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selection are lacking which makes exploration challenging.

Even more fundamental is that the underlying characteristic

frequency of smart sensors, including those based on ideas

from neuromorphic and event-based image sensors [3], [4],

is much higher than conventional sensors. This altogether

means that the information presented to back-end algorithms

is not readily synthesized from widely available public data.

Approaches to temporal interpolation are sometimes required

to synthesize events with a higher temporal resolution than

those of the sensors used to produce traditional video

datasets. Furthermore, even when existing hardware is ac-

cessible for testing, experimental parameter sweeps are non-

trivial since the behavior of the subjects of observation, be it

a human or cars traveling down the highway, are not typically

exactly reproducible nor are the environmental conditions

such as illumination. Therefore the goal of the community

must be to decouple some of the challenges and provide

means to step into algorithm development for these platforms

without requiring researchers and developers to first address

all of these issues. In this spirit, we present an annotated

dataset representing a practical application of neuromorphic

processing to face detection. The application is assumed to

involve modest temporal frequencies and would not require

temporal interpolation, but a small embedded vision system

embodying efficiency and/or privacy would benefit greatly if

architected around a smart/event-based camera.

Motivation

Event cameras are a promising technology increasingly used

for computer vision applications because of their high tem-

poral resolution and low power consumption [5]. In contrast

to conventional synchronous energy-efficient techniques [6]–

[11], event sensors introduce a paradigm shift by enabling

low-power operation through distributed processing. How-

ever, one of the challenges in developing algorithms for

event cameras, such as face detection, is the need for suitable

datasets to undertake initial steps in algorithm development.

Unlike traditional cameras that capture a sequence of frames

that can be annotated later, event cameras capture a series

of sparse events [12] that could be asynchronously detected

or at least processed at a temporal resolution much higher

than conventional low-power CMOS camera frame rates.

This makes creating datasets for training and testing face

detection algorithms difficult. While some datasets exist,

like N-Caltech 101, they are typically small and do not

represent the faces in real-world scenarios like different

poses, illumination, etc. [13]. Several other face detection

datasets, for example, the WIDER FACE dataset [14], the

CelebA dataset [15], and the face detection dataset and

benchmark (FDDB) [16]. However, none of these datasets

provide motion data for faces.

Existing event-based vision-related benchmark datasets,

for example, the N-Caltech101 [13], N-mnist, Poker-

DVS [17], event data for pose, visual odometry, and

SLAM [18] are generated by mounting a dynamic vision

sensor (DVS) on a motorized pan-tilt unit and having the

sensor move while it views. The events are generated by

emulated saccades (i.e., capturing events by changing the

eye’s position) rather than independent object motion in the

field of view. Existing datasets also use a fixed threshold,

the difference in pixel intensity between consecutive image

frames or the difference between pixel intensity consid-

ering a current frame and a reference frame. However,

herein, a multi-threshold dataset is presented to facilitate

low-bandwidth event-vision. The availability of a threshold

(Th) – based image dataset can enable fine-tuning new

neural architectures for performing well on sparse images.

Moreover, the Th-based dataset will be fundamentally crucial

to designing novel self-adaptive smart vision sensors.

Main Contributions

The specific contributions of this work are:

• We present a new smart event face dataset (SEFD) of

multiple programmable digital thresholds to decouple

the challenges of modeling smart sensors and initial

algorithm development.

• We analyzed pixel activity concerning Th values to

characterize event-based object detection.

• We validate the effectiveness of the proposed dataset

through training of industry-standard object detection

and localization models.

Existing Event-Based Vision

Empirically, event-based vision sensors [4], [19]–[26] are

promising for high-speed vehicles, robotics, drones, and

moving object detection. Optical-flow features are of special

interest in bio-inspired approaches, and researchers have

developed an algorithm to derive optical flow features from

event-based data captured by dynamic vision sensing (DVS)

cameras [23]. The optical flow-based system employs a

block-matching technique [27] to estimate the flow between

sequential DVS event frames. This involves dividing the

frames into blocks and finding matching blocks between con-

secutive frames to determine the motion. Another interesting

event simulator (ESIM) captures event data using a rendering

engine and image sensor trajectory [28]. The ESIM uses an

image brightness gradient for adaptive sampling.

