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The mobility of externally driven phoretic propulsion of particles is evaluated by
simultaneously solving the solute conservation equation, interaction potential equation and
the modified Stokes equation. While accurate, this approach is cumbersome, especially
when the interaction potential decays slowly compared with the particle size. In contrast
to external phoresis, the motion of self-phoretic particles is typically estimated by relating
the translation and rotation velocities with the local slip velocity. While this approach
is convenient and thus widely used, it is only valid when the interaction decay length is
significantly smaller than the particle size. Here, by taking inspiration from Brady (J. Fluid
Mech., vol. 922, 2021, A10), which combines the benefits of two approaches, we reproduce
their unified mobility expressions with arbitrary interaction potentials and show that these
expressions can conveniently recover the well-known mobility relationships of external
electrophoresis and diffusiophoresis for arbitrary double-layer thickness. Additionally, we
show that for a spherical microswimmer, the derived expressions relax to the slip velocity
calculations in the limit of the thin interaction length scales. We also employ the derived
mobility expressions to calculate the velocities of an autophoretic Janus particle. We find
that there is significant dampening in the translation velocity even when the interaction
length is an order of magnitude larger than the particle size. Finally, we study the motion
of a catalytically self-propelled particle, while it also propels due to external concentration
gradients, and demonstrate how the two propulsion modes compete with each other.
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1. Introduction

Phoretic phenomena, i.e. the movement of particles in response to an external field
(Anderson 1989; Velegol et al. 2016; Khair 2022), is pivotal for a range of applications
such as separation of biomacromolecules (Heller 2001; Lee et al. 2012), purification of
nucleic acids from whole blood (Persat, Marshall & Santiago 2009), measurement of zeta
potential (Doane et al. 2012; Shin et al. 2017a), banding of colloidal particles (Abécassis
et al. 2008; Banerjee & Squires 2019; Raj, Shields & Gupta 2023b), membraneless
water filtration (Shin er al. 2017b) and understanding biological pattern formation
(Alessio & Gupta 2023), among others. In contrast, self-phoretic particles, also known
as microswimmers, respond to a self-generated field gradient (Paxton et al. 2004; Howse
et al. 2007; Ebbens & Howse 2010; Popescu, Uspal & Dietrich 2016; Ganguly, Alessio &
Gupta 2023). Microswimmers are extensively studied for applications in targeted drug
delivery (Xuan et al. 2014; Luo et al. 2018), environmental remediation (Gao et al.
2013; Wang et al. 2019), remote sensing of toxic chemicals (Esteban-Fernandez de Avila
et al. 2016), the autonomous motion of microbots (Zarei & Zarei 2018; Hu, Liu &
Sun 2022) and collective behaviour of active colloids (Palacci er al. 2013; Takatori &
Brady 2016; Illien, Golestanian & Sen 2017). The mobility expressions of phoretic and
self-phoretic processes are identical, with the key distinction being that the origin of
field gradients in the two processes is different. In phoretic processes, this field gradient
is externally imposed on colloidal particles, while in self-phoretic particles they are
locally generated by the particles themselves typically through surface reactions or other
mechanisms.

Studies on external electrophoretic motion have focused on the dependence of
electrophoretic mobility on the effect of particle shape (Yoon & Kim 1989; Solomentsev
& Anderson 1994), surface heterogeneity (Fair & Anderson 1992; Velegol, Anderson
& Garoff 1996), finite double-layer thickness (Henry 1931; O’Brien & White 1978)
and, more recently, strong deformation of double-layers (Khair 2018, 2022) and charge
reversal (Kubickovd et al. 2012; Gupta et al. 2020a). Similarly, researchers have predicted
the dependence of diffusiophoretic mobility (Anderson 1989; Brady 2011) on finite
double-layer thickness (Prieve et al. 1984; Keh & Wei 2000), surface chemistry (Gupta,
Shim & Stone 20205) and multiple electrolytes (Gupta, Rallabandi & Stone 2019; Alessio
et al. 2021). Studies on self-phoretic systems (Ramaswamy 2010; Moran & Posner
2017) focus on the impact of particle shape (Shklyaev, Brady & Coérdova-Figueroa 2014;
Nourhani & Lammert 2016; Poehnl, Popescu & Uspal 2020; Daddi-Moussa-Ider et al.
2021; Ganguly & Gupta 2023; Lee et al. 2023; Raj et al. 2023a), active patch shape
(Lisicki, Reigh & Lauga 2018; Lee et al. 2021), surface interaction (Sharifi-Mood, Koplik
& Maldarelli 2013) and finite Péclet number (Michelin & Lauga 2014).

Broadly speaking, there are two approaches for predicting the mobilities described
above. The first approach solves the coupled solute conservation equations and the
modified Stokes equation (Henry 1931;0'Brien & White 1978; Prieve er al. 1984; Prieve
& Roman 1987; Anderson 1989; Keh & Wei 2000; Sharifi-Mood et al. 2013; Khair
2018, 2022; Gupta et al. 2019) and employs a force-free and torque-free condition to
arrive at the translation velocity, U, and rotational velocity, §2, of the particle. Thus,
the above approach requires resolving the interaction potential simultaneously with the
hydrodynamic equations. While exact and powerful, the methodology described above is
cumbersome for analytical results when the particle—fluid interaction potential decays at
much larger length scales than the particle size. Further, the solution strategy needs to
be revised whenever the interaction potential changes, making it less convenient to be
integrated into other analyses.
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The second approach employs the reciprocal theorem in the thin interaction length
limit (Stone & Samuel 1996; Brady 2011; Michelin & Lauga 2014; Lisicki et al. 2018;
Masoud & Stone 2019; Poehnl et al. 2020; Ganguly & Gupta 2023; Raj et al. 2023a).
In this limit, it is assumed that there exists a slip velocity, ug, at the interface of the
inner region where the interaction potential is non-zero, and the outer region where the
interaction potential is zero. This allows one to treat the outer problem as a classical
Stokes flow problem with a slip boundary condition. Consequently, U and $2 can be
represented as surface integrals of appropriate functions of u;. This approach based on
the reciprocal theorem was first utilized by Stone & Samuel (1996) to study the impact
of distortions in spherical microswimmers. This methodology is particularly powerful
because, unlike the first method, computing U and §2 is relatively straightforward and
agnostic to the mechanistic origin of u;. However, this approach is valid only when the
interaction potential length is significantly smaller than the particle size, restricting its
applicability. Additionally, it requires the knowledge of u; a priori, and most studies have
to rely on a lumped mobility parameter to estimate the value of u; (Michelin & Lauga
2014; Lisicki et al. 2018; Poehnl & Uspal 2021; Ganguly & Gupta 2023; Raj et al. 2023a).

