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ABSTRACT

Smart focal-plane and in-chip image processing has emerged as a crucial technology for vision-enabled
embedded systems with energy efficiency and privacy. However, the lack of special datasets providing
examples of the data that these neuromorphic sensors compute to convey visual information has hindered
the adoption of these promising technologies. Neuromorphic imager variants, including event-based
sensors, produce various representations such as streams of pixel addresses representing time and
locations of intensity changes in the focal plane, temporal-difference data, data sifted/thresholded by
temporal differences, image data after applying spatial transformations, optical flow data, and/or statistical
representations. To address the critical barrier to entry, we provide an annotated, temporal-threshold-based
vision dataset specifically designed for face detection tasks derived from the same videos used for Aff-
Wild2. By offering multiple threshold levels (e.g., 4, 8, 12, and 16), this dataset allows for comprehensive
evaluation and optimization of state-of-the-art neural architectures under varying conditions and settings
compared to traditional methods. The accompanying tool flow for generating event data from raw
videos further enhances accessibility and usability. We anticipate that this resource will significantly
support the development of robust vision systems based on smart sensors that can process based on
temporal-difference thresholds, enabling more accurate and efficient object detection and localization and
ultimately promoting the broader adoption of low-power, neuromorphic imaging technologies. To support
further research, we publicly released the dataset at https://dx.doi.org/10.21227/bw2e-dj78.

IEEE SOCIETY/COUNCIL Signal Processing Society (SPS)
DATA DOI/PID 10.21227/bw2e-dj78
DATA TYPE/LOCATION Images; Maryland, USA

INDEX TERMS Face detection, dynamic vision sensing (DVS), Aff-Wild, sparse vision, convolutional
neural network (CNN), Face dataset.

Background

Algorithm development for smart sensors, those that inte-
grate coincidental sensing and processing, is complicated by
a lack of emulation models and challenges in producing syn-
thetic data for testing. The characteristic advantage of focal-
plain and on-chip processing for image sensors is that they do
not transmit data irrespective of vision tasks. Instead, such
sensors sift and transform signal data into representations of
essential information for vision tasks. Therefore, the average
sample-reporting rate is far below the Nyquist Rate, which
means a loss of the ability to reconstruct all aspects of the
original image by traditional standards. Furthermore, the
parameters of this non-invertible signal pre-processing are

often adaptive and controlled algorithmically. This presents
the two-fold challenge of developing dependent algorithms
for controlling the parameters of sensing and back-end
algorithms for computer vision.

State-of-the-art (SOTA) approaches to supervised training
for machine learning (ML) algorithms involve a prolonged
iterative approach to the co-determination of salient features
from source data along with other processing parameters
for inference. These algorithms rely on unbiased annotation
of source data [1], [2] to guide convergence on param-
eters of feature extraction and the structures and details
of image analysis. However, the key difference is that
emulation models for the influence of dynamic parameter
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selection are lacking which makes exploration challenging.
Even more fundamental is that the underlying characteristic
frequency of smart sensors, including those based on ideas
from neuromorphic and event-based image sensors [3], [4],
is much higher than conventional sensors. This altogether
means that the information presented to back-end algorithms
is not readily synthesized from widely available public data.
Approaches to temporal interpolation are sometimes required
to synthesize events with a higher temporal resolution than
those of the sensors used to produce traditional video
datasets. Furthermore, even when existing hardware is ac-
cessible for testing, experimental parameter sweeps are non-
trivial since the behavior of the subjects of observation, be it
a human or cars traveling down the highway, are not typically
exactly reproducible nor are the environmental conditions
such as illumination. Therefore the goal of the community
must be to decouple some of the challenges and provide
means to step into algorithm development for these platforms
without requiring researchers and developers to first address
all of these issues. In this spirit, we present an annotated
dataset representing a practical application of neuromorphic
processing to face detection. The application is assumed to
involve modest temporal frequencies and would not require
temporal interpolation, but a small embedded vision system
embodying efficiency and/or privacy would benefit greatly if
architected around a smart/event-based camera.

