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Abstract: Preceding vehicle identification is crucial for establishing cooperative platooning. This paper presents the
development of a prototype preceding vehicle identification system (PVIS) and its field evaluation for the
assessment of commercial viability. We designed and assembled a prototype consisting of a processing unit
(Jetson Nano board), a communication device (Wi-Fi dongle), a GPS unit, and a distance measurement sensor
(Terabee sensor). The Jetson Nano integrates the SparkFun GPS-RTK-SMA unit, the Terabee time-of-flight
sensor, and the Wi-Fi dongle. The PVIS prototype in the ego vehicle measures the distance to its preceding
vehicle and receives the GPS data from potential preceding vehicles with the PVIS prototypes. With these,
the PVIS in the ego vehicle determines the connectivity of the preceding vehicle. The field evaluation results
showed that the prototype PVIS works as designed, and each successful identification takes about 5.3 seconds.
However, it was found that the Terabee (time of flight) sensor, at times, did not properly measure distances,
likely due to an angle issue caused by the roadway surface and vibration of the vehicle. We discussed how to

overcome the challenges identified and enhance the prototype for successful commercialization.

1 INTRODUCTION

The National Highway Traffic Safety Administration
(NHTSA) reported that motor vehicle crashes impose
a substantial economic burden of $340 billion an-
nually on American society (Blincoe et al., 2023).
The analysis encompasses the costs associated with
one year of crashes, resulting in the tragic loss of
an estimated 36,500 lives, injuries to 4.5 million in-
dividuals, and damage to 23 million vehicles. Con-
nected and automated vehicle (CAV) is a transforma-
tive technology that has great potential for reducing
traffic crashes, enhancing the quality of life, and im-
proving the efficiency of transportation systems (Mu
et al., 2022; Matin and Dia, 2023). A pivotal tech-
nique employed by CAVs is cooperative platooning,
wherein these vehicles communicate and cooperate
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with the connected preceding vehicle to form a co-
hesive string-like arrangement. Such a cooperative
platoon relies on Vehicle-to-Vehicle (V2V) commu-
nication, which has the potential to significantly mit-
igate or prevent 80% of collisions involving unim-
paired drivers (Harding et al., 2014) and improve the
traffic capacity and mobility (Van Arem et al., 2006;
Chang et al., 2020).

V2V communication employs a Cellular Vehicle-
to-Everything (C-V2X) technology, enabling mes-
sages to be shared among connected vehicles (CVs).
The transmitted messages include the essential Basic
Safety Messages (BSM) such as the current Global
Positioning System (GPS) coordinates, speed, accel-
eration, and heading. Additionally, these messages
convey vehicle control information, incorporating de-
tails such as transmission state, brake status, and
steering wheel angle. Despite its essential role in fa-
cilitating communication, the BSM does not incorpo-
rate information such as preceding vehicle ID or lane



ID. Achieving this precise identification relies on the
utilization of an accurate GPS position shared by the
preceding vehicle through V2V communication. This
potentially enables the CAV to effectively pinpoint
the location of the connected preceding vehicle. How-
ever, the usage of commercial GPS devices is con-
strained by the potential occurrence of significant po-
sition errors, ranging from 1 to 4 meters (El Abbous
and Samanta, 2017).

The critical nature of accurate identification be-
comes apparent, as an erroneous identification be-
cause of the large GPS error could lead the CAV to
establish cooperation with a nearby connected vehi-
cle rather than the intended preceding vehicle. Such
misidentification poses a significant risk, potentially
resulting in unsafe and precarious situations within
the vehicular environment. Ensuring the precision of
the identification process is paramount, as it directly
influences the reliability of cooperative interactions
between CAVs and their immediate predecessors, ul-
timately safeguarding the integrity and safety of the
connected driving experience.