In this work, we seek to unify the benefits realized through the two approaches by
employing the results of Brady (2021) and demonstrating how it can reconcile a large
volume of mobility results for externally driven and self-phoretic propulsion of particles,
and using these results for additional analyses. This approach is similar to the prior
literature on the inertial correction to Stokes flow (Brenner & Cox 1963; Hinch 1991;
Leal 2007), and swimming through non-Newtonian fluids (Datt et al. 2015; Elfring &
Goyal 2016; Datt et al. 2017), where the first-order corrections include a body force term
from the leading order and reciprocal theorem is employed to find the resulting motion.
In § 2, we obtain a general mobility expression for an arbitrary particle shape, subjected
to an osmophoretic (combination of osmotic and phoretic force) body force b, identical to
the results in Brady (2021). Subsequently, we take our expression to the thin interaction
length scale limit and retrieve the mobility expressions in Stone & Samuel (1996), see
§ 3. In § 3, we also retrieve the expression for the electrophoretic mobility of translation
of a charged spherical particle in an external electric field, obtained by Henry (1931).
Additionally, we derive the diffusiophoretic mobility of a charged spherical particle in an
externally imposed solute gradient at finite interaction lengths, as first obtained by Keh &
Wei (2000). Finally in § 4, we apply our result to study the autophoretic motion of spherical
microparticles with catalytic caps. We study how translation velocity depends on the cap
size, the surface interaction potential and the interaction length relative to particle size.
Since our methodology works for both externally driven and self-propelling particles,
we also study particle propulsion by both modes simultaneously, see § 5. These model
problems demonstrate the wide applicability of the expressions derived by Brady (2021)
and reproduced in this manuscript. Finally, in § 6 we summarize the key findings of our
work and outline future ideas.

2. Derivation of the unified mobility expression

In this section, we derive the translation velocity (U) and rotational velocity (£2) of an
arbitrary particle with surface S, immersed in a fluid of volume V due to an arbitrary
osmophoretic body force b, see figure 1(a). The particle surface is defined via the vector
xgs relative to the centre of mass of the particle. We define e, as the outward unit normal
to the particle surface, r is the distance from the centre of mass of the particle and 7 is the
position vector defined from the centre of mass of the particle. The fluid velocity around
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(a) (b)
Fluid domain: V, S,

u;= MV, C

Proposed approach Slip velocity approach

Figure 1. Two approaches to finding the velocity of a particle of characteristic length scale a by resolving the
fluid velocity at the particle surface. The particle surface is defined by a vector x; relative to the centre of
mass (COM) of the particle. (@) Obtain the fluid velocity near the particle surface by resolving the modified
Stokes equation with an arbitrary body force, b. The body force, b, depends on charge, p, salt, s, and interaction
potential, ¢. (b) When the interaction length is small 1/a < 1, the velocity near the fluid surface, at the outer
edge of the interaction layer, uy, is taken to be the velocity at the particle surface. The slip velocity, u;, depends
on the lumped mobility, M, which depends on the interaction between the surface and solute, and the solute
concentration at the vicinity of the surface, c.

the particle can be resolved through the modified Stokes equation, defined as
V.o+b=0, 2.1)

where o is the hydrodynamic stress tensor. The velocity field u is assumed to decay to zero
in the far-field, u|s., — 0. At the particle surface, the fluid obeys a no-slip, rigid body
boundary condition, uls, = U + £ x xs. To obtain U and $2 using Lorentz reciprocal
theorem (Masoud & Stone 2019), we define an auxiliary Stokes flow (f] , fl) while
preserving particle geometry with the same no-slip rigid surface, #|s, = U+ 2 x xs,
and far-field decay, #|s,, — 0, boundary conditions.

Using the Lorentz reciprocal theorem, we can relate the phoretic problem (U,$2,b) and

the auxiliary problem (U,£2.b) to be

/e,-a-i:dS—/e,-&-udS:/a-de—fu-i;dv. (2.2)
S, N \% \%

p p

Substituting in the expressions of the fluid velocities, u|s, and #|s,,, at the particle surface
we can simplify (2.2). Additionally, we assume that there is no body force in the auxiliary

problem, b = 0. Thus, we can rewrite (2.2) to be

/e,.o-(i/+f2xxs)d5—/ e,-&-(U—l—SZxxS)dS:/ft-de. (2.3)
S, S, %

Since the inertia of the particle is negligible, for both the phoresis and the auxiliary
problem, the particle is force-free and torque-free. For the phoretic propulsion, the
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5=—€Z<ﬁ01v¢510+6511> l;=—s[f(ﬁ0ﬁq§10+7s~“> +
Zz<ﬁ016¢11 +p1 Vo + v512)}
(a) U (b) U
Zeta potential: £ Zeta potential: £

_/

T T

E, = €Epe, Vsoo = 2ecqe,

Figure 2. Methodology to validate proposed mobility expressions for a charged particle with a zeta
potential (¢) in the Debye—Hiickel limit for (a) electrophoresis with an external field E, = €Epe; and
(b) diffusiophoresis with externally imposed solute gradient Vs, = 2€cpe;. The expressions of dimensionless
osmophoretic force b are provided. Substituting the appropriate b in (2.12) enables us to recover mobility
relationships that otherwise require cumbersome calculations.

hydrodynamic force and torque is balanced by the osmophoretic force and torque, or

/ er-adS—/de:O, 2.4)
Sp 14

hydrodynamic osmophoretic
fxsxe,-odS—/rxde=0, (2.5
Sp 14

hydrodynamic osmophoretic

where the negative sign in front of the osmophoretic term appears because the
osmophoretic force on the particle is equal in magnitude to the osmophoretic force on
the fluid but opposite in sign (Brady 2011). For the auxiliary system, we balance the
hydrodynamic and external forces and torques, or

/ 6-edS + F,, =0, (2.6)
S S——

p—,_z external

hydrodynamic

/ X, X6 -e.dS + Loy, =0, 2.7)
SP

external

hydrodynamic

where F exy and iext are the external force and torque required to move the particle in the
auxiliary problem, which is to be determined. We note that (2.4)—(2.5) are different from
(2.6)—(2.7) since the phoretic propulsion is induced by b whereas in the auxiliary problem

motion is caused by F oxt and I:ex,.
To calculate U and 2 for a given b from (2.3)—(2.7), we need to express, Feys, Loy
and & in the auxiliary problem as functions of U and 2. To do so, we use a resistance
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formulation to write

Ijvext _ RFU RFQ l,\] , (2.8)
L.y Ry R 2
where the resistance matrices Rry, Rrg, Rry and Ry relate the driving force (IA7 oxt) and
torque (iex,) to the translational (0 ) and rotational velocity (fl). Further, we describe & as

=Dr- U—|—DR 2 xr, (2.9)

where Dr is the translation disturbance tensor and Dg is the rotation disturbance
tensor. Equations (2.8)—(2.9) combined with (2.6)—(2.7) provide necessary information

to simplify (2.3) as a function of U and £2.
Next, we choose convenient values of U and £ to 51mp11fy (2.3). Specifically, we use
six auxiliary flow problems pure translation (.Q —0and U = Uper, Uger, Upez) and

pure rotation (U —0and 2 = Up/aeyr, Ug/aer, Uy/ae3) with Uy being the characteristic
velocity scale and a being the characteristic particle length, to obtain

/(DT—I)-de
Rry Rrgo . U _ \4 (210)
Ry Rre 2| ’ '
/(DR—I)-rdeV
\%

By inverting the resistance tensor, we obtain a mobility formulation that resolves U and
£2 in terms of volume integrals of b,

/ (D —1I)-bdV

U Myr My 14
= . 2.11
(DR —I) -rxbdV
v

where the matrices Myr, Mo F, Myr, and Mg are the corresponding mobility tensors. For
an in-depth mathematical analysis and mechanistic discussion regarding the various forms
of b, we redirect the reader to Brady (2021).

