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Unraveling fundamental properties of power system resilience curves using 
unsupervised machine learning 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Time series clustering unravels power 
system resilience behaviors under 
extreme weather events. 

• Two archetypes of power system resil
ience curve (trapzoidal and triangular 
curves) are empirically examined. 

• Fundamental properties related to each 
of the power system resilience archetype 
are identified.  
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A B S T R A C T   

Power system is vital to modern societies, while it is susceptible to hazard events. Thus, analyzing resilience 
characteristics of power system is important. The standard model of infrastructure resilience, the resilience 
triangle, has been the primary way of characterizing and quantifying resilience in infrastructure systems for more 
than two decades. However, the theoretical model provides a one-size-fits-all framework for all infrastructure 
systems and specifies general characteristics of resilience curves (e.g., residual performance and duration of 
recovery). Little empirical work has been done to delineate infrastructure resilience curve archetypes and their 
fundamental properties based on observational data. Most of the existing studies examine the characteristics of 
infrastructure resilience curves based on analytical models constructed upon simulated system performance. 
There is a dire dearth of empirical studies in the field, which hindered our ability to fully understand and predict 
resilience characteristics in infrastructure systems. To address this gap, this study examined more than two 
hundred power-grid resilience curves related to power outages in three major extreme weather events in the 
United States. Through the use of unsupervised machine learning, we examined different curve archetypes, as 
well as the fundamental properties of each resilience curve archetype. The results show two primary archetypes 
for power grid resilience curves, triangular curves, and trapezoidal curves. Triangular curves characterize 
resilience behavior based on three fundamental properties: 1. critical functionality threshold, 2. critical func
tionality recovery rate, and 3. recovery pivot point. Trapezoidal archetypes explain resilience curves based on 1. 
duration of sustained function loss and 2. constant recovery rate. The longer the duration of sustained function 
loss, the slower the constant rate of recovery. The findings of this study provide novel perspectives enabling 
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better understanding and prediction of resilience performance of power system infrastructure in extreme weather 
events.   

Introduction 

As a component of critical infrastructure systems, the electrical 
power grid plays a fundamental role in supporting and maintaining the 
functioning of modern societies. Citizens, industry, and governments 
heavily rely on electric power to perform economic, social, and 
administrative activities such as operating machines in factories, 
providing life support in hospitals, and managing telecommunications 
and transportation system. Despite its vital role, the power infrastruc
ture system is susceptible to hazard events, including storm, flood, and 
freezing events. Extreme weather and climate events can cause physical 
damages to power system facilities or shift the supply-demand rela
tionship to become unbalanced [1]. Thus, large-scale blackouts are one 
of the most common cascading effects brought by major severe weather 
events. With the increasing severity and frequency of extreme weather 
events, power outages pose threats to more people with wider reach as 
well as higher frequency. The decade from 2011 to 2021 witnessed 
roughly 78 % more weather-related power outages than did the decade 
from 2000 to 2010 [2]. And Hurricane Ian in 2022 left approximately 
over 9.62 million people without power; Winter Storm Uri impacted 
more than 11.7 million people [3]. Power outages can adversely affect 
communities’ multiple needs for energy services, and further affect 
other infrastructure and public service provisions considering the 
interdependency between power systems and other critical 
infrastructures. 

Given the high dependency on and vulnerability of the power sys
tem, analyzing and characterizing the resilience of the power system is 
of utmost importance. Although definitions may slightly vary, resilience 
of a power infrastructure system in general refers to the system’s ability 
to resist, respond to and recover from disruptions to maintain func
tionality of delivering energy service to end-users [4,5]. To capture and 
communicate quantitative and qualitative aspects of system behavior 
during disruptions, the resilience curve is the most often applied tool 
providing a visual representation of resilience behavior of systems. 
Resilience curves depict the fluctuation of system performance before, 
during and after a disruption [6]. The y-axis of the resilience curve 
shows the level of performance measure; the x-axis shows the timeline. A 
typical resilience curve starts from t0, a time when the system stays in 
normal state. Then the curve records time stamps when disruption oc
curs and ends, and the performance level during this period. More 

detailed description and visualization of resilience curves are provided 
in the literature review section. 

Despite the widespread application in resilience-related studies, 
multiple knowledge gaps exist regarding the characteristics of infra
structure resilience curves. First, the resilience triangle has served as the 
standard paradigm for analyzing resilience behaviors of infrastructure in 
various contexts for nearly two decades, characterizing the changes of 
system performance over time as instantaneous performance loss, im
mediate response, and an approximately linear recovery. This paradigm 
provides a model to conceptualize resilience behavior for all infra
structure systems, while the one-size-fit-all model fails to capture and 
represent specific characteristics of resilience curves for each infra
structure type. The follow-up to the resilience triangle paradigm has 
been the resilience trapezoid paradigm, which recognizes variations in 
system resilience behaviors, such as cascading failure and pre-recovery 
degraded performance. However, both the triangular and trapezoidal 
models are rather conceptual and fail to specify fundamental properties 
of resilience curves that enable understanding and predicting infra
structure system behaviors under perturbations. Little empirical work to 
delineate infrastructure resilience curve archetypes and their funda
mental properties is based on observational data. Most of the existing 
studies examine the characteristics of infrastructure resilience curves 
based on analytical models, which are constructed upon simulated 
system performance. There is a dire dearth of empirical studies in the 
field, which hinders our ability to fully characterize, understand, and 
predict resilience characteristics in infrastructure systems. 