Existing research about preceding vehicle identi-
fication systems mainly focuses on simulation in fully
connected environments (Kobayashi et al., 2019; Sak-
aguchi et al., 2023). However, in the imminent fu-
ture, the coexistence of human-driven vehicles and
CVs introduces a noteworthy challenge in accurately
identifying connected preceding vehicles. To over-
come the limitation mentioned above, a preceding ve-
hicle identification system (PVIS) (Chen and Park,
2022) is developed for CAVs to identify the con-
nected preceding vehicle utilizing GPS-measured dis-
tance and sensor-measured distance on a road with
multiple lanes under mixed traffic. The fundamen-
tal concept underlying PVIS is the iterative match-
ing of GPS-measured distances and sensor-measured
distances (smaller than a predefined threshold), per-
formed multiple times to achieve a low misidentifica-
tion rate. The threshold and time are optimized in-
tricately tied to the distribution of GPS and sensor
errors, ensuring that the matching process occurs at
opportune moments, thereby balancing the accuracy
of the system and the time consumption (Chen and
Park, 2022). The system showed its advances in iden-
tifying the connected preceding vehicle through sim-
ulation. However, while simulation provides valu-
able insights, it inherently simplifies the complexity
of real-world traffic scenarios such as GPS and sensor
errors and communication efficiency, highlighting the
need for more intricate simulations that better mirror
the intricate dynamics of multi-lane traffic conditions.
Transitioning from simulation to practical implemen-
tation ensures that the system’s efficacy and reliability

are thoroughly assessed in authentic and dynamic en-
vironments.

Previous research (Chen and Park, 2022) proved
the efficiency of the PVIS in the simulation, however,
to the best of our knowledge, no prior research has
been conducted on preceding vehicle identification in
real-world field conditions. This paper introduces a
novel contribution by proposing the design of a proto-
type and undertaking an evaluation of a preceding ve-
hicle identification system in a practical, field-based
setting. The prototype consists of a processing unit
(Jetson Nano board), a communication device (Wi-Fi
dongle), a GPS unit, and a distance measurement sen-
sor (Terabee time-of-flight (ToF) sensor). Two con-
nected human-driven vehicles are assembled with the
prototype system for testing as shown in Fig. 1. Tran-
sitioning from controlled environments to the unpre-
dictable dynamics of the real world, the system’s per-
formance is scrutinized from different perspectives
such as accuracy, algorithm efficiency, and communi-
cation efficiency, aiming to assess its robustness and
reliability. This endeavor is not only a technical eval-
uation but also a pivotal exploration of the system’s
practicality and effectiveness in addressing the chal-
lenges posed by commercial devices. This paper aims
to shed light on the practical implications and perfor-
mance of the preceding vehicle identification system
in real-world conditions.

The paper outline is shown as follows: Section
2 PROTOTYPE DESIGN presents the prototype in-
cluding the hardware platform (Jetson Nano) with the
Wi-Fi dongle, the GPS devices, and the distance mea-
surement sensor (Terabee sensor). Section 3 EXPER-
IMENTS AND RESULTS illustrated the experiment
settings and experimental results. Section 4 CON-
CLUSIONS AND FUTURE WORK presented the
conclusions and future work.

2 PROTOTYPE DESIGN

The PVIS system stands as a pivotal technology for
fostering cooperation between the ego CAV and its
connected preceding vehicle. This system hinges on
the sensor-derived distance between the ego CAV and
its preceding counterpart, augmented by GPS position
data obtained through V2V communication. With the
primary objective centered on evaluating the commer-
cial viability of the prototype, meticulous considera-
tions are made in selecting the processing unit, sen-
sor, and GPS device. The hardware platform is tasked
with algorithm computation, data processing, sharing,
and interfacing with the sensor and GPS devices. The
chosen components prioritize reliability, security, and
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Figure 1: Prototype Preceding Vehicle Identification System

real-time functionality, ensuring the robust and secure
execution of the PVIS system for practical applica-
tions.

Terabee ToF

Figure 2: Hardware Platform with Wi-Fi dongle, GPS re-
ceiver, and Terabee ToF

2.1 Hardware Platform

Computers have evolved into highly versatile hard-
ware, continuously advancing since their inception.
In the applications of robotics or autonomous driv-
ing, there is a preference for compact, portable, cost-
effective, and high-performance computing solutions,
deviating from the high-cost and physically cumber-
some traditional computers. Therefore, single-board
computers (SBC) such as NVIDIA Jetson Nano and
Raspberry PI have gained prominence. These com-
puters are constructed on a solitary circuit board and
integrate microprocessors, memory, input/output in-
terfaces, and other essential functionalities (Isikdag,
2015).

