
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025 179

ArXrCiM: Architectural Exploration of
Application-Specific Resonant SRAM

Compute-in-Memory
Dhandeep Challagundla , Graduate Student Member, IEEE, Ignatius Bezzam , Member, IEEE,

and Riadul Islam , Senior Member, IEEE

Abstract— While general-purpose computing follows von
Neumann’s architecture, the data movement between memory
and processor elements dictates the processor’s performance. The
evolving compute-in-memory (CiM) paradigm tackles this issue
by facilitating simultaneous processing and storage within static
random-access memory (SRAM) elements. Numerous design
decisions taken at different levels of hierarchy affect the figures
of merit (FoMs) of SRAM, such as power, performance, area,
and yield. The absence of a rapid assessment mechanism for the
impact of changes at different hierarchy levels on global FoMs
poses a challenge to accurately evaluating innovative SRAM
designs. This article presents an automation tool designed to
optimize the energy and latency of SRAM designs incorporating
diverse implementation strategies for executing logic operations
within the SRAM. The tool structure allows easy comparison
across different array topologies and various design strategies to
result in energy-efficient implementations. Our study involves
a comprehensive comparison of over 6900+ distinct design
implementation strategies for École Polytechnique Fédérale de
Lausanne (EPFL) combinational benchmark circuits on the
energy-recycling resonant CiM (rCiM) architecture designed
using Taiwan Semiconductor Manufacturing Company (TSMC)
28-nm technology. When provided with a combinational circuit,
the tool aims to generate an energy-efficient implementation
strategy tailored to the specified input memory and latency
constraints. The tool reduces 80.9% of energy consumption
on average across all benchmarks while using the six-topology
implementation compared with the baseline implementation of
single-macro topology by considering the parallel processing
capability of rCiM cache size ranging from 4 to 192 kB.

Index Terms— Compute-in-memory (CiM), logic synthe-
sis, memory bottleneck, resonant energy-recycling, static
random-access memory (SRAM).

I. INTRODUCTION

CACHE memory remains one of the critical components
in our computing system, enhancing overall performance

Received 25 July 2024; revised 6 October 2024; accepted 9 November 2024.
Date of publication 25 November 2024; date of current version 31 December
2024. This work was supported in part by the National Science Founda-
tion (NSF) under Award 2138253, in part by Rezonent Inc. under Award
CORP0061, and in part by the University of Maryland, Baltimore County
(UMBC) Startup Fund. (Corresponding author: Dhandeep Challagundla.)

Dhandeep Challagundla and Riadul Islam are with the Department of
Computer Science and Electrical Engineering, University of Maryland at
Baltimore County, Baltimore, MD 21250 USA (e-mail: vd58139@umbc.edu;
riaduli@umbc.edu).

Ignatius Bezzam is with Rezonent Inc., Milpitas, CA 95035 USA (e-mail:
i@rezonent.us).

Digital Object Identifier 10.1109/TVLSI.2024.3502359

Fig. 1. (a) Conventional von Neumann architecture, where an operation f is
performed on data D within the CPU, incurs high data movement overhead,
which can be reduced using (b) CiM architecture, where f is computed
directly within the memory, with the CPU primarily functioning as a control
unit.

by bridging the speed gap between the main memory [ran-
dom access memory (RAM)] and the central processing unit
(CPU). In addition, in recent years, static random-access mem-
ory (SRAM)-based in-memory computing paved a promising
direction to enable energy-efficient computation. However, the
lack of design and automation tools to map computation on
optimal SRAM architecture increases design time-to-market,
resulting in higher engineering costs. This research resolves
this issue by proposing an architectural exploration tool
that efficiently maps logic computations to optimal cache
architecture.

Computing-in-memory (CiM) architectures have emerged
as highly promising solutions for data-intensive applications.
They minimize data movement, enhance computational capa-
bilities, and improve the system’s overall energy efficiency by
processing and storing data within cache memory. As shown in
Fig. 1(a), the traditional von Neumann architecture relies on
data communication between the arithmetic logic unit (ALU)
and cache memory through address and data buses. However,
as the CPU performance is significantly higher than the mem-
ory performance, the von Neumann architectures often create
memory bottlenecks. CiM architectures, as shown in Fig. 1(b),
mitigate the impact of large memory access latencies by
performing the computations within the memory. By reducing
the data movement and exploiting parallelism within the mem-
ory, CiM architectures significantly enhance computational
efficiency and performance. SRAM-based CiM architec-
tures have been heavily investigated for performing various
operations, such as matrix–vector multiplication (MVM) [1],

1063-8210 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

[2], multiply-and-accumulate (MAC) operations [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
Boolean logic operations [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], and content-addressable
memory (CAM) [31], [32], [33], [34], [35], [36] operations for
fast searching operations. However, none presents a generic
energy-saving architecture that spans across various appli-
cations. This work utilizes a novel series-resonance-based
resonant CiM (rCiM) architecture that reduces dynamic power
consumption by recycling the wasted energy during writing
operations.

This work proposes an agile architectural exploration tool
to map various logical operations to an optimal SRAM macro
cache size. The primary objective of the tool is to facilitate the
development of novel energy-efficient SRAM-based energy-
recycling rCiM implementations individually designed for
specific Boolean logical applications.

In particular, the main contributions of this article are as
follows.

1) A novel resonant rCiM structure that incorporates a
series inductor to recycle energy dissipated during write
operations.

2) An architectural exploration toolflow that integrates
open-source synthesis tools (Berkeley-ABC [37] and
YOSYS [38]) to identify the optimal SRAM configu-
ration within a specified range of SRAM cache memory
and map efficient logical operations tailored to an opti-
mal rCiM macro size.

3) Comprehensive analysis of 6900+ distinct logical design
implementations for École Polytechnique Fédérale de
Lausanne (EPFL) combinational benchmark circuits [39]
using 12 different SRAM topologies.

II. BACKGROUND

In recent years, considerable efforts have been dedi-
cated to addressing the memory bottleneck associated with
conventional von Neumann architectures by adopting CiM
architectures. This paradigm can be implemented using both
SRAM and nonvolatile memories (NVMs) [40], [41], [42],
[43], [44], [45], [46], [47], [48]. While CiMs utilizing NVMs
address static power concerns, they encounter high write
energy and latency challenges. Conversely, SRAM-based CiM
provides faster processing speed and robust scalability [49].
In a recent study, Malhotra et al. [42] propose a ferro-
electric field effect transistor-based CiM technique designed
for executing a single two-operand Boolean function with
a single-memory access. A different study [19] achieves
the implementation of an arbitrary Boolean function using
SRAM-based CiM. This work focuses on performing a whole
combinational logic, which is crucial for SRAM-based CiMs
to reduce the frequency of memory fetch operations. The
diverse logical representations utilized for these combinational
logic operations significantly influence the latency and overall
performance of CiM architectures.

Logic synthesis takes a register transfer-level (RTL) imple-
mentation, typically in Verilog or VHSIC (Very High Speed
Integrated Circuit) Hardware Description Language (VHDL),
and generates a gate-level representation of the design using a

standard cell library. This work uses YOSYS synthesizer [38]
and ABC logic synthesizer [37] to perform the RTL synthesis.
The ABC takes Verilog input, and using a “strash” function
converts the input RTL into an and-inverter-graph (AIG) graph
represented as a directed acyclic graph (DAG). This AIG graph
allows for structural optimizations to be performed [50]. This
work uses four fundamental subgraph optimizations supported
by ABC, namely, “Refactor (R f ),” “Rewrite (Rw),” “Resub-

stitution (Rs),” and “Balance (Ba).” The R f optimization
technique performs iterative collapsing and refactoring logic
nodes in the AIG, aiming to reduce the AIG nodes and
logic levels. Similarly, Rw performs DAG-aware rewriting
of the AIG network to reduce the number of logic levels.
These options are significant for CiM applications, as the
proposed rCiM implementation aims to perform a single level
of the design hierarchy within one computational cycle. The
optimization with Rs is achieved by representing the logical
function of a node using the existing nodes. A unique com-
bination of these subgraph optimizations will yield distinctive
AIG implementations—the proposed algorithm in Section III-
D leverages these AIG implementations to map combinational
workloads efficiently onto the rCiM architecture with diverse
topologies.