Motivation

Event cameras are a promising technology increasingly used
for computer vision applications because of their high tem-
poral resolution and low power consumption [5]. In contrast
to conventional synchronous energy-efficient techniques [6]—
[11], event sensors introduce a paradigm shift by enabling
low-power operation through distributed processing. How-
ever, one of the challenges in developing algorithms for
event cameras, such as face detection, is the need for suitable
datasets to undertake initial steps in algorithm development.
Unlike traditional cameras that capture a sequence of frames
that can be annotated later, event cameras capture a series
of sparse events [12] that could be asynchronously detected
or at least processed at a temporal resolution much higher
than conventional low-power CMOS camera frame rates.
This makes creating datasets for training and testing face
detection algorithms difficult. While some datasets exist,
like N-Caltech 101, they are typically small and do not
represent the faces in real-world scenarios like different
poses, illumination, etc. [13]. Several other face detection
datasets, for example, the WIDER FACE dataset [14], the
CelebA dataset [15], and the face detection dataset and
benchmark (FDDB) [16]. However, none of these datasets
provide motion data for faces.

Existing event-based vision-related benchmark datasets,
for example, the N-Caltech101 [13], N-mnist, Poker-
DVS [17], event data for pose, visual odometry, and
SLAM [18] are generated by mounting a dynamic vision

sensor (DVS) on a motorized pan-tilt unit and having the
sensor move while it views. The events are generated by
emulated saccades (i.e., capturing events by changing the
eye’s position) rather than independent object motion in the
field of view. Existing datasets also use a fixed threshold,
the difference in pixel intensity between consecutive image
frames or the difference between pixel intensity consid-
ering a current frame and a reference frame. However,
herein, a multi-threshold dataset is presented to facilitate
low-bandwidth event-vision. The availability of a threshold
(Th) — based image dataset can enable fine-tuning new
neural architectures for performing well on sparse images.
Moreover, the T},-based dataset will be fundamentally crucial
to designing novel self-adaptive smart vision sensors.

Main Contributions
The specific contributions of this work are:

e We present a new smart event face dataset (SEFD) of
multiple programmable digital thresholds to decouple
the challenges of modeling smart sensors and initial
algorithm development.

e We analyzed pixel activity concerning 7} values to
characterize event-based object detection.

e We validate the effectiveness of the proposed dataset
through training of industry-standard object detection
and localization models.

Existing Event-Based Vision

Empirically, event-based vision sensors [4], [19]-[26] are
promising for high-speed vehicles, robotics, drones, and
moving object detection. Optical-flow features are of special
interest in bio-inspired approaches, and researchers have
developed an algorithm to derive optical flow features from
event-based data captured by dynamic vision sensing (DVS)
cameras [23]. The optical flow-based system employs a
block-matching technique [27] to estimate the flow between
sequential DVS event frames. This involves dividing the
frames into blocks and finding matching blocks between con-
secutive frames to determine the motion. Another interesting
event simulator (ESIM) captures event data using a rendering
engine and image sensor trajectory [28]. The ESIM uses an
image brightness gradient for adaptive sampling.

Other researchers have facilitated DVS using the v2e
toolbox [29]. This toolbox employs various parameters,
including temporal noise, leak events, pixel intensity, and the
Gaussian threshold method. While proficient in generating
event data, it is noteworthy that the v2e toolbox lacks explicit
guidelines for creating event-based facial data, a distinctive
feature of our proposed approach. Another biological retina-
based tool, namely RetinoSim, was designed to synthesize
event-based data for exploring neuromorphic vision archi-
tectures [30]. It addresses the need for realistic and diverse
event-based data to develop and evaluate such architectures
effectively. In a hybrid approach, researchers used “frame of
events” to combine conventional frame scanning and DVS
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approaches to improve computational latency and memory
consumptions [31].