To bridge the gap, this study collected power outage data during 
three major extreme weather events in the United States at fine-grained 
geographical scales. The power outage data served as a proxy for power 
system performance loss to delineate resilience curves. Unsupervised 
machine learning method (i.e., time-series clustering) was adopted to 
answer the following research questions: (1) What are the main arche
types of the power system resilience curve? (2) What are the funda
mental properties of each resilience curve archetype? In the analysis, we 
empirically revealed two primary archetypes for power system resil
ience curves, triangular and trapezoidal curves. For each archetype, we 
identified several fundamental properties that could elucidate the 
changes of power system performance under perturbations. The findings 
in this study will advance the understanding of infrastructure resilience 
behavior in extreme events. 
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Fig. 1. An example of typical resilience curves.  
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Literature review 

Resilience curves could date back to the work of Bruneau et al. [7] on 
seismic community resilience. This study developed a measure Q(t), the 
service quality of the infrastructure over time, to quantify resilience. The 
function plot of Q(t) is a resilience curve. Since its birth, the resilience 
curve has been a powerful tool for researchers to illustrate key infor
mation related to disruptive events and affected systems of interest. A 
typical resilience curve carries several key information, including 
normal performance level, the time when a disruptive event occurred to 
the system, residual performance of the system, disruption period, the 
recovery state and performance of stable recovered state [8]. Fig 1. 
shows an example of typical resilience curves. 

Based on the shape of resilience curves, the resilience triangle is the 
original paradigm widely accepted to describe resilience behavior of 
infrastructure systems. This paradigm features by instantaneous per
formance loss after a shock and immediate response for the system 
performance to bounce back [6]. Building upon this paradigm, different 
studies have developed multiple analytical measures to capture features 
of resilience. Bruneau et al. [7] computed loss of resilience as the area of 
resilience triangle. Zobel [9] considered different resilience loss patterns 
by illustrating the trade-offs between recovery period length and system 
initial loss. Bocchini, Frangopol, Ummenhofer, and Zinke [10] inter
preted robustness of the system as the lowest performance level during 
the disruptive period and rapidity of recovery as the average slope of the 
recovery path (the hypotenuse of resilience triangle). Cimellaro, Rein
horn, and Bruneau [11] proposed forms of recovery function as linear 
recovery, trigonometric recovery, and exponential recovery, and relate 
the differences to preparedness and resources availability, as well as to 
societal response. 

Despite the ability of resilience triangle model to capture some of the 
key features of resilience behavior in infrastructure systems, the model 
provides a rather simplistic and one-size-fits-all characterization. Actu
ally, the performance of an infrastructure system may not drop to its 
lowest state instantaneously, and the degraded state may last for some 
time before restoration is initiated. Recognizing this gap, a new pattern 
called resilience trapezoid was introduced by Panteli, Mancarella, Tra
kas, Kyriakides, and Hatziargyriou [12] to overcome the limitations of 
the resilience triangle model. The resilience trapezoid model portrays all 
possible phases that an infrastructure system can experience during a 
disruptive event. Unlike the triangle model, the resilience trapezoid 

model captures disturbance progress and post-disturbance degradation, 
as well as the time stamps of the transitions between different stages 
[13]. Fig 2. provides a schematic illustration for the two types of resil
ience curves. 

Resilience curve models have the potential to convey both qualita
tive and quantitative aspects of infrastructure system behaviors under 
disruption. The most common use case is to apply resilience curve as a 
conceptual illustration. For example, Panteli and Mancarella [14] pre
sented a theoretical resilience curve demonstrating the corresponding 
relationship between the needed key resilience features “4Rs”(robust
ness, redundancy, resourcefulness, and rapidity) with the progress of 
disruptive events in power system. Similarly, Tiedmann et al. [15] 
applied a conceptual resilience curve to define water infrastructure 
evolution stages. Dessavre, Ramirez-Marquez, and Barker [16] intro
duced stress as a novel dimension to compare resilience among systems 
and presented the way to employ multiple resilience curves to generate 
comprehensive system resilience comparisons. Another application of 
resilience curves is to serve as a basis of quantitative analyses, whose 
purpose could be resilience evaluation [17,18], restoration strategy se
lection [19–21], and identification of critical components in infra
structure systems [22]. Based on triangular or trapezoidal model, these 
studies specified various performance measures, namely the y-axis of 
resilience curves according to the context of research, such as oil energy 
system [23], thermal resilience of buildings [24], and natural gas 
network [25] and further applied simulation method to compute 
resilience-related metrics. Several studies pre-assume certain 
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Fig. 2. Schematic illustration for triangular and trapezoidal resilience curves. Green curve represents a triangular curve, and orange curve represents a 
trapezoidal curve (Adapted from [7,12]). 

Table 1 
Summary of literature review section.    

Description Representative 
works 

Resilience curve 
model 

Triangle - Instantaneous 
performance loss after a 
shock 
- Immediate recovery 

[7,10,11] 

Trapezoid - Disturbance progress 
- Post-disturbance 
degradation 
- Restorative stage 

[12] 

Resilience curve 
application 

Qualitative -conceptual illustration [14,15] 
Quantitative -basis of quantitative 

analyses 
[18,22,23]  
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infrastructure system behaviors according to specific scenarios to 
customize the standard resilience curve model. For example, Xiong et al. 
[21] assumed the recovery curve of post-earthquake building to be 
stepped. Mitoulis, Bompa, and Argyroudis [26] considers the impacts of 
proactive adaption and regular maintenance on original transport 
infrastructure curves. Table 1 summarized the main points we have 
discussed in this section. 