In addition, the innovative rCiM implementation employs a
write driver based on series resonance and supply boosting,
adopted from [51], [52], [53], [54], [55], [56], and [57],
to significantly lower the dynamic power consumption when
writing back the computational outputs. In a conventional
CiM architecture, whenever a bitline discharges from a “1” to
“0,” energy gets dissipated through heat. Series LC resonance
utilizes an on-chip inductor placed in the discharge path of
the bitlines to store this dissipated energy and harvest it
immediately into the design.

Fig. 2(a) illustrates a conventional SRAM write driver used
to write data onto the SRAM using bitlines. Whenever the
input data is “0,” the corresponding bitline (BL) is driven
from precharged value (VDD) to ground potential using the
driver inverter. The resonant write driver, shown in Fig. 2(b),
employs an inductor “L” to store this discharged energy. Dur-
ing the precharge phase, this energy is recycled back into the
corresponding bitlines, the bitline (BL) or the complementary
bitline (BLB) [51], [58]. At the start of the write operation,
the “vsr” signal is turned “on,” enabling the inductor to store
the energy discharged from bitline. Subsequently, the “vdn”
signal is turned “on” to ground the bitline fully. Once the
write operation concludes and the precharge phase begins, the
“vsr” signal is reasserted to recycle the stored energy onto the
bitline.

Designing SRAM in scaled technologies necessitates a
deep understanding of process variations, circuit dynamics,
and architectural considerations. While technology scaling has
facilitated the development of ever-larger cache memories,
persistent challenges emerge from scaling issues. Open-source
tools such as OpenRAM [59] and virtual prototyper
(VIPRO) [60] contribute significantly by providing essential
capabilities for estimating and generating SRAM architectures
but do not apply to CiM architectures as they only generate
SRAM memories for read and write operations and porting
for another technology is nontrivial. Recently, researchers

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 181

Fig. 2. (a) Conventional SRAM write driver exhibits high dynamic power
consumption due to large bitline capacitance and (b) resonant write driver
recycles this dynamic power using an inductor “L” placed in the discharge
path, along with timed “vsr” and “vdn” signals.

Fig. 3. (a) Schematic of the proposed 10T SRAM cell and (b) corresponding
layout of the bitcell using up to M3 metal layers for horizontal wordlines and
vertical bitlines with the area of the bitcell is 1.66 µm2.

developed OpenSAR [61], a tool to design successive approx-
imation register analog-to-digital converter (SAR ADC)-based
analog building blocks, such as comparators and sample-
and-hold circuits. Another noteworthy development is AutoD-
CIM [62], a tool designed to generate CiM macros. These
emerging tools inspire the development of an innovative
architectural exploration tool that adeptly maps various logical
optimizations, ensuring optimal utilization of SRAM cache
architectures.

III. PROPOSED METHODOLOGY

The CiM architecture integrates a conventional SRAM
cache, enabling additional computations within the same
macro. This section presents a new energy-efficient CiM archi-
tecture specifically designed for performing Boolean logic
operations. In this article, we proposed a novel methodol-
ogy for selecting the optimal cache architecture, resulting
in energy-efficient implementation tailored to a specific
application.

A. Proposed 10-Transistor Cell

Fig. 3(a) shows the schematic of the proposed 10-Transistor
(10T) SRAM cell, which builds upon a standard 6T cell

Fig. 4. 10T-SRAM bitcell along with resonant write driver implementing a
single logical operation using the output from the SA and writeback using an
energy-recycling resonant write driver.

architecture by incorporating four additional transistors
(M1–M4). These extra transistors form a dedicated dual
read-port, enhancing the cell’s capability for single-bit logic
operations. Fig. 3(b) illustrates the layout implementation of
this 10T cell schematic. This layout occupies an area of
1.66 µm2 and utilizes multiple fabrication layers, including
mpoly and metals. Specifically, the horizontal wordlines are
routed using the M2 metal layer, and the vertical bitlines are
constructed using the M3 metal layer.

B. rCiM Architecture

Fig. 4 shows the working principle of rCiM architecture.
The rCiM performs Boolean logic using two 10T bit cells,
as shown in Fig. 4. The transistors M1–M4 form a decoupled
dual-read port, which allows for a large voltage swing during
the conventional read operation and alleviates potential read
disturb failures. Dedicated dual-read ports allow individual
access to each vector operand, eliminating unidirectional
computation restrictions in the SRAM array. This capability
improves data retrieval efficiency, leading to enhanced system
functionality and performance.

To execute a NAND2/NOR2 operation, we start by decoding
the input operand addresses and simultaneously enabling the
corresponding read wordlines (rwlA and rwlB). The initially
precharged read bitlines, RblA and RblB, will eventually
discharge to 0 V if either of the operands corresponds to
a “1.” The discharge rate of RblA/RblB is dependent on
whether the one-bit cell is storing a “1” or if both the bit
cells are storing a “1.” The pulse widths of read word-

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

Fig. 5. SPICE simulation confirms the correct in-memory computation
considering logical NAND2 operations with “01/10” data and a conventional
energy-recycling writeback operation.

lines are adjusted to leverage this varying discharge rate to
ensure that the RblA/RblB does not completely discharge
for cases“10/01” during a NAND2 operation. For a NOR2
operation, enabling the rwlA/rwlB for a higher time allows the
read bitlines to be driven to 0 V for cases“10/01,” outputting
a “0.” A programmable buffer-based pulse generator circuit
is integrated with the system clock to generate the necessary
rwlA/rwlB pulses for performing a NAND2 or NOR2 operation.
The discharge time for the NAND2 operation is approximately
150 ps, while the NOR2 operation has a discharge time of
around 350 ps. The notable difference in discharge times
contributes to the observed voltage difference between NAND2
(“01/00”) and NOR2 (“01/00”) operations, allowing for reliable
distinction between these logic states. The rCiM architecture
operates under a global clock frequency of 1 GHz, with all
operations triggered on the rising edge of the clock. The
pulsewidths required for the discharge operations generated
using the programmable buffer are based on the rising edges
of the clock signal and a delayed clock signal. This approach
ensures that the pulsewidth remains constant at any lower
frequencies below 1 GHz, as the delay introduced by the buffer
does not change.

Fig. 5 shows the transient simulation of performing a single
NAND2 operation for cases “10/01.” The read bitlins, RblA and
RblB, are connected to one end of a single-ended sense ampli-
fier (SA) through the column mux switches (col_muxA and
col_muxB), as shown in Fig. 4. The SA is formed using the
transistors M13–M19, adapted from [63]. The other end of the
SA is connected to a reference voltage (Vref) which is lower
than the discharge of RblA/RblB during a NAND2 operation
for cases “10/01,” as shown in Fig. 5. Thus, the output of
the SA (Dcomp) will result in the output imitating a NAND2
operation by resulting a logical “1” for all three cases (“00”
and “10/01”). The Vref signal is positioned at VDD/2 and the
rwlA/rwlB pulsewidths are characterized such that the Rbl
discharge is greater than the V re f voltage during the NAND2
“10/01” cases. While performing a NOR2 operation, the SA
output produced a logical “0” for all three cases (“11” and
“10/01”). When a single vector operand is applied to both
rwlA and rwlB, the operation only considers two different
cases (“00” and “11”). Thus, performing a NAND2 operation

with a single vector operand results in an inversion, effectively
performing a NOT operation.

The Dcomp output is latched and utilized as input data
(Dwrite) to be written in the subsequent clock cycle by a
resonant write driver. During a conventional write operation,
the multiplexer selects the CPU data input (Din). While
performing CiM computations, the cimen signal goes high,
selecting the Dcomp signal to be written into a bit cell,
as shown in Fig. 5. The energy-recycling write driver and
supply boosting, which is adapted from [51] and [52], uses
a series resonant inductor to recycle the dissipated energy
from write bitlines (Wbl/Wblb) during write operation and
the precharge phase. The resonant inductor is connected to
Wbl/Wblb on one end, and a reference voltage (V re f ) on the
other end. To maximize the savings from the resonant inductor,
the Vref value is chosen to be (VDD/2). Whenever Wbl/Wblb
transitions from a logic “1” to a logic “0,” the energy dissipated
is stored in the Vref node. During the precharge phase, this
stored charge is emptied from the Vref node, resulting in zero
net currents for the whole cycle.

