argued to be important under
confinement, or concentrated solutions, where ionic correlations
(52) and steric hindrance (17) may become important. While the
analysis above is limited to the classical treatment of linearized
Poisson—Boltzmann systems, our framework is general and the
idea of employing the equality of the electrochemical potential of
charge to evaluate electric potential jumps across a junction could
be extended to include other interaction parameters. Other effects
such as diffusivity contrast (34), mixtures of electrolytes (52, 53),
and surface reactions (40, 53, 54) are also possible to incorporate.

From a practical standpoint, the framework presents a rational
methodology to design 3D-printed electrodes (55), which are
gaining traction in the literature, especially for low-tortuosity
materials. The analysis of charging dynamics for a given 3D-
printed electrode structure could be carried out through this
approach and it could thus guide the design of electrodes.
Additionally, there is a growing interest in developing electrodes
with pseudocapacitive materials, where there is an interplay of
EDL charging in porous media and surface reactions, which
our methodology can handle by changing the ideally blocking
electrode condition to a reactive flux condition (6, 7, 53, 54).
Such a complete continuum model of pseudocapacitive charging
of porous media would be fundamental as a basis with which
to compare results of experiments and molecular dynamics
simulations (56), allowing studies to parse apart intrinsically
molecular effects from the predictions of a classical Debye—
Hiickel theory for reactive porous media.

https://doi.org/10.1073/pnas.2401656121
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Relevant theoretical challenges to potential extensions of the
current framework to wider use cases relate to its reliance
on small applied potentials. While this limit is experimentally
relevant to EIS, applied potentials above ~0.4 V may introduce
a significant spatial dependency of the conductivities of the
pores, hindering equivalent circuit representations. Furthermore,
applied potentials on that scale drive electroosmotic flow loops in
porous media (39), which can affect the EDL charging dynamics.
However, we hope the current work will motivate extensions
to moderate potentials based upon long-pore asymptotics of
the PNP equations and radial quasi-equilibrium for moderate
applied potentials supplemented by suitable junction boundary
conditions.

Materials and Methods

Direct Numerical Simulations. The nonlinear PNP equations for binary
symmetric electrolytes are (42)

et 2 e _
T D [V 7V (Civd))] =—V-Ng, [6a]

where N are the dimensional ionic fluxes, and
—eVip=e(cy —c ). (6b]

These equations were solved numerically by direct numerical simulations for
the Cartesian Y-junction geometry illustrated in Fig. 24. As illustrated in S/
Appendix, only the bottom half of the domain is represented in the simulations
due to top-down symmetry about the collinear centerlines of the SDL and the
inlet pore. The domain consists of the SDL, with a centerline of length £5 = 1
pm and a half-width of 76 nm, decreased by a circular fillet of radius 38 nm at
the connection to the inlet pore, of length £ = 1 pm and half-width 38 nm.
The end of the inlet pore is then connected to a dead-end pore of centerline
length €9 = 1 pum and variable half-width; see Fig. 2 D and E. This junction
has a fillet of an eighth of a circle of radius 38 nm at its right side. We describe
the domains of application of the initial and boundary conditions in the terms
indicated in S/ Appendix.

The finite-volume method (57, 58) was employed for the solution using the
open-source software OpenFOAM (59, 60). To this end, first Eq. 6b alone was run
under electroneutral conditions to set up the electric field in the SDL, producing
the initial conditions: ¢ a solution of

Vip =0 [7a]

and
(+ = (o [7b]

in the entire electrolyte domain. The boundary conditions are the same as in
the previous work of Gupta et al. for a single pore (32). They are summarized in
Table 1. The numerical solution of Eq. 7 for the initial conditions and Eq. 6 with
the boundary conditions in Table 1 for the time evolution was performed using
a 28-core workstation made available by the Princeton Research Computing
resources. It had a computational cost of 4 million seconds for each second
elapsed in the simulation.

Numerical Solution of the Transmission-Line Model. The dimensionless
form of the transmission-line equation, Eq. 4, is supplemented by the boundary
conditions in Eq. 5 and the initial condition of unscreened potential,

@iz, t=10) = ¢p (8]
forall pores, the inlet boundary conditions of current conservation,

doil  _ Asi
0zj |3=0  Ailsi

@i(zi=101), [9a]
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Table 1. Boundary conditions for the direct numerical
simulations
Boundary Equations
Reservoir-SDL interface ¢=0
C+ = Cx

Axis of symmetry of the SDL and the inlet pore
Outer bounds of the SDL n-Vgp=0
Dead ends of pores n-Ver =0
Outer surfaces of the blocking pores ¢ =¢p

nN-VNL=0

for pores connected to SDLs, where the additional subscript s denotes properties
of the SDL, and the no-flux boundary conditions

8 .
A P [9b]
82; 1=y,

forany dead ends of pores. More details about the initial and boundary conditions
are provided in S/ Appendix.