In a comparative analysis between Raspberry Pi
and NVIDIA Jetson Nano, it is observed that Rasp-

berry Pi stands out for its low power consumption
and energy-efficient performance. However, the study
concludes that NVIDIA Jetson platforms, particularly
exemplified by the Jetson Nano, exhibit superior over-
all performance. This performance superiority is at-
tributed to the presence of higher-speed Graphics Pro-
cessing Units (GPUs) in the Jetson platform, empha-
sizing the pivotal role of advanced GPU capabilities in
achieving heightened computational power compared
to (Ullah and Kim, 2020).

In a comparative analysis with the Jetson Orin
NX, it is determined that the Jetson Nano is a more
cost-effective and suitable solution for the current
functional requirements of the research. Therefore,
the selected hardware platform is the NVIDIA Jet-
son Nano, featuring an Intel Core i7-4790 CPU at
3.60 GHz, a GeForce RTX 2080 GPU with 8 GB
VRAM, 16 GB of RAM, and operating on Ubuntu
18.04. Supplementary components, including a Wi-
Fi dongle, vehicle sensors, and a GPS receiver, were
integrated into this hardware setup, as illustrated in
Fig. 2. The Jetson Nano played a central role in
facilitating communication between CVs, executing
algorithm calculations, and processing data. Specif-
ically, the Jetson Nano on the ego vehicle functions
as a Wi-Fi access point in ad-hoc mode, creating a
network that other vehicles can connect to. The pre-
ceding vehicle, equipped with a Wi-Fi dongle, estab-
lishes a connection to the ad-hoc Wi-Fi network gen-
erated by the Jetson Nano on the ego vehicle. Wi-Fi
and C-V2X technology are both designed for wire-
less short-range communication and operate based on
established communication standards. However, C-
V2X typically demands a significant infrastructure
deployment, while Wi-Fi offers a more commercially
viable solution for field tests. Wi-Fi has proven to be a
successful communication medium between vehicles,
even at very high speeds, such as 120 mph relative



speed (Tufail et al., 2008).

2.2 GPS Receiver

The GPS stands as the singular, fully operational
Global Navigation Satellite System (GNSS), relying
on a constellation of 24 to 32 Medium Earth Orbit
satellites. These satellites transmit precise microwave
signals, empowering GPS receivers to ascertain their
location, speed, direction, and time. For distance
calculation, a GPS receiver necessitates signals from
a minimum of three satellites, utilizing a triangula-
tion technique to compute its two-dimensional po-
sition (latitude and longitude). Leveraging the self-
reported GPS location of the ego Connected Vehicle
(CV) and the shared GPS locations of other CVs, the
ego CV can compute the relative distance between
two vehicles based on these GPS reports. This GPS-
derived measurement serves as a pivotal reference
point, allowing for comparison with sensor-measured
distances and facilitating the identification of the pre-
ceding vehicle within the vehicle platoon.

After a comprehensive examination of various
GPS modules, including Beffkkip, BerryGPS, Wave-
share, and SparkFun, the SparkFun GPS-RTK-SMA
was chosen for implementation. This decision was
influenced by several pivotal factors. Firstly, the
SparkFun GPS features an impressive maximum up-
date rate of 20 HZ, providing more frequent and real-
time location data compared to the standard 1 HZ
update rate offered by other GPS units. Further-
more, the SparkFun GPS unit’s type-C port facilitates
a straightforward and direct connection to the Jetson
Nano, eliminating the necessity for additional wires
and GPIO connections, a feature not always present
in modules primarily designed for Raspberry Pi, such
as BerryGPS.