The resonant write driver circuit transistors M9–M12 shown
in Fig. 4, enable resonance by conditionally connecting the
Wbl/Wblb to the inductor controlled by vsrd and vsrdb signals
derived from the system clock. Depending upon the data,
either Wblb is discharged, if the input data is “1,” or Wbl
is discharged. For the case shown in Fig. 5, vsrd signal is
enabled to discharge the Wblb signal for writing the NAND2
output of “1” for input case “01/10.” The vdnd and vdndb

signals ensure full voltage swing by completely discharging
one of the write bitlines. After a successful write operation, the
same transmission gates (M11–M12) as before are enabled to
recycle the stored energy from the inductor. Hence, when the
active-low bitline precharge (BLPC) signal is activated, there
is no need to precharge the write bitlines from “0,” resulting
in a decrease in the overall power consumption. The product
of the bitline capacitance and the resonant inductor remains
constant for a given resonant frequency.

Utilizing a shared inductor for all the write drivers signifi-
cantly minimizes the inductor’s size as the bitline capacitance
increases N times for N write drivers.

C. Overall Architecture of rCiM Topologies

Fig. 6 illustrates various SRAM topologies for imple-
menting rCiM architecture. The overall architecture of rCiM
includes a 10T SRAM array, a readout circuit using single-
ended SA’s, two-row decoders enabling concurrent operands
access, energy-recycling write drivers for low-power writing
operations, and a central control block responsible for gener-
ating internal signals.

When considering the memory size for rCiM implementa-
tion, one can choose between a single large SRAM macro,
as shown in Fig. 6(a) or multiple smaller SRAM macros,
as shown in Fig. 6(b). The latter allows parallel execution
of various logical operations, which proves beneficial for
smaller designs with fewer operations in each stage, resulting
in enhanced performance. However, the optimal approach for
larger designs is yet to be determined—whether to increase the
number of operations per stage or divide them for minimal

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 183

Fig. 6. Comparison of memory topology considerations for rCiM architec-
ture, showcasing (a) single large SRAM macro or (b) multiple smaller SRAM
macros.

energy consumption. The analysis in Section IV-B explains
this particular aspect.

This design assigns one SA for each pair of columns in
the bit cell array, facilitating the execution of both conven-
tional read operations and efficient computational processes.
Consequently, the resulting architecture exhibits the capability
of executing (M/2) logic operations of the same kind for an
SRAM bank column size of M . For example, a 2-kB SRAM
bank with 128 × 128 SRAM bit cells can perform 64 logical
operations in a single computational cycle.

Within each SRAM macro, there are several SRAM banks.
By activating only one selected SRAM bank, the remaining
SRAM banks enter a standby mode, resulting in a reduction
in overall macro power usage. Significant dynamic power
consumption in SRAM emanates from bitline charging and
discharging as well as enabling wordlines. The use of multiple
banks significantly contributes to the lowering of bitline power
consumption.

The rCiM can be designed using two architectural configu-
rations as depicted in Fig. 6. The SRAM topology showcased
in Fig. 6(a) utilizes a single macro, restricting the system
to perform only one type of logical operation in a computa-
tional cycle. This architecture is particularly advantageous for
scenarios with fewer logic levels but more operations within
each level. Increasing the column count enables a greater
number of parallel operations within a single bank, reducing
the latency of the logical operation. Fig. 6(b) demonstrates the
use of multiple SRAM macros in the rCiM. In this topology,
each SRAM macro can execute a distinct logical operation.
For instance, using three macros allows for the concurrent
execution of NAND2, NOR2, and NOT logic operations, with
each macro dedicated to one operation. This article proposes
an algorithm in Section III-D designed to choose an optimal
topology from the available SRAM macro banks.

D. Proposed Combinational Logic Operation

Mapping Methodology

Fig. 7 presents two AIGs for the same 2-bit adder Verilog
circuit, each generated using the ABC tool [37] with different
synthesis recipe options. These AIGs are used in YOSYS

to generate netlists, which are crucial for simulating CiM
designs. The variations in synthesis options result in AIGs
with different levels and gate counts, significantly influencing
the implementation’s latency and performance in CiM.

Fig. 7(a) shows an AIG with eight levels, each level
represented by a distinct color. Although it has fewer gates
compared with Fig. 7(b), the higher number of levels implies
greater latency when implemented in a CiM system, as each
level requires one clock cycle for execution. In contrast,
Fig. 7(b) displays a more complex AIG in terms of gate
count but with only six levels. Despite its complexity, the
lower number of levels enables faster execution in CiM due
to reduced clock cycles required for processing.

These diagrams effectively illustrate how different synthesis
recipes affect the structure of AIGs, impacting the number
of levels and the performance characteristics of the CiM
systems. Thus, the choice of synthesis recipe becomes a crucial
factor in optimizing computational efficiency and speed in
CiM applications. Fig. 7(a) illustrates the mapping strategy
for a single macro implementation, while (b) shows the
mapping strategy using a three-macro implementation. The
AIG graphs are mapped in the single macro approach by
assigning each logic level to a specific row or column in the
SRAM array. The first level of the AIG is mapped to the first
row, with its outputs stored in the second row. This pattern
continues, with each level of the AIG occupying a new row
and the corresponding outputs stored in subsequent rows until
all AIG levels have been processed. The algorithm selects
the SRAM size to ensure it can accommodate all required
inputs and outputs based on the total number of gates in the
design. In the three-macro implementation, the logic levels
are distributed across the three macros. Each level of logic
operations is divided, sorted, and assigned to a specific macro,
with operands grouped accordingly. The mapping strategy then
places each logic level across the SRAM rows. By aligning
the data and operation execution across multiple macros,
the architecture effectively manages resource constraints and
maximizes throughput. If a row becomes full, the 10T bitcell
allows for operands to be stored across columns as well. Since
the architecture shares SAs between two columns, operands
can be placed flexibly within the two columns, not strictly
confined to a single row or column. This flexibility enhances
the architecture’s ability to store and manage operands across
multiple columns, optimizing the use of available SRAM
resources.

To enable energy-efficient in-memory computation, we pro-
pose an algorithm that maps combinational logic workloads to
optimal resonant cache architecture, as shown in Algorithm 1.
The algorithm takes as input the RTL netlist (i.e., Verilog/
VHDL/SystemVerilog) of the design, AIG synthesis options
(AIGsynopt), and the list of available SRAM topolo-
gies (SRAMlist ). The algorithm’s output is an optimal
energy-efficient rCiM architecture.

The algorithm starts with generating unique (AIGlist) using
the AIG synthesis transformations (AIGsynopt) and the given
RTL netlist as indicated in Line 3. The open-source synthe-
sizer ABC is used to create unique AIGs using subgraph
optimizations: Ba , R f , Rw, and Rs [37]. The number of

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

Fig. 7. AIG graph generated using different synthesis transformations results in AIGs with different levels and different numbers of gates at each level along
with mapping strategies. (a) Example AIG with eight levels mapped onto a single macro SRAM. (b) Example AIG with six levels mapped onto a three-macro
SRAM implementation.

unique AIG synthesis transformations generated from S dif-
ferent subgraph optimizations is expressed by

∑S
i=1

S Pi . For
instance, considering S = 3 where the provided subgraph
optimizations are Ba , R f , and Rw, would result in 15 unique
subgraph optimizations, such as {(Ba); (R f ); (Rw)},

{(Ba, R f ); (Ba, Rw); (R f , Ba); (R f , Rw); (Rw, Ba); (Rw,

R f )} and, {(Ba, R f , Rw); (Ba, Rw, R f ); (R f , Ba, Rw); (R f ,

Rw, Ba); (Rw, Ba, R f ); (Rw, R f , Ba)}. This work uses four
subgraph optimizations, resulting in 64 unique AIG synthesis
transformations.

