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We report the effect of shape anisotropy and material properties on the directed assembly of
binary suspensions composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement
the ellipsoid-dipole model to calculate the pairwise dipolar interaction energy as a function of
position and orientation. The analysis explores dilute suspensions of paramagnetic and diamagnetic
ellipsoids with different aspect ratios in a superparamagnetic medium. We analyze the local order of
binary structures as a function of particle aspect ratio, medium permeability, and dipolar interaction
strength. Our results show that local order and symmetry are tunable under the influence of a
uniform magnetic field when one component of the structure is dilute with respect to the other.
The simulation results match previously reported experiments on the directed assembly of binary
suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium
properties for various structures with rotational symmetries, as well as open and enclosed structures
under the influence of a uniform magnetic field.

1 Introduction
Colloidal particles with surface and shape anisotropy are the focus of intensive research because of
their positional and orientational interactions under different field conditions.[Lee et al.(2011)Lee, Yoon, and Lahann,
Tierno(2014), Teo et al.(2016)Teo, Young, and Loh, Meijer and Rossi(2021), Ma et al.(2023)Ma, Mohapatra, Wei, Liu, and Sun]
Anisotropic colloids are attractive for different applications, such as microrobots,[Xie et al.(2019)Xie, Sun, Fan, Lin, Chen, Wang, Dong, and He,
Wang et al.(2021)Wang, Chan, Schweizer, Du, Jin, Yu, Nelson, and Zhang] smart materials,[Li et al.(2016)Li, Zhou, and Han,
Massana-Cid et al.(2019)Massana-Cid, Meng, Matsunaga, Golestanian, and Tierno, Hendley et al.(2023)Hendley, Zhang, and Bevan]
drug delivery,[Champion et al.(2007)Champion, Katare, and Mitragotri, Champion and Mitragotri(2009),
Demirörs et al.(2017)Demirörs, Eichenseher, Loessner, and Studart] photonics,[Forster et al.(2011)Forster, Park, Mittal, Noh, Schreck, O’Hern, Cao, Furst, and Dufresne,
Zhang et al.(2013)Zhang, Janner, He, Wang, Hu, Lu, and Yin, Wang et al.(2015)Wang, He, Xu, Wang, and Yin,
Li et al.(2021)Li, Qian, Xu, Zhu, and Yin] superhydrophobic surfaces,[Huang et al.(2007)Huang, Zhu, Zhang, and Yin,
Srinivasan et al.(2008)Srinivasan, Praveen, Philip, and Ajayaghosh, Parvate et al.(2020)Parvate, Dixit, and Chattopadhyay]
and building blocks for colloidal crystals,[Glotzer and Solomon(2007), Grzelczak et al.(2010)Grzelczak, Vermant, Furst, and Liz-Marzán,
Solomon(2011)] among others. Directed assembly tunes the particle-field and particle-particle in-
teractions to facilitate the formation of different structures.[Bharti and Velev(2015), Wu2(2018),
Hendley et al.(2021)Hendley, Torres-Díaz, and Bevan] Furthermore, directed assembly promotes
order and symmetry between particles, resulting in various two and three-dimensional structures.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010), Peroukidis et al.(2015)Peroukidis, Lichtner, and Klapp] Monodisperse colloids
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with small aspect ratios assemble into close-packed structures,[Sherman and Swan(2016), Sherman et al.(2018)Sherman, Ghosh, and Swan,
Hakonsen et al.(2021)Hakonsen, Singh, De Toro, Normile, Wahlström, He, and Zhang] intricate chains,[Chantrell et al.(1982)Chantrell, Bradbury, Popplewell, and Charles,
Rossi et al.(2018)Rossi, Donaldson, Meijer, Petukhov, Kleckner, Kantorovich, Irvine, Philipse, and Sacanna]
loops,[Martinez-Pedrero et al.(2016)Martinez-Pedrero, Cebers, and Tierno, Martinez-Pedrero et al.(2016)Martinez-Pedrero, Cebers, and Tierno]
and flower-like structures.[Kantorovich et al.(2013)Kantorovich, Pyanzina, and Sciortino] Monodis-
perse magnetizable spheres form head-to-tail chains, bundles of chains, and fibrous structures under
the influence of a uniform magnetic field.[Stoy(1989), Stoy(1989), Jones(1995), Furst and Gast(2000),
Faraudo et al.(2016)Faraudo, Andreu, Calero, and Camacho, Fan and Walther(2022)] Moreover, monodis-
perse magnetizable spheres form body-centered tetragonal (BCT) and hexagonally close-packed
(HCP) three-dimensional crystals.[Sherman et al.(2018)Sherman, Ghosh, and Swan, Faraudo et al.(2016)Faraudo, Andreu, Calero, and Camacho,
Fan and Walther(2022)] Additionally, while monodisperse magnetizable spheres form hexagonal
crystals, binary magnetizable spheres with different sizes form triangular and square lattice crystals
in two-dimensional confinement under a uniform magnetic field.[König et al.(2005)König, Hund, Zahn, and Maret,
Lahcen Assoud and Löwen(2011), Wang et al.(2013)Wang, He, and Yin] Conversely, uniaxial ellip-
soids with high-aspect ratios assemble with face-to-tail arrangement and close-packed structures un-
der a uniform field.[Li et al.(2021)Li, Qian, Xu, Zhu, and Yin, Malik et al.(2017)Malik, Pal, Pravaz, Crassous, Granville, Grobety, Hirt, Dietsch, and Schurtenberger,
Thelen et al.(2023)Thelen, Jara, and Torres-Díaz, Wang et al.(2015)Wang, He, Xu, Wang, and Yin,
Mohapatra et al.(2021)Mohapatra, Xing, Elkins, Beatty, and Liu, Fan et al.(2023)Fan, Li, Wu, and Yin]
The variety of structures makes it essential to have a quantitative model to predict the behavior of
magnetizable ellipsoidal particles with different aspect ratios and material properties.

