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ABSTRACT

Power system is vital to modern societies, while it is susceptible to hazard events. Thus, analyzing resilience
characteristics of power system is important. The standard model of infrastructure resilience, the resilience
triangle, has been the primary way of characterizing and quantifying resilience in infrastructure systems for more
than two decades. However, the theoretical model provides a one-size-fits-all framework for all infrastructure
systems and specifies general characteristics of resilience curves (e.g., residual performance and duration of
recovery). Little empirical work has been done to delineate infrastructure resilience curve archetypes and their
fundamental properties based on observational data. Most of the existing studies examine the characteristics of
infrastructure resilience curves based on analytical models constructed upon simulated system performance.
There is a dire dearth of empirical studies in the field, which hindered our ability to fully understand and predict
resilience characteristics in infrastructure systems. To address this gap, this study examined more than two
hundred power-grid resilience curves related to power outages in three major extreme weather events in the
United States. Through the use of unsupervised machine learning, we examined different curve archetypes, as
well as the fundamental properties of each resilience curve archetype. The results show two primary archetypes
for power grid resilience curves, triangular curves, and trapezoidal curves. Triangular curves characterize
resilience behavior based on three fundamental properties: 1. critical functionality threshold, 2. critical func-
tionality recovery rate, and 3. recovery pivot point. Trapezoidal archetypes explain resilience curves based on 1.
duration of sustained function loss and 2. constant recovery rate. The longer the duration of sustained function
loss, the slower the constant rate of recovery. The findings of this study provide novel perspectives enabling
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better understanding and prediction of resilience performance of power system infrastructure in extreme weather

events.

Introduction

As a component of critical infrastructure systems, the electrical
power grid plays a fundamental role in supporting and maintaining the
functioning of modern societies. Citizens, industry, and governments
heavily rely on electric power to perform economic, social, and
administrative activities such as operating machines in factories,
providing life support in hospitals, and managing telecommunications
and transportation system. Despite its vital role, the power infrastruc-
ture system is susceptible to hazard events, including storm, flood, and
freezing events. Extreme weather and climate events can cause physical
damages to power system facilities or shift the supply-demand rela-
tionship to become unbalanced [1]. Thus, large-scale blackouts are one
of the most common cascading effects brought by major severe weather
events. With the increasing severity and frequency of extreme weather
events, power outages pose threats to more people with wider reach as
well as higher frequency. The decade from 2011 to 2021 witnessed
roughly 78 % more weather-related power outages than did the decade
from 2000 to 2010 [2]. And Hurricane Ian in 2022 left approximately
over 9.62 million people without power; Winter Storm Uri impacted
more than 11.7 million people [3]. Power outages can adversely affect
communities’ multiple needs for energy services, and further affect
other infrastructure and public service provisions considering the
interdependency between power systems and other critical
infrastructures.

Given the high dependency on and vulnerability of the power sys-
tem, analyzing and characterizing the resilience of the power system is
of utmost importance. Although definitions may slightly vary, resilience
of a power infrastructure system in general refers to the system’s ability
to resist, respond to and recover from disruptions to maintain func-
tionality of delivering energy service to end-users [4,5]. To capture and
communicate quantitative and qualitative aspects of system behavior
during disruptions, the resilience curve is the most often applied tool
providing a visual representation of resilience behavior of systems.
Resilience curves depict the fluctuation of system performance before,
during and after a disruption [6]. The y-axis of the resilience curve
shows the level of performance measure; the x-axis shows the timeline. A
typical resilience curve starts from tp, a time when the system stays in
normal state. Then the curve records time stamps when disruption oc-
curs and ends, and the performance level during this period. More

Disruption period |

detailed description and visualization of resilience curves are provided
in the literature review section.

Despite the widespread application in resilience-related studies,
multiple knowledge gaps exist regarding the characteristics of infra-
structure resilience curves. First, the resilience triangle has served as the
standard paradigm for analyzing resilience behaviors of infrastructure in
various contexts for nearly two decades, characterizing the changes of
system performance over time as instantaneous performance loss, im-
mediate response, and an approximately linear recovery. This paradigm
provides a model to conceptualize resilience behavior for all infra-
structure systems, while the one-size-fit-all model fails to capture and
represent specific characteristics of resilience curves for each infra-
structure type. The follow-up to the resilience triangle paradigm has
been the resilience trapezoid paradigm, which recognizes variations in
system resilience behaviors, such as cascading failure and pre-recovery
degraded performance. However, both the triangular and trapezoidal
models are rather conceptual and fail to specify fundamental properties
of resilience curves that enable understanding and predicting infra-
structure system behaviors under perturbations. Little empirical work to
delineate infrastructure resilience curve archetypes and their funda-
mental properties is based on observational data. Most of the existing
studies examine the characteristics of infrastructure resilience curves
based on analytical models, which are constructed upon simulated
system performance. There is a dire dearth of empirical studies in the
field, which hinders our ability to fully characterize, understand, and
predict resilience characteristics in infrastructure systems.