When presented with an input RTL, the ABC tool initially
constructs an AIG represented as a DAG. This DAG serves as
the foundation for the subgraph optimizations performing tree-
balancing transformations, logic rewriting, and node reduction,
which results in minimizing the delay of the design and
improving logic sharing.

The flowchart in Fig. 8 visually represents the pro-
posed methodology described in Algorithm 1, starting with
generating gate-level netlists using YOSYS and synthesis
transformations using ABC. The number of gates and hier-
archy levels then characterizes each AIG. These AIGs are
sorted to identify those with optimal gate and logic levels.
Subsequently, a set of SRAM topologies are determined based
on gate counts and design cycles. The identified SRAM range
is then evaluated for power, latency, and energy consumption
metrics. Finally, the optimal SRAM topology is used to
calculate the inductor size for the resonant inductor tuning,
leading to the optimal rCiM architecture.

The For loop (Lines 4–6) iterates over every synthesized
graph to characterize each AIG (ChaAIGlist). The character-
ization phase determines the number of stages in the design
hierarchy and counts the number of logical operations at each

Fig. 8. Proposed methodology flowchart shows different operations in
sequential order to determine the optimal SRAM topology for a given input
RTL.

stage. Line 7 and Line 8 identify the AIGs with optimal
gate count and minimum logic level count among all the
synthesized AIGs, respectively. Line 9 is used to identify a

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 185

Algorithm 1 Mapping Combinational Logic Workloads to
Optimal Resonant Cache Architecture

range of SRAM topologies (SRAMRangelist), considering the
total number of gate counts. The range of SRAM topologies is
chosen to accommodate all inputs and outputs. The memory
size is chosen to be at least four times the number of gates (two
inputs + two outputs per gate), accounting for cases where
complementary outputs are required. For example, an AIG
with 128 gates requires 256 bits for inputs and 256 bits for
outputs, requiring a minimum of 512 bits. Based on the AIGs
chosen from Line 7 and Line 8, the algorithm determines a
list of suitable SRAM topologies (SRAMRangelist) from the
available range of SRAM topologies.

The For loop (Lines 10–13) iterates through the library of
SRAM topologies (SRAMlist) to compute the power, latency,
and energy consumption metrics for the optimal SRAM
(AIGMetricslist[SRAM]) associated with optimal AIGs con-
sidering lowest gate count( Line 11) and lowest logic level
(Line 12). In Lines 11 and 12, power, latency, and energy
metrics are derived through an analytical estimation approach

combined with initial simulation data. We performed standard
SRAM characterization for various topologies using postlay-
out analysis in Cadence Virtuoso, obtaining accurate power
and latency values for different SRAM configurations. These
results were used to evaluate typical read, write, precharge, and
logic computation cycles for rCiM. Line 14 is used to identify
optimal AIG with the lowest energy consumption among
all the SRAM topologies. Line 15 uses the optimal SRAM
topology to calculate the sizing of the resonant inductor.
This methodology would result in the most optimal rCiM
architecture implementation for the given RTL netlist.

The time complexity of the proposed methodology is deter-
mined by the number of AIGs (n) with k levels. In addition,
the number of available SRAM topologies also plays a crucial
role and is defined by m. The overall time complexity is
expressed using BigO notation as O(n) = O(m + nk). In this
work, the analysis was performed using 12 different SRAM
topologies and four synthesis transformations. These four
synthesis transformations resulted in 64 unique AIG synthesis
options, thus setting the number of AIGs (n) to 64 and the
size of m-to-12. As m and n are relatively small, the time
complexity becomes linear and is primarily affected by the
size of the levels in the AIG k.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

To demonstrate the efficacy of the proposed algorithm,
we analyzed EPFL combinational benchmark suite cir-
cuits [39] synthesized using YOSYS [38]. The logic opti-
mization of AIGs is performed using ABC [37]. We explored
64 unique AIG synthesis options for each benchmark circuit,
analyzing them across 12 different SRAM topologies for cache
sizes ranging from 4 to 192 kB. The rCiM architecture was
designed using Taiwan Semiconductor Manufacturing Com-
pany (TSMC) 28-nm technology, and the transient simulations
were performed using the Cadence Spectre simulator. Our
study utilized a library of SRAM macros with sizes of 4,
8, 16, and 32 kB. Three different topologies were employed
for a comprehensive analysis of each macro size resulting in
6912 unique AIG implementations.

B. AIG Transformation Analysis

Fig. 9 shows the comparison of power, latency, and
energy consumption across all 6912 unique AIGs, considering
12 distinct rCiM topologies using nine EPFL combinational
benchmark circuits. The single-macro topology is limited to
performing only one type of logical operation per compu-
tational cycle. In contrast, the SRAM topology with three
macros can execute NAND2, NOR2, and NOT operations
concurrently in each macro. For example, the three logical
operations can be conducted concurrently using two macros
in any six-macro implementation.

Fig. 9(a) shows the comparison of the overall power con-
sumption of each benchmark circuit. The power consumption
for both the single-macro and three-macro implementations
remains the same, as the total number of operations is
constant. The three-macro implementation can perform three

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



186 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

Fig. 9. After mapping each benchmark circuit to different SRAM architectures, we computed the power, latency, and energy. (a) Power consumption remained
nearly constant for single macro and three macro SRAMs; however, it doubled for six macro SRAMs. (b) Six macro implementation achieves up to 66%
average lower latency compared single-macro implementation. (c) Average energy consumption for single-macro implementations decreases up to 47% while
using an 8-kB SRAM macro compared with a 4-kB macro.

times the number of operations performed by a single-macro
implementation in a single cycle, but the total number of
operations required for a whole combinational logic remains
the same. As a result, while the power per cycle for the
three-macro implementation increases by 3×, it consumes
3× fewer clock cycles, leading to the same overall power
consumption. However, in the six-macro topology, power
consumption increases by a factor of 2× compared with the
three-macro implementation. This higher power consumption
is primarily due to the doubling of power on the doubled-size
macro implementation, even though the number of operations
remains the same. The power per cycle for the six-macro
implementation increases by 2×, while the number of clock
cycles required to complete the operation remains the same as
in the three-macro implementation, since the architecture can
only perform one logic level per cycle. Thus, the total power
consumption of the six-macro implementation is double that
of the three-macro implementation.

Fig. 9(b) depicts all the benchmark circuits’ latency. In a
single macro, latency decreases with an increase in macro
size. On average, there is a 47% reduction in latency when the
macro area doubles from 4 to 8 kB and a 40% reduction when
the macro area goes from 16 to 32 kB. Comparatively, three-
macro implementations achieve an average latency reduction
of 38%, taking advantage of the ability to perform parallel
operations but incurring a 3× area penalty over single-
macro implementations. Similarly, six-macro implementations
achieve a latency reduction of 47% on average compared
with three-macro implementations and a 66% lower latency
compared with single-macro implementations. This latency
improvement results from the capability to perform more
parallel operations but comes at the price of a higher area
and power consumption.

Fig. 9(c) illustrates the energy consumption results for all
benchmark circuits. The energy consumption for single-macro
implementations decreases by 47% while using an 8-kB
SRAM macro compared with a 4-kB macro, aligning with
the latency reduction as the total power consumption per
benchmark computation stays nearly constant. On average, the
three-macro implementations exhibit 39% lower energy com-
pared with single-macro implementations. Despite achieving
lower latency than three-macro implementations, six-macro
implementations, on average, consume 15% higher energy due
to higher power consumption.

In Table I, we present a comprehensive comparison of AIG
implementations for the EPFL benchmark circuits, highlight-
ing the best and worst-case AIG implementations. In addition,
the table provides insights into the number of stages, gate
counts, and synthesis transformations employed for each
benchmark. The analysis uses four different synthesis options
(i.e., Ba , R f , Rw, and Rs). The analysis shows that employing
multiple macros leads to the most energy-efficient design by
leveraging concurrent operations. However, excessive macro
use can compromise energy efficiency due to increased power
consumption.