Despite the various resilience curve related studies, key gaps still 
exist. First, resilience curves only serve as the simplified visualization 
tool to illustrate the basic idea of resilience stages. Actually, resilience 
curves could carry rich information reflecting the system resilience 
characteristics, while oversimplification would cause information loss to 
some extent. Moreover, current studies construct resilience curves from 
a conceptual and analytical perspective, and then proceed further 
quantification based on the assumptions made on the resilience curves. 
Few studies have been done to construct resilience curves empirically 
and probe the archetypes and fundamental properties based on empir
ical curves. A exception would be Nichelle’Le K, Dobson, and Wang 
[27]’s research, which generated resilience curves from utility data to 
decompose overlapped outage progress and restore progress. Overall, 
such studies are still lacking. The dearth of empirical characterization of 
resilience curves has hindered the understanding and prediction of 
actual resilience behaviors of infrastructure systems in the real world. To 
address the gap, this study recorded observational power outage data 
during extreme weather events as an indicator of power system per
formance and used them in constructing empirical resilience curves, and 
then performed unsupervised time-series clustering based on the shape 
of curves to reveal and characterize archetypes of resilience curve. 

Methodology 

This analyzing framework of this paper consists of the following 
components: (1) collecting power outage reports during extreme 
weather event and number of energy service customers in all affected 
geographical units; (2) calculating power outage percentage for each 
geographical unit at every time point; (3) constructing power system 
resilience curve for each geographical unit; (4) adopting time series 
clustering method to identifying power system resilience curve 

archetypes and key properties. Fig. 3 depicts the overview of the 
framework. 

This section first provides brief background information on the 
hazard events studied in this research and then describes the procedure 
of constructing and processing raw datasets to build power system 
resilience curves. Finally, the unsupervised time-series clustering 
method was introduced and applied to acquire the archetypes of resil
ience curves. 

Background information on hazard events 

Ice storm in Austin, Texas (2023) 
An ice storm hit the southern part of United States in early 2023, 

which impacted the Austin area, Texas, from January 30 through 
February 2. The storm brought several rounds of freezing precipitation, 
causing widespread ice accumulations. The icing event paralyzed the 
city for days as the significant ice buildup weighed down trees and 
powerlines. Fallen trees further toppled powerlines and poles. At the 
peak of outages, more than 200,000 instances of power outages were 
recorded across the Austin metro area [28]. 

Hurricane Irma (2017) 
Hurricane Irma made landfall in southern Florida as Category 4 

hurricane on September 10, 2017, and then moved into central and 
northern Florida at Category 3 intensity later [29]. The hurricane 
brought heavy rains and winds, causing widespread power pole damage. 
Nearly two-thirds of Florida’s electricity grid was knocked out by the 
event, affecting 6.7 million electricity customers. As the count reflects 
the number of billed accounts, the actual number of affected people 
could be more since one account can cover more than one person [30]. 

Hurricane Ida (2021) 
Hurricane Ida was one of the most devastating in the recent years, 

and is listed as the sixth costliest tropical cyclone in United States in the 
history [31]. As a Category 4 hurricane, Ida made landfall along the 
southeastern Louisiana coast near Port Fourchon on August 29, 2021, 
and then affected 20 states in total, including Mississippi, Alabama, 
Tennessee, Kentucky, Virginia, Maryland [32]. Heavy winds downed 
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Fig. 3. Overview of the analysis framework.  
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power lines. A large transmission tower along the Mississippi River west 
of New Orleans was reported to have collapsed during the event. Ac
cording to Entergy’s estimation, 30,000 utility poles were damaged 
during Ida, which matches the combining effects of Hurricane Katrina in 
2005 and Hurricane Laura in 2020. All of the factors mentioned resulted 
in massive and severe power outages across eight states, leaving up to 
1.2 million electricity customers without service [33]. 

Power outage data collection and preprocessing 

In this study, we used power outage data as an indicator of power 
system performance. The normal operation of a power system requires 
functionality of all system components, such as power generation, 
transmission stations, and powerlines. Thus, power outage data can 
serve as a comprehensive measure of overall power service performance. 
For Hurricane Ida and the ice storm, this study monitored and collected 
real-time power outage data during the events. Power outage data for 
Ida was collected from PowerOutage.US and Entergy power websites. 
Entergy is the main electricity service provider to the most affected areas 
in Louisiana, so this study used Entergy outages to reflect the extent of 
power outages caused by Hurricane Ida. Each record contains Zip code 
ID, number of affected customers, and last updated time. This study 
covers period from August 29 through September 11, 2021. For each Zip 
code region, data points within the same day were averaged to obtain 
daily values, which could help smooth the data and mitigate the effects 
of outliers. 

In a similar way, real-time power outage data for the ice storm was 
collected from Austin Energy. The website updates outage information 
every 10 min at Zip code level. We collected the number of affected 
customers for Zip code regions in Austin at 2-hour intervals from 
February 3, 2023, through February 9, 2023. The data then were aver
aged at 6-hour interval, to keep tracking the changes of power outages, 
while make the data more smoothed. 