Previous studies show that material properties, relative dimensions, and aspect ratios of col-
loidal particles directly affect the order of assembled magnetizable particles.[Stoy(1989), Stoy(1989),
Jones(1995), Pal et al.(2022)Pal, De Filippo, Ito, Kamal, Petukhov, De Michele, and Schurtenberger,
Troppenz et al.(2015)Troppenz, Kuijk, Imhof, van Blaaderen, Dijkstra, and van Roij, Kuijk et al.(2014)Kuijk, Troppenz, Filion, Imhof, van Roij, Dijkstra, and van Blaaderen]
Contrary to the aforementioned results in monodisperse suspensions, the directed assembly of bi-
nary suspensions composed of paramagnetic and diamagnetic spheres in a ferrofluid medium form
structures with rotational symmetry around the particle poles or equator.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010)] The symmetry of the structures depends on the particle size and their rel-
ative polarizations, while their order depends on the relative concentration of their spherical
components.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen, Li and Yellen(2010), Yang et al.(2013)Yang, Gao, Lopez, and Yellen]
Theoretical studies focus on suspensions composed of spheres with different sizes and material
properties. Still, the effect of the shape anisotropy and the dipolar interaction on the order and
symmetry of structures has not been fully explored.

Previous quantitative studies model the dipolar interaction between uniform particles using the
point-dipole approximation,[Stoy(1989), Stoy(1989), Jones(1995), Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010)] the two-point charges approximation,[Troppenz et al.(2015)Troppenz, Kuijk, Imhof, van Blaaderen, Dijkstra, and van Roij,
Kuijk et al.(2014)Kuijk, Troppenz, Filion, Imhof, van Roij, Dijkstra, and van Blaaderen, Crassous et al.(2014)Crassous, Mihut, Wernersson, Pfleiderer, Vermant, Linse, and Schurtenberger,
Rotunno et al.(2004)Rotunno, Bellini, Lansac, and Glaser] numerical calculations,[Shields IV et al.(2013)Shields IV, Zhu, Yang, Bharti, Liu, Yellen, Velev, and López,
Du et al.(2016)Du, He, Zeng, and Biswal, Zhou et al.(2017)Zhou, Sobecki, Zhang, Zhang, and Wang,
Sobecki et al.(2018)Sobecki, Zhang, Zhang, and Wang, Sobecki et al.(2020)Sobecki, Zhang, and Wang,
Zhang et al.(2019)Zhang, Zhou, and Wang] and the ellipsoid-dipole model.[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]
The dipolar interaction energy using the point-dipole model is quantified from the disturbance
field of polarizable spherical particles in a uniform field.[Stratton(1941), Denner and Pohl(1982),
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Jones(1995)] However, shape anisotropy modifies the disturbance field, and particles with a non-
quadratic surface induce non-uniform fields that are not accounted for in the point-dipole model.[Maxwell(1873),
Green and Jones(2006)] The two-point charges model approximates the disturbance field of uniaxial
particles with high aspect ratios,[Troppenz et al.(2015)Troppenz, Kuijk, Imhof, van Blaaderen, Dijkstra, and van Roij,
Kuijk et al.(2014)Kuijk, Troppenz, Filion, Imhof, van Roij, Dijkstra, and van Blaaderen, Crassous et al.(2014)Crassous, Mihut, Wernersson, Pfleiderer, Vermant, Linse, and Schurtenberger,
Rotunno et al.(2004)Rotunno, Bellini, Lansac, and Glaser] but not for particles with other aspect
ratios, such as spheres, oblate spheroids, and scalene ellipsoids. The dipolar interaction for more
complex shapes is numerically calculated using computationally expensive methods,[Shields IV et al.(2013)Shields IV, Zhu, Yang, Bharti, Liu, Yellen, Velev, and López,
Du et al.(2016)Du, He, Zeng, and Biswal, Zhou et al.(2017)Zhou, Sobecki, Zhang, Zhang, and Wang,
Sobecki et al.(2018)Sobecki, Zhang, Zhang, and Wang, Sobecki et al.(2020)Sobecki, Zhang, and Wang,
Zhang et al.(2019)Zhang, Zhou, and Wang] which are time-consuming when modeling systems of
many particles. Alternatively, the recently developed ellipsoid-dipole model takes into account
the effect of shape anisotropy on the particle polarization. The ellipsoid-dipole model is used
to quantify the pairwise dipolar interaction energy as a function of position and orientation be-
tween monodisperse polarizable ellipsoids and between monodisperse permanently magnetized
ellipsoids.[Hendley et al.(2021)Hendley, Torres-Díaz, and Bevan, Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]
However, we have not found a model to quantify the dipolar interaction between anisotropic par-
ticles with different shapes and material properties as a function of their relative position and
orientation.

