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Abstract: To facilitate cooperation among connected automated vehicles (CAVs), such as cooperative platooning or cooperative lane changes
in mixed traffic comprising CAVs, connected human-driven vehicles (CHVs), and conventional (unconnected) human-driven vehicles
(HDVs), an ego CAV needs to discern which surrounding vehicles are connected (CAVs or CHVs) and which are unconnected (HDVs).
Therefore, this paper introduces a surrounding vehicles identification system (SVIS) designed to enable CAVs to identify the connectivity
status of surrounding vehicles. Unlike a previously developed preceding vehicle identification system that only identifies the connectivity of its
immediately preceding vehicle, the proposed SVIS generalizes this identification to nearby surrounding vehicles. Furthermore, the proposed
SVIS significantly reduces the error in the connected vehicle identification by integrating distance and the magnitude of velocity for matching
instead of distance-only matching used by the previous system. The SVIS is a must to enable CAVs to form platoons via lane changes after a
connected vehicle is detected in an adjacent lane. We compared a newly proposed distance-plus-speed-matching approach with a previously
developed distance-only-matching approach using Next Generation Simulation (NGSIM) data. Through comparison, the efficacy of the pro-
posed distance-plus-speed-matching SVIS is demonstrated to be considerably superior to that of the distance-only-matching SVIS. Given that
a reliable and robust method for identifying surrounding connected vehicles is key to the successful formation of cooperative adaptive cruise
control (CACC) platoons and cooperative lane changes, the proposed distance-plus-speed-matching SVIS would help quickly and efficiently
form platoons in a mixed traffic environment. DOI: 10.1061/JTEPBS.TEENG-8496. © 2024 American Society of Civil Engineers.

Introduction

Mobility and safety are the two primary goals of current and future
intelligent transportation systems. The connected and automated
vehicle (CAV) is a product integrating emerging technologies and
the automobile industry, which has shown promising potential to
improve mobility and safety. Vehicle automation makes transpor-
tation systems more intelligent, safe, and reliable (Yao et al. 2020).
Bajpai (2016) showcased the benefits of CAVs in increased capac-
ity without raising delay times compared with unconnected auto-
mated vehicles.

Although the Society of Automotive Engineers’ Level 5
(i.e., driverless cars) automation is probably still far away, today’s
vehicles are equipped with adaptive cruise control (ACC), which
has features of Level 1 and partial Level 2 automation (Kim et al.
2013). In addition, the evolution of vehicle connectivity enables
CAVs to collaborate in various traffic scenarios, promoting both
vehicle safety and efficiency. Specifically, cooperative platooning,
i.e., cooperative adaptive cruise control (CACC) (Milanes et al.
2014; Naus et al. 2010; Ploeg et al. 2011; Rajamani and Shladover
2001) and cooperative lane changes (Wang et al. 2016; Zheng
et al. 2020) are expected to realize such benefits by cooperating
with target surrounding connected vehicles via sensor detection and
vehicle-to-vehicle (V2V) communication.

V2V communication allows CACC vehicles to travel stably in a
platoon with time headways as low as 0.6 s, making it possible to
increase the road capacity by two to three times compared with
human-driven traffic (Lioris et al. 2017; Shladover et al. 2012). To
enable cooperation, the ego vehicle must establish a V2V connec-
tion with the surrounding connected vehicle after the detection is
made by the onboard sensor. Once the V2V connection is estab-
lished, the communication IDs of the connected vehicles can be
obtained by the ego vehicle. Thus, the identification of the target
vehicle is a must to form CACC platoons or implement cooperative
lane changes. Generally, the process of identifying the target ve-
hicle involves the comparison of self-reported positions obtained
by the Global Positioning System (GPS) and reported in V2V
messages, such as the basic safety message and positions obtained
by the ego vehicle through sensor measurements. Once the sensor-
measured positions match the GPS-based positions, the vehicle is
considered the target vehicle.

There have been several studies regarding connected vehicle
identification for CACC. Many researchers assumed that all
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CACC-capable vehicles would be easily distinguished from the
surrounding vehicles because they travel in a single platoon
(Milanes et al. 2014; Naus et al. 2010; Ploeg et al. 2011; Rajamani
and Shladover 2001). In the 2011 Grand Cooperative Driving Chal-
lenge (GCDC), CACC platoons developed by different research
groups were competing in performance. In this challenge, a black-
list in the vehicle’s software was used to label the messages from
vehicles in the other lane that did not belong to the same platoon
(Geiger et al. 2012). This strategy would not be applicable in the
real world. Furthermore, despite all of GCDC’s vehicles being
equipped with high-precision GPS, the vehicles could not identify
their predecessor with 100% accuracy.