To bridge the gap, this study collected power outage data during
three major extreme weather events in the United States at fine-grained
geographical scales. The power outage data served as a proxy for power
system performance loss to delineate resilience curves. Unsupervised
machine learning method (i.e., time-series clustering) was adopted to
answer the following research questions: (1) What are the main arche-
types of the power system resilience curve? (2) What are the funda-
mental properties of each resilience curve archetype? In the analysis, we
empirically revealed two primary archetypes for power system resil-
ience curves, triangular and trapezoidal curves. For each archetype, we
identified several fundamental properties that could elucidate the
changes of power system performance under perturbations. The findings
in this study will advance the understanding of infrastructure resilience
behavior in extreme events.
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Fig. 1. An example of typical resilience curves.
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Fig. 2. Schematic illustration for triangular and trapezoidal resilience curves. Green curve represents a triangular curve, and orange curve represents a

trapezoidal curve (Adapted from [7,12]).
Literature review

Resilience curves could date back to the work of Bruneau et al. [7] on
seismic community resilience. This study developed a measure Q(t), the
service quality of the infrastructure over time, to quantify resilience. The
function plot of Q(t) is a resilience curve. Since its birth, the resilience
curve has been a powerful tool for researchers to illustrate key infor-
mation related to disruptive events and affected systems of interest. A
typical resilience curve carries several key information, including
normal performance level, the time when a disruptive event occurred to
the system, residual performance of the system, disruption period, the
recovery state and performance of stable recovered state [8]. Fig 1.
shows an example of typical resilience curves.

Based on the shape of resilience curves, the resilience triangle is the
original paradigm widely accepted to describe resilience behavior of
infrastructure systems. This paradigm features by instantaneous per-
formance loss after a shock and immediate response for the system
performance to bounce back [6]. Building upon this paradigm, different
studies have developed multiple analytical measures to capture features
of resilience. Bruneau et al. [7] computed loss of resilience as the area of
resilience triangle. Zobel [9] considered different resilience loss patterns
by illustrating the trade-offs between recovery period length and system
initial loss. Bocchini, Frangopol, Ummenhofer, and Zinke [10] inter-
preted robustness of the system as the lowest performance level during
the disruptive period and rapidity of recovery as the average slope of the
recovery path (the hypotenuse of resilience triangle). Cimellaro, Rein-
horn, and Bruneau [11] proposed forms of recovery function as linear
recovery, trigonometric recovery, and exponential recovery, and relate
the differences to preparedness and resources availability, as well as to
societal response.

Despite the ability of resilience triangle model to capture some of the
key features of resilience behavior in infrastructure systems, the model
provides a rather simplistic and one-size-fits-all characterization. Actu-
ally, the performance of an infrastructure system may not drop to its
lowest state instantaneously, and the degraded state may last for some
time before restoration is initiated. Recognizing this gap, a new pattern
called resilience trapezoid was introduced by Panteli, Mancarella, Tra-
kas, Kyriakides, and Hatziargyriou [12] to overcome the limitations of
the resilience triangle model. The resilience trapezoid model portrays all
possible phases that an infrastructure system can experience during a
disruptive event. Unlike the triangle model, the resilience trapezoid

Table 1
Summary of literature review section.
Description Representative
works
Resilience curve Triangle - Instantaneous [7,10,11]
model performance loss after a
shock
- Immediate recovery
Trapezoid - Disturbance progress [12]
- Post-disturbance
degradation
- Restorative stage
Resilience curve Qualitative -conceptual illustration [14,15]
application Quantitative  -basis of quantitative [18,22,23]

analyses

model captures disturbance progress and post-disturbance degradation,
as well as the time stamps of the transitions between different stages
[13]. Fig 2. provides a schematic illustration for the two types of resil-
ience curves.

Resilience curve models have the potential to convey both qualita-
tive and quantitative aspects of infrastructure system behaviors under
disruption. The most common use case is to apply resilience curve as a
conceptual illustration. For example, Panteli and Mancarella [14] pre-
sented a theoretical resilience curve demonstrating the corresponding
relationship between the needed key resilience features “4Rs”(robust-
ness, redundancy, resourcefulness, and rapidity) with the progress of
disruptive events in power system. Similarly, Tiedmann et al. [15]
applied a conceptual resilience curve to define water infrastructure
evolution stages. Dessavre, Ramirez-Marquez, and Barker [16] intro-
duced stress as a novel dimension to compare resilience among systems
and presented the way to employ multiple resilience curves to generate
comprehensive system resilience comparisons. Another application of
resilience curves is to serve as a basis of quantitative analyses, whose
purpose could be resilience evaluation [17,18], restoration strategy se-
lection [19-21], and identification of critical components in infra-
structure systems [22]. Based on triangular or trapezoidal model, these
studies specified various performance measures, namely the y-axis of
resilience curves according to the context of research, such as oil energy
system [23], thermal resilience of buildings [24], and natural gas
network [25] and further applied simulation method to compute
resilience-related metrics. Several studies pre-assume certain
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Fig. 3. Overview of the analysis framework.

infrastructure system behaviors according to specific scenarios to
customize the standard resilience curve model. For example, Xiong et al.
[21] assumed the recovery curve of post-earthquake building to be
stepped. Mitoulis, Bompa, and Argyroudis [26] considers the impacts of
proactive adaption and regular maintenance on original transport
infrastructure curves. Table 1 summarized the main points we have
discussed in this section.