2.3 Vehicle Sensor

Vehicle sensors play a pivotal role in furnishing both
a perceptive and locational understanding of the en-
vironment, facilitating real-time decision-making for
the vehicle (Campbell et al., 2018) deployment of var-
ious types of vehicle sensors caters to diverse objec-
tives in real traffic scenarios. Each type of sensor con-
tributes distinct functionalities, collectively enhanc-
ing the vehicle’s capability to sense, interpret, and re-
spond to its dynamic surroundings. LiDAR sensors,
functioning on the principle of time of flight (TOF),
utilize laser beams to measure distances and generate
detailed three-dimensional maps of the environment.
Radar sensors utilize radio waves to detect objects and
determine their range, speed, and direction, effective

in tracking the movement of vehicles. Cameras cap-
ture visual information and enable the identification
of traffic signs, lane markings, and the classification
of objects such as vehicles, pedestrians, and cyclists.

In this research, the TeraRanger Evo 60m sensor
is selected as the vehicle sensor for system develop-
ment. The decision is driven by the sensor’s cost-
efficiency, ease of integration, reliable performance,
and ability to fulfill the proper measurement require-
ments of the research. Key features of the TeraRanger
Evo 60m sensor include its ability to measure dis-
tances up to 60 meters, provide a high sampling rate
of up to 240 readings per second, and encompass a
field of view spanning 2 degrees. Notably, the sensor
demonstrates impressive accuracy, with an error of
less than 0.1 m. Hence, the accuracy and frequency of
the ToF sensor are deemed acceptable for this study,
with performance characteristics surpassing those of
GPS. The straightforward integration involves a sim-
ple plug-and-play mechanism, connecting to the SBC
via USB. This direct connectivity eliminates the need
for adapters or intricate wiring, streamlining the im-
plementation process.

3 EXPERIMENTS AND RESULTS

3.1 Methodology

Ego Vehicle Preceding Vehicle

Ground Truth Sensor Measurement GPS Measurement

Figure 3: Ground truth, sensor and GPS measurements be-
tween the ego vehicle and the preceding vehicle

For the PVIS (Chen and Park, 2022) to achieve
both safety and efficiency, three main factors are taken
into consideration: the probability of misidentifying
another connected vehicle as the preceding vehicle,
the probability of misidentifying the preceding vehi-
cle as unconnected, and the time consumption. The
PVIS iteratively matches the GPS-measured gap be-
tween the preceding vehicle and the ego vehicle with
the sensor-measured gap in Fig, 3. The process of it-
eration for matching to identify connected and uncon-
nected preceding vehicles (n and k, respectively) is
detailed in Fig, 4. The threshold of matching, differ-
ence between the GPS measured-distance and sensor-
measured distance (e), is defined in Eq. 1.
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Where Ad represents the distance difference be-
tween the ego vehicle and the preceding vehicle. The
subscripts g and s indicate variables related to GPS
and sensor measurements, respectively. e denotes the
difference between the measurements and the ground
truth. The standard deviations for the difference be-
tween GPS and sensor measurements is represented
by 8. invy? signifies the inverse-chi-square distribu-
tion with 1 degree of freedom, and o determines the
threshold of matching based on the Chi-square dis-
tribution. It is noted that as the TOF sensor provides
the relative distance between two vehicles, the combi-
nation of GPS and TOF sensor measurements can be
modeled by the inverse-chi-square distribution with 1
degree of freedom.

The most critical factor, probability of misiden-
tifying another connected vehicle as the connected
preceding vehicle, Er, is defined in Eqs. 2 and 3.
This probability represents scenarios where any near-
est connected vehicles in adjacent lanes fall within the
matching threshold for n consecutive iterations. Such
misidentification can lead to potential safety issues
by initiating cooperation with the incorrect connected
vehicle.

1
)2 < invy?(1,0)

Er~ 2k( /A F(e)de)” 2)
A={ele—w<e<e+w} 3)

where f(e) is the probability density function of
normal distribution for measurement errors; w is the
minimum distance between preceding vehicle and the
nearest preceding vehicle. The second critical factor,
the probability of misidentifying the preceding vehi-
cle as unconnected, U, is defined as Eq. 4, represent-
ing the corrected connected preceding vehicle is not
within the threshold for n consecutive times repeated
in k consecutive times.