Chen and Park (2020) developed a preceding vehicle identifi-
cation system (PVIS) under a fully connected vehicle environment.
Their study used GPS/sensor errors, vehicle geometry, and radar
measurements of actual preceding vehicles to calculate a dynamic
search region. A fundamental limitation is that their PVIS assumed
every vehicle is connected. However, in the near future, the traffic
will be mixed, with both connected and unconnected vehicles.
Motivated the prediction of the adoption rate of vehicle connectiv-
ity [i.e., 100% adoption is not likely until the 2040s in the US
(Bansal and Kockelman 2017)], Chen and Park (2022) modified
their PVIS to deal with a mixed traffic environment and success-
fully demonstrated it using NGSIM data. They found GPS requires
an accuracy of 1 m to make 99th-percentile time consumption less
than 10 s.

The results of Chen and Park (2022) indicated that the multipath
bias of GPS could contribute to the misidentification of a connected
preceding vehicle as an unconnected vehicle. A drawback of their
research is that the algorithm does not consider target vehicles at
nearby lanes, a must for cooperative lane changes and forming
CACC with an adjacent lane’s connected vehicle. Another draw-
back is that their algorithm showed a nonzero identification error
(i.e., identifying an unconnected vehicle as a connected vehicle),
which is not suitable for real-world implementation.

Thus, this paper proposes significantly enhancing the previously
developed PVIS by expanding its capability to identify nearby
surrounding vehicles and integrating both speed and distance in
identifying target vehicles. As noted, expanding the connectivity
identification to all nearby surrounding vehicles is necessary for
the ego vehicle to subsequently cooperate with these surrounding
vehicles. For example, it allows the ego vehicle to make lane-
change decisions in case a CACC vehicle intends to join a con-
nected vehicle on a nearby lane.

The rest of the paper is organized as follows: The second
section describes the identification procedure in mixed traffic
by using relative position and speed obtained from GPS and radar
sensors. The third section describes the design of the surrounding
vehicles identification system (SVIS), including the outline of
the design goals, the derivation of the searching area, and the
optimization of the SVIS parameters. In the fourth section, the
performance of the proposed SVIS is evaluated with real-world
vehicle trajectory data. In the fifth section, we present findings
from our research and discuss the potential enhancements for
future research.

Conceptual Identification Procedure

The following assumptions are made for this study:
• Connected vehicles are equipped with GPS receivers.
• The CAV is equipped with multiple radar sensors providing a

360° field of view.
• The effects of V2V packet loss on our SVIS are insignificant.

Before proceeding with the proposed enhancement, it is noted
that the decision to add the GPS speed to the SVIS algorithm was
made based on the following information. Studies found that the
GPS speed estimation is far more accurate and less vulnerable
to the multipath effect (Jain et al. 2021; Kubo 2009; Sadrieh et al.
2000; Serrano et al. 2004). Using speed in addition to distance to
perform identification should improve identification accuracy. In
this study, the term speed specifically denotes the longitudinal com-
ponent of the vehicle’s velocity because the lateral component is
typically minor and deemed negligible for the purposes of match-
ing analysis.

A conceptual SVIS procedure consisting of distance and speed
matching, dubbed ds-SVIS, is formulated as follows:
1. The identification procedure starts when the ego vehicle detects

surrounding vehicles within the radar’s maximum detection
range.

2. The ego vehicle measures each detected relative position and
speed of the target vehicle via radar. For the proposed approach,
i.e., ds-SVIS, a search region, A, around the radar-measured
position and speed is defined as shown in Fig. 1(a).

3. At the same time, the ego vehicle receives standardized mes-
sages such as the Basic Safety Message (Deng et al. 2017; V2X
Core Technical Committee 2016), which contains the GPS po-
sitions and speeds of remote connected vehicles, as shown in
Fig. 1(b). The radar measurement of the target vehicle is com-
pared with the GPS positions and speeds in the V2V messages
from connected vehicles within the communication range.
The nearby connected vehicles whose GPS positions and speeds
fall within the search region defined in Step 2 are considered
candidates.

4. Steps 2 and 3 are repeated n times, and the candidates for the
target surrounding vehicle are determined by whose self-
reported GPS position and speed are within Search region A
in all n iterations of Steps 2 and 3.

5. In Step 4, if there is only one candidate, that candidate is con-
sidered as the target vehicle, and the identification procedure
stops.

6. If there is no candidate, the identification procedure restarts at
Step 1, and Steps 1–3 are repeated up to k times. If the system
does not find any candidate for k consecutive times of identi-
fication, the procedure ends, and the system considers the target
surrounding vehicle to be unconnected.