Power outage data for Hurricane Irma were obtained from Florida 
Today [34], a digital newspaper. The data provides percentage of power 
outages across Florida at county level. The original data was not 
collected at a regular temporal interval; instead, one or two represen
tative data points within the same day were provided. For example, 
power outage percentages records were provided for 6 a.m. and 9 p.m. 
on September 10, 2017, while on September 11, 2017, only one data 
point at 12 p.m. was available. To resolve the inconsistency of time in
tervals, daily averages were computed for days with multiple records 
available. For days with only one record, single data points were used as 
a proxy of the daily values. Fig 4. displays the extent of power outage 
across impacted areas. 

Power system resilience curves 

As discussed in the literature review section, infrastructure resilience 
curves capture system performance over time during a disruption event. 
When constructing resilience curves, normalizing performance mea
sures is a common practice to enable comparison across systems and 
scenarios [6]. In this study, we used power outage percentage as the 
normalized system performance. Theoretically, performance can range 
from 0 % to 100 %, where 0 % designates no service is available, and 100 
% means no degradation in energy service. 

The percentage of outages at each geographical unit was determined 
by the ratio of the number of affected population and the total popula
tion of the geographic unit. Due to the variances of total population size, 
the absolute number of affected customers may not necessarily the 
extent of power outage. Thus, we adopted power outage percentage as 
an indicator. It is important to note that we used the total population of 
each unit rather than the total number of customers as the nominal 
values, due to data unavailability. Since each Zip code may have mul
tiple electricity providers, the number of customers of a certain provider 
in a Zip code may deviate from the number of total population. To 
alleviate the inaccuracy brought by the deviation, we selected only Zip 
codes where Entergy and Austin Energy served as the main electricity 
provider, so that the number of total population can serve as an 
approximate of number of customers. 

For the three hazard events, we constructed three separate datasets, 
considering differences of scenario, time span, and geographical units. 
Each spatial unit (Zip code or county) is represented by a piece of time- 
series data, which is a sequence of power outage percentage records over 
the studied period. If the missing values of outage records for some 
spatial units exceed 50 %, the units would be excluded from further 
analysis. Otherwise, the missing values were filled by linear interpola
tion. Dealing with missing values properly is an important step of data 
cleaning, which could help to improve data quality and accuracy. 
Moreover, spatial units with less than 10 % percent of outage during the 
disruption period were excluded because the researchers were not able 
to confidently determine whether the outage is due to hazard events or 
occasional factors. After data cleaning, there remained 222 spatial units 
in total, 126 Zip codes in Hurricane Ida, 37 Zip codes in the ice storm, 
and 59 counties in Hurricane Irma. To facilitate visualizing the resilience 
curves, we set a baseline as 0 % right before the disruption occurred, 
since power outage percentage is roughly zero when the system operates 
normally despite that minor variations that may apply. Moreover, all the 
values were transformed into their negative counterparts by employing 
a unary negation operation, so that the plots were inversed to fit the 
common shape of resilience curves. We use the 222 empirical resilience 
curves to specify the archetypes and their fundamental properties. 

Fig. 4. Power outage extent across the affected areas.  
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Time-series clustering 

DTW-based K-means clustering method 
Although power system resilience curves have been established, it is 

challenging to identify patterns directly from hundreds of empirical 
curves. Thus, an unsupervised machine learning method was applied to 
cluster the curves. Every curve actually represents a time series, which is 
a sequence of observations (power outage percentage in this paper) over 
the disruption period. This study employed a shape-based time series 
clustering approach, which partitioned the time-series dataset into a 
certain number of clusters according to shape similarity. Shape-based 
clustering usually applies conventional clustering algorithms but mod
ifies similarity measures to make it compatible with time series data 
[35]. Shape-based clustering method focus on grouping time-series data 
samples presenting similar trends or patterns, instead of the specific 
values at each time point, which makes it a widely applied clustering 
method in pattern recognition. The goal of this study is to identify power 
system resilience curves, which means to identify patterns how power 
system performance changes over time. Thus, shape-based method is 
appropriate to our research purpose. The research implemented by Wen, 
Zhou, and Yang [36] also verified that shape-based method is superior to 
the traditional clustering method in achieving better performance in 
pattern recognition, due to its capability to capture shape similarity. 
This study adopted k-means to identify archetypes of resilience curves 
with similar shape. K-means is an unsupervised partition-based clus
tering algorithm that splits samples into K groups and minimizes the sum 
of mean squared distance within each group [37]. Given a dataset on n 
time series T = {t1, t2, …, tn}, partitioning T into a total of k clusters, i. 
e., C = {C1, C2, …, Ck} can be solved by minimizing the objective 
function J, expressed as: 