Ur=(1—(1-a)")* @)

The maximum time for the identification can be
determined to be 0.1nk seconds, considering that con-
nected vehicles share their GPS data every 0.1 sec-
onds. To balance the accuracy and time consumption
of identification, the parameters related to threshold
and times of iterations (¢, n and k) of PVIS are opti-
mized in relation to the optimization problem, formu-
lated in Eq. 5.

min  wiUr+w,T

o,n,k
s.t. Ur < Urpax
Er < Erpgx (5)
T =0.1nk < T4x
0<a<l1
nkeN*

where wl and w, are weights of the probabil-
ity of identifying the preceding vehicle as an uncon-
nected vehicle and time consumption, respectively.
Ermax,Urmax and Ty, are maximum value of Er,Ur
and T, respectively.
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Figure 5: Two connected human-driven vehicles in the parking lot

3.2 Proof-of-concept field test

For the field test, it’s crucial to initially establish
the parameters of the Preceding Vehicle Identifica-
tion System (PVIS), as depicted in Fig. 4. The er-
ror assumptions for the GPS devices and Time-of-
Flight (ToF) sensor are based on their documenta-
tion, where GPS and ToF sensor errors are presumed
to follow a normal distribution with standard devia-
tions of 2.5 and 0.1, respectively. Furthermore, the
parameters E7pqy, Uimax, Tnax and are configured as
1078, 0.05, and 60 seconds, respectively; wy, wo, and
w are set to be 500, 1 and 2.5 meters respectively.
Referring to Eq. 5, the times of iterations (n and k)
and o related threshold are optimized to 60, 10, and
invy?(1,0.017) = 5.7.

In the field tests, two human-driven vehicles
served as CVs. The Jetson Nano for both vehicles
was positioned below the front windows to ensure a
stable connection between the two vehicles. The Jet-
son Nano on each vehicle was interfaced with a Wi-
Fi dongle and a GPS receiver. To precisely measure
the gap between the front of the ego vehicle and the
rear end of the preceding vehicle, the GPS antenna
for the ego vehicle was placed at the front, while
the GPS antenna for the preceding vehicle was po-
sitioned at the rear end, as illustrated in Fig. 5. It
is noteworthy that the GPS antenna on each vehicle
was mounted on the bonnet to ensure an unobstructed
view for receiving GPS information. The ToF sensor
is located at the front of the ego vehicle for enhanced
distance measurement accuracy. For safety considera-

tions, two connected human-driven vehicles were op-
erated in a parking lot at a deliberately low speed (less
than 10 mph). It’s worth noting that higher speeds
between vehicles could result in longer distances be-
tween them. However, the accuracy of GPS is not
highly influenced by the distance between vehicles
in open-sky conditions. The straight road within the
parking lot extended approximately 600 meters.

3.3 Experimental results

To assess the reliability and commercial viability of
the prototype PVIS, various metrics are evaluated, en-
compassing the accuracy of GPS and Time-of-Flight
(ToF) sensor measurements, system accuracy and ef-
ficiency, communication delay, and security consid-
erations. Specifically, distance measurements from
both the GPS and ToF sensors are collected to gauge
the error of these devices. The identification accuracy
and time consumption metrics are gathered to assess
overall system accuracy and efficiency. The timeline
between the moment the preceding vehicle acquires
GPS information and the subsequent moment the ego
vehicle receives this GPS information is measured to
calculate communication delay. This methodology al-
lows for a comprehensive assessment of the identifi-
cation system’s resilience in the face of varying con-
nection densities and potential malicious attacks.
Multiple identification tests were systematically
conducted, resulting in the collection of 2,732 pairs
of GPS and sensor data. Throughout the tests, the
gap between the two vehicles remained below 10 me-
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Figure 6: Histogram of time consumption, distance difference between the GPS and ToF sensors, and communication delay