7. If there are multiple candidates, the process goes back to Step 1
and restarts Steps 1–3.
The entire procedure is shown in Fig. 2. This process indicates

that Step 1 can be repeated at most k times, whereas Steps 2 and 3
can be repeated n × k times. Both n and k are optimized parame-
ters, as detailed in the next section.

Research Method

Design Approach

Based on the PVIS procedure of Chen and Park (2022), the
proposed ds-SVIS approach was redesigned to incorporate nearby
surrounding vehicles and utilize both distance and speed measures.
The most serious error is to engage in CACC (or a different
cooperative driving algorithm as well as lane change) with a mis-
takenly identified preceding vehicle. Thus, the primary objective
is to minimize the probability of misidentifying the target vehicle
(i.e., identifying an unconnected vehicle as a connected vehicle).
Such misidentification errors are referred to as a vehicle misiden-
tification error. A low vehicle misidentification error probability
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ensures that the ego vehicle does not start cooperating with an
irrelevant vehicle. The error of each surrounding target vehicle
is calculated as follows:

Er ¼

(
ð1−PaÞPirr if the surrounding target vehicle is connected

Pirr if the surrounding target vehicle is unconnected

ð1Þ

where Pa = probability for the target connected surrounding vehicle
to be identified correctly; and Pirr = probability that an irrelevant
surrounding vehicle is identified as the target connected vehicle.
Table 1 lists all the symbols used in this study.

A secondary objective of the SVIS is to minimize misidentify-
ing a connected vehicle as an unconnected vehicle, referred to as
unusability error. In this case, the ego vehicle engages in a subop-
timal control mode (for example, using adaptive cruise control
rather than using cooperative adaptive cruise control). This is
not as critical as attempting to cooperate with an irrelevant vehicle
(as in the case of vehicle misidentification error). Under the
assumption that the primary objective of Er ≈ 0 is achieved, the

Fig. 2. Flowchart of the surrounding vehicles identification procedure.

Table 1. Optimal values of n, k, and α as a function of constraint
parameters for the optimization problem

Target
error
rate tmax Pmin n k α

Target
unusability

rate

10−10 35 0.95 40 7 0.0182 0.01033
10−8 37 6 0.0165 0.00943
10−6 21 8 0.0353 0.00621

Fig. 1. (a) Search procedure with distance and speed; and (b) reception of GPS messages and comparison with the sensor measurement.
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unusability error [Ur ¼ ð1 − PaÞð1 − ErÞ], is approximated as
Ur ≈ 1 − Pa.

The last objective is to minimize the identification time con-
sumption. The proposed approach implements multiple iterations
to ensure both vehicle misidentification error and unusability error
are minimized to acceptable levels. There is a clear trade-off be-
tween the acceptable errors and the identification time. To address
these, an optimization approach was implemented to determine the
weights between the competing objectives in the “Optimization
Formulation and Optimized Parameters” section.

Search Region

Given that the proposed ds-SVIS searches all the nearby surround-
ing vehicles, the search region is expanded over the previous
PVIS. Incorporating a speed measure in addition to distance added
the search space and complexity in the optimization. The speed
and distance measures are obtained from GPS and radar sensors,
respectively. As mentioned in Step 2 of the proposed SVIS pro-
cedure, a search region includes an area around the detected nearby
vehicles.

One condition to be a candidate for the surrounding target ve-
hicle is given by a search region based on the position (i.e., longi-
tudinal and lateral distance measure), which is defined as follows:

!
exg − exr

δx

"
2

þ
!
eyg − eyr

δy

"
2

< F−1ðχ2ð2Þ; 1 − αdÞ ð2Þ

where exr and eyr = errors coming from the radar measurement
of the surrounding vehicle’s position in x- and y-directions; exg
and eyg = errors coming from the GPS measurement of the
surrounding vehicle’s position in x and y, respectively; and
F−1ðχ2ð2Þ; 1 − αdÞ = inverse cumulative distribution function of
the Chi-square distribution with two degrees of freedom [χ2ð2Þ],
evaluated at the probability values in probability 1 − αd. Particu-
larly, αd is the probability that the actual surrounding connected
vehicle is positioned out of the oval Region A defined by Eq. (2).
As shown in Fig. 3, when αd ¼ 0.05, then F−1ðχ2ð2Þ; 1 − αdÞ ¼
5.99.