We solve this system of equations for a single junction with n dead-end pores
analytically in S/ Appendix. Though the analytical method is also applicable
to general networks, it becomes more cumbersome. Therefore, we solve the
equations for lattices numerically. The governing equations are discretized only
in space by second-order central finite differences. Labeling the points by the
superscript j, the m grid points in the ith pore arezf = (j — 1Az for
j=1,---,m, where the mesh width is Az; = ¢;/(m — 1). Furthermore, we

introduce fictitious points Z,o and zlm+1 defined by the same general formula
as zf which are constrained by the central finite difference expressions of the
boundary conditions, allowing the expression of these boundary conditions as
differential equations (61). The grid functions (p?, (p}, . (plf"+1 consist of
approximations of the electrochemical potential of charge at the grid points,

(p,(#, t) ~ (ﬂ,.(t). In terms of this grid function, second derivatives in the axial
coordinate are approximated in the inner points by

N

=t (Az)?

3

2
az,.

;o j=1em [10a]

and central differences are used for the first derivatives at the boundary points,
namely

2 0
99 ~ 0T [10b]
9 |z=0 247
and :
m+ m—1
] [N/ S f10d
82, zi=¢ 2AZ,‘

From current conservation and continuity of the effective electrochemical
potential, for any pore i connected to a junction,

dilj,-i ) ZkejunctionAké‘#/f/zk

el , [11]
dt Zkejunction LA/ D)

where j; is the point of the i-th pore that is connected to the junction. 6(p’kk is
the difference between the effective potential of the neighbor and the boundary

point. éqfkk = @} — @} ifthe j = Tis the point of pore k connected to the
junction, and 5¢/kk =] — (pkm_1 ifjy = m.

The system of ordinary differential equations resulting from the discretization
of Eq. 4 and the boundary conditions in Egs. 5 and 9 couples the discretized
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electrochemical potentials of charge of all pores. We solve it using ode15s,
MATLAB's stiff differential equation solver, and providing upfront the sparsity
pattern of the Jacobian matrix. A logarithmically spaced time span array in the
interval [1076, 2] x (N, — 1)2, where Ny is the number of inlet pores of the
lattice, is input to ode15s to enforce a small initial step. We choose m = 50
grid points in each pore to achieve grid-size independence of the total current
going into the networks (to within 1% of the current for m = 100) and retrieve
the correct total network charge, known from the steady-state charge density
p; — —1/Dj; see Sl Appendix.

Pore Network Plots and Properties. DNS in Fig. 2 are performed with the
parameters (oo = 1mMM, ¢pp = 10mV, £ = €1 = £p = €3 = Tpm,
D = 1.34 x 10~m? /s and kT /e = 25.7 mV. The inlet pore has a relative
size (half-width by Debye length) k1 = 4 and is connected to the SDL with a
Biot number Bi; = A1 /(A’]Zm) =2

All pore lattice network simulations performed in Figs. 3 and 4 and in
Sl Appendix used the transmission-line model in the limit Bi; — oo. Contour
plots of the electrochemical potential of charge and the electric potential are
respectively colored using viridis and plasma, perceptually uniform colormaps.
Thejunctions, notresolved by the model, are delineated by white dashed squares
and colored according to the arithmetic average of the properties on all sides.
Thisis done to representthat current flows through the junctions as well. The pore
sizes of the polydisperse lattices were drawn from pseudorandom samples of
log-normal distributions using MATLAB's lognrnd routine, which takes as inputs
the parameters  and o of the distribution, calculated based on the desired
mean and variance.

The net charging time scale znym is numerically calculated in Figs. 3B and
4 and SI Appendix as the time required for the network to reach 70.18% of its

steady-state charge divided by (N, — 1)2, where Ny is the number of nodes
of the lattice in the direction normal to charging (or the number of inlets,
such that square lattices where Ny = N are the reference geometry for the
horizontal diffusion-like charging). The division by the number of pores per
side squared factors out the length of lattice, making square lattices of different
numbers of pores per side comparable, and the percentage is chosen such that
Thm = 4/(x2D) for monodisperse capillary bundles (33), where D* is the
dimensionless common effective diffusivity of the pores. On the other hand,
the dimensionless extensive capacitance of a lattice is known based upon the
dimensionless steady-state charge density 7 — —1/D} ast — oo to be

c* = Z{V:1 (A /D) forequal pore lengths. I the lattice plots of Fig. 4 and
SI Appendix, where Ny = Ny = N, we normalize the extensive capacitance
by the total pore volume of the fully connected monodisperse lattice with the
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