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Abstract—Quasi-periodic signal separation poses a significant
challenge in wearable systems with limited data, particularly
when the measured signal, influenced by multiple physiological
sources, is under-represented. Addressing this issue, we introduce
Deep Quasi-Periodic Priors (DQPP), a signal separation method
for non-stationary, single-detector, quasi-periodic signals using
an isolated input data. This approach incorporates masking and
in-painting of the time-frequency spectrogram, while integrating
prior harmonic and temporal patterns within the deep neural
network structure. Moreover, a pattern alignment unit trans-
forms the input signal’s time-frequency patterns to closely align
with the deep harmonic neural structure. The efficacy of DQPP
is demonstrated in non-invasive fetal oxygen monitoring, using
both synthetic and in vivo data, underscoring its applicability
and potential in wearable technology.

Index Terms—Signal Separation, Wearable Systems, Deep
Prior Learning, Quasi-Periodic

I. INTRODUCTION

Wearable systems have gained considerable attention in
recent years for their potential to improve health and quality of
life. However, their advancement faces challenges, particularly
in scenarios where sensor data is obscured by quasi-periodic,
non-stationary interferences. This problem is prevalent in
applications like tissue oximetry or blood glucose monitoring,
where the desired signals are often overshadowed by other
physiological activities such as heart rate, respiration, and
Mayer waves. The effectiveness of these devices, in absence
of extensive high-quality data, depends on the successful
separation of relevant signals from interference with limited
data.

To address this, we have developed a novel methodology
called Deep Quasi-Periodic Priors (DQPP). This technique is
designed for the separation of quasi-periodic, non-stationary
signals using a singular mono-detector signal. To apply DQPP
effectively, it is assumed that the fundamental frequencies of
these signals are known, either through additional sensing
methods or by analyzing the mixed signals. This approach
aims to enhance the reliability and functionality of wearable
devices in challenging scenarios.
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II. PROPOSED METHODOLOGY

DQPP is an iterative method for separating non-stationary
quasi-periodic signals with limited data. Each round isolates
a selected target signal from the mix by masking non-target
signals and in-painting overlaps and crossovers with the target.
The deep harmonic neural network, designed for effective in-
painting with just one isolated single-detector input signal,
acts as an implicit prior, inspired by the Deep Image Prior
technique [1]. This prior setup comprises two complemen-
tary components: a signal pattern aligner and the Spectrally
Accurate Light U-Net (SpAc LU-Net). The pattern aligner
resamples the signal, unwarping the target into a strictly-
periodic pattern and reshaping its fundamental frequency to
a constant 1Hz. This allows for the temporal neighborhood of
harmonic convolutions to be achieved through simple dilation.
In the frequency domain, the convolutional neighborhood over
the spectrum is defined by integral multiples of each frequency
bin. Moreover, SpAc LU-Net consistently preserves the har-
monic structure by eliminating any max-pooling in frequency,
ensuring a stable deep prior setup. The in-painted spectrogram
amplitudes, combined with the original phase information,
pass through an inverse short-time Fourier transform to extract
the separated, pattern-aligned target signal. This signal, once
resampled and rewarped to its original fundamental frequency,
is the final separated target. After each round, the separated
source is subtracted from the mixed signal, with the residual
used for further signal separation in subsequent rounds.

III. EXPERIMENTAL RESULTS

A. Signal Separation Results: Synthesized Data

We have created a tool for generating synthesized quasi-
periodic timeseries, characterized by the desired input function
per period, time duration per period list, and amplitude per
period list. We have also generated 5 distinct synthesized
mixed quasi-periodic signals with sampling frequency of
100 for Transabdominal Fetal Oximetry (TFO) application.
Each mixed signal has 2-3 sources for respiration, maternal
pulsation, and fetal pulsation. The respiration PPG shape is
extracted from real sheep experiment after filtering out other
dynamics. The pulsation PPG shape is randomly extracted
from MIMIC-IV dataset [6].

Metrics: We present Signal to Distortion Ratio (SDR) and
Mean Squared Error (MSE) for each separated source from
the five input mixed signals. For averaging MSE values, we



TABLE I: Performance comparison of various signal separation methods applied on synthesized mixed signals 1-5. Best
performance per source separation is highlighted.