Existing Neural Network Architectures for Image
Classification and Localization

The task of object detection and localization within the
domain of event-vision presents a non-trivial challenge,
primarily stemming from the absence of salient feature
representations within the input data. In recent years, you
only look once (YOLO) creates great attention from re-
searchers for object detection and localization [32]. The
initial version of the YOLO model uses 24 convolutional
layers and two fully-connected layers. This approach divides
an image into S x S grids and detects an object based
on the location of the center of an object that falls into
the grid. To improve the performance, YOLO-v4 [33] uses
weighted residual connections (WRC) and cross-stage partial
connections (CSPs).

In this work, we benchmarked our dataset using YOLO-
v4 [33] and YOLO-v7 [34]. YOLO-v4 consists of backbone,
neck, and head networks. When YOLO-v4 targets GPU,
the backbone network uses CSP Network (i.e., CSPDark-
net53) [35]. YOLO-v7 introduces an updated and optimized
architecture compared to previous YOLO versions, with
the use of Extended Efficient Layer Aggregation Network
(E-ELAN) for better feature map integration compared to
YOLO-v4’s PANet and SPP.

Google Brain research team proposed an interesting
architecture for object detection and localization called
EfficientDet-b0 [36]. Another set of interesting convolutional
neural network (CNN)-based architectures proposed by the
Google research team, especially suitable for embedded and
mobile vision applications, called MobileNets-v1 [37]. Both
EfficientDet-b0 and MobileNets-vl will be used in this
research for benchmarking.

Collection Methods and Design

Description of Source Dataset

In this work, we used the Aff-Wild2 dataset as input source
videos [38]. The Aff-Wild2 dataset features emotional de-
scriptors described in terms of valence and arousal. Valence
indicates the intensity of positive and negative emotions,
while the latter suggests the power of triggering an emotion.
The dataset contains 298 videos of 200 subjects (about 15
hours of data) annotated by seven lay experts considering
valence and arousal, all captured in a natural state without
any external stimulation.

Proposed Multi-Threshold Image Generation Tool Flow

The existing face detection benchmark datasets do not pro-
vide motion data to capture pixel activity [14]-[16]. Our
research resolves this issue with our proposed smart event
generation tool flow and datasets. The proposed binary image
generation framework is shown in Figure 1. In this tool
flow, we used an input video file to generate image frames
considering the frame rate or temporal difference of frames.
Then, we used our proposed binary event generator to create
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FIGURE 1: The proposed tool flow converts raw video
data into image frames, and then the binary event generator
differentiates temporally different image frames and a set of
reference threshold values to generate thresholded images.

TABLE 1: The proposed tool flow used audio video inter-
leave (AVI) format video length ranging from 0.1 min to
14.47 min and converted to (threshold = 4, 8, 12, and 16)
image frames of portable network graphic (PNG) format.

Autributes Video Image Descriptions
Descriptions T, =4 T,=8 1, =12 T, =16
Length of videos 0.10-14.47 min - - - -
Video format AVI PNG PNG PNG PNG
Avg. image resolution (AIR) 416 x 416 416 x 416 | 416 x 416 | 416 x 416 | 416 x 416
Standard deviation of AIR 0 0 0 0 0
Median image resolution 416 x 416 416 x 416 | 416 x 416 | 416 x 416 | 416 x 416
# of Videos/ Images 100 9130 9130 9130 9130

binary image frames considering a set of threshold values,
as shown in Figure 1.

The proposed threshold-based smart event generation
methodology is shown in Algorithm 1. The algorithm uses
a video file (V7), the T}, and a user-defined frame temporal
difference (7},) as inputs. First, the algorithm generates
image frames using the GenFrame() function considering
frame temporal differences in Line 3. It recursively derives
the previous frame from the current frame to compute the
differential frame from Line 4 to Line 7. Depending on
the threshold value, we update the differential frame pixel
intensity from Line 8 to Line 15. Finally, the algorithm
returns the binary frames in Line 16.