∑k

j=1

∑n

i=1
D

(
tj
i , Cj

)
(1)  

where tji denotes the time series ti in category j, and D(tj
i , Cj) denotes the 

similarity measurement of the distance between tj
i and the cluster center 

of Cj). 
From Eq. (1) one can see that distance measurement is the most 

critical option when performing K-means. Euclidean distance is the most 
commonly used metric, yet it is not appropriate to time series. Euclidean 
distance computes the direct distance between corresponding points 
while not considering the time dimension of the data. As a result, if two 
time series are highly similar in their shapes but misalign in time points, 
Euclidean distance would erroneously measure the two time series as far 
apart, leading to the failure to capture the shape similarity. To overcome 
the limitation, this study adopted dynamic time warping (DTW), 
another distance measurement specific to temporal data. DTW distance 
is calculated as the square root of the sum of squared distances between 
each element in X and its nearest point in Y. For better understanding, 
we illustrate the calculation of DTW distance with an example involving 
power outage percentages of two Zip codes, namely Zp and Zq, during a 
disruptive event. Suppose the two time-series for Zp and Zq are denoted 
as p = (p1, p2, …, pi) and q = (q1, q2, …, qj). To determine DTW 
distance between P and Q, a distance matrix D with i ×j elements is first 
established. The element of the matrix, dij is calculated as follows: 

dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
pi − qj

)2
√

(2)  

where pi is the outage percentage at the ith time point in time series p and 
qj is the outage percentage at the jth time point in time series q. In the 
distance matrix D, a series of neighboring elements that connect the 
lower left corner through upper right corner and achieve a minimum of 
cumulated dij, can be found as a warping path. A warping path can be 
denoted as π = [π0, …, πk], where max(m,n) ≤ k ≤ m + n − 1, and πk is 
an index pair (ik, jk). DTW distance is the length of the warping path, 

formulated as 

DTW(p, q) = minπ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(i,j)∈π
dij

√

(3)  

with the path subjecting to boundary conditions, continuity condition 
and monotonicity condition, about which more information can be 
found in [38]. 

Selection of optimal number of clusters 
Before performing DTW-based K-means clustering, the number of 

clusters (i.e., k) needs to be predefined. As the ground truth is not 
available, the common practice of determining k is to repeatedly execute 
the clustering algorithm with several k values to identify the optimal. 
This study provides a more comprehensive approach by combining two 
performance metrics, namely the silhouette score and the distortion. 

The silhouette score provides a measure of how well the data points 
within each cluster are separated from other clusters. Given a clustering 
result with k clusters, for a resilience curve i, let a(i) be the average DTW 
distance between i and all the other resilience curves in the same cluster, 
and let b(i) be average DTW distance between i and all the resilience 
curves in the nearest cluster, the silhouette score s(i) of resilience curve i 
is computed by: 

s(i) =
b{i} − a{i)

min{a(i), b(i)}
(4) 

The silhouette score of the entire clustering is given by taking the 
average s(i) of all resilience curves. The range of the silhouette score is 
from -1 to 1, and higher score indicates higher level of separation be
tween clusters. 

Similar to the process of employing the silhouette score to determine 
k, the elbow method first chooses a range of possible cluster numbers 
and runs a clustering algorithm for each k. For each round of the clus
tering, it calculates the within-cluster sum of squared distances from 
each data point to its assigned cluster center. The value is usually 
referred as distortion. Given the cluster centers as ci, where i ranges from 
1 to k, and given Si as the set of time series data points (resilience curves 
in this study), the distortion can be calculated as 

distortion =
∑

i
DTW(Si, ci)

2 (5)  

where DTW(Si, ci)
2 denotes the DTW distance between all the resilience 

curves in cluster i and cluster centers ci. The level of distortion reflects 
how compactly data points are grouped around their cluster centers, and 
lower distortion values indicate more compact clusters. 

Since the silhouette score and distortion underscore the different 
aspects of clustering performance, it is a better idea to combine the two 
measures to find the optimal cluster number, so as to ensure both well 
separation between clusters and compactness within clusters. 

This study used tslearn [39], a Python machine learning package 
specific to time-series data to perform tasks, including K-means clus
tering, silhouette score, and distortion calculation. When performing 
clustering analysis, we set the hyperparameter “init” as “k-means++”, 
which means we applied K-means++ algorithm to achieve smarter 
centroid initialization. This algorithm is proposed by Arthur and Vas
silvitskii [40], which assigns the first centroid randomly, and selects the 
remaining centroids based on the maximum squared distances. The 
original K-means method suffers from the sensitivity to centroid 
initialization, while K-means++ method could overcome this disad
vantage and achieve higher accuracy. 
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Fig. 5. The silhouette score and distortion of varying numbers of clusters for the three natural hazard events. a and b. Silhouette score and distortion for 
Hurricane Ida; c and d. Silhouette score and distortion for the ice storm; e and f. Silhouette score and distortion for Hurricane Irma. 
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Results 

Implementation of DTW-based k-means method 

Power system resilience curves during the three hazardous events 
were clustered respectively. The DTW-based K-means requires pre
determining number of clusters before performing clustering. As 
described in Section Selection of Optimal Number of Clusters, this study 
applied two methods to determine the optimal cluster number (k): (1) 
the silhouette score and (2) the elbow method regarding distortion. For 
the first method, the k value which yields higher silhouette score is 
preferred; For the elbow method, distortion refers to within-cluster sum 
of squared distances, so lower level of distortion means more compact 
and better clusters. The graph of distortion exhibits an elbow-like shape, 
and the elbow point is usually regarded as the optimal cluster number. 
The two methods examine separation extent between clusters and 
compactness within clusters, so taking both methods into consideration 
can facilitate identifying the most appropriate numbers of clusters (k). 