in 43 tests

ters, and their speed was constrained to be less than
5 m/s. During the tests, an observed sensitivity of
the ToF sensor to variations in road surface and angle
was noted. Specifically, the sensor returned invalid
values when the vehicle traversed an irregular road-
way surface, leading to a small percentage of data
being deemed invalid. In the remaining valid data
(i.e., 2,618 pairs) derived from 43 tests, the ego ve-
hicle demonstrates a 100% success rate in identify-
ing the preceding vehicle across 43 tests. The mean
and standard derivation of the consumption time is
5.3 seconds and 0.32, respectively, as shown in Fig.
6.a. A histogram representing the measured distance
differences between the GPS and ToF sensor is de-
picted in Fig. 6.b. The mean and standard devia-
tion of the distance differences between the GPS and
ToF sensor are calculated to be 0.8 and 2.1, respec-
tively. Discrepancies between the collected data and
the error distribution outlined in the documentation
may be attributed to the possibility that the data does
not comprehensively cover all real-world scenarios.
Environmental factors can influence the performance
of GPS and radar devices, contributing to variations
in the collected data.

The communication delay is shown in Fig. 6.c.
The communication delay refers to the time differ-
ence between the time when the ego vehicle receives
GPS location and the time when the preceding gains
its self-reported GPS. Based on the field test, the mean
and the standard deviation of the communication de-
lay are 0.0055 and 0.0026, respectively, which means
the communication delay is negligible compared to
the time of each identification step (around 0.1 sec-
onds).

3.4 Reassessment with observed data

As illustrated in Fig. 6.b, the observed error distribu-
tion of GPS and the sensor deviates from the initial as-
sumption. Given the impact of this error distribution

a. Time C
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Figure 7: Histogram of time consumption with reoptimzied
PVIS settings

on the efficiency of the PVIS, a reassessment based on
observed data becomes crucial for its effective imple-
mentation. Therefore, a re-optimization of parameters
was undertaken based on the observed error distribu-
tion. The actual error distribution has a mean of 0.8
and a standard deviation of 2.1. The reoptimized pa-
rameters, namely n = 59, k = 9 and threshold at 5.4,
were determined based on the optimization problem
in the paper (Chen and Park, 2022). Subsequently,
the data collected from the field was reanalyzed using
these new parameters. The data from 43 tests resulted
in a 100% successful rate. The mean and standard
deviation of the time consumption for identification
were found to be 5.2 seconds and 0.31, respectively,
as illustrated in Fig. 7. These adjustments reflect
a small improvement in time consumption under the
updated error distribution.

4 CONCLUSIONS AND FUTURE
WORK

This paper undertook the development and evaluation
of a prototype preceding vehicle identification sys-
tem in a real-world setting. Human-driven vehicles,
equipped with Jetson Nano and integrated with a Wi-
Fi dongle, GPS receiver, and ToF sensor, served as



connected vehicles. The performance of the proto-
types underwent assessment, focusing on the accu-
racy of GPS and ToF sensor measurements, system
accuracy and efficiency, and communication delay
considerations. The results demonstrate that the sys-
tem requires approximately 5.3 seconds to success-
fully identify the connected preceding vehicle, utiliz-
ing a commercial GPS receiver and ToF sensor. The
system achieved 100% accuracy in 43 identification
tests, with negligible communication delay observed.
The PVIS was reassessed based on the observed er-
ror distribution, which proved to be smaller than the
initial assumption. This resulted in shorter time con-
sumption for identification, specifically 5.2 seconds,
showcasing improved efficiency under the updated
parameter settings.

However, some challenges need to be investigated
in the future. Firstly, the sensitivity and narrow 2°
Field of View of the Terabee ToF sensor posed limi-
tations during testing, as it returned invalid data when
the vehicle traversed uneven terrain and experienced
vibrations. Addressing these issues is crucial to en-
sure the reliable and robust performance of the Ter-
abee ToF sensor in varying driving conditions. Poten-
tial solutions may involve exploring alternative sensor
technologies that are less susceptible to these environ-
mental factors or improving the sensor’s installation
for stability. Additionally, it’s important to note that
the field test in this study involved two vehicles, serv-
ing as a proof of concept. To further ensure the com-
prehensiveness and applicability of the algorithm, fu-
ture testing efforts should strive for environments that
include a diverse mix of multiple vehicles.
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