Image Annotation Guideline
For object detection and localization, building a bounding
box (BBox) of a rectangular portion of an object is standard
practice. We used four lay expert human annotators to draw
rectangular boxes around objects of interest in an image (i.e.,
face) using Roboflow [39] to provide training data for object
detection and recognition algorithms. Three additional lay
experts review the annotations visually to ensure accuracy
and consistency.

For consistency in the process of annotating facial regions
with bounding rectangles, a set of explicit guidelines was
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Algorithm 1 T},-based smart event generation algorithm

1: Input: Vi, input video; T}, threshold; T}, temporal
difference

2: Output: Sparse video, videos with frames featuring
motion smart events

3: Frames = {frameg, framey,..., frame,} =
GenFrame(Vi,T,) > Generate image frames from the
input video file.

4: for all frame;+1 € Frames do

5: CurrFrame = frame;q > Initialize current
frame.

6: PrevFrame = frame; > Initialize previous
frame.

7: DiffFrame; = {pr@o1),--- PN} =
CurrFrame — PrevFrame > Compute a differential
frame considering an image size of M x N.

8: for all px(, ) € Dif fFrame; do

: if DX () > T}, then

10: DL () =1 > Detecting pixel activity
11: else

12: PL(zy) = 0

13: end if

14: end for

15: end for

16: return Dif fFrames =

{Dif fFramey, Dif f Frames,..., Dif fFrame,_1}

> Return differential frames.

used. These guidelines detail the procedure for incorpo-
rating facial landmarks to encapsulate the face within the
rectangle effectively. It is of paramount importance, under
all circumstances, to ensure that the bounding rectangle
maintains a high degree of precision and does not deviate
from an appropriate size range, avoiding both excessive
enlargement and undue reduction. The size and placement of
the rectangle, throughout the duration of the video or image
sequence, should remain consistent with the facial features,
thereby upholding a standardized and coherent representation
of the face.

The dataset consists of three basic poses (i.e., frontal,
profile, and angular), as shown in Figure 2. For the frontal
pose, the annotators draw a rectangle around the entire face,
including the brow, chin, and cheeks. The rectangle should be
parallel to the face, and the diagonal should be in alignment
with the horizontal plane of the face. For the profile pose, a
rectangle was drawn around the face’s visible area containing
the brow, nose, and chin but not the hair. The rectangle’s
diagonal should be aligned with the vertical plane of the face.
Finally, for the angular pose, the annotator drew a rectangle
around the face’s visible area containing the brow, nose, and
chin but not the hair. The diagonal lines of the rectangle will
be at an angle to the edges of the image, and the angle may
vary depending on the degree of tilt of the face, as shown
in Figure 2.

&>

Frontal Pose Profile Pose Angular Pose

» Draw arectangle around
the face's visible area

containing the brow, nose,
and chin but not the hair.

Draw a rectangle
around the entire face,
including the brow,
chin, and cheeks.

« The rectangle's diagonal
should be aligned with the
vertical plane of the face.

* The rectangle should
be parallel to the face,
and the diagonal
should be in alignment
with the horizontal
plane of the face.

FIGURE 2: Face annotation involved creating a rectangle
over the face, with the rectangle’s orientation varying by
pose: parallel and horizontally aligned for frontal, vertically
aligned for profile, and angled for angular, depending on the
face’s tilt.

The data source is the original data from the Aff-Wild2
database. The video lengths ranged from 0.1 min to 14.47
min [38], as shown in Table 1. The image data was resized
so that the average image resolution (AIR) was converted
from the original 607 x 359 to 416 x 416. On average 100
images were extracted from each video resulting in 10k full-
frame images. From each of these these ~ 9.1k images were
produced considering each threshold (i.e., 4, 8, 12, and 16)
using Algorithm 1, resulting in additional ~ 36.5k images.