Despite the various resilience curve related studies, key gaps still
exist. First, resilience curves only serve as the simplified visualization
tool to illustrate the basic idea of resilience stages. Actually, resilience
curves could carry rich information reflecting the system resilience
characteristics, while oversimplification would cause information loss to
some extent. Moreover, current studies construct resilience curves from
a conceptual and analytical perspective, and then proceed further
quantification based on the assumptions made on the resilience curves.
Few studies have been done to construct resilience curves empirically
and probe the archetypes and fundamental properties based on empir-
ical curves. A exception would be Nichelle’Le K, Dobson, and Wang
[27]’s research, which generated resilience curves from utility data to
decompose overlapped outage progress and restore progress. Overall,
such studies are still lacking. The dearth of empirical characterization of
resilience curves has hindered the understanding and prediction of
actual resilience behaviors of infrastructure systems in the real world. To
address the gap, this study recorded observational power outage data
during extreme weather events as an indicator of power system per-
formance and used them in constructing empirical resilience curves, and
then performed unsupervised time-series clustering based on the shape
of curves to reveal and characterize archetypes of resilience curve.

Methodology

This analyzing framework of this paper consists of the following
components: (1) collecting power outage reports during extreme
weather event and number of energy service customers in all affected
geographical units; (2) calculating power outage percentage for each
geographical unit at every time point; (3) constructing power system
resilience curve for each geographical unit; (4) adopting time series
clustering method to identifying power system resilience curve

archetypes and key properties. Fig. 3 depicts the overview of the
framework.

This section first provides brief background information on the
hazard events studied in this research and then describes the procedure
of constructing and processing raw datasets to build power system
resilience curves. Finally, the unsupervised time-series clustering
method was introduced and applied to acquire the archetypes of resil-
ience curves.

Background information on hazard events

Ice storm in Austin, Texas (2023)

An ice storm hit the southern part of United States in early 2023,
which impacted the Austin area, Texas, from January 30 through
February 2. The storm brought several rounds of freezing precipitation,
causing widespread ice accumulations. The icing event paralyzed the
city for days as the significant ice buildup weighed down trees and
powerlines. Fallen trees further toppled powerlines and poles. At the
peak of outages, more than 200,000 instances of power outages were
recorded across the Austin metro area [28].

Hurricane Irma (2017)

Hurricane Irma made landfall in southern Florida as Category 4
hurricane on September 10, 2017, and then moved into central and
northern Florida at Category 3 intensity later [29]. The hurricane
brought heavy rains and winds, causing widespread power pole damage.
Nearly two-thirds of Florida’s electricity grid was knocked out by the
event, affecting 6.7 million electricity customers. As the count reflects
the number of billed accounts, the actual number of affected people
could be more since one account can cover more than one person [30].

Hurricane Ida (2021)

Hurricane Ida was one of the most devastating in the recent years,
and is listed as the sixth costliest tropical cyclone in United States in the
history [31]. As a Category 4 hurricane, Ida made landfall along the
southeastern Louisiana coast near Port Fourchon on August 29, 2021,
and then affected 20 states in total, including Mississippi, Alabama,
Tennessee, Kentucky, Virginia, Maryland [32]. Heavy winds downed
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Fig. 4. Power outage extent across the affected areas.

power lines. A large transmission tower along the Mississippi River west
of New Orleans was reported to have collapsed during the event. Ac-
cording to Entergy’s estimation, 30,000 utility poles were damaged
during Ida, which matches the combining effects of Hurricane Katrina in
2005 and Hurricane Laura in 2020. All of the factors mentioned resulted
in massive and severe power outages across eight states, leaving up to
1.2 million electricity customers without service [33].

Power outage data collection and preprocessing

In this study, we used power outage data as an indicator of power
system performance. The normal operation of a power system requires
functionality of all system components, such as power generation,
transmission stations, and powerlines. Thus, power outage data can
serve as a comprehensive measure of overall power service performance.
For Hurricane Ida and the ice storm, this study monitored and collected
real-time power outage data during the events. Power outage data for
Ida was collected from PowerOutage.US and Entergy power websites.
Entergy is the main electricity service provider to the most affected areas
in Louisiana, so this study used Entergy outages to reflect the extent of
power outages caused by Hurricane Ida. Each record contains Zip code
ID, number of affected customers, and last updated time. This study
covers period from August 29 through September 11, 2021. For each Zip
code region, data points within the same day were averaged to obtain
daily values, which could help smooth the data and mitigate the effects
of outliers.