Physically, (2.11) is insightful as it helps parse apart the difference between the phoretic
problem and the auxiliary problem. The rightmost term is the effective force and torque
on the particle due to phoretic interactions and has two contributions: (i) the term
associated with the identity tensor (/) is the osmophoretic force and torque acting on
the particle, and (ii) the term associated with the disturbance tensors (D7, Dg) is the
hydrodynamic correction to the distribution of body forces around the particle. This
correction arises because the phoretic interactions near the particle surface lead to an
additional compensating fluid motion (Brady 2011) causing a long-range hydrodynamic
disturbance. This effect is not captured in the definition of the hydrodynamic mobility
tensor and thus manifests separately. If the terms associated with disturbance tensors were
not present, (2.11) is essentially identical to (2.8) with osmophoretic force on the particle
as the external force.

We note that (2.11) takes an explicit form only when b is independent of U and $2 and is
thus most convenient for systems with small Péclet number (Pe < 1), where Pe = Upa/D,
and D is the diffusivity of the solute. The distinction from prior work, such as Stone &
Samuel (1996), Michelin & Lauga (2014), Lisicki et al. (2018), Poehnl et al. (2020), Poehnl
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& Uspal (2021) and Ganguly & Gupta (2023), that utilize Lorentz reciprocal theorem is
that they invoke the thin interaction length limit and apply the analysis in the outer region
where b = 0, see figure 1(b). Consequently, they do not arrive at (2.11) but rather represent
U and 2 in terms of a slip velocity at the particle surface u;.

We acknowledge that similar results have been presented in Khair (2018) and Brady
(2021). However, in Khair (2018), b only focused on the electrophoretic contributions.
In contrast, Brady (2021) argued that b should include both osmotic and phoretic
contributions, and we thus refer to b as an osmophoretic body force. Care should be taken
that the osmotic contribution only includes an excess osmotic effect since a particle cannot
move without a phoretic interaction; interested readers are referred to Brady (2021). The
phoretic contribution arises from the interaction of the particle with a macroscopically
established potential field. The nature of this field depends on the specific model problem
under consideration. We refer the readers to Brady (2021) for an in-depth mathematical
analysis and a general discussion on the mechanistic origin of b. Building on the work by
Brady (2021), we systematically illustrate how both phoretic and osmotic contributions to
the body force term are required to reconcile a broad range of results in the literature
and arrive at universal mobility relationships. Additionally, through this framework,
we quantify the impact of interaction length on microswimmer motion in electrolytic
solutions, elaborating on the suggestion established in Brady (2021).

For a spherical particle (see Duprat & Stone (2016) for derivation), the relevant
hydrodynamic parameters are D7 = 3a/4r(l + ere;) + a / 4r3(1 — 3ere,),
Dr = (@®/r)I, Myr = (1/6mpa)l, My = 0, Mor = 0 and Mop = (1/8mtuwa’)l; where
a is the radius of the sphere, i is the fluid viscosity, r is the radial distance from the centre
of the sphere and e, is the radial vector pointing away from the centre. Substituting, these
definitions of the hydrodynamic disturbance and mobility in (2.11) we obtain

U= — / SRS PRI ECORRIN VA P 2.12)
~ 6mua Jy L \2r 27 LT\ a3 I ’ .

1 a
2 = / r\—=—1)e xbdV, (2.13)
8rnuad Jy \ 3

where the body force is decomposed into b = b, + b. The perpendicular subscript
denotes the component normal to the sphere and the parallel subscript denotes the
component parallel to the surface. Equations (2.12)—(2.13) were also reported in the prior
literature for phoretic systems (Brady 2021) as well as for different physical systems
(Brenner & Cox 1963; Hinch 1991; Leal 2007; Datt et al. 2015; Elfring & Goyal 2016; Datt
et al. 2017). We extensively validate this result in the next section and show it relaxes to
the various well-known expressions present in the literature, for both microswimmers and
externally driven particles. Further, we employ this expression to study a microswimmer
in the arbitrary interaction layer limit and a microswimmer driven by an external gradient
in addition to its self-propelling mode of swimming.

3. Validation
3.1. Simplification at the limit of the thin interaction length scale
In this subsection, we aim to simplify (2.12)—(2.13) in the limit of the thin interaction
length scale for a spherical microswimmer and recover the equations discussed in Stone &
Samuel (1996).
We proceed to simplify (2.12)—(2.13) at the thin interaction length limit, 1/a < 1, where
A is the interaction length scale. To this end, we define a stretched radial coordinate
994 A2-7
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p = (r — a)/A. Next, we expand and rewrite (2.12)—(2.13) in orders of A/a. Subsequently,
the leading-order contribution to the translation and rotation velocities are obtained to be

U=- b dv, 3.1
4Twaz,/vp I (3.1)
31
2 =- / pe- x b dv. (3.2)
8ruad Jy

Since the volume of interest at the thin interaction limit is a spherical shell of thickness
A surrounding the particle, we can rewrite the differential volume element to be
dV = Adp dS and the volume integrals as

/12 00
U=- / / pbydp | dS, (3.3)
4npa® Js, Lo
3/12 00
2 =——— f e x / pb)dp | dS. 34
snuad Js, 0
In the thin interaction limit, the shear force is balanced by the parallel body force, or
p 0%uy
22 +b,=0. 3.5

We note that in (3.5), since b is the osmophoretic force, b also includes the excess osmotic
term. Multiplying (3.5) by p and employing integration by parts, we arrive at

oo
M e M
/0 pbidp = “Fuly” = s, (3.6)

where u; = u| oo — u),0, is the phoretic slip velocity. Substituting (3.6) into (3.3)—(3.4),
we get the widely used result derived in Stone & Samuel (1996),

1
U=- . dS, 3.7
4'}'[612 /;‘P ué ( )
3
2 =- / e X ugdS, 3.8)
8ma’ Sp

where the integral is over the surface of the sphere.