In the case of the Adder-128 benchmark, which has a small
number of operations, dividing a 48-kB SRAM into three
macros resulted in significantly lower energy consumption.
The benchmark exhibits an 85% reduced energy consumption
compared with a single 4-kB macro achieved by concurrent
operations. For benchmark circuits with a substantial number
of operations, such as Log2, employing synthesis transforma-
tions to reduce 2% of the operations and opting for larger
macros to execute a higher number of concurrent operations
resulted in a 92% reduction of energy consumption, but with
a 24× area penalty. In the case of the Sine circuit, with a
moderate gate count, adopting a three-macro implementation
of 96-kB SRAM size resulted in an 85.4% reduction in energy
consumption. Similarly, using a three-macro implementation
of 96-kB SRAM size for the square-root operation showcased
a reduction of 93% energy consumption compared with a
single 4-kB macro implementation.

In summary, this study highlights the trade-offs between
area, latency, and the SRAM topology to achieve an
energy-efficient rCiM implementation. To achieve lower
latency, we have two main strategies: either increase the size
of a single macro or employ multiple smaller macros to
carry out parallel operations. For example, in the case of
the divisor benchmark circuit, the rCiM circuit achieves a
latency reduction of 92% with a 12× SRAM area penalty
after utilizing the three-macro SRAM topology.

C. Process Variation Analysis

Fig. 10 evaluates the robustness of the proposed rCiM
architecture against process variations for all input cases.
We consider three different SRAM topologies: (4 kB) × 3,
(8 kB) × 3, and (16 kB) × 3. For each topology, 5000 samples

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 187

TABLE I

WHILE COMPARING THE BEST-CASE AND WORST-CASE SCENARIOS OF RCIM TOPOLOGIES, THE THREE-MACRO IMPLEMENTATION, WITH

CONCURRENT OPERATION CAPABILITIES, DEMONSTRATES AN AVERAGE ENERGY SAVING OF 89.12% COMPARED WITH SINGLE-MACRO

IMPLEMENTATIONS WITH A 4-KB SRAM MACRO SIZE

Fig. 10. Monte-Carlo simulations considering 5000 samples of the Rbl discharge across three SRAM topologies, namely (a) 4KB×3, (b) 8KB×3, and
(c) 16KB×3 for NOR2 operations, and (d) 4KB×3, (e) 8KB×3, and (f) 16KB×3 for NAND2 operations, each topology evaluated under ±10% length
variations with 3σ deviations for the cases “01/10,” “00,” and “11.”

of the Rbl discharge were taken with ±10% length variation
of all transistors under 3σ deviations.

The NOR2 operation analysis for the three SRAM topolo-
gies is shown in Fig. 10(a)–(c). For the (4 kB)×3 topology
shown in Fig. 10(a), the mean Rbl voltages are 110, 986, and
90 mV with standard deviations of 14, 3, and 12 mV for
cases “01/10,” “00,” and “11,” respectively. In the (8 kB)×3
topology depicted in Fig. 10(b), the mean Rbl voltages are

97, 993, and 76 mV, with standard deviations of 24, 1.9, and
16.4 mV for the same cases. For the (16 kB)×3 topology
shown in Fig. 10(c), the mean Rbl voltages are 114.3, 990,
and 86 mV, with standard deviations of 27, 2.7, and 18 mV,
respectively.

The NAND2 operation analysis is depicted in Fig. 10(d)–(f).
For the (4 kB)×3 topology in Fig. 10(d), the mean Rbl
voltages for cases “01/10,” “00,” and “11” are 623, 984, and

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



188 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

Fig. 11. Monte-Carlo simulations with 5000 samples under ±10% length variation for the borderline NAND2 “01/10” input vector case across VDD = 0.9V
(a) Temp = 0◦C, (b) Temp = 25◦C, (c) Temp = 125◦C; VDD = 1.0V (d) Temp = 0◦C, (e) Temp = 25◦C, (f) Temp = 125◦C; and VDD = 1.1V (g) Temp
= 0◦C, (h) Temp = 25◦C, (i) Temp = 125◦C.

85 mV, with standard deviations of 35, 2.2, and 32 mV,
respectively. In the (8 kB)×3 topology shown in Fig. 10(e),
the mean Rbl voltages are 665, 989, and 98 mV, with standard
deviations of 27, 1.8, and 37 mV. Finally, for the (16 kB)×3
topology in Fig. 10(f), the mean Rbl voltages are 685, 993, and
99.4 mV, with standard deviations of 31, 2.1, and 34.2 mV,
respectively.

Monte-Carlo simulations were performed to evaluate the
impact of temperature and voltage variations on the system’s
performance for the borderline case “01/10” for the (8 kB)×3
SRAM topology. A total of 5000 samples were analyzed for
each combination of temperature and voltage. The simulations
considered three different temperatures (0 ◦C, 25 ◦C, and
125 ◦C) and three voltage levels (0.9, 1, and 1.1 V). The
results, depicted in Fig. 11, show the Rbl discharge distribution
values.

At a temperature of 0 ◦C, the Rbl discharge for voltages
of 0.9, 1, and 1.1 V, as illustrated in Fig. 11(a), (d), and (g),
respectively, are of significant importance. For 0.9 V, the mean
Rbl voltage is 620 mV with a standard deviation of 27 mV.
At 1 V, the mean Rbl voltage is 608 mV with a standard
deviation of 22 mV. For 1.1 V, the mean Rbl voltage is 587 mV
with a standard deviation of 19.4 mV.

At 25 ◦C, the Rbl discharge for voltages of 0.9, 1, and
1.1 V, as shown in Fig. 11(b), (e), and (h), respectively, have
been thoroughly analyzed. The mean Rbl voltage for 0.9 V is
647 mV with a standard deviation of 24 mV. For 1 V, the mean
Rbl voltage is 665 mV with a standard deviation of 17 mV.
For 1.1 V, the mean Rbl voltage is 678 mV with a standard
deviation of 22 mV.

At a higher temperature of 125 ◦C, the Rbl discharge for
voltages of 0.9, 1, and 1.1 V are presented in Fig. 11(c),
(f), and (i), respectively. The mean Rbl voltage for 0.9 V is
710 mV with a standard deviation of 20 mV. For 1 V, the mean
Rbl voltage is 692 mV with a standard deviation of 21 mV.
For 1.1 V, the mean Rbl voltage is 674 mV with a standard
deviation of 19.2 mV.

Fig. 12 demonstrates the robustness of the readout circuitry.
We simulated 5000 samples with ±10% length variation and
3σ deviations in the SA, shown in Fig. 4, considering an
8-kB SRAM rCiM architecture. Fig. 12(a) and (d) shows the
input case “00” for NAND2 and NOR2 operations, respectively.
As Rbl does not discharge in the “00” case, the output of the
SA (Dcomp) remains at logic “1.” For Fig. 12(c), (e), and (f),
corresponding to NAND2 input case “11” and NOR2 input cases
“01/10” and “11,” the Rbl completely discharges, resulting

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 189

Fig. 12. Process variation analysis of the readout circuit considering the NAND2 operation cases (a) “00," (b) “01/10," and (c) “11," and the NOR2 operation
cases (d) “00," (e) “01/10," and (f) “11," depicting successful computational results of the sense amplifier conducted with 5000 samples, incorporating 3σ

deviations under ±10% length variation.

TABLE II

COMPARISON OF THE PROPOSED RCIM ARCHITECTURE USING THREE

SRAM TOPOLOGIES WITH PREVIOUS WORKS SHOW 2.6× HIGHER

THROUGHPUT AND 1.6× GREATER ENERGY EFFICIENCY COM-
PARED WITH [22], AND ACHIEVING 2.12× HIGHER ENERGY

EFFICIENCY THAN [64]

in a logic “0” for Dcomp value. In the NAND2 “01/10” case
[Fig. 12(b)], where Rbl partially discharges, the pulsewidth
characterization ensures that Rbl voltages do not drop below
Vref voltage, resulting in the correct Dcomp value of logic “0.”