In addition to the distance measure (i.e., position), the speed
measure is considered. The measured speed by the radar and GPS
are denoted as vr and vg, respectively. Given the actual vehicle
speed as v, the following consider measured speeds with errors:

vg ¼ vþ eg ð3Þ

vr ¼ vþ er ð4Þ

where eg and er = speed errors due to GPS and radar, respectively.
The measurement errors of speed from radars and GPS were

assumed to follow a normal distribution:

er ∼ Nð0; σ2
rÞ ð5Þ

eg ∼ Nð0; σ2
gÞ ð6Þ

where σr and σg = standard deviations. Therefore

vr − vg ¼ er − eg ∼ Nð0; δ2vÞ ð7Þ

where

δ2v ¼ σ2
r þ σ2

g ð8Þ

Then, δ2v as a squared sum of one independent standard normal
variable follows a Chi-square distribution with one degree of free-
dom. Similar to the position search region, the search region for
(longitudinal) speed is defined by an inverse cumulative distribu-
tion function of the Chi-square distribution:

ðer − egÞ2

δ2v
< F−1ðχ2ð1Þ; 1 − αvÞ ð9Þ

where F−1ðχ2ð1Þ; 1 − αvÞ = inverse cumulative distribution func-
tion of the Chi-square distribution with one degree of freedom,
χ2ð1Þ, evaluated at the probability values in probability 1 − αv.
Particularly, αv is the probability that the actual surrounding
connected vehicle is positioned outside the Region B defined by
Eq. (9). As shown in Fig. 3, when αv ¼ 0.05, then F−1ðχ2ð1Þ;
1 − αvÞ ¼ 3.84.

Fig. 3. Inverse cumulative distribution function of the Chi-square distribution.
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Radar distance measurement mainly depends on the time the
signal returns (Cohen 2020). On the other hand, the radar’s speed
measurement is done by calculating the shift in frequency. Thus,
these two events are independent.

The probability of the actual surrounding vehicle being identi-
fied as the connected vehicle in the position region is

Pa;d ¼ 1 − ð1 − ð1 − αdÞnÞk ð10Þ

The probability of the actual surrounding vehicle being identi-
fied as the connected vehicle in the speed region is

Pa;v ¼ 1 − ð1 − ð1 − αvÞnÞk ð11Þ

Then, by combining Eqs. (10) and (11), the probability of the
actual surrounding vehicle identified as the connected vehicle is

Pa ¼ Pa;d × Pa;v ð12Þ

Error Rate Model

Depending on the radar distance and speed measurements, the
search region would change. Given that the radar distance is more
accurate than the GPS location-based distance, the radar distance
error is assumed to be insignificant compared with the GPS dis-
tance error. The probability density function for the position of
an irrelevant surrounding vehicle is defined as follows:

fðexg; eygÞ ¼
1

2πδ2
exp

#
−ex2gþey2g

δ2

$

ð13Þ

where δ ¼ δx ¼ δy. The probability of the irrelevant vehicle within
Position region A for n measurements is

Pd ¼
!ZZ

A 0
fðexg; eygÞdexgdeyg

"
n

ð14Þ

A 0 ¼ fðexg % wÞ2 þ ey2g < δ2F−1ðχ2ð2Þ; 1 − αdÞg ð15Þ

where w = lane width; and A 0 = overlap of Region A and Region
A’s shift by w to the lateral direction. A 0 represents the possible
region where the position of the nearest irrelevant vehicles falls

in Region A to be identified as a candidate, as shown in Fig. 4(a).
Region A 0 needs to be optimized to guarantee a low error rate.

Furthermore, the error associated with the GPS speed is negli-
gible (Jain et al. 2021; Kubo 2009; Sadrieh et al. 2000; Serrano
et al. 2004). For this reason, the GPS estimated speed error is
deemed insignificant compared with the radar speed error

e2r < σ2
rF−1ðχ2ð1Þ; 1 − αvÞ ð16Þ

The probability density function of its relative radar speed with
respect to its actual speed is given by a normal distribution

fðerÞ ¼
1ffiffiffiffiffiffi
2π

p
σ2
r
exp

#
−e2r

σ2r

$

ð17Þ

The probability of the speed of an irrelevant vehicle to be within
the Speed region B for n measurements is

Pv ¼
!Z

B 0
ðfðerÞder

"
n

ð18Þ

B 0 ¼ fðer %ΔvÞ2 < σrF−1ðχ2ð1Þ; 1 − αvÞg ð19Þ

where Δv = assumed smallest speed difference between the target
preceding vehicle and the irrelevant nearby vehicle. Similar to
Position region A 0 as shown in Fig. 4(b), B 0 is the possible region
of the irrelevant vehicle Overlapping region B, which needs to be
optimized to guarantee a low error rate. Here, Δv ¼ 0 because the
irrelevant vehicle may have the same speed as the surrounding
target vehicle. Thus, the overall probability becomes