In this manuscript, we analyze the effect of shape anisotropy and material properties on the
local order of assembled binary colloidal structures. For this purpose, we consider a binary sus-
pension composed of particles with different material properties, where the concentration of one
component is much smaller than the other. We use a superparamagnetic medium (ferrofluid) to
tune the polarization of micron-sized particles in a two-dimensional confinement under the influence
of a uniform magnetic field. Additionally, we consider a dilute suspension to isolate the effect of
the dipolar interaction between particles to the confinement effects generated at suspensions with
higher concentrations. The two-dimensional confinement is our first approach to describe the main
features of the assembled structures and their dependence on particle aspect ratio and medium
properties, which can be used for later studies in more complex systems, such as three-dimensional
assembly and tunable crystal structures. Therefore, to model the directed assembly of small binary
clusters, we extend the ellipsoid-dipole model to quantify the pairwise dipolar interaction between
ellipsoidal particles as a function of their relative position and orientation. The dipolar interaction
energy using the ellipsoid-dipole model is implemented in a Monte Carlo algorithm to analyze bi-
nary suspensions of magnetizable ellipsoids in a paramagnetic medium. We analyze the directed
assembly of a binary suspension composed of diamagnetic and paramagnetic ellipsoids under the
influence of a uniform magnetic field. Furthermore, we analyze conditions such that one of the
components is dilute with respect to the other component. The study includes the effects of par-
ticle size, particle aspect ratio, medium properties, and dipolar interaction strength on the local
order and symmetry of the assembled structures in a two-dimensional confinement.
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2 Model

2.1 Monte Carlo simulation

We perform Metropolis Monte Carlo (MC) simulations to quantify the canonical ensemble energy
in a two-dimensional confinement with periodic boundary conditions.[Metropolis and Ulam(1949),
Allen and Tildesley(2017), Frenkel and Smith(2023)] We quantify the pairwise interaction energy of
interacting magnetizable ellipsoidal particles with different aspect ratios and material properties as a
function of their relative position and orientation. The analysis considers dilute suspensions of hard
ellipsoids to avoid confinement effects observed at higher concentrations.[Kosterlitz and Thouless(1972),
Odriozola(2009), Odriozola(2012)] We consider a binary suspension composed of magnetizable el-
lipsoids (paramagnetic and diamagnetic) with different aspect ratios in a ferrofluid medium. The
system is composed of about 100 uniform particles of the first component and one particle of the
second component with a different aspect ratio and material properties. The number of particles is
set based on the particle concentration in a square simulation box with periodic boundary condi-
tions. The total particle concentration (area fraction) is fixed at 0.1. The number of particles and
the box size for every simulation is in the Supplementary Information (Tables 2-5). We calculate
the energy of the system as

U =
N∑︂
I

U I
df +

N∑︂
I=1

N∑︂
J ̸=I

U IJ
dd , (1)

where U I
df is the induced dipole-field interaction energy of particle I, and U IJ

dd is the pairwise
induced dipole-dipole interaction energy between magnetizable particles I and J . We consider hard
interaction between particles, i.e., infinite energy when the particles overlap and zero when they
don’t overlap. The MC algorithm samples different particle positions x = (x, y, z) and orientations,
parameterized with unit quaternions q0, q1, q2, and q3. Quaternions q1, and q2 are equal to zero to
limit the particle rotation on the simulation plane. We use the unit quaternions to avoid Gimbal
lock by using Euler angles and to generate a singularity-free algorithm to quantify the dipolar
interaction at arbitrary orientations between particles.[Evans(1977)] The MC algorithm runs until
the energy is equilibrated, which requires at least 107 steps and varies for different simulation
conditions.