D. Architecture Comparison With Previous Works

A comparison of the proposed rCiM architecture with
existing CiM architectures is presented in Table II. The
proposed architecture consumes 65 fJ per NAND2 operation
and 116 fJ per NOR2 operation, achieving a throughput rang-
ing from 88.2 to 106.6 GOPS, depending on NAND2 and
NOR2 operations, with an 8-kB single macro implementation.
The energy efficiency remains constant when transitioning
from a single-macro to a three-macro implementation. While
throughput increases by 3× due to more operations being

performed, the power consumption per cycle also increases
by 3×, resulting in no net improvement in energy efficiency.
However, when the array size is increased for the three-macro
implementation, the power consumed by the computational
circuits rises, but the control circuitry’s overhead remains
constant. This results in improved energy efficiency, as the
increased throughput is greater than the increase in power
consumption, leading to a higher overall energy efficiency. The
proposed architecture achieves 551.25–666.25 GOPS/mm2,
depending on the number of NAND2 and NOR2 operations.
All throughput values of the compared works have been
normalized to an 8-kB memory size.

Wang et al. [65] propose a 7T bitcell and 2T switch are
used for single-bit Boolean logic, addition, and multiplication
operations. As this work is implemented in 40-nm technology,
we have used Dennard’s power scaling law [68] to scale the
power and obtain the energy efficiency. The proposed rCiM
architecture achieves a 10× higher frequency and 15% greater
energy efficiency with an 8-kB single macro implementation
and a 2.2× higher energy efficiency with a 16-kB three-macro
implementation.

In [22], the transposable 8T cell performs multibit “add”
and “multiplication” operations but has a lower frequency that
results in higher energy/operation consumption. The proposed
single-macro 8-kB rCiM architecture achieves 2.1× higher
frequency, resulting in an increase of throughput by 2.6×

and an increase in energy efficiency by 1.6× when compared
with [22].

In [64], the architecture boosts the bitline for computing to
avoid read disturb issues, resulting in higher energy consump-
tion. The proposed architecture overcomes read-disturb issues
with a dedicated dual read-port bitcell, achieving 2.12× higher

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



190 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

energy efficiency with a 16-kB three-macro implementation
compared with [64].

Simon et al. [66] present a high-speed 6T SRAM cell
capable of performing bitwise addition, shift, and copy opera-
tions while mitigating read disturbance issues by incorporating
an additional inverter and transistor to each bitline. Similarly,
Wang et al. [33] introduces a 6T compute-SRAM architecture
with dual-split-VDD assist in addressing read disturbance
concerns. In contrast, our work utilizes dedicated read ports
to eliminate read disturbance problems, which are prevalent in
6T SRAM-based CiM architectures. The throughput reported
for both [33] and [66] is normalized to an 8-kB SRAM
array. While these works demonstrate higher throughput than
the single-macro implementation, they do not account for
the additional write-back cycle required for output storage,
which adds additional latency to each computation cycle.
In [67], the architecture stores the computational outputs
directly in the same bitcell where the inputs are applied,
resulting in significant latency and power savings. However,
the reported throughput does not account for the additional
latency required to read the operands and apply them as inputs
to the bitcells. In addition, designing this unconventional 8T
SRAM requires a higher level of design expertise. In contrast,
the proposed rCiM architecture operates at an 8.8× higher
frequency, leading to more efficient and conventional read and
write operations.

V. CONCLUSION

This article proposes an architectural exploration tool
designed to identify the optimal rCiM cache topology tailored
to specific logical operations. The novel rCiM architec-
ture facilitates concurrent NAND2/NOR2/NOT operations using
three-macro and six-macro topologies, significantly reducing
latency for logical operations. Furthermore, the rCiM archi-
tecture incorporates a series resonance-based write driver,
effectively lowering the consumed dynamic power during
write operations by recycling the energy dissipated. The pro-
posed algorithm utilizes only the RTL and a list of available
SRAM topologies as input, streamlining the process of explor-
ing the most energy-efficient topology for the given RTL.
Comprehensive analysis conducted on EPFL combinational
benchmark circuits demonstrates a notable average energy
savings of 40.52% across all the designs when employing
the three-topology design implementations, as opposed to a
single-macro implementation with the same macro size. The
proposed three-topology implementation achieves 5.2× higher
throughput compared with [35], and 8.2× higher through-
put when compared with [33]. The robustness analysis was
conducted using Monte Carlo simulations with 5000 samples,
considering temperature variations, ±10% VDD, and ±10%
variations in transistor lengths. The analysis shows that the
mean bitline discharge of 665 mV with a standard deviation
of 17 mV for case “10/01” of NAND2 operation, which falls
within the sensing range of VDD/2 of the SA. Under the
temperature and voltage variations the mean bitline discharge
for case “10/01” of NAND2 operation ranged between 710 to
587 mV with a standard deviation range of 27–17 mV.

REFERENCES

[1] M. Ali et al., “A 65 nm 1.4–6.7 TOPS/W adaptive-SNR sparsity-aware
CIM core with load balancing support for DL workloads,” in Proc. IEEE

Custom Integr. Circuits Conf. (CICC), Apr. 2023, pp. 1–2.
[2] R. Sreekumar, M. Park, M. N. Sakib, B. S. Reniwal, K. Lee,

and M. R. Stan, “EASI-CiM: Event-driven asynchronous stream-based
image classifier with compute-in-memory kernels,” in Proc. 25th Int.

Symp. Quality Electron. Design (ISQED), Apr. 2024, pp. 1–8.
[3] H. Wang, R. Liu, R. Dorrance, D. Dasalukunte, D. Lake, and B. Carlton,

“A charge domain SRAM compute-in-memory macro with C-2C ladder-
based 8-bit MAC unit in 22-nm FinFET process for edge inference,”
IEEE J. Solid-State Circuits, vol. 58, no. 4, pp. 1037–1050, Apr. 2023.

[4] X. Si et al., “A local computing cell and 6T SRAM-based computing-
in-memory macro with 8-b MAC operation for edge AI chips,” IEEE

J. Solid-State Circuits, vol. 56, no. 9, pp. 2817–2831, Sep. 2021.
[5] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant

in-memory machine learning classifier via on-chip training,” IEEE

J. Solid-State Circuits, vol. 53, no. 11, pp. 3163–3173, Nov. 2018.
[6] M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy,

“IMAC: In-memory multi-bit multiplication and accumulation in 6T
SRAM array,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 8,
pp. 2521–2531, Aug. 2020.

[7] S. Cheon, K. Lee, and J. Park, “A 2941-TOPS/W charge-domain 10T
SRAM compute-in-memory for ternary neural network,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 70, no. 5, pp. 2085–2097, May 2023.
[8] J. Song, X. Tang, X. Qiao, Y. Wang, R. Wang, and R. Huang, “A 28 nm

16 kb bit-scalable charge-domain transpose 6T SRAM in-memory
computing macro,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70,
no. 5, pp. 1835–1845, May 2023.

[9] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE Int. Solid-State Circuits

Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 488–490.
[10] D. Challagundla, I. Bezzam, and R. Islam, “A resonant time-domain

compute-in-memory (rTD-CiM) ADC-less architecture for MAC oper-
ations,” in Proc. Great Lakes Symp. VLSI. New York, NY, USA:
Association for Computing Machinery, Jun. 2024, pp. 268–271, doi:
10.1145/3649476.3658773.

[11] S. Ananthanarayanan, B. S. Reniwal, and A. Upadhyay, “Design and
analysis of multibit multiply and accumulate (MAC) unit: An analog
in-memory computing approach,” in Proc. 36th Int. Conf. VLSI Design

22nd Int. Conf. Embedded Syst. (VLSID), Jan. 2023, pp. 109–114.
[12] B. J. Kailath and B. S. Reniwal, “CiMComp: An energy efficient

compute-in-memory based comparator for convolutional neural net-
works,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2024, pp. 1–2.

[13] S. Yan et al., “A 28-nm floating-point computing-in-memory processor
using intensive-CIM sparse-digital architecture,” IEEE J. Solid-State

Circuits, vol. 59, no. 8, pp. 2630–2643, Aug. 2024.
[14] L. Lu, A. Mani, and A. T. Do, “A 129.83 TOPS/W area efficient digital

SOT/STT MRAM-based computing-in-memory for advanced edge AI
chips,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2023,
pp. 1–5.