PO ¼ Pd × Pv ð20Þ

At last, Er, the probability that the nearest irrelevant vehicle as
shown in Fig. 4, is determined to be the target connected surround-
ing vehicle in any of the k repetitions of the identification pro-
cedure, can be estimated based on the Binomial approximation
as follows:

Er ¼ Pirr ≈ 2kPO ð21Þ

Fig. 4. Irrelevant vehicles for the target surrounding vehicle in position and speed: (a) irrelevant vehicle in possible distance region; and (b) irrelevant
vehicle in possible speed region.
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Optimization Formulation and Optimized Parameters

Considering Eqs. (8)–(17), the following optimization problem,
which ensures minimum surrounding target vehicle misidentifica-
tion error and minimizes the cost of unusability error and time con-
sumption, is formulated:

Minimize C ¼ W1ð1 − Paðαd;αv; n; kÞÞ þW2 × nkΔT ð22Þ

Subject to

Pirr ¼ 2k
!ZZ

A 0
fðexg; eygÞdexgdeyg

"
n
×
!Z

B 0
fðerÞder

"
n
≤ Er

ð23Þ

nkΔT ≤ tmax ð24Þ

Pa ¼ ½1 − ð1 − ð1 − αdÞnÞk' × ½1 − ð1 − ð1 − αvÞnÞk' ≥ pmin

ð25Þ

0 < αd; αv < 1 ð26Þ

where C = cost function, which consists of weighted unusability
rate (Ur) and maximum time consumption with weights W1 and
W2, respectively; n and k = positive integers for the times of match-
ing shown in Fig. 2; and nkΔT = time consumption when the time
interval of each matching is ΔTs. In this paper, the time interval of
each matching is set to be 0.1 s. The surrounding target vehicle
misidentification error and the identification time are constrained
to be less than the predefined values, Er (i.e., a maximum error
required to avoid an ego vehicle following an unconnected vehicle)
and tmax (i.e., a maximum acceptable time consumption), respec-
tively. The minimum acceptable usability of CACC is also con-
strained by a predefined value (pmin).

Due to the presence of nonlinear and integer constraints, a ge-
netic algorithm (GA) is used to optimize for the parameters. Table 1
summarizes the weights and optimized parameter values of n, k,
and α for the distance-only method under three levels of target mis-
identification error (Er) of 10−6, 10−8, and 10−10. Table 2 presents
the weights and optimized parameter values of n, k, αd, and αv for
the proposed ds-SVIS with the same three levels of Er. The weights
are different for ds-SVIS under Er ¼ 10−6 from others for a low
unusability rate.

Performance Evaluation

SVIS was evaluated using the real-world vehicle trajectories avail-
able from the Next Generation Simulation (NGSIM) data set to re-
produce the traffic on a high-density highway segment. The ability
of SVIS to identify connected and unconnected vehicles under

various GPS and radar errors was investigated. The study examined
a range of mixed traffic scenarios characterized by varying degrees
of market penetration by connected vehicles, specifically 20%,
30%, 40%, 50%, 70%, 90%, and 100%. This approach was under-
taken to evaluate the robustness of the SVIS in contexts with differ-
ing levels of traffic connectivity.

To model a particular market penetration, we independently
assigned each vehicle in our simulation to be connected with
the probability corresponding to that penetration. For example
at a 30% market penetration, each vehicle in the simulation was
assigned to be a connected vehicle with a probability of 0.3. The
effectiveness of SVIS was investigated by considering observed
vehicle misidentification error, observed unusability rate, and the
time of identifying the target connected vehicle. It is essential
to recognize that the observed misidentification error and unus-
ability rate may differ from the target vehicle misidentification
error and target unusability rate. This discrepancy arises due to
variations in the assumed error distributions for GPS and radar,
reflecting the potential uncertainties that can occur in real-world
scenarios.

Data

The Federal Highway Administration (FHWA) Traffic Analysis
Tools program conducted the NGSIM program and made the tra-
jectory data available (Alexiadis et al. 2004). Here, 2,500 pairs of
preceding/following vehicle data collected using high-resolution
cameras from US Highway 101 (US 101) were utilized.

Sensor Error Consideration

This section of the study discusses the considered errors of GPS
and radar sensors. The true distribution errors are typically un-
known or varying with many factors (e.g., GPS, the number of
available satellites, and nearby buildings).