2.2 Induced dipole – field interaction energy

Consider a uniformly magnetizable tri-axial ellipsoidal particle suspended in a uniform isotropic
medium, as schematically represented in Figure 1. The particle coordinate system

(︂
xI , yI , zI

)︂
is colored in red and aligned along the main particle semi-axes rx, ry, and rz. The particle is
arbitrarily oriented with respect to laboratory coordinates

(︂
xL, yL, zL

)︂
and colored in black. The

superscript represents the coordinate system where the variable is evaluated. HL
0 represents the

applied uniform magnetic field described in laboratory coordinate, and MI is the magnetization of
the particle I described in particle coordinates. The energy of a magnetizable particle in a uniform
magnetic field results in [Stratton(1941)]

u = −1
2

∫︂
vp

(µp − µm) HI
− · HI

0 dv, (2)
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Figure 1: Schematic representation of a magnetizable ellipsoidal particle I with an arbitrary
position and orientation with respect to the laboratory coordinates

(︂
xL, yL, zL

)︂
, represented in

black. The particle coordinate system
(︂
xI , yI , zI

)︂
, in red, is attached to the principal semi-axes of

the particle. HL
0 is the uniform applied field directed along the zL-axis of the laboratory coordinates.

The components
(︂
M I

x ,M
I
y ,M

I
z

)︂
of the induced particle magnetization MI are represented in green

along the main axes of the particle.
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where vp is the particle volume, µm is the magnetic permeability of the medium, µp is the magnetic
permeability of the particle, HI

0 is the applied magnetic field described in particle coordinates, and
HI

− is the magnetic field inside the particle.
The applied magnetic field described in laboratory coordinates HL

0 is correlated to the applied
magnetic field described in particle I coordinates HI

0 by

HI
0 = AIL · HL

0 , (3)

where AIL is the rotation transformation matrix[Evans(1977), Evans and Murad(1977)]

AIL = ( − ) q2
3+q2

1−q2
2+q2

02(q3q0−q2q1)2(q1q3+q2q0)−2(q2q1+q3q0)−q2
3−q2

1+q2
2+q2

02(q1q0−q2q3)2(q1q3−q2q0)−2(q2q3+q1q0)q2
3−q2

1−q2
2+q2

0,
(4)

which is defined using unit quaternions q0, q1, q2, and q3 to parameterize the relative orientation of
particle I coordinates with respect to laboratory L coordinates. Unit quaternion parameters and
Euler angles are correlated by[Evans(1977)]

q 0 = cos(ϕ/2) cos((ψ+θ)/2), q1 = sin(ϕ/2) cos((ψ−θ)/2), q2 = sin(ϕ/2) sin((ψ−θ)/2), q3 = cos(ϕ/2) sin((ψ+θ)/2),
(5)

where ϕ is the polar angle, θ is the azimuthal angle, ψ is the rotational angle around the z-axis
of the particle, and q2

0 + q2
1 + q2

2 + q2
3 = 1. For the two-dimensional analysis, q1 and q2 are equal

to zero by setting ϕ = ψ = 0. In Eq. (2), the magnetic field HI
− inside the ellipsoidal particle I

results in[Stratton(1941)]

HI
− = −

µmH
I
0,xeI

x

µm + (µp − µm) rxryrz

2 Lrx(∞)
−

µmH
I
0,yeI

y

µm + (µp − µm) rxryrz

2 Lry (∞)
−

µmH
I
0,zeI

z

µm + (µp − µm) rxryrz

2 Lrz (∞)
,

(6)
where eI

x, eI
y, and eI

z is a right-handed set of unit vectors along the principal semi-axes of the
particle I, HI

0,j is the magnetic field component along the j-axis of the particle I coordinates, and
Lrj (ξ) is defined as[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]

Lrj (ξ) ≡
∫︁ ξ

0 Frj (λ)dλ, (7)
Frj (λ) = 1

(λ+r2
j )
√︁

(λ+r2
x)(λ+r2

y)(λ+r2
z)
, (8)

where λ is a dummy variable, and ξ is the ellipsoidal coordinate at the position (x, y, z) with respect
to the particle I coordinates, calculated from the real root of

x2

r2
x + ξ

+ y2

r2
y + ξ

+ z2

r2
z + ξ

= 1. (9)

The particle magnetization is expressed as MI = µp−µm

µ0
HI

−, where µ0 is the vacuum permeability.
Eq. (2) reduces to the induced dipole–field interaction energy of a magnetizable ellipsoidal particle
I,

U I
df = −3vpµm

2
(︂
fI · HI

0

)︂
· HI

0, (10)

where vp = 4πrxryrz/3 is the particle volume, and fI is the Clausius-Mossotti tensor with a com-
ponent along the j-axis of the particle I defined as[Jones(1995), Morgan and Green(2003)]

fIjj = 1
3

(µp − µm)
µm + (µp − µm) rxryrz

2 Lrj (∞)
. (11)
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2.3 Ellipsoid-dipole model for magnetizable ellipsoids

The magnetic scalar potential at the position (x, y, z) outside a magnetizable ellipsoid and relative
to the particle coordinates, due to a uniform magnetic field, is quantified by [Stratton(1941)]