3.2. Electrophoretic mobility at arbitrary interaction length scales

To further validate (2.12)—(2.13) by the determination of the electrophoretic mobility of
a sphere in the Debye—Hiickel limit for an arbitrary Debye length (Henry 1931; Teubner
1982; Kim & Karrila 2013), we assume a homogeneous sphere of radius, a, immersed in a
binary monovalent electrolytic solution such that the electrical permittivity of the solution
is denoted as ¢. Our objective is to analyse the motion of the particle with a given surface
zeta potential driven by an external electric field. First, we assume that the surface zeta
potential, ¢, falls in the Debye—Hiickel limit, e /kpT < 1, where e is the charge of an
electron, kp is the Boltzmann constant and 7 is the absolute temperature. We also assume
an electric field disturbance of E, far away from the particle such that E, = €Epe;,
where € is a small parameter and physically indicates that the length scale of the far-field
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potential decay is much larger than the particle size, see figure 2(a). Note that ¢ is the
electrical permittivity and should not be confused with €, which is a small parameter
in our analysis. Finally, the total osmophoretic body force (b) driving the particle arises
through a combination of the electrostatic interaction and net excess osmotic pressure in
the fluid, or

b=—e(cy —c_)Vp —kgTV (cy +c_), (3.9)

where c4 and c_ are the concentrations of the positive and negative electrolytic species,
respectively, and ¢ is the electric potential. As a convenient choice, we can represent
the solute concentrations in terms of net charge, p = e(c4+ — ¢—), and salt, s = ¢4 + ¢,
and rewrite the body force to be b = —pV¢ — kpTVs. It should be noted that care
should be exercised in choosing the appropriate expression for b. Specifically, the osmotic
contribution —kpTV s refers to the excess osmotic contribution arising out of an interaction
that locally drives the solute out of equilibrium. This effectively implies that in the absence
of such interactions, an external salt gradient on its own cannot induce net particle motion,
as demonstrated in Brady (2021). The equivalence of (2.12) and the results of Brady
(2021) can be seen by defining an additional surface stress contribution, o, = —kgT5l,
as per (2.17) in Brady (2021), due to the excess osmotic pressure. The divergence of o,
leads to the second term in (3.9), —kpTVs. We refer the readers to our discussion on the
mechanistic origin of b in § 2 and redirect them to Brady (2021) for more details.

To appropriately derive the particle motion, we are required to obtain the solutions to
p, s and ¢ for a given E, and ¢. As mentioned earlier, we assume that the species are
monovalent, z1 = %1 and have diffusivities D, the species balance is given by the steady
Nernst—Planck equations,

u-Ve, =D, [v2c+ 4 kBiTV : (c+V¢>)] , (3.10)

_ 2 _ % y.
u-Ve_ =D_ [v -~ 7 (cv¢)] (3.11)

For Pe = aU/D < 1 (U is the velocity scale for the particle, D = 2D,D_/(D4+ + D_)
is the ambipolar diffusivity), we ignore the convective effects. Consequently, (3.10) and
(3.11) can be rewritten in terms of p and s as

1
V2s+—V - (pVe) =0, (3.12)
ksT
62
VZp 4+ —V . (sVep) =0. (3.13)
ksT

Finally, the system of equations is closed by using Poisson’s equation to resolve the electric
potential,

— V2% = p. (3.14)

In the far-field, at r — oo, the potential gradient is the externally imposed electric field
and the fluid is electroneutral, or

—Vo|,_, o = €Epe;. (3.15)

Plrsoe = 0. (3.16)

Moreover, in the far-field c; = c_— = cg, where c is a characteristic solute concentration,
we can write s to follow

S|r—o00 = 2¢0. (3.17)
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At the particle surface, at r = a, the electrostatic potential is equal to the zeta potential at
the surface, or

Plr=a =¢. (3.18)
Additionally, there is no salt or charge flux normal to the particle surface,
e - [Vs n LV¢] —0, (3.19)
kT r—a
e+ [V,o + £V¢i| =0. (3.20)
keT 1=,

Equations (3.12)—(3.20) are non-dimensionalized using the following appropriate scales:

Veav, 2=av? =0 - -5 -l G2
kgT eco co a

Thus, the non-dimensional Poisson—Nernst—Planck equations are given as

V4 V. (5%) —0, (3.22)
V254 V. (WJ)) -0, (3.23)
~ o~ P B
\V/ ¢:_7:0’ (3.24)

where k = (2a%e%cq / ekgT)'/? is the dimensionless inverse Debye length. In the far-field,
thus

—Vé L= eEge;, (3.25)
Olisoo =0, (3.26)
Sl oo = 2, (3.27)

where EO = aeEy/(kpT) is the non-dimensional electric-field. Similarly, at the particle
surface, the non-dimensional boundary conditions read

e, - [63 n ,3%3}_1 —0, (3.28)

e - [W + EWSLI —0, (3.29)
~ _ i oz

Ak (3.30)

As we discuss later, it is more appropriate to write (3.30) as a constant charge boundary
condition, which renders the gradient of the potential to be constant instead. However, for
the weak-field, these surface boundary conditions are equivalent and hence we retain the
constant potential boundary condition for simplicity.

For the remainder of the calculation until (3.67), we will drop the tilde superscript
in (3.22)—(3.30) for convenience and restore the dimensions once the non-dimensional
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calculations are complete. We expand ¢, p and s in the small parameters ¢ and € as

¢ = ¢oo + Cdor + € (P10 + P11) , (3.31)
P = poo + ¢Lpo1 + € (p1o + ¢p11) s (3.32)
s =500 + ¢So1 + € (510 + £511) (3.33)

The asymptotic expansions in (3.31)—(3.33) are substituted into (3.22)—(3.30), and the
corresponding equations are solved at each asymptotic order.

Order O(1): an uncharged particle without any electric field. The governing equations
and boundary conditions are obtained to be

V2500 + V + (poo Vo) = 0, (3.34)
V2000 + V - (s00V o) = 0, (3.35)

2
Voo = —%poo, (3.36)
er - [Vsoo + pooVool =0, atr=1, (3.37)
e+ [Vpoo +sooVeool =0, atr=1, (3.38)
¢ =0, atr=1, (3.39)
so0 =2, atr — oo, (3.40)
poo =0, atr— oo, (3.41)
Vgoo =0, atr— oo. (3.42)

The system of (3.34)—(3.40) have a trivial solution, i.e. ¢gp =0, pgo = 0, sgo = 2.
Physically, the solution simply implies that the ion concentration is uniform because the
particle is uncharged and there is no electric field.

Order O(e): perturbation due to the electric field for an uncharged particle. The
governing equations for the salt and charge dynamics, and electrostatic potential after
substituting the expressions of pgo, so0, and ¢gp are given as

V2510 =0, (3.43)
V210 +2V2¢10 = 0, (3.44)
2

Vi = —%mo- (3.45)

The corresponding reduced boundary conditions when r — oo are
s10 =0, (3.46)
p10 =0, (3.47)
—Vo¢10 = Eoe,, (3.48)

and when r = 1, they read

e - Vsio=0, (3.49)
er - [Vpio +2Veip]l =0. (3.50)
e - Vpio=0, (3.51)

where the derivative of the potential is set to be zero to ensure that there is no excess charge
on the surface, see discussion below (3.30). Mathematically, at O(¢), the charge on the
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particle surface is zero. Through Gauss’s law, the no surface charge boundary condition
necessitates that e, - Vg9 = 0. Hence, (3.50) implies that e, - Vpj9 = O at the particle
surface. Along with (3.44) and (3.47), we obtain pjg = 0. Similarly, (3.43), (3.46) and
(3.49) reveal s19 = 0.

Since p10 =0, ¢1p is governed by the Laplace equation, and the solution with
appropriate boundary conditions reads (Griffiths 2005)

1
¢10(r,0) = —Eor {1 + —— ) cos6. (3.52)
2r3

Physically, this order implies that the perturbed potential and corresponding electric field
lines get modified due to the geometry of the particle but there is no charge and salt
accumulation.