Automotive Radar
For automated vehicles, millimeter-wave radar is one of the funda-
mental sensors. Bosch (Ludwigsburg, Germany) long-range radar
(LRR) has been widely employed for ACC (Hasch et al. 2012). The
Bosch long-range radar (LRR) specifications are 250 m detection
range, 30° field of view, 0.1 m distance accuracy, 0.1 m=s speed
accuracy, and 0.1° angle accuracy. Measurement errors were as-
sumed to follow white noise (Ploeg et al. 2011).

However, products on the market suggest that range distance
accuracies are around 10 cm and speed accuracies are generally
less than 0.3 m=s (de Ponte Müller 2017; Klinefelter and Nanzer
2021). Therefore, for the evaluation of SVIS, a radar distance
accuracy of 0.1 m was considered. However, because the speed
accuracy can be up to 0.3 m=s, a sensitivity analysis for 0.1, 0.2,
and 0.3 m=s was conducted.

GPS
The GPS with a pseudorange relative positioning approach can
achieve an accuracy of 0.5–1.2 m on open highways (Liu et al.
2014; de Ponte Müller et al. 2014) and 2–6.5 m in dense urban
environments (Alam et al. 2013; de Ponte Müller et al. 2014).
The GPS errors were modeled as per Chen and Park (2022). The
multipath effects are represented based on Giremus et al. (2007);
specifically, we assumed that the multipath effect can be modeled
by “abruptly adding biases with random magnitudes and durations
to pseudo-range measurements.” It was found that the speed error
from Doppler measurements is under 10 cm=s in most cases (Kubo
2009).

Table 2. Optimal values of n, k, αd, and αv as function of constraint
parameters for the optimization problem [Eq. (22)]

Target
error
rate tmax Pmin W1 W2 n k αd αv

Target
unusability

rate

10−10 35 0.95 0.20 755 38 9 0.0196 0.0102 0.00326
10−8 0.10 765 35 9 0.0184 0.0121 0.00137
10−6 0.10 765 34 6 0.0110 0.0049 0.00096
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Comparison of Distance-Only Method versus Distance
and Speed Method

To evaluate whether the proposed method considering both dis-
tance and speed outperforms the distance-only method, especially
in reducing the vehicle misidentification error and unusability rate,
the following assumptions were made. The GPS and radar errors
followed normal distributions with a mean of zero and different
standard deviations, including GPS distance error of one, radar dis-
tance error of 0.1, GPS speed error of zero, and radar speed error of
0.1. A sensitivity analysis was conducted considering three levels
of target vehicle misidentification errors (Er) of 10−10, 10−8,
and 10−6.

Three measures of effectiveness (MOEs) were used for the com-
parative analysis. Table 3 compares the average of the observed
vehicle misidentification error rates, observed unusability rate, and
time consumption between the two approaches at different sur-
rounding target vehicle misidentification errors. As indicated in
Table 3, the ds-SVIS (proposed approach) outperformed the d-SVIS
(previous approach). The average error rates were almost zero with
the proposed approach.

Looking at the different surrounding target vehicle misidentifi-
cation errors, Er ¼ 10−6 had a rise in the error rate at the 40% mar-
ket penetration rate for the proposed approach. GPS and radar
distance and speed errors were randomly generated according to
their corresponding distributions in each repetition. The investiga-
tions found that out of 10 replications, only one replication had a
nonzero value. Then, simulations were run for 100 replications to
observe the results. The observed vehicle misidentification error
also showed some nonzero values. Thus, Er ¼ 10−6 was deemed
to be not acceptable for practical implementation. However, com-
pared with the previous approach, it is still better than that of the
Er ¼ 10−10 level. Given that a close to zero vehicle misidentifica-
tion error is required, the target vehicle misidentification error of

10−8 and 10−10 should be adopted with the proposed distance and
speed approach.

The results indicated that at the target vehicle misidentification
errors of Er ¼ 10−8 and Er ¼ 10−10, there was a slight variation in
the unusability rate. At a target vehicle misidentification error of
Er ¼ 10−6, the unusability rate decreased, indicating a trade-off be-
tween observed vehicle misidentification error and unusability rate.
To guarantee a low vehicle misidentification error, the search region
needs to be small to exclude irrelevant vehicles, although a small
search region could exclude the target vehicle and increase the un-
usability rate.

The average time consumption values indicated that more time
is consumed using the distance and speed approach than by the
distance-only approach for the same target vehicle misidentifica-
tion error. Also, it has been validated from the cost of the optimi-
zation problem. From Table 3, a higher jump is attained at Er =
10−6. When looking at the average observed vehicle misidentifica-
tion error in Table 3, it is higher for the distance only at Er ¼ 10−6.
Compared with Er of other values, the required time consumption
averages between the distance-only versus distance and speed in-
creased to cover such a higher gap.