For each of the events, this study repeatedly performed DTW-based 
K-means algorithm with several k values. The initial range of k was set 
from 2 to 10. The silhouette score and distortion based on DTW distance 
were computed and plotted as Fig 5. 

For comparison purposes, similar experiments were performed using 
Euclidean distance-based k-means method. Generally, the results for all 
the three events show higher silhouette score and lower distortion based 
on DTW distance than that of Euclidean distance, indicating DTW-based 
k-means method have the greater potential to improve clustering 
performance. 

For Hurricane Ida, the highest silhouette appears when k = 2, and 
the second highest peak level is achieved at k = 3 and k = 5. The 
distortion plot in Fig. 5b shows that the “elbow point” is at k = 4, where 
the distortion decreasing rate gets flatter. As a result of trade-off be
tween the two metrics, the number of clusters was set to 5 so that the 
silhouette maintains a relatively high level while the distortion is low. 
Silhouette result for the ice storm shows similar pattern that the peak is 
reached at k = 2 with the second highest level is achieve at k = 3 and k =
7. However, no significant “elbow point” can be identified from Fig. 5d. 
Considering the small number of data points collected in this event, 
large number of clusters can lead to a series of problems (for example k =
7), such as overfitting, unstableness of clustering, and lack of repre
sentativeness. Thus, k = 2 is selected, which also yields the highest 
silhouette score. For Hurricane Irma, both Fig. 5e and Fig. 5f shows 
consistent results that k = 3 is the “elbow point” and achieves the 
highest silhouette score. Basically, the decisions of cluster number in this 
study were the result of comprehensive factors, including the two per
formance metrics, as well as the number of data points, and cluster 
interpretability. The final results of clustering for the three natural 
hazard events are listed in Table 2. 

Clustering results 

The clustering results are displayed in Fig. 6. The plots on the figure 
show the average curves for each cluster, which represents the shape of 
the members in each cluster. Fig. 6a displays five clusters, while cluster 3 
contains only four Zip codes, which did not provide sufficient confidence 
on its reliability whether showing a specific pattern or just outliers. 
Thus, out of prudence, cluster 3 in the Hurricane Ida power outage was 

excluded from the following analysis. The remaining clusters indicated 
two main archetypes regarding the shape of the curves: triangle and 
trapezoid. Cluster 1 in Hurricane Ida, both clusters (cluster 1 and 2) in 
the ice storm and cluster 2 and cluster 3 in Hurricane Irma show a 
triangular archetype, while other clusters show the trapezoidal arche
type. These findings show consistency with the prior research that both 
triangular and trapezoidal archetypes exist regarding the shapes of 
resilience curves. Furthermore, the result shows that triangular and 
trapezoidal patterns could exist in the same event (Hurricane Ida and 
Hurricane Irma in this study), which, to the best of the authors’ 
knowledge, has not been reported before. Even with the similar extent of 
performance loss, the power system could still take on different resil
ience behavior (cluster 1 and 3 in Hurricane Irma) by starting to recover 
with no delays or remaining in sustained performance loss for some time 
then starting to recover. 

After specifying the two archetypes of power system resilience 
curves, this study further investigated the key properties characterizing 
each archetype. First, we inferred the properties from direct observation 
on the averaged curves, and then provided supporting evidence based on 
additional calculations. For trapezoidal curves, this study divided each 
trapezoidal curve into two stages after the initial performance loss: the 
curve maintained maximum performance loss level for several days, 
during which we named as sustained performance loss stage, and then 
started to bounce back with a certain recovery rate. Furthermore, we 
could speculate upon the relationship between duration of sustained 
performance loss and recovery rate: the longer the system stays in 
maximum performance loss stage, the slower the recovery would be. 

Compared with trapezoidal curves, triangular curves are character
ized to have instantaneous recovery, while the recovery processes occur 
through a two-stage pattern. The system performance first experiences a 
faster recovery until a certain performance level, and then the recovery 
rate slows down until the system is fully recovered. Based on the 
observation, we defined the turning point of recovery rate as recovery 
pivot point, at which the recovery rate changes. The corresponding per
formance levels for recovery pivot among the triangular curves are quite 
close, indicating that the performance level of recovery pivot might be 
an important threshold. We call the performance level the critical func
tionality threshold, since we infer that the power system would recover 
rapidly to the threshold to restore the critical functionality of the system. 
The recovery rate after restoring the performance to the critical func
tionality threshold would be slower. Accordingly, the recovery rate 
before achieving critical functionality is named critical functionality 
recovery rate. Critical functionality threshold could also explain the 
triangular curves with single recovery rate: since the performance loss of 
such curve does not exceed the threshold, the system follows one re
covery rate. Fig. 7 displays both archetypes and associated properties 
identified from clustering results. 

To provide quantitative evidence to support the observations made 
on the properties of each resilience curve archetype, this study calcu
lated gradients of each data point on the averaged resilience curves and 
further calculated percentage change of the gradients. Gradients indi
cate the failure and recovery rate at each time point, while percentage 
changes indicate the speed for failure or recovery rate to change. Fig. 8 
summarizes the archetypes and associated properties of power system 
resilience, as well as corresponding indicators used to provide quanti
tative support. 