In a similar way, real-time power outage data for the ice storm was
collected from Austin Energy. The website updates outage information
every 10 min at Zip code level. We collected the number of affected
customers for Zip code regions in Austin at 2-hour intervals from
February 3, 2023, through February 9, 2023. The data then were aver-
aged at 6-hour interval, to keep tracking the changes of power outages,
while make the data more smoothed.

Power outage data for Hurricane Irma were obtained from Florida
Today [34], a digital newspaper. The data provides percentage of power
outages across Florida at county level. The original data was not
collected at a regular temporal interval; instead, one or two represen-
tative data points within the same day were provided. For example,
power outage percentages records were provided for 6 a.m. and 9 p.m.
on September 10, 2017, while on September 11, 2017, only one data
point at 12 p.m. was available. To resolve the inconsistency of time in-
tervals, daily averages were computed for days with multiple records
available. For days with only one record, single data points were used as
a proxy of the daily values. Fig 4. displays the extent of power outage
across impacted areas.

Power system resilience curves

As discussed in the literature review section, infrastructure resilience
curves capture system performance over time during a disruption event.
When constructing resilience curves, normalizing performance mea-
sures is a common practice to enable comparison across systems and
scenarios [6]. In this study, we used power outage percentage as the
normalized system performance. Theoretically, performance can range
from 0 % to 100 %, where 0 % designates no service is available, and 100
% means no degradation in energy service.

The percentage of outages at each geographical unit was determined
by the ratio of the number of affected population and the total popula-
tion of the geographic unit. Due to the variances of total population size,
the absolute number of affected customers may not necessarily the
extent of power outage. Thus, we adopted power outage percentage as
an indicator. It is important to note that we used the total population of
each unit rather than the total number of customers as the nominal
values, due to data unavailability. Since each Zip code may have mul-
tiple electricity providers, the number of customers of a certain provider
in a Zip code may deviate from the number of total population. To
alleviate the inaccuracy brought by the deviation, we selected only Zip
codes where Entergy and Austin Energy served as the main electricity
provider, so that the number of total population can serve as an
approximate of number of customers.

For the three hazard events, we constructed three separate datasets,
considering differences of scenario, time span, and geographical units.
Each spatial unit (Zip code or county) is represented by a piece of time-
series data, which is a sequence of power outage percentage records over
the studied period. If the missing values of outage records for some
spatial units exceed 50 %, the units would be excluded from further
analysis. Otherwise, the missing values were filled by linear interpola-
tion. Dealing with missing values properly is an important step of data
cleaning, which could help to improve data quality and accuracy.
Moreover, spatial units with less than 10 % percent of outage during the
disruption period were excluded because the researchers were not able
to confidently determine whether the outage is due to hazard events or
occasional factors. After data cleaning, there remained 222 spatial units
in total, 126 Zip codes in Hurricane Ida, 37 Zip codes in the ice storm,
and 59 counties in Hurricane Irma. To facilitate visualizing the resilience
curves, we set a baseline as 0 % right before the disruption occurred,
since power outage percentage is roughly zero when the system operates
normally despite that minor variations that may apply. Moreover, all the
values were transformed into their negative counterparts by employing
a unary negation operation, so that the plots were inversed to fit the
common shape of resilience curves. We use the 222 empirical resilience
curves to specify the archetypes and their fundamental properties.
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Time-series clustering

DTW-based K-means clustering method

Although power system resilience curves have been established, it is
challenging to identify patterns directly from hundreds of empirical
curves. Thus, an unsupervised machine learning method was applied to
cluster the curves. Every curve actually represents a time series, which is
a sequence of observations (power outage percentage in this paper) over
the disruption period. This study employed a shape-based time series
clustering approach, which partitioned the time-series dataset into a
certain number of clusters according to shape similarity. Shape-based
clustering usually applies conventional clustering algorithms but mod-
ifies similarity measures to make it compatible with time series data
[35]. Shape-based clustering method focus on grouping time-series data
samples presenting similar trends or patterns, instead of the specific
values at each time point, which makes it a widely applied clustering
method in pattern recognition. The goal of this study is to identify power
system resilience curves, which means to identify patterns how power
system performance changes over time. Thus, shape-based method is
appropriate to our research purpose. The research implemented by Wen,
Zhou, and Yang [36] also verified that shape-based method is superior to
the traditional clustering method in achieving better performance in
pattern recognition, due to its capability to capture shape similarity.
This study adopted k-means to identify archetypes of resilience curves
with similar shape. K-means is an unsupervised partition-based clus-
tering algorithm that splits samples into K groups and minimizes the sum
of mean squared distance within each group [37]. Given a dataset on n
time series T = {t1, ta, ..., ty}, partitioning T into a total of k clusters, i.
e.,, C = {C1, Cy, ..., C} can be solved by minimizing the objective
function J, expressed as:

3D C) m
i=1

k
J=1

where L'Z denotes the time series t; in category j, and D(t{ ,G;) denotes the

similarity measurement of the distance between tl’ and the cluster center
of Cj)