Other researchers have facilitated DVS using the v2e

toolbox [29]. This toolbox employs various parameters,

including temporal noise, leak events, pixel intensity, and the

Gaussian threshold method. While proficient in generating

event data, it is noteworthy that the v2e toolbox lacks explicit

guidelines for creating event-based facial data, a distinctive

feature of our proposed approach. Another biological retina-

based tool, namely RetinoSim, was designed to synthesize

event-based data for exploring neuromorphic vision archi-

tectures [30]. It addresses the need for realistic and diverse

event-based data to develop and evaluate such architectures

effectively. In a hybrid approach, researchers used “frame of

events” to combine conventional frame scanning and DVS
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Algorithm 1 Th-based smart event generation algorithm

1: Input: V i, input video; Th, threshold; Tp, temporal

difference

2: Output: Sparse video, videos with frames featuring

motion smart events

3: Frames = {frame0, frame1, . . . , framen} =
GenFrame(V i, Tp) ▷ Generate image frames from the

input video file.

4: for all framei+1 ∈ Frames do

5: CurrFrame = framei+1 ▷ Initialize current

frame.

6: PrevFrame = framei ▷ Initialize previous

frame.

7: DiffFramei = {px(0,1), . . . , px(M,N)} =
CurrFrame− PrevFrame ▷ Compute a differential

frame considering an image size of M ×N .

8: for all px(x,y) ∈ DiffFramei do

9: if px(x,y) > Th then

10: px(x,y) = 1 ▷ Detecting pixel activity

11: else

12: px(x,y) = 0
13: end if

14: end for

15: end for

16: return DiffFrames =
{DiffFrame1, DiffFrame2, . . . , DiffFramen−1}
▷ Return differential frames.

used. These guidelines detail the procedure for incorpo-

rating facial landmarks to encapsulate the face within the

rectangle effectively. It is of paramount importance, under

all circumstances, to ensure that the bounding rectangle

maintains a high degree of precision and does not deviate

from an appropriate size range, avoiding both excessive

enlargement and undue reduction. The size and placement of

the rectangle, throughout the duration of the video or image

sequence, should remain consistent with the facial features,

thereby upholding a standardized and coherent representation

of the face.

The dataset consists of three basic poses (i.e., frontal,

profile, and angular), as shown in Figure 2. For the frontal

pose, the annotators draw a rectangle around the entire face,

including the brow, chin, and cheeks. The rectangle should be

parallel to the face, and the diagonal should be in alignment

with the horizontal plane of the face. For the profile pose, a

rectangle was drawn around the face’s visible area containing

the brow, nose, and chin but not the hair. The rectangle’s

diagonal should be aligned with the vertical plane of the face.

Finally, for the angular pose, the annotator drew a rectangle

around the face’s visible area containing the brow, nose, and

chin but not the hair. The diagonal lines of the rectangle will

be at an angle to the edges of the image, and the angle may

vary depending on the degree of tilt of the face, as shown

in Figure 2.

FIGURE 2: Face annotation involved creating a rectangle

over the face, with the rectangle’s orientation varying by

pose: parallel and horizontally aligned for frontal, vertically

aligned for profile, and angled for angular, depending on the

face’s tilt.

The data source is the original data from the Aff-Wild2

database. The video lengths ranged from 0.1 min to 14.47

min [38], as shown in Table 1. The image data was resized

so that the average image resolution (AIR) was converted

from the original 607 × 359 to 416 × 416. On average 100

images were extracted from each video resulting in 10k full-

frame images. From each of these these ∼ 9.1k images were

produced considering each threshold (i.e., 4, 8, 12, and 16)

using Algorithm 1, resulting in additional ∼ 36.5k images.

Validation and Quality

We implement the proposed threshold-based smart event

generation Algorithm 1 using Python programming lan-

guage. All the computation was performed on an Intel

Xeon Gold processor with 64 GB RAM, equipped with

an NVIDIA Quadro P4000 GPU using Ubuntu 22.04. We

used GPU to train, validate, and test SOTA neural network

architectures using the proposed dataset. The Algorithm 1

used Aff-Wild2 video dataset [38] for threshold-based event-

frame generation. For analysis, we used widely used anchor

boxes-based highly accurate YOLO-v4 and YOLO-v7 mod-

els. We also used EfficientDet-b0 [36], which is designed

to be a lightweight yet effective model for object detection

tasks. In addition, we used MobileNets-v1 [37], emphasizing

computational efficiency and adaptability, which is generally

used in scenarios where real-time, on-device object detection

and localization are required.