Order O(¢): perturbation of a charged particle without an external electric field. The
equations governing the charge, salt and potential at O(¢) are analogous to (3.43)—(3.45)
at O(e) but have different boundary conditions. The governing equations are

V250 = 0, (3.53)

V2 po1 4+ 2V2¢o1 = 0, (3.54)
2 K2

Vo = — POl (3.55)

As r — oo the net charge, salt and electric potential gradient all decay to zero, or

so1 =0, (3.56)
po1 =0, (3.57)
Voo = 0. (3.58)

At the particle surface, r = 1, we obtain

e - Vsgr =0, (3.59)
e -[Vpor +2Vgo] =0, (3.60)
oo = 1. (3.61)

Equations (3.53), (3.56) and (3.59) yield so; = 0. The remainder of the equations reveal

1
bo1(r) = —exp(—« (r — 1)), (3.62)
2
por(r) = — (;) exp(—« (r — 1)). (3.63)

Physically, the results indicate the distribution of potential and charge arising due to a
charged particle.

Order O(e¢): perturbation of both imposed electric field and surface zeta potential. To
fully resolve the body force to the order of O(e{), we have to obtain syj, this can be
observed by the expansion of (3.9) and collecting the respective orders. The governing
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equations and boundary conditions for salt, 511, are given by

V2511 4+ V - (po1 Véio) = 0, (3.64)
s11 —~> 0, atr — oo, (3.65)
e+ [Vsii+po1Vo1ol =0 atr=1. (3.66)

Substituting in the expression of pg; from (3.63) and ¢10 from (3.52) we can solve for
s11(r, 8). The salt dynamics are in the form of s;; = Eo f(r) cos @ where f(r) is

1 (k 5 10 2 K2 _ 2
fr)= G\e 3 <~ ﬁ) + ?exp (k) Ei(—«r) + Wexp(—/c(r - 1))
K
) exp(—k(r—1)) + 3 exp(—«(r— 1))
— l exp(—k(r—1)) + 3 exp(—«(r—1)), (3.67)
3r Kr

where Ei() is the elliptic integral.

Reintroducing dimensions: at this stage, we restore the dimensions and reintroduce
the tilde for dimensionless variables. The total osmophoretic body force b is made
dimensionless by writing b = (kpTco/ a)b = (e(kgT)*k?/ 2¢%a3)b. The first relevant order
of b for electrophoresis is € because it is the order at which a charged particle is being
driven by an electric field. To this end, we write

b=—el [,50065511 + Voo + o1 Voo + poVeor + 6511] - (3.68)
Based on the solutions at different orders, it is straightforward to see that b reduces to
b=—t [V + Vi . (3.69)

We note that the body force term of 51 integrates out to zero in the calculation of U and
82 for electrophoresis and is generally not included in prior analyses. However, we retain
this term for consistency as it does become crucial for diffusiophoretic phenomena, as we
detail in § 3.3. ~

After substituting the values of g1, ¢19 and 511, the resultant equation in dimensional
form is

5 ,
p— _EEEOTKT {[% exp(—k (F — 1)) (1 - %) cosf + dj;(f) 0089} er

242 7

2 . 1 AG)
— |:: exp(—« (@ —1)) (1 + T3> sinf + —— sm9:| } . (3.70)
r 2r

7
Equation (3.70) is substituted into (2.12) to obtain the translational velocity to be
U=ME, (3.71)

where the mobility M after restoring dimensions is

00 /c(l 1)
M= & [(1 +lc)+(12—/c2)/ dti|, (3.72)

which is the seminal result of Henry (1931) for arbitrary double layer thickness, and has
also been reported by Teubner (1982) and Kim & Karrila (2013). For a homogeneous
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sphere, our analysis reveals £2 = 0, as expected. We emphasize that it is straightforward to
extend the calculations to heterogeneous spheres (Velegol et al. 1996; Teubner 1982) and
obtain results for electrorotation in arbitrary double-layer thicknesses, which otherwise
requires considerable effort.

3.3. Electrolytic diffusiophoretic mobility at arbitrary interaction length scales

Next, we focus on the process of electrolytic diffusiophoresis in the Debye—Hiickel
limit and for arbitrary double-layer thickness. We assume that the external concentration
gradient of a binary monovalent electrolyte is given as Vo, = 2€ V¢, where € is a small
parameter, much like in § 3.2, see figure 2(b). Here, b is required to be expanded to an
additional higher order of €Z2. The term of order O(eZ) is identical to electrophoresis
and represents the electrophoretic component of the diffusiophoretic mobility. The second
term of order O(eZ2) denotes the chemiphoretic component. We employ the expression
of b, derived in this subsection, to (2.12)—(2.13). This allows us to retrieve the expression
of the translation velocity of a charged spherical particle in an unbounded solution of a
symmetrically charged electrolyte for an arbitrary double-layer thickness, which otherwise
requires considerable efforts, see Keh & Wei (2000).

We acknowledge the electrokinetic equations used to describe such diffusiophoretic
systems are analogous to our treatment of the motion of electrophoretically propelled
particles in § 3.2. However, the key mechanistic difference is the presence of an external
gradient of solute Vs, instead of an imposed electric field E; this results in a
change of boundary conditions and subsequently the solutions at different asymptotic
orders. To preserve the pedagogical nature of our manuscript, we will rederive the
electrophoretic contribution and subsequently solve for the chemiphoretic contribution to
the osmophoretic body force term and attempt to emphasize key physical and mathematical
differences between the derivations laid out in §§ 3.2 and 3.3.

Consider a colloidal particle with a surface zeta potential, ¢, in an external solute
gradient of a symmetric binary electrolyte. We assume that the electrolytes are monovalent
such that z+ = +1. The ions are assumed to have different diffusivities Dy £=D_.
The governing equations of the concentration of the ionic species, ¢, are identical to
(3.10)—(3.11) and the interaction potential is governed by Poisson’s equation, as given in
(3.14). However, the far-field boundary conditions are different. Specifically, as r — oo,
we assume that the concentration of the ionic species is linear with position z, or

s = o (1 n Ea—z> : (3.73)

Further, it is assumed that the electric current in the far-field is zero, which yields (Prieve
et al. 1984; Velegol et al. 2016; Gupta et al. 2019)

kgT
—VPlrsoo = elgz = eEpe;, (3.74)

where = (D1 —D_)/(D++ D-) and Ey = B(kpT/ae). The electric field is thus
induced due to unequal diffusivities and a non-zero salt gradient.

Similar to electrophoresis, modification of the governing equations in terms of charge,
p=e(cy —c_), salt, s =cy +c_, and potential, ¢, result in (3.12)—(3.14). In the
far-field, the boundary conditions for ¢ and p are identical to (3.15) and (3.16) with the
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aforementioned definition of Ey. However, the boundary condition of s is modified to
€z
Slrsoo =260 (14 ). (3.75)

Note that € /a = V log so. The boundary conditions are identical at the particle surface,
i.e. (3.18)—-(3.20). The objective is to solve p, s and ¢ with the modified boundary
conditions above and subsequently evaluate the total osmophoretic body force, following
the procedure used to obtain (3.9). We non-dimensionalize the equations using the same
scales as (3.21a—f) and also define b = (kBTco/a)i) = (8(k3T)2K2/2€2613)B, where the
definition of « is also identical.