From Eq. (1) one can see that distance measurement is the most
critical option when performing K-means. Euclidean distance is the most
commonly used metric, yet it is not appropriate to time series. Euclidean
distance computes the direct distance between corresponding points
while not considering the time dimension of the data. As a result, if two
time series are highly similar in their shapes but misalign in time points,
Euclidean distance would erroneously measure the two time series as far
apart, leading to the failure to capture the shape similarity. To overcome
the limitation, this study adopted dynamic time warping (DTW),
another distance measurement specific to temporal data. DTW distance
is calculated as the square root of the sum of squared distances between
each element in X and its nearest point in Y. For better understanding,
we illustrate the calculation of DTW distance with an example involving
power outage percentages of two Zip codes, namely Z, and Z;, during a
disruptive event. Suppose the two time-series for Z, and Z; are denoted
as p= (p1, p2, ..., pi) and ¢ = (q1, q2, ..., gj). To determine DTW
distance between P and Q, a distance matrix D with i xj elements is first
established. The element of the matrix, dj is calculated as follows:

dy=\/(p:~a))° @

where p; is the outage percentage at the i time point in time series p and
g; is the outage percentage at the j* time point in time series g. In the
distance matrix D, a series of neighboring elements that connect the
lower left corner through upper right corner and achieve a minimum of
cumulated d;;, can be found as a warping path. A warping path can be
denoted as 7 = [no, ..., k), where max(m,n) <k <m-+n — 1, and 7 is
an index pair (i, jx). DTW distance is the length of the warping path,
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formulated as

DTW(p,q) = min, | d; 3)
(ij)en

with the path subjecting to boundary conditions, continuity condition
and monotonicity condition, about which more information can be
found in [38].

Selection of optimal number of clusters

Before performing DTW-based K-means clustering, the number of
clusters (i.e., k) needs to be predefined. As the ground truth is not
available, the common practice of determining k is to repeatedly execute
the clustering algorithm with several k values to identify the optimal.
This study provides a more comprehensive approach by combining two
performance metrics, namely the silhouette score and the distortion.

The silhouette score provides a measure of how well the data points
within each cluster are separated from other clusters. Given a clustering
result with k clusters, for a resilience curve i, let a(i) be the average DTW
distance between i and all the other resilience curves in the same cluster,
and let b(i) be average DTW distance between i and all the resilience
curves in the nearest cluster, the silhouette score s(i) of resilience curve i
is computed by:

b{i} — a{i)
min{a(i), b(i)}

The silhouette score of the entire clustering is given by taking the
average s(i) of all resilience curves. The range of the silhouette score is
from -1 to 1, and higher score indicates higher level of separation be-
tween clusters.

Similar to the process of employing the silhouette score to determine
k, the elbow method first chooses a range of possible cluster numbers
and runs a clustering algorithm for each k. For each round of the clus-
tering, it calculates the within-cluster sum of squared distances from
each data point to its assigned cluster center. The value is usually
referred as distortion. Given the cluster centers as c;, where i ranges from
1 to k, and given S; as the set of time series data points (resilience curves
in this study), the distortion can be calculated as

s(i) = 4

distortion = X:DTW(S;7 c,-)2 5)

where DTW(S;, ¢;)* denotes the DTW distance between all the resilience
curves in cluster i and cluster centers c;. The level of distortion reflects
how compactly data points are grouped around their cluster centers, and
lower distortion values indicate more compact clusters.

Since the silhouette score and distortion underscore the different
aspects of clustering performance, it is a better idea to combine the two
measures to find the optimal cluster number, so as to ensure both well
separation between clusters and compactness within clusters.

This study used tslearn [39], a Python machine learning package
specific to time-series data to perform tasks, including K-means clus-
tering, silhouette score, and distortion calculation. When performing
clustering analysis, we set the hyperparameter “init” as “k-means++",
which means we applied K-means++ algorithm to achieve smarter
centroid initialization. This algorithm is proposed by Arthur and Vas-
silvitskii [40], which assigns the first centroid randomly, and selects the
remaining centroids based on the maximum squared distances. The
original K-means method suffers from the sensitivity to centroid
initialization, while K-means++ method could overcome this disad-
vantage and achieve higher accuracy.
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Table 2
Summary of clustering result for the three hazard events.
Event Number of resilience curves Number of Silhouette
clusters score
Hurricane Ida 126 5 0.345
Ice storm 37 2 0.312
Hurricane Irma 59 3 0.298
Results

Implementation of DTW-based k-means method

Power system resilience curves during the three hazardous events
were clustered respectively. The DTW-based K-means requires pre-
determining number of clusters before performing clustering. As
described in Section Selection of Optimal Number of Clusters, this study
applied two methods to determine the optimal cluster number (k): (1)
the silhouette score and (2) the elbow method regarding distortion. For
the first method, the k value which yields higher silhouette score is
preferred; For the elbow method, distortion refers to within-cluster sum
of squared distances, so lower level of distortion means more compact
and better clusters. The graph of distortion exhibits an elbow-like shape,
and the elbow point is usually regarded as the optimal cluster number.
The two methods examine separation extent between clusters and
compactness within clusters, so taking both methods into consideration
can facilitate identifying the most appropriate numbers of clusters (k).