The quantitative gradient change analysis results of trapezoidal 
curves are shown in Fig. 9. Significant peaks can be identified in the 
plots of gradient percentage change indicating the time point when 
dramatic changes occurred to the curves, namely the moment when 
trapezoidal resilience curves start to recover from sustained maximum 
performance loss. For example, a peak of gradient change stands out on 
September 5, 2021, for cluster 2 in Hurricane Ida (Fig. 9a), and at the 
same time, six days of sustained performance loss stage came to an end 
and the power outage percentage started to decline. Similar patterns 
also can be found on cluster 4 of Hurricane Ida (Fig 9b). The peak 

Table 2 
Summary of clustering result for the three hazard events.  

Event Number of resilience curves Number of 
clusters 

Silhouette 
score 

Hurricane Ida 126 5 0.345 
Ice storm 37 2 0.312 
Hurricane Irma 59 3 0.298  
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Fig. 6. Clustering result for the three natural hazard events. a. Five clusters are obtained for Hurricane Ida; b. Two clusters are obtained for the ice storm; c. 
Three clusters are obtained for Hurricane Irma. 
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occurred on September 3, 2021, the same day when power system 
performance starts to recover. The peaks of the two clusters indicate 
drastic gradient change of the curves, which are cohesive with the 
observation of averaged resilience curves. Thus, the corresponding 
points would be the turning points which separate sustained perfor
mance loss stage and recovery stage. Based on that, we calculated the 
duration of sustained performance loss as the number of days between 
the day when lowest performance level and the day when the turning 
point occurred. After the turning point, the performance of the system 
starts to recover at a constant pace, since no significant peaks of gradient 
performance changes are observed anymore. From the calculation, we 
could further infer the relationship between duration of sustained 

performance loss and recovery rate: the longer the system stays in 
maximum performance loss state, the slower the recovery would be. 

Note that there is a peak in cluster 5 of Hurricane Ida while signifi
cant changes were observed neither from the plot of averaged resilience 
curve nor the plot of gradients. The presence of the peak is due to the 
plot of cluster 5 being almost horizontal, and the resulting gradients are 
so small in magnitude that gradient percentage changes of this curve are 
quite sensitive. Although the peak shows a great change of gradients 
between data points on September 4 and 5, 2021, the actual gradients of 
the two points are tiny (0.00531 and 0.000118), which could be 
neglected. Thus, we ignored the “fake peak” and considered this resil
ience curve as nearly horizontal. Cluster 5 is an extreme case, with the 
longest period of sustained loss and zero recovery during the research 
period. 

Similar analyses were performed on the triangular archetypes of 
power system resilience curves (cluster 1 in Hurricane Ida, clusters 1 and 
2 in the ice storm, clusters 2 and 3 in Hurricane Irma), shown in Fig 10. 
Among the five curves, the gradient plots of four (cluster 1 in Hurricane 
Ida, cluster 1 in the ice storm, clusters 2 and 3 in Hurricane Irma, 
Fig. 10a, 10c-10e) display common trends: after the gradients turn from 
negative to positive, the curves climb up initially and then decrease with 
a converging tendency to zero. The trajectory of gradient curves reflects 
a noteworthy system behavior that when the system starts to recover, 
the speed of recovery is not constant as with trapezoidal curves. Instead, 
the system performance represented by triangular curves first experi
ences rapid recovery until a certain performance level, and then the 
recovery rate slows down until full recovery. For example, between 
September 12 to September 15, 2021, cluster 2 of Hurricane Irma 
(Fig. 10d) recovers rapidly, with the average gradient value larger than 

Fig. 7. Conceptual illustration of archetypes and key properties of power sys
tem resilience curve under extreme weather. 
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Fig. 8. Understanding resilience behavior of power systems based on the identified archetypes and their properties.  
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0.1 After September 15, the recovery gradients drop to around 0.01. 
Based on the same idea of separating sustained performance loss stage 
and recovery stage, we defined the turning point of recovery speed as 
recovery pivot, and the period before the point as rapid recovery stage 
and the other side as slow recovery stage. The corresponding perfor
mance level of recovery pivot point is −0.205 for cluster 2 and is 
−0.1980 for cluster 3 for Hurricane Irma. The results indicate that the 
critical functionality threshold was around 20 % for the case of Hurri
cane Irma, and the power system would recover rapidly to the threshold 
to restore critical functions of the system, and then achieve full recovery 
with a slower pace. Clusters in the ice storm also follow the same 
pattern: cluster 1 has a recovery pivot point on February 4, 2023, at 
18:00, with critical functionality threshold around 16.8 %. For cluster 2 
of the ice storm (Fig. 10b), no recovery pivot was identified, since the 
maximum power outage is 16.9 %, which is almost equal to the critical 
functionality threshold. In other words, if the performance loss does not 
exceed the threshold, the power system would recover at a constant rate 
with no recovery pivot. The finding is consistent with the observation 
from both the average resilience curve and the gradient plot. 

Among all the clusters, cluster 1 of Hurricane Irma (Fig. 11) is a 
special case which we called a “transitional state” between triangular 
and trapezoidal curves, because it bears properties of both archetypes. 
From the resilience curve, it has a period with sustained performance 
loss, while the period is quite short, lasting only 6 h. Two recovery pivots 
can be found on the curve, one separates the sustained performance loss 
stage and recovery stage, which is identical to trapezoidal curves. 
However, instead of having constant recovery rate, there exists another 
recovery pivot point, which separates rapid recovery with slow recov
ery; the corresponding threshold is around 12.9 % power outage. 