ϕ+ = −
[︄(︄

µm + (µp − µm) rxryrz

2 Lrx(ξ)
µm + (µp − µm) rxryrz

2 Lrx(∞)

)︄
x H0,x+(︄

µm + (µp − µm) rxryrz

2 Lry (ξ)
µm + (µp − µm) rxryrz

2 Lry (∞)

)︄
y H0,y +(︄

µm + (µp − µm) rxryrz

2 Lrz (ξ)
µm + (µp − µm) rxryrz

2 Lrz (∞)

)︄
z H0,z

]︄
. (12)

The magnetic field outside the particle (ξ > 0) results from the negative gradient of the magnetic
potential ϕ+. After some algebraic manipulation (See Supplementary Information), the disturbance
on the uniform magnetic field outside the ellipsoidal particle (ξ > 0) results in

HI = 3rxryrz

2 GI(ξ) · fI · HI
0, (13)

where G is a tensor with components[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]

Gij =
[︄
δij

(︂
Lrj (ξ) − Lrj (∞)

)︂
+ xj

∂Lrj (ξ)
∂xi

]︄
, (14)

where δij is the identity tensor, Lrj (ξ) is defined in Eq. (7), and ∂Lrj (ξ)
∂xi

= ∂Lrj (ξ)
∂ξ

∂ξ
∂xi

, with

∂Lrj (ξ)
∂ξ = Frj (ξ), (15)

∂ξ
∂xi

= 2xi

(r2
i +ξ)/

(︃
x2

(r2
x+ξ)2 + y2

(r2
y+ξ)2 + z2

(r2
z+ξ)2

)︃
. (16)

Eq. (13) is denoted as the ellipsoid-dipole model for magnetizable particles and quantifies the
disturbance field generated by a magnetizable ellipsoidal particle under the influence of a uniform
magnetic field. It is noted that Eq. (13) differs by a factor of three from its equivalent ex-
pression for permanently magnetized ellipsoids,[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]
which appears due to the definition of the Clausius-Mossotti factor in Eq. (11).[Jones(1995),
Morgan and Green(2003)]

2.4 Induced dipole – dipole interaction energy

Consider two magnetizable ellipsoidal particles with arbitrary sizes and aspect ratios under the
influence of a uniform magnetic field, as schematically represented in Figure 2. Superscripts I,
J , and L stand for the coordinate system where the variable is evaluated. rI

x, rI
y, and rI

z rep-
resent the semi-axes of particle I, while rJ

x , rJ
y , and rJ

z represent the semi-axes of particle J .
The red coordinate system is attached to the principal semi-axes of particle I. The blue coor-
dinate system is attached to the principal semi-axes of particle J . Both particles have an in-
duced magnetization vector represented by green arrows in their coordinate systems. The par-
ticles are arbitrarily positioned and orientated with respect to the laboratory coordinates, where
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Figure 2: Schematic representations of two interacting magnetizable ellipsoidal particles under the
influence of a uniform magnetic field HL

0 . Both particles are arbitrarily positioned and oriented
with respect to the laboratory coordinates. The red coordinate system (xI , yI , zI) is attached to
the principal semi-axes of particle I, while the blue coordinate system (xJ , yJ , zJ) is attached to
the principal semi-axes of particle J . The components of the induced particle magnetization are
represented in green along the main axes of each particle.

qI and qJ are the quaternion parameters of particles I and J with respect to the laboratory
coordinates,[Evans(1977), Evans and Murad(1977)] respectively.

From Eq. (2), the dipolar interaction energy due to the induced dipole field of particle I on the
induced dipole of particle J results in

U IJ
dd = −

3vJ
p µm

2
(︂
fJ · HJ

0

)︂
· HI , (17)

where HI is the field generated by the induced dipole of particle I at the position of particle J
(Eq. (13)), HJ

0 is the applied magnetic field described in particle J coordinates; fJ and vJ
p are the

Clausius-Mossotti tensor and the volume of particle J , respectively. Since HI and
(︂
fJ · HJ

0

)︂
are in

different coordinate systems, we use the relative transformation matrix AJI to transform the field
in particle I coordinates into particle J coordinates. The relative quaternions qIJ between particle
I and particle J are calculated by [Evans(1977)]

( q )IJ
0 qIJ

1 qIJ
2 qIJ

3 = ( q )J
0 q

J
1 q

J
2 q

J
3 − qJ

1 q
J
0 − qJ

3 q
J
2 − qJ

2 q
J
3 q

J
0 − qJ

1 − qJ
3 − qJ

2 q
J
1 q

J
0 · ( q )I

0 q
I
1q

I
2q

I
3 . (18)

The relative quaternions are incorporated in Eq. (4) to calculate the relative transformation matrix
AJI = (AIJ)−1. Therefore, replacing Eqs. (3) and (13) into Eq. (17), the dipolar interaction energy
due to the induced dipole field of particle I on the induced dipole of particle J results in