EMD [2] VMD [3] NMF [4] REPET [5] REPET-Ext. [5] Spect. Masking DQPP

SDR(db) MSE SDR(db) MSE SDR(db) MSE SDR(db) MSE SDR(db) MSE SDR(db) MSE SDR(db) MSE
Syn. MSig1 source1 -1.38 7.4e-4 7.32 1.5e-4 -9.03 8.9e-4 4.68 2.0e-4 9.91 1.0e-4 12.31 6.4e-5 21.63 7.4e-6

source2 -6.17 1.3e-4 3.17 1.1e-4 -7.53 1.3e-4 -0.77 6.4e-05 -10.82 1.1e-4 6.44 3.3e-5 15.51 4.1e-6
Syn. MSig2 source1 -6.36 9.1e-4 3.14 7.1e-4 -4.58 7.8e-4 0.09 4.8e-4 4.82 3.4e-4 4.51 3.5e-4 9.29 1.1e-4

source2 -21.75 7.2e-4 -21.06 7.0e-4 -4.98 6.4e-4 -1.25 4.5e-4 -6.2 4.4e-4 1.16 5.6e-4 9.02 9.2e-5
Syn. MSig3 source1 5.65 5.3e-3 7.24 3.9e-3 -8.79 2.2e-2 6.59 3.3e-3 14.36 8.1e-4 26.95 5.7e-5 21.18 2.1e-4

source2 0.07 2.6e-4 -0.15 1.8e-4 -0.18 8.3e-4 -0.04 2.7e-4 -1.63 2.1e-4 -17.3 9.9e-3 6.96 4.0e-5
Syn. MSig4 source1 5.2 1.1e-2 15.16 1.5e-3 -4.95 3.6e-2 3.83 9.9e-3 18.19 7.8e-4 23.81 2.2e-4 28.86 6.9e-5

source2 0.36 9.5e-4 0.76 8.7e-4 -2.63 1.0e-3 -0.11 9.3e-4 -4.29 6.0e-4 4.03 3.8e-4 14.25 3.7e-5
source3 -13.79 4.0e-4 -19.95 4.0e-4 -5.59 4.6e-4 -15.76 3.9e-4 -7.26 3.2e-4 8.9 5.3e-5 14.7 3.3e-5

Syn. MSig5 source1 2.11 1.6e-2 15.53 1.1e-3 -4.31 2.6e-2 1.26 1.1e-2 18.81 5.2e-4 19.26 4.2e-4 23.97 1.4e-4
source2 -5.27 7.4e-4 1.02 7.0e-4 -5.64 7.2e-4 -0.05 7.3e-4 -4.42 4.3e-4 1.27 5.5e-4 14.48 2.6e-5
source3 -18.59 1.2e-4 3.01 1.1e-4 -10.47 1.2e-4 -11.59 1.2e-4 -7.82 1.0e-4 6.82 2.7e-5 15.06 5.1e-6
Average 0.10 9.5e-4 8.69 5.0e-4 -4.84 1.4e-3 1.49 6.7e-4 11.86 3.2e-4 18.56 2.1e-4 20.88 3.6e-5

employ geometric averaging, whereas for SDR averaging, we
use arithmetic averaging in their original linear scale.

We compare against six previous signal separation methods,
which accommodate single-detector signal separation, EMD
[2], VMD [3], NMF [4], REPET and REPET-Extended [5],
and spectral masking. The comparison results is presented in
Table I. These results are all calculated on band-pass filtered
mixed signals (MSig) between [0Hz, 12Hz].

Discussion: DQPP delivers approximately 26% (2.3db)
SDR improvement and 80% MSE enhancement on average
when contrasted with the best previous signal separation
algorithms. Evaluating the signal separation performance for
sources with less than ×0.1 amplitude of the dominant source
(mixed signal 3 source 2, mixed signal 4 source 3, and mixed
signal 5 source 3), the DQPP method exhibits 7.2db average
SDR enhancement and 92% average MSE improvement com-
pared to the best preceding method.

B. Signal Separation Results: In Vivo SpO2 Estimation

We study the performance of our approach on fetal SpO2
estimation in an in vivo dataset of TFO from two pregnant
ewes. The data consists of 40 minutes of continuous mixed
PPG signals at 740nm and 850nm wavelengths gatherd from
pregnant ewe’s abdomen and ground-truth fetal blood oxygen
saturation readings, i.e. SaO2, measured from blood-draws
with the time distance of 2.5, 5, and 10 minutes [7]. Since the
ground-truth fetal PPG signal is not accessible, we report the
correlation of SpO2 estimation with measured SaO2 readings
when the fetal signal is separated using spectral masking and
DQPP method.

Discussion: Fig. 1 presents the SpO2 estimation for both
sheep, when the separated fetal signal is obtained through
spectral masking (similar to [7]) and DQPP. Our method
improves the correlation from 0.24 to 0.81 and from 0.44 to
0.92 in sheep 1 and sheep 2, respectively (80.5% average error
improvement from ideal correlation of 1).

Fig. 1: Comparison of fetal signal separation and SpO2 estima-
tion using DQPP and the state of the art [7].

IV. CONCLUSION

Limitations in dataset capacity and quantity, present in
many quasi-periodic signal separation applications in wearable
systems, have hindered their success despite their signif-
icant potential. Deep prior methods can enhance learning
performance with limited data. We showcase our deep prior
signal separation method in the TFO application, using both
synthesized and in vivo data, with significant improvement
compared to the state of the art.
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