For simplicity, we drop the tilde from our analysis until (3.92) and reintroduce them
afterward. Thus, the non-dimensional osmophoretic body force is given as b= —p

V¢ — Vs. We expand p, s and ¢ until O(e¢ 2), and solve the equations at each order.

Order O(1): an uncharged particle without any external salt gradient. The results at
this order are identical to electrophoresis and thus yield soo = 2, poo = 0, and ¢g9 = O,
indicating a uniform concentration of ion with no charge and potential.

Order O(e): perturbation of the external salt concentration to an uncharged particle.
This order is distinct compared with electrophoresis since the far-field boundary condition
for salt is different, while the remainder of the equations and boundary conditions
are identical. We note that the boundary condition for the electric field is similar to
electrophoresis since we have defined Eg. The solution simply reduces to zero and uniform
charge density pjo = 0, while both salt and potential follow the Laplace equation. The
results read

1
s10(r,0) =2r( 14+ — ) cos9, (3.76)
2r3

1
¢10 = —EOI” (1 + ﬁ) cos 6. (377)

Physically, at this order, a gradient in the salt concentration far away perturbs the salt field
and induces a potential field if diffusivity asymmetry is present (Ey #= 0 only when 8 £ 0).
However, since the surface is uncharged, pj9 = 0.

Order O(¢): perturbation in the surface charge of the particle without an external field.
Since there is no external field at this order, the solution is identical to electrophoresis with
So1 = 0 and

1
do1(r) = - exp(—«(r — 1)), (3.78)

2
poi(r) = ——exp(=«(r — 1)). (3.79)

This order represents the potential and charge profiles due to the surface charge of the
particle. However, there is no salt accumulation at this order since the reduction in the
coion concentration is balanced by the increase in the counter-ion concentration.

Order O(e¢): perturbation in both the imposed salt concentration and surface charge.
The governing equations for charge (p11), salt (s11), and potential (¢11) are

V2511 + V - [po1 Vool = 0, (3.80)
V2p11 + V - [s10Vor + 2Vl =0, (3.81)
2
2 K
Voo = —5 Pu- (3.82)
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The boundary conditions at the particle surface, r = 1, are

e+ [Vsii + po1 Vol =0, (3.83)
e - [Vpi +s10Voor +2Vei] =0, (3.84)
e, Vo =0. (3.85)

Again, there is no external field as » — oco. Substituting in the solutions obtained in
O(e), and O(¢) we begin to solve s11, p11 and ¢11. Further, we can separate the r
and 0 contributions by redefining s11(r, 0) = f;,, (r) cos 0, p11(r, 0) = fp,, (r) cos 6, and
$11(r,0) = fy,,(r) cosf and solve the equations numerically, see Appendix A. It is
possible to find analytical solutions to (A1)—(A6), similar in form to (3.67). In the scope
of our current paper, we choose to resolve the dynamics at O(eZ) and O(e£?) numerically.
For an analytical derivation of such higher-order effects the reader is directed to Keh &
Wei (2000).

Order O(e¢?): first-order perturbation in salt field and second-order perturbation in
surface charge. We only seek to solve 517 at this order since it is the only quantity required
to resolve the body force up to O(e¢?), see (3.91). The equation governing the dynamics
of 512 is

V2512 + V « [po Véu + o1 Vol = 0, (3.86)
with
e - [Vsio+ po1 Vo1 + puuVéorl,=1 =0, (3.87)

and s12(r — 00, 0) = 0. We write s12 as s12(r, 0) = f5,,(r) cos 6 and solve the equations
numerically, see Appendix A. As discussed previously, we solve (A7), (A8), and the
far-field constraint numerically.

Restoring dimensions: we now restore dimensions and reintroduce tilde to describe
dimensionless variables. Therefore, we write the body force b = (¢ (kgT)?k? / 2e2a3)5 such
that

b=elby +€l’bpa, (3.88)
by = — (,5016@0 + 6S11) , (3.89)
by = — (/50165511 + on Voo + 63‘12) . (3.90)

At this point, some comments are in order. We note that b could also include a term at

O(e) since s19 # 0. However, b only includes excess osmotic pressure and not the osmotic
pressure itself. This is because the osmotic pressure contribution due to Vs, would lead to
particle motion even in the absence of phoretic interactions. Only the terms at subsequent
orders are included to ignore this effect. Further, we highlight that both (]310 and 51 are
proportional to Ey. Therefore, the O(eZ) term only depends on Eg and is referred to as
the electrophoretic contribution. Since poi, (510 and 51y are identical to electrophoretic
solution, the O(eE) is equal to the one described earlier in (3.72).

However, in contrast, for the Q(GEZ) contribution, o1, (511, P11, ¢~)01 and §|p are
independent of Ey. Furthermore, ¢11, p1; and 51, are all proportional to 519, which is
consistent with the prior literature (Anderson 1989; Keh & Wei 2000; Gupta et al. 2019).
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Figure 3. Comparison of proposed mobility expressions of diffusiophoretic mobility in (3.93) with the
mobility reported in Keh & Wei (2000). Quantitative agreement of both (a) the electrophoretic component
®1 (k) and (b) the chemiphoretic component @, (k) is observed.

Since b 11 is identical to the electrophoretic motion, we focus our attention on b 12, Which
reads

- d d df; )
bpp=— (pm You +fou % + sz) coste, — ('OO—UC(I)11 +ﬁ—> sinfleg.  (3.91)

12
dr dr r r

Upon substituting the value of b in (2.12), the translation velocity of the particle could
be simplified to read

U= MVlogs, (3.92)

where

2
M=Z [’CB—T/B;@I W) + =0, (K)} , (3.93)
wl e 8

where @ and ®; are evaluated numerically, see Appendix A. Figure 3 demonstrates good
quantitative agreement between the values obtained in Keh & Wei (2000) and our results.

This section highlighted the generality of (2.12) and (2.13). We showed they are able to
recover the mobilities for microswimmers in thin interaction layer limit, electrophoresis for
arbitrary double-layer thickness and electrolytic diffusiophoresis for arbitrary double-layer
thickness.

4. Autophoretic motion of microswimmers

In this section, we use the formula obtained in (2.12)—(2.13) to study the translation of
Janus-like particles with a spherical cap, see figure 4(a). The key novelty of our analysis
is that (2.12)—(2.13) do not impose the restriction on interaction length scale. As we
show later, if the interaction length is comparable to particle size, the particle velocity
is significantly impacted.

We define catalytic surface activity through a non-dimensional outward surface flux of
strength, J (scaled by a characteristic flux Dcg/a, where D is the diffusivity of the solute, cg
is a reference concentration of the solute and a is the particle radius). The non-dimensional
interaction length is characterized by « ~! (scaled by ). Lastly, the size of the catalytic
cap is controlled by the polar angle 6y, such that 8y = 0 indicates no catalytic cap on the
particle and 6y = 7/2 represents a hemispherical cap.