Validation and Quality

We implement the proposed threshold-based smart event
generation Algorithm 1 using Python programming lan-
guage. All the computation was performed on an Intel
Xeon Gold processor with 64 GB RAM, equipped with
an NVIDIA Quadro P4000 GPU using Ubuntu 22.04. We
used GPU to train, validate, and test SOTA neural network
architectures using the proposed dataset. The Algorithm 1
used Aff-Wild2 video dataset [38] for threshold-based event-
frame generation. For analysis, we used widely used anchor
boxes-based highly accurate YOLO-v4 and YOLO-v7 mod-
els. We also used EfficientDet-b0 [36], which is designed
to be a lightweight yet effective model for object detection
tasks. In addition, we used MobileNets-v1 [37], emphasizing
computational efficiency and adaptability, which is generally
used in scenarios where real-time, on-device object detection
and localization are required.

Pixel Activity Computation

In general, event-based vision sensing is based on pixel
activity— a term used herein to refer to pixels associated
with a change in sensed light intensity that surpasses a given
Ty, and triggers communication. The sensors detect spatial
motion of objects through the change of pixel intensities.
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FIGURE 3: For a 333 ms frame time difference, lower
thresholds yield higher average active pixel rates, with (a)
Ty = 4 yielding 25.39% activity and (b) 71}, = 8 yielding
17.86%, (c) 1T, = 12 yielding 14.27% and (d) T}, = 16
yielding 11.94%.

Pixel activity shows which pixels detect motion at various
thresholds. Analyzing pixel activity allows for the opti-
mization of threshold parameters, enhancing accuracy and
efficiency in event detection. Hence, we performed analysis
on the pixel activity of the proposed dataset considering both
the temporal and the intensity difference as parameters.

In order to compute the pixel activity, we considered
intensity threshold values of 4, 8, 12, and 16. Figure 3 shows
the analysis regarding the temporal difference of frames of
333 ms. According to our analysis on ~ 10k images, each
image contains 25.39% active pixels on average, considering
a Ty of 4, as shown in Figure 3(a). For T} of 8, each
image contains 17.86% active pixels on average, as shown
in Figure 3(b). Using ~ 10k images and considering a 7}, of
12, we observed 14.27% of average pixel activity, as shown
in Figure 3(c). Using the same amount of images, when we
considered a T}, value of 16, we observed 11.94% average
pixel activity, as shown in Figure 3(d).

Besides, we computed the pixel activity inside the BBox,
which is critically important for object detection and local-
ization. For a T}, value of 16, the average number of active
pixels in the BBox is 1.13%. As expected, by decreasing the
intensity 7}, value, the average pixel activity in the bounding
boxes increased. When considering 7}, values of 8 and 4,
the average active pixels in bounding boxes are 1.68% and
2.34%, respectively.

In addition, we traced the pixel activities due to variations
in the frame’s temporal differences. The average pixel activ-
ity is 19.88%, 25.40%, and 29.86% considering temporal
frame difference of 5 (i.e., 166 ms), 10 (i.e., 333 ms), and
15 (i.e., 500 ms), as shown in Figure 4(a), Figure 4(b), and
Figure 4(c), respectively. Figure 4(d) exhibits the overall
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FIGURE 4: For a constant T}, of 4, the average active pixel
count increases with the larger interframe time difference, (a)
19.88% average pixel activity at 166 ms, (b) 25.40% at 333
ms, and (c) 29.86% at 500 ms. Conversely, (d) the average
active pixel count decreases as 7}, increases.

pixel activity considering the variation of 7}, values and im-
age frames temporal differences. Clearly, there is a positive
correlation between temporal difference and pixel activity,
which implies that when the time delay between two frames
rises, so does pixel activation. The T}, on the other hand, has
an anticorrelation with pixel activity. Pixel activity reduces
as the 7} value increases, which indicates that an imager
with a higher 7}, would produce fewer pixel activations per
frame on average. In contrast, a lower 7}, would create more
pixel activations per frame.
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Thresholded Event
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FIGURE 5: Outline of dataset directory structure