U IJ
dd = −

(︃27µm

16π vJ
p v

I
p

)︃(︂
fJ · HJ

0

)︂
·
(︂
AJI · GI · fI · HI

0

)︂
, (19)

where fI is defined in Eq. (11). GI is defined in Eq. (14) and evaluated at the relative coordinate ξ
of particle J with respect to particle I. Similarly, the dipolar interaction energy due to the induced
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dipole field of particle J on the induced dipole of particle I results in

UJI
dd = −

(︃27µm

16π vJ
p v

I
p

)︃(︂
fI · HI

0

)︂
·
(︂
AIJ · GJ · fJ · HJ

0

)︂
, (20)

where GJ is evaluated at the relative coordinate ξ of particle I with respect to particle J . Therefore,
using Eqs. (19) and (20), the pairwise dipolar interaction energy between particles I and J results
in

Udd = U IJ
dd + UJI

dd . (21)

2.5 Dimensionless parameters

The induced dipole–field interaction energy is characterized by

α ≡ 3
2
µmvpf0H

2
0

kBT
, (22)

which represents the dimensionless ratio between the magnetic energy and thermal energy, where
f0 is the maximum absolute component of the Clausius-Mossotti tensor, H0 is the applied magnetic
field strength, vp represents the particle volume, kB is the Boltzmann constant, and T is the absolute
temperature. The dimensionless induced dipole–field interaction energy Ũ I

df of a magnetizable
ellipsoidal particle becomes

Ũ I
df = −α

(︂
fI · H̃I

0

)︂
· H̃I

0, (23)

where f̃I = fI/f0 is the normalized Clausius-Mossotti tensor of particle I, and H̃I
0 = HI

0/H0 is the
unit vector along the direction of the applied magnetic field described in particle I coordinates.
Similarly, using the same characteristic variables, we define the dimensionless induced dipole-dipole
interaction parameter,

β ≡ 9
4
vI

pv
J
p

vm

µmf
2
0H

2
0

kBT
, (24)

which represents the ratio between dipolar interaction energy and thermal energy, where vm = 4
3πr

3
m

represents the volume of a reference spherical particle with a radius rm equal to the minimum semi-
axis of both particles. Therefore, the dimensionless pairwise dipolar interaction energy results in

Ũdd = Ũ IJ
dd + ŨJI

dd = −β
(︂
fJ · H̃J

0

)︂
·
(︂
AJI · G̃I · f̃I · H̃I

0

)︂
− β

(︂
fI · H̃I

0

)︂
·
(︂
AIJ · G̃J · f̃J · H̃J

0

)︂
, (25)

where f̃I = fI/f0 and f̃J = fJ/f0 are the normalized Clausius-Mossotti factors of particle I and J ,
respectively. H̃I

0 = HI
0/H0 and H̃J

0 = HJ
0 /H0 are the unit vectors along the direction of the applied

magnetic field, described in particle I and J coordinates, respectively. The tensor G̃I is evaluated
at the relative position of particle J with respect to particle I, while G̃J is evaluated at the relative
position of particle I with respect to particle J .

The dimensionless parameters α and β change for different particle aspect ratios and sizes, as
in the case of binary or polydisperse suspensions. In the present analysis, we use the minimum
semi-axes of both particles (rm) as a characteristic length. Therefore, the dimensionless parameters
α and β can be written as

α = αs (r̃xr̃y r̃z) , (26)

β = 3
2 f0αs

(︂
r̃I

xr̃
I
y r̃

I
z

)︂ (︂
r̃J

x r̃
J
y r̃

J
z

)︂
, (27)
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Figure 3: (a) Variation of medium permeability between the diamagnetic and paramagnetic per-
meabilities. (b) Relative permeabilities of the diamagnetic and paramagnetic particles with respect
to the medium permeability.

where αs ≡ 2πµmr3
mf0H2

0
kBT represents the induced dipole-field interaction parameter of the equivalent

sphere with a radius rm equal to the minimum semi-axis of the particles, and r̃x = rx/rm, r̃y =
ry/rm, and r̃z = rz/rm are the normalized semi-axes of the particle.

2.6 Overlap condition and excluded volume between particles

The overlap condition between hard ellipsoids is based on three levels of approximation extended
from the algorithm explained in previous work.[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz,
Torres-Díaz et al.(2022)Torres-Díaz, Hendley, Mishra, Yeh, and Bevan] First, a separation between
particles greater than the sum of the radii of the circumscribed spheres around each particle guaran-
tees no particle overlap. Second, we use the distance between a particle surface and the three princi-
pal planes of a circumscribed rectangular prism on a neighboring particle.[Torres-Díaz and Bevan(2017),
Torres-Díaz et al.(2022)Torres-Díaz, Hendley, Mishra, Yeh, and Bevan] The third approximation uses
a refined particle mesh to ensure no particle overlap.[Torres-Díaz and Bevan(2017), Torres-Díaz et al.(2022)Torres-Díaz, Hendley, Mishra, Yeh, and Bevan]
Additionally, we use the recently published methodology to quantify the excluded volume between
two ellipsoids.[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz]