We assume a Helmholtz-like equation governs the interaction potential (¢, scaled
by kpT) with a constant surface potential (¢p) and a far-field decay. We take this
opportunity to highlight the choice of Helmholtz-like potential. While the potential is not
representative of different surface interactions possible, it provides a convenient choice to
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Figure 4. (a) Self-phoretic Janus particle where propulsion is controlled by the size of the spherical cap 6y, the
reactive flux J and the interaction length scale P (b) Here, U versus 6y for different « values demonstrates
a maximum velocity for 6y = /2 irrespective of «. (c) Here, Ux? /Uy versus « asymptotically approaches the
thin limit calculations as k — 100. However, considerable dampening is observed even for k = O(10). The
values are reported for 6§y = /2. (d) The dampening of Uk? /Up with « is observed for all 6. The value Uy is
the asymptotic limit of Uk? from the thin interaction layer calculations.

explore the impact of « and thus has been chosen for this analysis. We note that our analysis
can be easily extended to other interaction potentials provided that the integrals in (2.11)
are convergent. For a detailed analysis of phoretic motion due to a general particle—solute
interaction the reader is directed to Brady (2021).

To resolve particle translation for a given surface activity and interaction, we write

V2 = k%o, 4.1)
¢ =¢o, atr=1, (4.2)
¢ — 0, atr— oo. (4.3)

Solute transport is governed by diffusion and phoretic interactions with the following
boundary conditions:

V.(Vc+cVe) =0, 4.4
—n-(Vc+cVo)=J, atr=1, 4.5)
c— 0, atr— oo. (4.6)

Our model problem is illustrated in figure 4(a). We solve the coupled equations (4.1)—(4.6)
numerically. A scaled model geometry was constructed with the particle radius given to be
a = 1 and an outer radius of 7|, = 20, representing the far-field. The interaction potential
(¢) and solute concentration (¢) were defined by (4.1)—(4.6). To obtain the translation
velocity through (2.12), we define the body force b = —cV¢ — Vc. Note that the arbitrary
body force has both a phoretic and an osmotic contribution. Details of the computational
method are provided in Appendix B.
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We first analyse the effects of the spherical cap size (6p) and interaction length scale
(1) for a fixed surface flux (J/ = 1) and surface potential (¢p9 = —1), see figure 4. First,
we note that the particle moves in the direction of the catalytic cap, since when ¢g = —1
the particle is attracted towards regions of higher solute concentration. From figure 4(b),
we observe that the propulsion velocity is maximum for 6y = 1t/2. This is in agreement
with prior observations in the literature (Golestanian, Liverpool & Ajdari (2007), Michelin
& Lauga (2014), Popescu et al. (2018) and others). Additionally, the dependence of
translation velocity on the cap size is symmetric about 6y = /2. As described in Michelin
& Lauga (2014), when 89 = /2, for small Péclet numbers, the sharpest concentration
gradients are located near the equator, consequently leading to a larger slip velocity over an
extended inert surface. In contrast, for smaller or larger catalytic caps, the aforementioned
solute front is closer to the pole and thus involves a smaller share of the particle surface in
generating slip velocities and therefore a smaller swimming speed.

Thin interaction layer: we also study the dependence of propulsion velocity on the
interaction length scale (k™) see figure 4(c). To compare our calculations with the
thin interaction layer limit, we perform analogous calculations following the approach
of Anderson (1989) and Derjaguin et al. (1947). We consider diffusive transport of solute
V2¢ = 0 through the fluid volume. The surface flux condition is given by —n - Ve = J
with a far-field decay condition. The phoretic slip at the particle surface is defined as

ugip = —Vye / Oo(r — 1) [exp(—¢) — 1] dr, 4.7
1

where the non-dimensional ug;, is scaled with kTcoa/u. After that, we refer to Stone &
Samuel (1996), also derived in (3.7), to obtain the translation velocity U, to be

1
Uthin = _E /;‘ Uslip ds. (4.3)

It is well known in the diffusiophoretic literature (Golestanian 2019) that for « > 1,

|U thin| o< 1 /Ktzhin. Consequently, we introduce a scaled velocity expression, Ugy =

U thi”Kl%zin which becomes constant as k. — 0. As shown in figure 4(c), we observe that the

velocity ratio Ux2/Uy = |U|«?/|Uy| significantly decreases when the interaction limit
becomes comparable to particle size, i.e. kK — 1. We find that even for « = O(10), the
velocity is reduced by almost a factor of two. We only reach the thin interaction limit
for k = O(10%). This observation is consistent with the passive diffusiophoretic literature
where even moderately thin double layers can significantly reduce the diffusiophoretic
velocity (Prieve et al. 1984), see figure 3(b). Our analysis highlights that even for
autophoretic swimmers, this effect can be observed, and using a thin interaction limit
could overestimate the velocity for moderately thin interaction thickness such as ¥k — 50.
Over the past decade, there has been an increasing interest in nanoparticles or very dilute
systems where relative interaction length scales are large (Leunissen et al. 2007; Shin
et al. 2016; Gupta et al. 2020b; Wu, Greydanus & Schwartz 2021; Shi, Wu & Schwartz
2023). Thus, these results could be crucial for future experimental studies. To ensure that
our trends of reductions in velocity are consistent for other conditions, in figure 4(d), we
observe that reduction in velocity for smaller « values is consistent for all 6y values.

5. Autophoretic swimmers with external solute gradients

To further demonstrate the applicability of (2.12) in scenarios where it is difficult to use a
slip velocity approach, we modify our model problem to include an external solute flux in

994 A2-19


https://doi.org/10.1017/jfm.2024.588

https://doi.org/10.1017/jfm.2024.588 Published online by Cambridge University Press

A. Ganguly, S. Roychowdhury and A. Gupta

(a) . - ' (b) § (C)
2(X10) 0
= % -0.1
ED, 02p e
RN R I

Ve,

Figure 5. (a) A self-phoretic particle also driven by external Vco. (b) Here, U, versus V¢, shows that both
the particle speed and direction depend on the competing effects of external and self-propulsion modes. We
define (Vcoo)erir as the value when the particle motion was arrested despite the presence of concentration
gradients due to surface activities. (c) Here, (Vcoo)crir Versus k. We observe an increase in the magnitude of
the external flux needed to arrest motion as we approach thin interaction length limits.