For each of the events, this study repeatedly performed DTW-based
K-means algorithm with several k values. The initial range of k was set
from 2 to 10. The silhouette score and distortion based on DTW distance
were computed and plotted as Fig 5.

For comparison purposes, similar experiments were performed using
Euclidean distance-based k-means method. Generally, the results for all
the three events show higher silhouette score and lower distortion based
on DTW distance than that of Euclidean distance, indicating DTW-based
k-means method have the greater potential to improve clustering
performance.

For Hurricane Ida, the highest silhouette appears when k = 2, and
the second highest peak level is achieved at k =3 and k = 5. The
distortion plot in Fig. 5b shows that the “elbow point” is at k = 4, where
the distortion decreasing rate gets flatter. As a result of trade-off be-
tween the two metrics, the number of clusters was set to 5 so that the
silhouette maintains a relatively high level while the distortion is low.
Silhouette result for the ice storm shows similar pattern that the peak is
reached at k = 2 with the second highest level is achieve atk = 3and k =
7. However, no significant “elbow point” can be identified from Fig. 5d.
Considering the small number of data points collected in this event,
large number of clusters can lead to a series of problems (for example k =
7), such as overfitting, unstableness of clustering, and lack of repre-
sentativeness. Thus, k = 2 is selected, which also yields the highest
silhouette score. For Hurricane Irma, both Fig. 5e and Fig. 5f shows
consistent results that k =3 is the “elbow point” and achieves the
highest silhouette score. Basically, the decisions of cluster number in this
study were the result of comprehensive factors, including the two per-
formance metrics, as well as the number of data points, and cluster
interpretability. The final results of clustering for the three natural
hazard events are listed in Table 2.

Clustering results

The clustering results are displayed in Fig. 6. The plots on the figure
show the average curves for each cluster, which represents the shape of
the members in each cluster. Fig. 6a displays five clusters, while cluster 3
contains only four Zip codes, which did not provide sufficient confidence
on its reliability whether showing a specific pattern or just outliers.
Thus, out of prudence, cluster 3 in the Hurricane Ida power outage was
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excluded from the following analysis. The remaining clusters indicated
two main archetypes regarding the shape of the curves: triangle and
trapezoid. Cluster 1 in Hurricane Ida, both clusters (cluster 1 and 2) in
the ice storm and cluster 2 and cluster 3 in Hurricane Irma show a
triangular archetype, while other clusters show the trapezoidal arche-
type. These findings show consistency with the prior research that both
triangular and trapezoidal archetypes exist regarding the shapes of
resilience curves. Furthermore, the result shows that triangular and
trapezoidal patterns could exist in the same event (Hurricane Ida and
Hurricane Irma in this study), which, to the best of the authors’
knowledge, has not been reported before. Even with the similar extent of
performance loss, the power system could still take on different resil-
ience behavior (cluster 1 and 3 in Hurricane Irma) by starting to recover
with no delays or remaining in sustained performance loss for some time
then starting to recover.

After specifying the two archetypes of power system resilience
curves, this study further investigated the key properties characterizing
each archetype. First, we inferred the properties from direct observation
on the averaged curves, and then provided supporting evidence based on
additional calculations. For trapezoidal curves, this study divided each
trapezoidal curve into two stages after the initial performance loss: the
curve maintained maximum performance loss level for several days,
during which we named as sustained performance loss stage, and then
started to bounce back with a certain recovery rate. Furthermore, we
could speculate upon the relationship between duration of sustained
performance loss and recovery rate: the longer the system stays in
maximum performance loss stage, the slower the recovery would be.

Compared with trapezoidal curves, triangular curves are character-
ized to have instantaneous recovery, while the recovery processes occur
through a two-stage pattern. The system performance first experiences a
faster recovery until a certain performance level, and then the recovery
rate slows down until the system is fully recovered. Based on the
observation, we defined the turning point of recovery rate as recovery
pivot point, at which the recovery rate changes. The corresponding per-
formance levels for recovery pivot among the triangular curves are quite
close, indicating that the performance level of recovery pivot might be
an important threshold. We call the performance level the critical func-
tionality threshold, since we infer that the power system would recover
rapidly to the threshold to restore the critical functionality of the system.
The recovery rate after restoring the performance to the critical func-
tionality threshold would be slower. Accordingly, the recovery rate
before achieving critical functionality is named critical functionality
recovery rate. Critical functionality threshold could also explain the
triangular curves with single recovery rate: since the performance loss of
such curve does not exceed the threshold, the system follows one re-
covery rate. Fig. 7 displays both archetypes and associated properties
identified from clustering results.

To provide quantitative evidence to support the observations made
on the properties of each resilience curve archetype, this study calcu-
lated gradients of each data point on the averaged resilience curves and
further calculated percentage change of the gradients. Gradients indi-
cate the failure and recovery rate at each time point, while percentage
changes indicate the speed for failure or recovery rate to change. Fig. 8
summarizes the archetypes and associated properties of power system
resilience, as well as corresponding indicators used to provide quanti-
tative support.