Records and Storage

The dataset is organized into multiple ZIP files (Figure 5),
each representing a different threshold level, specifically
named threshold_4.zip, threshold_8.zip, threshold_12.zip,
and threshold_16.zip. Within each ZIP file, the data is
structured into three sub-directories: test, train, and validate,
following common conventions for NN implementations.
Each sub-directory contains a set of text (annotation) and
image files. The test, train, and validate sub-directories hold
904 text and 904 image files, 6392 text and 6392 image files,
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FIGURE 6: All benchmark models achieved low training losses: (a) YOLO-v4 reached an average loss of 1.3189 after
3,000 epochs, (b) YOLO-v7 recorded an average loss of 1.2489 after 6,000 epochs, (c) EfficientDet-b0 converged quickly,
achieving an average loss of 0.7916 within 50 epochs, and (d) MobileNets-v1 achieved the lowest average loss of 0.5434

in just 60 epochs.
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FIGURE 7: A comprehensive assessment of the 7j-based
dataset using SOTA neural networks demonstrated efficient
object detection and localization. (a-d) Models YOLO-v4,
YOLO-v7, EfficientDet-b0, and MobileNets-vl applied to
Ty = 4 images showed high detection performance, with
YOLO-v7 achieving a confidence level of 94.1%. (e-h) For
Ty = 16 images, all models maintained strong performance,
although YOLO-v7 exhibited a slight drop in confidence
level to 91.7%.

and 1834 text and 1834 image files, respectively. The txt files
correspond to labels of the png files and follow the standard
bounding box format used in YOLO and Darknet models.

Insights and Notes
Benchmarking with SOTA NN Architectures
In order to enable event-vision using the proposed event-
based face dataset, we used SOTA neural network archi-
tectures. Among different existing architectures, we used
large YOLO-v4 model [35], YOLO-v7 [34], and two smaller
sized high-performance models, EfficientDet-bO [36] and
MobileNets-vl [37]. In this analysis, we used all four
proposed thresholds (i.e., 4, 8, 12, and 16) datasets, as shown
in Table 2.

For the YOLO-v4 and YOLO-v7 models, we used 6359
images of each threshold dataset. Once trained, we used

915 images from each of the different 7}, value datasets
for testing. The YOLO-v4 and YOLO-v7 models have an
average training loss of 1.3189 and 1.2489, as shown in
Figure 6(a) and Figure 6(b), respectively.

Like YOLO models, the EfficientDet-b0 and the
MobileNets-vl models used all four threshold-valued
datasets for training and testing. The EfficientDet-b0 and
the MobileNets-vl models have an average training loss of
0.7916 (Figure 6(c)) and 0.5434 (Figure 6(d).

We measured the performance of each neural network
architecture considering Precision, Recall, F1-score, intersec-
tion over union (IoU), average Precision at 50% IoU (AP50),
and average Precision at 75% IoU (AP75). The results
demonstrate evidence of object detection with a confidence
level of 86% for 1), = 4 and 92% for 1}, = 16 when
utilizing the YOLO-v4 model, as presented in Figure 7(a)
and Figure 7(e), respectively. Predictively, using 7, = 4
dataset, the YOLO-v7 model has a better average confidence
level of 94.1% compared to 7;, = 16 dataset, which has
a confidence level of 91.7%, as shown in Figure 7(b)
and Figure 7(f), respectively. Meanwhile, Figure 7(c) and
Figure 7(g) showcase the outcomes of object detection with
confidence levels of 89% for T}, = 4 and 92% for T}, = 16,
and localization using the EfficientDet-b0.

Remarkably, for the same sample, the MobileNets-v1
model exhibited superior performance, achieving object de-
tection with a confidence level of 100% for 7}, = 4 and
100% for T}, = 16, and successfully localizing the object, as
illustrated in Figure 7(d) and Figure 7(h), respectively.