2.7 Radial distribution function

We calculate the radial distribution function g(r̃) between the central particle and the surrounding
satellite particles by

g (r̃) = 1
(N − 1)ρ

⟨︄
N∑︂

J=1,J ̸=I

δ(r̃ − r̃IJ)
⟩︄
, (28)

where ρ is the particle density.[Allen and Tildesley(2017)] We calculate the radial distribution func-
tion using 2×104 steps uniformly distributed over two million steps after the system is equilibrated.
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2.8 Simulation conditions

We simulate the directed assembly of binary suspensions composed of paramagnetic (P) and dia-
magnetic (D) uniaxial ellipsoids with different sizes and aspect ratios suspended in a ferrofluid
medium. The aspect ratio of the uniaxial ellipsoid is r̃x/r̃y, where r̃x ≥ r̃y = r̃z. For the case
of spheres (r̃x = r̃y = r̃z), we report the normalized particle radius r̃ = r/rm, with rm = 1 µm.
We change the aspect ratio r̃x/r̃y of uniaxial ellipsoids while keeping their minimum axis constant.
Additionally, one of the components in the binary suspension is dilute with respect to the second
component. The number ratio between diamagnetic and paramagnetic particles (ND/NP ) is in the
order of 100 to guarantee a predicted equilibrium structure around the paramagnetic particle, as
shown in Figure S1. The total particle concentration (area fraction) is fixed at 0.1. The number of
particles and the box size for every simulation is in the Supplementary Information (Tables 2-4).

In the model validation, we use the same conditions reported in the experiments, with rm =
1.35 µm.[Li and Yellen(2010)] The dimensionless radii for the paramagnetic and diamagnetic par-
ticles are r̃P = 1 and r̃D = 3.67, respectively. Moreover, the magnetic susceptibility of the param-
agnetic and diamagnetic particles are χP = 3 and χD = −0.75 × 10−5, respectively. The relative
permeability of the medium is calculated by[Rosensweig(2013)]

χm = π

18ϕfµ0
M2

dd
3

kBT
, (29)

where d is the diameter of the magnetic nanoparticle (10 nm), Md is the domain magnetization
(4.46 × 105A/m), and ϕf is the volume fraction of the ferrofluid. Using the reported values of
ϕf = 0.002 − 0.02,[Li and Yellen(2010)] the relative permeability of the medium is in the range
between 1.02 to 1.22. Furthermore, replacing in Eq. (22) the reported value of the magnetic field
of µ0H0 = 60 gauss,[Li and Yellen(2010)] the dipole-field interaction parameters (αs) result 55×103

and 58 × 103 for medium permeabilities 1.02 and 1.22, respectively. Additionally, we analyze the
assembly at different fields of 6 and 12 gauss.

The relative permeabilities of the diamagnetic and paramagnetic particles are constants, µD/µ0 =
1 and µP /µ0 = 1.3, respectively. The magnetic susceptibility of the paramagnetic spheres varies be-
tween 0.19 and 0.75.[Grob et al.(2018)Grob, Wise, Oduwole, and Sheard, Li et al.(2013)Li, Kilinc, Ran, and Lee,
Sinha et al.(2012)Sinha, Anandakumar, Oh, and Kim, Fonnum et al.(2005)Fonnum, Johansson, Molteberg, Mørup, and Aksnes,
Tarn et al.(2009)Tarn, Peyman, Robert, Iles, Wilhelm, and Pamme] We use a representative mag-
netic susceptibility value of 0.3 for a paramagnetic sphere (rm = 1 µm). Furthermore, we use the
magnetic susceptibility value of diamagnetic polystyrene beads equal to −0.75×10−5.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010)] We modify the medium permeability between the diamagnetic and paramag-
netic values, as shown in Figure 3(a). Therefore, the relative permeability of diamagnetic and
paramagnetic particles relative to the ferrofluid medium changes, as depicted in Figure 3(b). Here-
after, we report the results as a function of the relative permeability of the ferrofluid medium.
The direction of the applied magnetic field is perpendicular to the assembly plane. We include
all N2 pairs with no cutoff radius to calculate the dipolar interaction between particles. Fur-
thermore, we set the length of the square simulation box larger than the length of the inter-
action. The box size for every simulation is in the Supplementary Information. Additionally,
the induced dipole-field interaction parameter is set at αs = 100, 250, 500, 103,and 104, while
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the dipolar interaction parameter β is directly proportional to αs, as described in Eq. (27).
[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen, Li and Yellen(2010)]

Figure 4: The induced dipole-dipole interaction energy with a fixed parallel orientation between (a)
two paramagnetic spheres r̃P = 1, (b) two diamagnetic ellipsoids r̃D

x /r̃
D
y = 5, and (c) a paramagnetic

sphere r̃P = 1 and a diamagnetic ellipsoid r̃D
x /r̃

D
y = 5 as a function of the separation distance

between particles and the medium permeability µm/µ0. The pairwise dipolar interaction energy
Udd is in kBT units. The magnetic field is directed perpendicular to the plane. The white region
corresponds to the excluded volume between particles for the considered particle orientations.