The quantitative gradient change analysis results of trapezoidal
curves are shown in Fig. 9. Significant peaks can be identified in the
plots of gradient percentage change indicating the time point when
dramatic changes occurred to the curves, namely the moment when
trapezoidal resilience curves start to recover from sustained maximum
performance loss. For example, a peak of gradient change stands out on
September 5, 2021, for cluster 2 in Hurricane Ida (Fig. 9a), and at the
same time, six days of sustained performance loss stage came to an end
and the power outage percentage started to decline. Similar patterns
also can be found on cluster 4 of Hurricane Ida (Fig 9b). The peak
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occurred on September 3, 2021, the same day when power system
performance starts to recover. The peaks of the two clusters indicate
drastic gradient change of the curves, which are cohesive with the
observation of averaged resilience curves. Thus, the corresponding
points would be the turning points which separate sustained perfor-
mance loss stage and recovery stage. Based on that, we calculated the
duration of sustained performance loss as the number of days between
the day when lowest performance level and the day when the turning
point occurred. After the turning point, the performance of the system
starts to recover at a constant pace, since no significant peaks of gradient
performance changes are observed anymore. From the calculation, we
could further infer the relationship between duration of sustained
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performance loss and recovery rate: the longer the system stays in
maximum performance loss state, the slower the recovery would be.

Note that there is a peak in cluster 5 of Hurricane Ida while signifi-
cant changes were observed neither from the plot of averaged resilience
curve nor the plot of gradients. The presence of the peak is due to the
plot of cluster 5 being almost horizontal, and the resulting gradients are
so small in magnitude that gradient percentage changes of this curve are
quite sensitive. Although the peak shows a great change of gradients
between data points on September 4 and 5, 2021, the actual gradients of
the two points are tiny (0.00531 and 0.000118), which could be
neglected. Thus, we ignored the “fake peak” and considered this resil-
ience curve as nearly horizontal. Cluster 5 is an extreme case, with the
longest period of sustained loss and zero recovery during the research
period.

Similar analyses were performed on the triangular archetypes of
power system resilience curves (cluster 1 in Hurricane Ida, clusters 1 and
2 in the ice storm, clusters 2 and 3 in Hurricane Irma), shown in Fig 10.
Among the five curves, the gradient plots of four (cluster 1 in Hurricane
Ida, cluster 1 in the ice storm, clusters 2 and 3 in Hurricane Irma,
Fig. 10a, 10c-10e) display common trends: after the gradients turn from
negative to positive, the curves climb up initially and then decrease with
a converging tendency to zero. The trajectory of gradient curves reflects
a noteworthy system behavior that when the system starts to recover,
the speed of recovery is not constant as with trapezoidal curves. Instead,
the system performance represented by triangular curves first experi-
ences rapid recovery until a certain performance level, and then the
recovery rate slows down until full recovery. For example, between
September 12 to September 15, 2021, cluster 2 of Hurricane Irma
(Fig. 10d) recovers rapidly, with the average gradient value larger than
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Fig. 9.

Trapezoidal resilience curves and their properties. Each subplot displays average resilience curve, gradients of each data point and gradient percentage

changes of each data points. a-c display results for clusters 2, 4, and 5 in Hurricane Ida.

0.1 After September 15, the recovery gradients drop to around 0.01.
Based on the same idea of separating sustained performance loss stage
and recovery stage, we defined the turning point of recovery speed as
recovery pivot, and the period before the point as rapid recovery stage
and the other side as slow recovery stage. The corresponding perfor-
mance level of recovery pivot point is —0.205 for cluster 2 and is
—0.1980 for cluster 3 for Hurricane Irma. The results indicate that the
critical functionality threshold was around 20 % for the case of Hurri-
cane Irma, and the power system would recover rapidly to the threshold
to restore critical functions of the system, and then achieve full recovery
with a slower pace. Clusters in the ice storm also follow the same
pattern: cluster 1 has a recovery pivot point on February 4, 2023, at
18:00, with critical functionality threshold around 16.8 %. For cluster 2
of the ice storm (Fig. 10b), no recovery pivot was identified, since the
maximum power outage is 16.9 %, which is almost equal to the critical
functionality threshold. In other words, if the performance loss does not
exceed the threshold, the power system would recover at a constant rate
with no recovery pivot. The finding is consistent with the observation
from both the average resilience curve and the gradient plot.

Among all the clusters, cluster 1 of Hurricane Irma (Fig. 11) is a
special case which we called a “transitional state” between triangular
and trapezoidal curves, because it bears properties of both archetypes.
From the resilience curve, it has a period with sustained performance
loss, while the period is quite short, lasting only 6 h. Two recovery pivots
can be found on the curve, one separates the sustained performance loss
stage and recovery stage, which is identical to trapezoidal curves.
However, instead of having constant recovery rate, there exists another
recovery pivot point, which separates rapid recovery with slow recov-
ery; the corresponding threshold is around 12.9 % power outage.