[15] P.-C. Wu et al., “An 8b-precision 6T SRAM computing-in-memory
macro using time-domain incremental accumulation for AI edge chips,”
IEEE J. Solid-State Circuits, vol. 59, no. 7, pp. 2297–2309, Jul. 2024.

[16] Y.-W. Chen, R.-H. Wang, Y.-H. Cheng, C.-C. Lu, M.-F. Chang,
and K.-T. Tang, “SUN: Dynamic hybrid-precision SRAM-based CIM
accelerator with high macro utilization using structured pruning mixed-
precision networks,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 43, no. 7, pp. 2163–2176, Jul. 2024.
[17] R. Wang and X. Guo, “A hierarchically reconfigurable SRAM-based

compute-in-memory macro for edge computing,” in Proc. IEEE 5th Int.

Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2023, pp. 1–5.
[18] J. B. Shaik, X. Guo, and S. Singhal, “Impact of aging and process

variability on SRAM-based in-memory computing architectures,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 71, no. 6, pp. 2696–2708,
Jun. 2024.

[19] S. Zhang, X. Cui, F. Wei, and X. Cui, “An area-efficient in-memory
implementation method of arbitrary Boolean function based on SRAM
array,” IEEE Trans. Comput., vol. 72, no. 12, pp. 3416–3430, Dec. 2023.

[20] K. Prasad, A. Biswas, A. Kabra, and J. Mekie, “PIC-RAM: Process-
invariant capacitive multiplier based analog in memory computing in
6T SRAM,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Apr. 2023, pp. 1–6.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



CHALLAGUNDLA et al.: ArXrCiM: ARCHITECTURAL EXPLORATION OF RESONANT SRAM COMPUTE-IN-MEMORY 191

[21] K. Soundrapandiyan, S. K. Vishvakarma, and B. S. Reniwal, “Enabling
energy-efficient in-memory computing with robust assist-based recon-
figurable sense amplifier in SRAM array,” IEEE J. Emerg. Sel. Topics

Circuits Syst., vol. 13, no. 1, pp. 445–455, Mar. 2023.
[22] J. Wang et al., “A compute SRAM with bit-serial integer/floating-point

operations for programmable in-memory vector acceleration,” in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,
pp. 224–226.

[23] J. Chen, W. Zhao, Y. Wang, and Y. Ha, “Analysis and optimization
strategies toward reliable and high-speed 6T compute SRAM,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4, pp. 1520–1531,
Apr. 2021.

[24] J. Chen, W. Zhao, Y. Wang, Y. Shu, W. Jiang, and Y. Ha, “A reliable 8T
SRAM for high-speed searching and logic-in-memory operations,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 6, pp. 769–780,
Jun. 2022.

[25] J. Wang et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic
operations for programmable in-memory vector computing,” IEEE

J. Solid-State Circuits, vol. 55, no. 1, pp. 76–86, Jan. 2020.
[26] V.-N. Dinh, N.-M. Bui, V.-T. Nguyen, D. John, L.-Y. Lin,

and Q.-K. Trinh, “NUTS-BSNN: A non-uniform time-step
binarized spiking neural network with energy-efficient in-memory
computing macro,” Neurocomputing, vol. 560, Dec. 2023,
Art. no. 126838. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S092523122300961X

[27] T. Li et al., “CafeHD: A charge-domain FeFET-based compute-in-
memory hyperdimensional encoder with hypervector merging,” in Proc.

Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2024, pp. 1–6.
[28] M. Yang et al., “CILP: An arbitrary-bit precision all-digital compute-

in-memory solver for integer linear programming problems,” in Proc.

IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2024, pp. 1–2.
[29] J. Mu, C. Yu, T. T.-H. Kim, and B. Kim, “A scalable and reconfig-

urable bit-serial compute-near-memory hardware accelerator for solving
2-D/3-D partial differential equations,” IEEE J. Solid-State Circuits,
vol. 59, no. 8, pp. 2706–2716, Aug. 2024.

[30] H. Ajmi et al., “Efficient and lightweight in-memory comput-
ing architecture for hardware security,” J. Parallel Distrib. Com-

put., vol. 190, Aug. 2024, Art. no. 104898. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731524000625

[31] J. Cai et al., “Energy efficient data search design and optimization based
on a compact ferroelectric FET content addressable memory,” in Proc.

59th ACM/IEEE Design Autom. Conf., New York, NY, USA, Feb. 2022,
pp. 751–756 doi: 10.1145/3489517.3530527.

[32] Y. Chen, J. Mu, H. Kim, L. Lu, and T. T. Kim, “BP-SCIM: A
reconfigurable 8T SRAM macro for bit-parallel searching and computing
in-memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 5,
pp. 2016–2027, May 2023.

[33] Y. Wang, S. Zhang, Y. Li, J. Chen, W. Zhao, and Y. Ha, “A
reliable and high-speed 6T compute-SRAM design with dual-split-
VDD assist and bitline leakage compensation,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 31, no. 5, pp. 684–695,
May 2023.

[34] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE J. Solid-State Circuits, vol. 51,
no. 4, pp. 1009–1021, Apr. 2016.

[35] Z. Lin et al., “Two-direction in-memory computing based on 10T SRAM
with horizontal and vertical decoupled read ports,” IEEE J. Solid-State

Circuits, vol. 56, no. 9, pp. 2832–2844, Sep. 2021.
[36] Y. Huang, Z. Chen, D. Li, and K. Yang, “CAMA: Energy and memory

efficient automata processing in content-addressable memories,” in Proc.

IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Apr. 2022,
pp. 25–37.

[37] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. 22nd Int. Conf. Comput. Aided Verification,
Edinburgh, U.K. Cham, Switzerland: Springer, 2010, pp. 24–40.

[38] C. Wolf. Yosys Open SYnthesis Suite. Accessed: 2024. [Online]. Avail-
able: https://yosyshq.net/yosys/

[39] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. 24th Int. Workshop Log. Synth. (IWLS),
2015, pp. 1–5.

[40] P.-C. Wu et al., “A floating-point 6T SRAM in-memory-compute
macro using hybrid-domain structure for advanced AI edge
chips,” IEEE J. Solid-State Circuits, vol. 59, no. 1, pp. 196–207,
Jan. 2024.

[41] C. Duan et al., “DDC-PIM: Efficient algorithm/architecture co-design for
doubling data capacity of SRAM-based processing-in-memory,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 43, no. 3,
pp. 906–918, Mar. 2024.

[42] A. Malhotra, A. K. Saha, C. Wang, and S. K. Gupta, “ADRA: Extend-
ing digital computing-in-memory with asymmetric dual-row-activation,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 8, pp. 3089–3093,
Mar. 2023.

[43] Y. Hui, Q. Li, L. Wang, C. Liu, D. Zhang, and X. Miao, “In-memory
Wallace tree multipliers based on majority gates within voltage-gated
SOT-MRAM crossbar arrays,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 32, no. 3, pp. 497–504, Mar. 2024.
[44] S. Sridharan, J. R. Stevens, K. Roy, and A. Raghunathan, “X-former:

In-memory acceleration of transformers,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 31, no. 8, pp. 1223–1233, Aug. 2023.
[45] A. Dongre, B. Boro, and G. Trivedi, “ADC-less reprogrammable RRAM

array architecture for in-memory computing,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 31, no. 12, pp. 2053–2060, Dec. 2023.
[46] S. Liu et al., “HARDSEA: Hybrid analog-ReRAM clustering and

digital-SRAM in-memory computing accelerator for dynamic sparse
self-attention in transformer,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 32, no. 2, pp. 269–282, Feb. 2024.
[47] Z. Lu et al., “An RRAM-based computing-in-memory architecture and

its application in accelerating transformer inference,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 32, no. 3, pp. 485–496, Mar. 2024.
[48] S. Choi, D. Han, C. Choi, and Y. Seo, “Layout-aware area optimization

of transposable STT-MRAM for a processing-in-memory system,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 32, no. 2, pp. 245–255,
Feb. 2024.