the fluid bulk. The model geometry is preserved as shown in figure 5(a). The concentration
in the far-field is Vcoo = Jexre;, Where e; is the z-coordinate basis vector in the universal
Cartesian frame of reference and J,; is a free parameter used to control the direction and
strength of this external field. The magnitude of the external gradient is thus |Vceo| = Jex-
We note that all additional parameters have been appropriately non-dimensionalized as per
the discussion in § 4. We analyse the variations of the local surface flux (J), external solute
flux (J.x) and interaction length scale «. For a given surface flux J = 1, it is observed that
the translation velocity is linear with the imposed solute flux, Vc,. The particle moves
with a velocity U = U,e,. The direction of the propulsion is governed by the relative
magnitudes of different contributions of the body force terms. In the absence of an external
flux, the body force contributions due to the phoretic activity cause the particle to move in
the positive z-direction. In our analysis, we have ignored the excess osmotic contribution
(Vo) from the external solute gradient and only considered the phoretic contribution. This
is done to ignore the motion of the particle only due to V¢, when ¢ = 0. For J,,; > 0, one
can observe that force terms arising from the gradients in active and passive concentration
fields are in the same direction, hence U, > 0 as in figure 5(b). Alternatively when J.,; < O,
the phoretic force terms arising out of the passive solute concentration field compete
with forcing arising due to activity. This leads to a direction reversal below a threshold
concentration gradient, (Vcoo)crit, Where U, < 0. Here, (Vcoo)crir i the external solute
gradient necessary to arrest particle motion due to activity. The linearity of the results in
figure 5(b) is due to the computations being performed in the weak field limit. To inspect
the effects of interaction potential length, we obtained the (Vco)qrir values at J = 1 while
varying over k. A qualitative agreement is observed between the results in figure 5(c) and
the k-dependence of velocity (U). Further, we see that a stronger external flux is necessary
to arrest motion as we approach the thin interaction length limit. This effect arises because,
for k — oo, the catalytically ejected solute decays more sharply, V¢ increases locally
near the particle surface. This necessitates the need for a larger (Vcoo)crir to counteract
activity-induced gradients to arrest propulsion.

6. Conclusion
The main result of our work is that (2.12)—(2.13), reported in the prior literature for
phoretic systems (Brady 2021) and different physical set-ups (Brenner & Cox 1963; Hinch
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1991; Leal 2007; Datt et al. 2015; Elfring & Goyal 2016; Datt et al. 2017), can retrieve
the mobility expressions for both electrophoretic and electrolytic diffusiophoretic motion
of colloidal spherical particles at arbitrary interaction lengths at the low potential limit.
Additionally, the asymptotic limit of (2.12)—(2.13) for thin interaction length recovers net
translation and rotation of the particle in terms of a phoretic slip velocity as in Stone
& Samuel (1996). Finally, we employ these mobility relationships for self-propulsion
of spherical microswimmers where we observe a peak in translational velocity as we
approach a hemispherical catalytic coverage with a velocity reduction for lower or higher
coverages. At moderate interaction lengths, x = O(10), a dampening in the translation
velocity is observed. However, for higher « values our calculations retrieve the thin
interaction length limit results arising from equivalent slip velocity calculations. Further,
we add an external passive solute concentration gradient to our problem to understand
the competing effects of surface-generated and externally imposed solute concentration
gradients. We find configurations where the external flux arrest motion induced by surface
activity (Vceso)erir and regions where the propulsion induced by the passive external solute
gradient aids with or competes against the propulsion induced due to surface activity.
A nonlinear decay of (Vco)crir With k is observed from our analysis which is qualitatively
similar to the k-dependence of the translation velocity, |U].

Beyond the result described in this paper, our work can be utilized to predict U and £2
for an arbitrarily shaped particle. For such a calculation, one would need the appropriate
expressions of the mobility (M) and the disturbance tensors (D7, Dg), which might be
possible to obtain analytically or numerically. While this manuscript focuses on the
mobility of a single particle, a similar analysis could be extended to multiple particles
and particles under confinement.

The derived expression will be particularly useful for multiphysics propulsion. For
instance, it might be possible to induce propulsion of particles using multiple modes such
as a combination of electric fields and other fields, such as electrodiffusiophoresis (Wang,
Behdani & Silvera Batista 2022; Jarvey, Henrique & Gupta 2023). Another possibility is
the inclusion of chemical kinetics at the particle surface (Davis & Yariv 2022) which will
modify the solute problem and thus consequently change b.
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Appendix A. Numerical resolution of the radial components at O(eZ) and O(eZ?)
Order O(e¢): the radial components of (3.81)—(3.85) are

1d [ ,df 2 2 d depor (r)
r—za (7”2%) - (r_2 +K2>f/?l| + }"_25‘ (rzfslo(r)T) =0, (Al)
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1d d 2 d 2
S <r2 fm) fsn + S (r 001 (r) f¢1(;(7”)> _ 001 (N)f g, (r) -0, (A2)

dr 2 r2
L d [ ,dfy, 2, i
2 ( ar )T T Tl (A9

where fy,, (r) and f;,, (r) are the radial components of the O(¢) solutions. The appropriate
boundary conditions at the particle surface are

dfml +f510( )d¢01( ) 0, (A4)
% + ooy e g, (A5)
r dr
df¢n
v - =0. (A6)

In the far-field, the radial flux of fy,,, f,, and f;,, all go to zero.
Order 0(6{2): the radial dependence of s12(r, 6) is captured by

1d dfs,, 251 1d dfen, dfpo,
—=— (rzf—)— J + (r {,001( Youn) + fou (1) o (r)})

r2 dr dr 2 2 dr dr

_ 2f¢11 £01

— 0, A7
r2 (A7)

with the boundary condition at the particle surface being

dfs,, dfy,, dor

ar TPog g =0 (A8)

and f,, = 0 in the far-field. We solve (A1)-(A7) using the bvp4c() function in MATLAB

for « € [1, 1000]. For each « value we solve for p, ¢ and s at each order with a

one-dimensional mesh, » = [1, 1 4+ 100/k] with a thousand elements. A default relative

tolerance of 1073 is used. To match with (3.93) we multiply the terms proportional to ¢ in

(3.92) with a factor of 1/2 and the terms proportional to 2 with a factor of four. This is
solely due to how the coefficients @1 (k) and @, (k) are defined in (3.93).

Appendix B. Numerical solution to the autophoretic motion of microswimmers in
§§4and 5

Section 4: the numerical solutions to (4.1) to (4.6) were obtained from the finite element
method software COMSOL. We use a non-dimensional spherical computational domain of
size 4/3m x 20 where the particle is located at the origin and possesses a radius of unity.
The domain is discretized into approximately 1162711 elements. Around the particle,
we mesh a boundary region with 12 layers and a stretching factor of 1.1, consisting of
approximately 20 000 triangular elements. The simulations are performed in the reference
frame of the swimmer. Upon solving for the solute concentration ¢, and ¢ in the domain we
define b = —cV¢ — Vc as the body force. Subsequently, (2.12) is numerically integrated
over the domain to find the translation velocity U. All results are normalized with «? as
illustrated in figures 4 and 5.

The translation velocity at the thin double layer limit is obtained by a similar procedure
by solving for ¢ and using (4.7) to obtain ug;,. For the second simulation set-up, to
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calculate the velocity at the thin limit an extremely fine mesh is required to discretize the
domain, with approximately 1 154 140 elements. The lumped phoretic mobility for a given
surface potential ¢ is obtained by numerically integrating along the radial direction in
MATLAB from 1 to approximately 10* along the radial direction. The translation velocity
U pin 1s obtained by solving (4.8) in COMSOL.

Section 5: to solve the results where the swimmer was subjected to an external
concentration gradient, we modify the far-field boundary condition in the above numerical
simulation to be ¢y = co + Jexrz. A Dirichlet boundary condition was used instead of
a Neumann boundary condition to avoid under-specifying our model. The Dirichlet
condition will satisfactorily approximate Vcso = Joyse; in the vicinity of the particle for a
large enough computational domain.
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