Considering all four proposed T}, values, the average test
Precision, Recall, and Fl-score are 94.30%, 90.50%, and
92.50%, respectively. Besides, the YOLO-v4 model achieves,
on average, 72.54%, 92.96%, and 40.17% IoU, AP50, and
AP75, respectively, considering equal amounts of test data
for each kind of 7}, as shown in Table 2. Besides, the
YOLO-v4 model achieves the best IoU compared to other
higher threshold values using 7;, = 4. The YOLO-v7 has
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TABLE 2: The YOLO-v4 model exhibits a parameter count that is notably greater, approximately 15.46x more than that

of the EfficientDet-b0 model and about 9.97x more than that

of the MobileNets-vl model; furthermore, in the context of

the proposed 7}, = 8 datasets, the MobileNets-v1 model attains the highest IoU of 82.53% among the models considered,
and the EfficientDet-b0 model demonstrates the highest average Precision at 50% (APS50) of 98.08% within the same T},
= 8 valued dataset, surpassing the performance of other architectures and datasets with different thresholds.

Dataset split Metrics
Models # of Parameters | T}, — - — ToU (%) | AP50 | AP75
Training | Testing | Precision | Recall | Fl-score
4 6392 904 94.00 89.00 91.00 72.77 90.93 45.85
8 6392 904 89.00 89.00 89.00 69.04 90.37 44.57
YOLO-v4 [33] 60.3M
12 6392 904 91.00 86.00 89.00 70.57 90.32 | 43.89
16 6392 904 93.00 79.00 85.00 71.36 86.54 38.74
6392 904 94.00 92.00 93.00 75.25 94.55 60.80
8 6392 904 92.00 90.00 91.00 73.62 91.82 | 64.31
YOLO-v7 [34] 25.2M
12 6392 904 95.00 87.00 91.00 76.40 9245 | 58.12
16 6392 904 95.00 95.00 90.00 76.11 90.73 | 56.45
4 6392 904 97.78 99.34 98.56 80.45 97.78 76.38
. 8 6392 904 98.08 99.45 98.76 80.53 98.08 78.77
EfficientDet-b0 [36] 3.9M
12 6392 904 97.63 99.34 98.48 80.06 97.63 75.72
16 6392 904 97.29 99.34 98.30 78.69 97.29 70.91
4 6392 904 95.90 97.92 96.90 80.92 95.90 68.77
. 8 6392 904 96.69 98.36 97.52 82.53 96.69 70.92
MobileNets-v1 [37] 6.05M
12 6392 904 96.61 98.36 97.48 81.36 96.61 66.52
16 6392 904 96.01 98.14 97.06 80.13 96.01 66.58
similar test Precision, Recall, Fl-score, IoU, and AP50;
however, 32.96% better AP75 compared to the YOLO-v4. 60 W 'YoLO-v4
Considering all four threshold values, the EfficientDet-b0 n ::’ﬁ"?"’:o vbo
. . . . lentDe!
architecture achieved an average test Precision, Recall, and i
Fl-score are 97.70%, 99.37%, and 98.53%, respectively. In 40
addition, the EfficientDet-b0 model achieves, on average,
79.93%, 97.70%, and 75.45% IoU, AP50, and AP75, re- 20
spectively, considering equal amounts of test data for each
kind of T}, as shown in Table 2. Among all the models,
MobileNets-v1 has highest average Precision, Recall, F1- 0
score, and IoU of 96.30%, 98.19%, 97.24%, and 81.24%, . Average FLOPS (B)  MACs (B)
. inference time
respectively. (ms)

The average inference time was derived using 10 trials
each involving 100 unique image inferences. The YOLO-v4
requires 30.83% and 27.99% more inference time compared
to EfficientDet-b0 and MobileNets-v1 models, respectively,
as shown in Figure 8. The YOLO-v4 has 114.70x and
1.37x more FLOPS/MACs compared to EfficientDet-b0 and
MobileNets-v1 models, respectively, as shown in Figure 8.

Source Code and Scripts

In this study, we utilized the Aff-Wild2 video dataset [38]
and conducted analysis using open-source SOTA NN models.
The dataset analysis scripts are available at the following
GitHub repository: https://github.com/riaduli/Thresholded
event_vision_face_dataset.
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