Table 3 also indicates that at Er ¼ 10−6, the least time is con-
sumed compared with Er of other values for the proposed distance
and speed approach. It is less than the time consumption averages
of distance only for Er ¼ 10−8 and Er ¼ 10−10. Thus, compared
with the previous distance-only approach, the proposed distance
and speed approach also benefits the time consumption average
if the results from Er ¼ 10−6 having random nonzero values in
observed vehicle misidentification error is acceptable. However,
because lowering the average actual surrounding vehicle misiden-
tification error, the parameter Er of 10−8 and 10−10 with higher
time consumption averages is preferred. At Er ¼ 10−8, the distance
and speed approach had similar time consumption as the distance-
only approach when Er ¼ 10−10, whereas the error rate of the

Table 3. MOEs for d-SVIS (i.e., previous approach) and ds-SVIS (i.e., proposed approach) at different penetrations for different values of the target
surrounding vehicle misidentification error rate (10 repetitions)

MOEs
Market

penetration (%)

Er ¼ 10−6 Er ¼ 10−8 Er ¼ 10−10

Distance Distance and speed Distance Distance and speed Distance Distance and speed

Average observed
misidentification
error rate

20 1.7 × 10−3 0.0 9.3 × 10−4 0.0 4.1 × 10−4 0.0
30 1.2 × 10−3 0.0 8.9 × 10−4 0.0 2.7 × 10−4 0.0
40 1.2 × 10−3 2.8 × 10−5 4.3 × 10−4 0.0 2.7 × 10−4 0.0
50 7.9 × 10−4 0.0 3.3 × 10−4 0.0 3.2 × 10−4 0.0
70 8.6 × 10−4 0.0 2.1 × 10−4 0.0 9.2 × 10−5 0.0
90 4.4 × 10−4 0.0 5.5 × 10−5 0.0 1.0 × 10−7 0.0

100 2.4 × 10−4 0.0 1.9 × 10−5 0.0 9.7 × 10−6 0.0

Average observed
unusability rate

20 0.068 0.041 0.058 0.055 0.055 0.060
30 0.065 0.039 0.058 0.051 0.057 0.058
40 0.064 0.035 0.055 0.049 0.054 0.056
50 0.062 0.038 0.050 0.050 0.052 0.057
70 0.060 0.034 0.049 0.047 0.048 0.053
90 0.060 0.032 0.047 0.045 0.046 0.050

100 0.057 0.032 0.045 0.043 0.045 0.049

Average time
consumption (s)

20 2.36 3.84 3.98 4.59 4.37 4.92
30 2.36 3.85 3.99 4.57 4.39 4.93
40 2.39 3.86 4.00 4.60 4.40 4.95
50 2.38 3.86 4.01 4.60 4.42 4.98
70 2.39 3.87 4.03 4.63 4.46 5.01
90 2.40 3.88 4.06 4.66 4.49 5.02

100 2.40 3.89 4.08 4.68 4.50 5.05

Average — 2.38 3.86 4.02 4.62 4.43 4.98

Note: Bold values represents the comparison between d-SVIS and ds-SVIS with maximum misidentification error rates in 10−8 and 10−10, respectively.
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proposed distance and speed approach at Er ¼ 10−8 was lower than
that of the distance-only approach at Er = 10−10.

Thus, Table 3 demonstrates that the proposed distance and speed
approach is more advantageous than the previous distance-only
approach in terms of average error rate, average unusability rate,
and average time consumption. Out of the three error rates evalu-
ated, we selected Er = 10−8 for the proposed distance and speed
approach for further investigation. This is because it provides a
similar error rate and unusability, but slightly shorter time than that
of Er ¼ 10−10 cases.

Comparison of GPS Sensitivity of Distance-Only
versus Distance and Speed

With the selection of Er ¼ 10−8, this section analyzed the sensitiv-
ity of GPS distance following a normal distribution with the stan-
dard radar distance error of 0.1, neglectable GPS speed error, and
both standard radar distance and speed error of 0.1. Usually, the
standard GPS distance error is one, which can be propagated
quickly based on different errors, e.g., multipath effect (Chen and
Park 2022). Regarding the standard radar speed error, it can be
0.1, but some companies’ radar has a standard speed error of 0.3
(de Ponte Müller 2017). Therefore, the focus was only on the differ-
ent GPS distance errors.

The comparisons of MOEs between the previous distance-only
versus the proposed distance and speed approaches at different GPS
distance errors are shown in Fig. 5. The analysis focused on, i.e., tar-
get vehicle misidentification error and time consumption because
the unusability rate does not change significantly when ds-SVIS is
introduced. Specifically, for the standard GPS distance error of one,
the difference was not statistically significant (p-value ¼ 0.1696).
In addition, the standard GPS distance error should be one or
below to minimize the surrounding vehicle misidentification error.