Pixel Activity Computation

In general, event-based vision sensing is based on pixel

activity— a term used herein to refer to pixels associated

with a change in sensed light intensity that surpasses a given

Th and triggers communication. The sensors detect spatial

motion of objects through the change of pixel intensities.
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FIGURE 6: All benchmark models achieved low training losses: (a) YOLO-v4 reached an average loss of 1.3189 after

3,000 epochs, (b) YOLO-v7 recorded an average loss of 1.2489 after 6,000 epochs, (c) EfficientDet-b0 converged quickly,

achieving an average loss of 0.7916 within 50 epochs, and (d) MobileNets-v1 achieved the lowest average loss of 0.5434

in just 60 epochs.

FIGURE 7: A comprehensive assessment of the Th-based

dataset using SOTA neural networks demonstrated efficient

object detection and localization. (a-d) Models YOLO-v4,

YOLO-v7, EfficientDet-b0, and MobileNets-v1 applied to

Th = 4 images showed high detection performance, with

YOLO-v7 achieving a confidence level of 94.1%. (e-h) For

Th = 16 images, all models maintained strong performance,

although YOLO-v7 exhibited a slight drop in confidence

level to 91.7%.

and 1834 text and 1834 image files, respectively. The txt files

correspond to labels of the png files and follow the standard

bounding box format used in YOLO and Darknet models.

Insights and Notes

Benchmarking with SOTA NN Architectures

In order to enable event-vision using the proposed event-

based face dataset, we used SOTA neural network archi-

tectures. Among different existing architectures, we used

large YOLO-v4 model [35], YOLO-v7 [34], and two smaller

sized high-performance models, EfficientDet-b0 [36] and

MobileNets-v1 [37]. In this analysis, we used all four

proposed thresholds (i.e., 4, 8, 12, and 16) datasets, as shown

in Table 2.

For the YOLO-v4 and YOLO-v7 models, we used 6359

images of each threshold dataset. Once trained, we used

915 images from each of the different Th value datasets

for testing. The YOLO-v4 and YOLO-v7 models have an

average training loss of 1.3189 and 1.2489, as shown in

Figure 6(a) and Figure 6(b), respectively.

Like YOLO models, the EfficientDet-b0 and the

MobileNets-v1 models used all four threshold-valued

datasets for training and testing. The EfficientDet-b0 and

the MobileNets-v1 models have an average training loss of

0.7916 (Figure 6(c)) and 0.5434 (Figure 6(d).

We measured the performance of each neural network

architecture considering Precision, Recall, F1-score, intersec-

tion over union (IoU), average Precision at 50% IoU (AP50),

and average Precision at 75% IoU (AP75). The results

demonstrate evidence of object detection with a confidence

level of 86% for Th = 4 and 92% for Th = 16 when

utilizing the YOLO-v4 model, as presented in Figure 7(a)

and Figure 7(e), respectively. Predictively, using Th = 4
dataset, the YOLO-v7 model has a better average confidence

level of 94.1% compared to Th = 16 dataset, which has

a confidence level of 91.7%, as shown in Figure 7(b)

and Figure 7(f), respectively. Meanwhile, Figure 7(c) and

Figure 7(g) showcase the outcomes of object detection with

confidence levels of 89% for Th = 4 and 92% for Th = 16,

and localization using the EfficientDet-b0.

Remarkably, for the same sample, the MobileNets-v1

model exhibited superior performance, achieving object de-

tection with a confidence level of 100% for Th = 4 and

100% for Th = 16, and successfully localizing the object, as

illustrated in Figure 7(d) and Figure 7(h), respectively.

Considering all four proposed Th values, the average test

Precision, Recall, and F1-score are 94.30%, 90.50%, and

92.50%, respectively. Besides, the YOLO-v4 model achieves,

on average, 72.54%, 92.96%, and 40.17% IoU, AP50, and

AP75, respectively, considering equal amounts of test data

for each kind of Th, as shown in Table 2. Besides, the

YOLO-v4 model achieves the best IoU compared to other

higher threshold values using Th = 4. The YOLO-v7 has
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