Discussion and concluding remarks 

Although resilience curves have remained the primary model for the 
understanding of resilience behavior of infrastructure systems, the most 
prevalent studies to characterize and quantify infrastructure resilience 
are proposed on a theoretical or simulation basis. Empirical research on 
resilience curve archetypes and their fundamental properties is rather 
limited. To fill the important gap, this study applied an unsupervised 
machine learning clustering method to examine more than 200 power 
system resilience curves related to power outages in three extreme 
weather events, which provides empirical support to facilitate the 

understanding of and prediction of resilience characteristics in infra
structure systems. We collected direct power outage data along with 
time stamps during Hurricane Ida, Hurricane Irma, and the ice storm 
across Texas in early 2023. Using power outage rate as an indicator of 
system performance, resilience curves of power systems at each 
geographical unit were delineated. Dynamic time warping based k- 
means, a method specifically applicable to time-series data, was applied 
to perform clustering. We examined the identified clusters to reveal 
resilience curve archetypes and evaluated their fundamental properties. 
This study provides the following insights:  

• Two archetypes of power system resilience curves are identified 
empirically: triangular and trapezoidal curves 

This finding verifies the two theoretical model in the prior literature. 
Furthermore, this study also empirically found that the triangular curves 
and trapezoidal curves can be coincident within the same disruptive 
event. However, current analysis performed in this research could not 
specify factors that lead to the occurrence of triangular or trapezoidal 
resilience behaviors in different areas of a community. This limitation is 
because the power outage percentage is the only data we could obtain, 
and we could not collect data related to the intensity of the extreme 
weather event across the studied areas, the physical conditions of the 
systems, and the availability of resources after the event. If more data 
becomes available, future studies could examine factors that shape the 
occurrence of each resilience curve archetype.  

• Two fundamental properties determine the behaviors of trapezoidal 
curves: duration of sustained performance loss, and constant recov
ery rate 

By direct observation and gradient, as well as by percentage change 
of gradient calculation, we found that the longer the sustained perfor
mance loss lasts, the slower the constant recovery rate would be. This 
finding suggest that a longer period of sustained performance loss could 
be an indicator of a greater extent of damage which would lead to a 
slower recovery rate.  

• Three fundamental properties determine the behaviors of triangular 
curves: recovery pivot point, critical functionality threshold, and 
critical functionality recovery rate 

Fig. 9. Trapezoidal resilience curves and their properties. Each subplot displays average resilience curve, gradients of each data point and gradient percentage 
changes of each data points. a-c display results for clusters 2, 4, and 5 in Hurricane Ida. 
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Similar to trapezoidal curves, the recovery pivot point denotes the 
time point when the recovery rate changes. Remarkably, the recovery 
pivot point occurs when the system reaches the critical functionality 
threshold, which is about 80 % to 90 % (namely 10 % to 20 % perfor
mance loss) in this case. When about 80 % to 90 % of the system per
formance is restored, the recovery rate slows done, and hence recovery 
rate changes. If the actual performance loss exceeds the critical func
tionality threshold, the recovery would proceed in a rapid manner until 
it reaches the recovery pivot point. For the cases studied in this research, 
the value of the critical functionality threshold is between 80 % to 90 %. 
However, the universality of this critical functionality threshold for 
power infrastructure needs to be verified using additional datasets 
related to power outages. If the actual performance does not drop below 
the critical threshold, the system will recover with a constant rate. If the 
performance loss is greater than the critical threshold, the recovery 

would follow a bi-modal recovery rate with the recovery pivot point 
occurring when the system reaches the critical threshold. The results of 
this research deepen our understanding of the resilience performance of 
power infrastructure systems and provide a more detailed character
ization of infrastructure resilience curves beyond a mere conceptual 
visual representation. By identifying the fundamental resilience curve 
archetypes and their associated properties, the findings provide fresh 
and novel insights for researchers and practitioners to characterize and 
predict infrastructure resilience performance. The methods for charac
terizing resilience curve archetypes used in this study could be used in 
future studies in studying resilience behaviors in other infrastructure 
systems. Such characterizations would move us closer to a deeper and 
more detailed understanding of the resilience behavior of infrastructure 
during disruptive events. 

Finally, the presented study has several limitations that could be 

Fig. 10. Triangular resilience curves and their properties. Each subplot displays the average resilience curve, gradients of each data point and gradient per
centage changes of each data points. a-e display results for clusters 1 and 2 of the ice storm, cluster 1 of Hurricane Ida, and clusters 2 and 3 of Hurricane Irma. 
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addressed in future research. For example, the study is limited by the 
resolution and scale of datasets. Power outage data is highly perishable 
and difficult to obtain at a fine resolution. All the power outage data 
were collected manually by the authors, which is not only time 
consuming, but also limits the spatial resolution of the data provided by 
utilities on their websites. If power outage datasets with a greater spatial 
resolution are available, future studies can build upon the findings of 
this study and perhaps explore additional key characteristics in the 
resilience behaviors of power infrastructure. Also, in the absence of 
additional data regarding the power infrastructure operators’ restora
tion strategies and damage levels to different subsystems, we could not 
specify the factor that led to the occurrence of each resilience curve 
archetype (triangular versus trapezoidal). If possible, future studies 
could gather such information to uncover the factors that shape which 
resilience curve archetype is manifested. 
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