Discussion and concluding remarks

Although resilience curves have remained the primary model for the
understanding of resilience behavior of infrastructure systems, the most
prevalent studies to characterize and quantify infrastructure resilience
are proposed on a theoretical or simulation basis. Empirical research on
resilience curve archetypes and their fundamental properties is rather
limited. To fill the important gap, this study applied an unsupervised
machine learning clustering method to examine more than 200 power
system resilience curves related to power outages in three extreme
weather events, which provides empirical support to facilitate the
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understanding of and prediction of resilience characteristics in infra-
structure systems. We collected direct power outage data along with
time stamps during Hurricane Ida, Hurricane Irma, and the ice storm
across Texas in early 2023. Using power outage rate as an indicator of
system performance, resilience curves of power systems at each
geographical unit were delineated. Dynamic time warping based k-
means, a method specifically applicable to time-series data, was applied
to perform clustering. We examined the identified clusters to reveal
resilience curve archetypes and evaluated their fundamental properties.
This study provides the following insights:

e Two archetypes of power system resilience curves are identified
empirically: triangular and trapezoidal curves

This finding verifies the two theoretical model in the prior literature.
Furthermore, this study also empirically found that the triangular curves
and trapezoidal curves can be coincident within the same disruptive
event. However, current analysis performed in this research could not
specify factors that lead to the occurrence of triangular or trapezoidal
resilience behaviors in different areas of a community. This limitation is
because the power outage percentage is the only data we could obtain,
and we could not collect data related to the intensity of the extreme
weather event across the studied areas, the physical conditions of the
systems, and the availability of resources after the event. If more data
becomes available, future studies could examine factors that shape the
occurrence of each resilience curve archetype.

e Two fundamental properties determine the behaviors of trapezoidal
curves: duration of sustained performance loss, and constant recov-
ery rate

By direct observation and gradient, as well as by percentage change
of gradient calculation, we found that the longer the sustained perfor-
mance loss lasts, the slower the constant recovery rate would be. This
finding suggest that a longer period of sustained performance loss could
be an indicator of a greater extent of damage which would lead to a
slower recovery rate.

e Three fundamental properties determine the behaviors of triangular
curves: recovery pivot point, critical functionality threshold, and
critical functionality recovery rate
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Fig. 10. Triangular resilience curves and their properties. Each subplot displays the average resilience curve, gradients of each data point and gradient per-
centage changes of each data points. a-e display results for clusters 1 and 2 of the ice storm, cluster 1 of Hurricane Ida, and clusters 2 and 3 of Hurricane Irma.

Similar to trapezoidal curves, the recovery pivot point denotes the
time point when the recovery rate changes. Remarkably, the recovery
pivot point occurs when the system reaches the critical functionality
threshold, which is about 80 % to 90 % (namely 10 % to 20 % perfor-
mance loss) in this case. When about 80 % to 90 % of the system per-
formance is restored, the recovery rate slows done, and hence recovery
rate changes. If the actual performance loss exceeds the critical func-
tionality threshold, the recovery would proceed in a rapid manner until
it reaches the recovery pivot point. For the cases studied in this research,
the value of the critical functionality threshold is between 80 % to 90 %.
However, the universality of this critical functionality threshold for
power infrastructure needs to be verified using additional datasets
related to power outages. If the actual performance does not drop below
the critical threshold, the system will recover with a constant rate. If the
performance loss is greater than the critical threshold, the recovery
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would follow a bi-modal recovery rate with the recovery pivot point
occurring when the system reaches the critical threshold. The results of
this research deepen our understanding of the resilience performance of
power infrastructure systems and provide a more detailed character-
ization of infrastructure resilience curves beyond a mere conceptual
visual representation. By identifying the fundamental resilience curve
archetypes and their associated properties, the findings provide fresh
and novel insights for researchers and practitioners to characterize and
predict infrastructure resilience performance. The methods for charac-
terizing resilience curve archetypes used in this study could be used in
future studies in studying resilience behaviors in other infrastructure
systems. Such characterizations would move us closer to a deeper and
more detailed understanding of the resilience behavior of infrastructure
during disruptive events.

Finally, the presented study has several limitations that could be
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addressed in future research. For example, the study is limited by the
resolution and scale of datasets. Power outage data is highly perishable
and difficult to obtain at a fine resolution. All the power outage data
were collected manually by the authors, which is not only time
consuming, but also limits the spatial resolution of the data provided by
utilities on their websites. If power outage datasets with a greater spatial
resolution are available, future studies can build upon the findings of
this study and perhaps explore additional key characteristics in the
resilience behaviors of power infrastructure. Also, in the absence of
additional data regarding the power infrastructure operators’ restora-
tion strategies and damage levels to different subsystems, we could not
specify the factor that led to the occurrence of each resilience curve
archetype (triangular versus trapezoidal). If possible, future studies
could gather such information to uncover the factors that shape which
resilience curve archetype is manifested.
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