With the standard GPS distance error of 1.5, the proposed approach
could show a 10−4 surrounding vehicle misidentification error.

GPS Distance and Radar Speed Sensitivity for the
Distance and Speed Approach

This part analyzed the sensitivity of the GPS distances and radar
speeds for ds-SVIS. The standard radar speed error was assumed to
be 0.1, and the GPS speed error is insignificant.

Fig. 6 compares the average observed misidentification error
rate, average unusability rate, and average time consumption for
the distance and speed approach (i.e., ds-SVIS) at different GPS
distance errors and radar speed errors.

Because safety is the most critical, the surrounding vehicle mis-
identification error should be minimized. In order to maintain the
observed vehicle misidentification error close to 10−8, the standard
radar speed error should be 0.2 or below. With a standard GPS dis-
tance error of one, the unusability errors and time consumption are
reasonable.

Conclusions and Recommendations

Based on the simulations conducted in this research, the following
conclusions are made:
• The proposed ds-SVIS approach is more efficient than the

previous d-SVIS. Considering the base errors, the average ob-
served vehicle misidentification errors were zero for the pro-
posed approach when Er ¼ 10−8 and 10−10. On the contrary,
the previous approach resulted in nonzero error even when
Er ¼ 10−10. Given that the proposed approach under Er ¼ 10−6
showed nonzero error, Er should be smaller than 10−6.

• The unusability errors were largely consistent regardless of the
Er values, and the previous or proposed approaches. Again, this

Fig. 5. Comparison of measure of effectiveness MOEs between distance (i.e., previous approach) versus distance and speed (i.e., proposed approach)
at different GPS distance errors. Parameters refer to Tables 2 and 3.

© ASCE 04024078-8 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2024, 150(12): 04024078 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f V
irg

in
ia

 o
n 

09
/3

0/
24

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 



unusability error is not safety-critical because the ego vehicle
would implement adaptive cruise control instead of cooperative
adaptive cruise control.

• Based on the sensitivity analyses on the GPS distance error and
radar speed error, the proposed approach with a standard GPS
error of one or below and standard radar speed error of 0.2 or
below should be considered to ensure the observed surrounding
vehicle misidentification error is close to 10−8.
The following recommendations are made for future research

and real-world implementation: First, implement the proposed ap-
proach (ds-SVIS) with Er ¼ 10−8 to form CACC and demonstrate
the benefits that it would bring in highway scenarios. Second,
investigate the usefulness of SVIS on uncongested highways
and urban corridors, and expand the SVIS for additional connected
vehicle applications such as cooperative merges and cooperative
lane changes. Third, future studies should consider field testing
and collecting data with different vehicle manufacturers in different
weather and roadway environments (e.g., roadway gradients,
inclement weather conditions, and so on).
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Notation

The following symbols are used in this paper:
A = Search region A with respect to distance;
A 0 = nearest irrelevant vehicles possible region;
B = Search region B with respect to speed;
B 0 = irrelevant vehicles with the smallest speed difference

possible region;
d = distance between two nearby vehicles (m);
Er = target vehicle misidentification error rate;
e = speed error (m=s);
ex = distance error of longitudinal gap (m);
ey = distance error of lateral gap (m);
k = outer loops of unconnected vehicle identification;
n = inner loops of connected vehicle identification;

Pa = probability of the actual connected vehicle to be identified
as the connected vehicle;

Pa;d = probability of the actual connected vehicle to be identified
as the connected vehicle with respect to the distance
(position) region;

Pa;v = probability of the actual connected vehicle to be
identified as the connected vehicle with respect to the
speed region;

Pd = probability of an irrelevant vehicle is within search region A
of position;

Pirr = probability of an irrelevant vehicle is identified as the
connected vehicle;

PO = overall probability of an irrelevant vehicle is within Search
regions A and B;

Pv = probability of an irrelevant vehicle is within Search region
B of speed;

Fig. 6. Comparison of measure of effectiveness MOEs at different GPS distance and radar speed errors for distance and speed (i.e., proposed
approach). Parameters refer to Tables 2 and 3.
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pmin = minimum acceptable usability;
t = time (s);

tmax = maximum acceptable time consumption (s);
Ur = target unusability rate;
v = speed of vehicle (m=s);
W = weights of objective functions;
w = width of the road (m);
α = probability that the actual surrounding connected vehicle is

positioned outside the search region;
δ2 = squared sum of independent, standard normal variables

follows Chi-square (χ2) distribution; and
σ = standard derivation of error.
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