[49] H. Zhang et al., “CP-SRAM: Charge-pulsation SRAM marco for ultra-
high energy-efficiency computing-in-memory,” in Proc. 59th ACM/IEEE

Design Autom. Conf., New York, NY, USA, Jul. 2022, pp. 109–114, doi:
10.1145/3489517.3530398.

[50] A. Basak Chowdhury, B. Tan, R. Karri, and S. Garg, “OpenABC-D:
A large-scale dataset for machine learning guided integrated circuit
synthesis,” 2021, arXiv:2110.11292.

[51] R. Islam, B. Saha, and I. Bezzam, “Resonant energy recycling SRAM
architecture,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 4,
pp. 1383–1387, Apr. 2021.

[52] R. V. Joshi, M. M. Ziegler, and H. Wetter, “A low voltage SRAM using
resonant supply boosting,” IEEE J. Solid-State Circuits, vol. 52, no. 3,
pp. 634–644, Mar. 2017.

[53] D. Challagundla, I. Bezzam, and R. Islam, “Design automation of series
resonance clocking in 14-nm FinFETs,” Circuits, Syst., Signal Process.,
vol. 42, no. 12, pp. 7549–7579, Aug. 2023, doi: 10.1007/s00034-023-
02458-4.

[54] D. Challagundla, “Power and skew reduction using resonance energy
recycling in FinFET based wideband clock networks,” Master’s thesis,
Dept. Comput. Sci. Elect. Eng., Univ. Maryland, Baltimore, MD, USA,
2022.

[55] D. Challagundla, M. Galib, I. Bezzam, and R. Islam, “Power and skew
reduction using resonant energy recycling in 14-nm FinFET clocks,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2022, pp. 268–272.

[56] R. Islam, D. Challagundla, and I. Bezzam, “System and methods
of reducing wideband series resonant clock skew,” U.S. Patent App.
18/627 479, Oct. 10, 2024.

[57] R. Islam, “Low-power resonant clocking using soft error robust energy
recovery flip-flops,” J. Electron. Test., vol. 34, no. 4, pp. 471–485,
Jun. 2018, doi: 10.1007/s10836-018-5737-6.

[58] D. Challagundla, I. Bezzam, B. Saha, and R. Islam, “Resonant compute-
in-memory (rCIM) 10T SRAM macro for Boolean logic,” in Proc. IEEE

41st Int. Conf. Comput. Design (ICCD), Nov. 2023, pp. 110–117.
[59] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,

“OpenRAM: An open-source memory compiler,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2016, pp. 1–6.
[60] S. Nalam, M. Bhargava, K. Mai, and B. H. Calhoun, “Virtual prototyper

(ViPro): An early design space exploration and optimization tool for
SRAM designers,” in Proc. 47th Design Autom. Conf. New York, NY,
USA: Association for Computing Machinery, Jun. 2010, pp. 138–143,
doi: 10.1145/1837274.1837310.

[61] M. Liu, X. Tang, K. Zhu, H. Chen, N. Sun, and D. Z. Pan, “OpenSAR:
An open source automated end-to-end SAR ADC compiler,” in Proc.

IEEE/ACM Int. Conf. Comput. Aided Design, Oct. 2021, pp. 1–9.
[62] J. Chen et al., “AutoDCIM: An automated digital CIM compiler,” in

Proc. 60th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2023, pp. 1–6.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 



192 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 33, NO. 1, JANUARY 2025

[63] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective (Prentice
Hall electronic and VLSI series), 2nd ed., Upper Saddle River, NJ, USA:
Pearson, 2004.

[64] K. Lee, J. Jeong, S. Cheon, W. Choi, and J. Park, “Bit parallel 6T SRAM
in-memory computing with reconfigurable bit-precision,” in Proc. 57th

ACM/IEEE Des. Autom. Conf. (DAC), Jun. 2020, pp. 1–6.
[65] C.-C. Wang, L. K. S. Tolentino, C.-Y. Huang, and C.-H. Yeh,

“A 40-nm CMOS multifunctional computing-in-memory (CIM) using
single-ended disturb-free 7T 1-Kb SRAM,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 29, no. 12, pp. 2172–2185, Dec. 2021.
[66] W. Simon, J. Galicia, A. Levisse, M. Zapater, and D. Atienza, “A fast,

reliable and wide-voltage-range in-memory computing architecture,” in
Proc. 56th ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1–6.

[67] Z. Lin et al., “In situ storing 8T SRAM-CIM macro for full-array
Boolean logic and copy operations,” IEEE J. Solid-State Circuits,
vol. 58, no. 5, pp. 1472–1486, May 2023.

[68] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE J. Solid-State Circuits, vol. JSSC-9, no. 5,
pp. 256–268, Oct. 1974.

Dhandeep Challagundla (Graduate Student
Member, IEEE) received the M.S. degree from
the University of Maryland at Baltimore County
(UMBC), Baltimore, MD, USA, in August 2022,
where he is currently working toward the Ph.D.
degree at the Computer Science and Electrical
Engineering Department.

His research interests revolve around energy-
efficient computing, compute-in-memories, static
random-access memory (SRAM) design, low-
power circuit design, mixed-signal IC design, and

electronic design automation (EDA) tools.

Ignatius Bezzam (Member, IEEE) received the
B.Tech. degree from IIT Madras, Chennai, India in
1983, and the Ph.D. degree in electrical engineering
from Santa Clara University, Santa Clara, CA,
USA, in 2015.

He holds several key patents in analog
mixed-signal integrated circuit (IC) design with
publications in top international conferences,
including the International Solid-State Circuits
Conference (ISSCC), European Solid-State Circuits
Conference (ESSCIRC), IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS (TCAS).
Dr. Bezzam has owned 30 first silicon successes with global teams, with

33 years of next generation chip design experience in Silicon Valley, Europe,
and Asia.

Riadul Islam (Senior Member, IEEE) was an
Assistant Professor with the University of Michigan,
Dearborn, MI, USA, from 2017 to 2019. He is
currently an Assistant Professor with the Department
of Computer Science and Electrical Engineering,
University of Maryland at Baltimore County, Bal-
timore, MD, USA. In his Ph.D. dissertation work at
the University of California at Santa Cruz (UCSC),
Santa Cruz, CA, USA, he designed the first current-
pulsed flip-flop/register that resulted in the first-ever
one-to-many current-mode clock distribution net-

works for high-performance microprocessors. He holds two U.S. patents and
several IEEE/ACM/MDPI/Springer Nature journal and conference publica-
tions. His current research interests include digital, analog, and mixed-signal
CMOS ICs/systems-on-chip (SoCs) for a variety of applications; verification
and testing techniques for analog, digital and mixed-signal ICs; hardware
security; CAN network; CAD tools for design and analysis of microprocessors
and field-programmable gate arrays (FPGAs); automobile electronics; and
biochips.

Dr. Islam is a member of the ACM, IEEE Circuits and Systems (CAS) Soci-
ety, the VLSI Systems and Applications Technical Committee (VSA-TC) of
the IEEE-CAS, and IEEE Solid-State Circuits (SSC) Society. He was a recip-
ient of the 2021 NSF ERI Award, the 2021 Maryland Industrial Partnerships
(MIPS) Award, and the 2021 Maryland Innovation Initiative (MII) Award.
He is an Associate Editor of Circuits, Systems, and Signal Processing (CSSP)
journal (Springer). He was a Technical Program Committee (TPC) Member of
the IEEE/ACM International Conference on Computer-Aided Design (ICCAD
2022), ACM Great Lakes Symposium on VLSI (GLSVLSI 2020, GLSVLSI
2021, and GLSVLSI 2022), 57th IEEE/ACM Design Automation Conference
(DAC) 2020 LBR Session, IEEE Computer Society Annual Symposium
on VLSI (ISVLSI) 2021, and IEEE International Conference on Consumer
Electronics (ICCE) 2021.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on January 15,2025 at 19:06:27 UTC from IEEE Xplore.  Restrictions apply. 