3 Results and Discussion

3.1 Pairwise dipolar interaction of two magnetizable ellipsoids

Figure 4 shows the pairwise dipolar interaction energy between two magnetizable particles with
different aspect ratios as a function of the medium permeability µm/µ0. The uniform magnetic
field is perpendicular to the plane of analysis. The top panel in Figure 4 represents the relative
permeabilities of the particles with respect to the medium permeability, and the markers corre-
spond to the conditions reported in every column. Figure 4(a) shows the dipolar interaction energy
between two paramagnetic spheres r̃P = 1 is repulsive and isotropic on the interaction plane. The
magnitude of the dipolar interaction energy decreases with the separation distance and as the
medium permeability µm/µ0 increases. Furthermore, since the particle magnetization is parallel to
the applied magnetic field in magnetizable spheres, the dipolar interaction energy is not dependent
on the relative particle orientation between particles.

Figure 4(b) shows the pairwise dipolar interaction energy between two diamagnetic ellipsoids
with aspect ratio r̃D

x /r̃
D
y = 5 as a function of the medium permeability. The results show that the

maximum dipolar interaction energy is along the minimum axis of the ellipsoid, i.e., along the sides
of the ellipsoid. Like Figure 4(a), the dipolar interaction energy vanishes as the separation distance
between particles increases. Moreover, the magnitude of the dipolar interaction energy between
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Figure 5: Average number Ns of paramagnetic spheres in the binary structure as a function of
medium permeability. The dashed line and the black dots correspond to the reported experimen-
tal results from Ref. [Li and Yellen(2010)]. The colored dots represent the results from Monte
Carlo (MC) simulations at different magnetic fields. Renderings are shown at the top with the
diamagnetic particle (cyan) and the surrounding paramagnetic particles (red) for different medium
permeabilities.

ellipsoids is one order of magnitude greater than the one between paramagnetic spheres. The dif-
ference is due to the proportionality of the interaction energy with particle volume, as described
in Eq. (24). Additionally, the dipolar interaction energy increases as the medium permeability
increases, reaching a maximum when µm/µ0 = 1.26.

Figure 4(c) shows the pairwise interaction energy between a paramagnetic sphere r̃P = 1 and
a diamagnetic ellipsoid with aspect ratio r̃D

x /r̃
D
y = 5. The results show that the dipolar inter-

action energy well is located along the sides of the ellipsoid, i.e., the sphere is more probable to
be positioned along the side of the ellipsoid. Similar to the previous cases, the interaction energy
decreases as the separation distance between particles increases. The dipolar interaction energy
trend between a paramagnetic sphere and a diamagnetic ellipsoid differs from the corresponding
interaction between the individual components. In this case, the dipolar interaction increases when
relative particle permeabilities are in the same order of magnitude, i.e., µm/µ0 = 1.11 − 1.19, and
it decreases when the particle permeability approaches the value of the medium permeability, i.e.,
µm/µ0 = 1.04 and 1.26. The dipolar interaction energy between an ellipsoid and a larger param-
agnetic sphere follows the same trend as Figure 4(c) but with a larger magnitude (not shown) due
to its proportionality with particle volume (Eq. (24)).

3.2 Model Validation

The equilibrium binary structures composed of paramagnetic spheres (r̃P = 1) around a central dia-
magnetic sphere (r̃D = 3.67) for different ferrofluid concentrations were recently reported, showing a
tunable orientational symmetry of paramagnetic spheres around the diamagnetic particle.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010)] We compare the results of MC simulations with previously reported experi-
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Figure 6: Snapshots of the Monte Carlo simulations of the directed assembly of binary systems
composed of a central diamagnetic ellipsoid with different aspect ratios (r̃D

x /r̃
D
y ) surrounded by

paramagnetic spheres (r̃P = 1) at αs = 104. The representative assembled structures are presented
as a function of the relative medium permeability.

ments of binary structures (Fig. 2 of Ref. [Li and Yellen(2010)]). The simulation conditions for
the validation are in Table 1 in the supplementary information. Figure 5 shows the simulation and
previous experimental results for the average number of satellite particles (Ns) of binary structures
at different medium permeabilities. The simulation results at different applied magnetic fields show
a similar trend as a function of the medium permeability compared to the reported experiments
in Ref. [Li and Yellen(2010)]. Furthermore, Figure S2 shows the radial distribution function g(r̃)
between the diamagnetic particle (cyan) and surrounding paramagnetic particles (red) for different
medium permeabilities.

Even though the trend of Ns as a function of the medium permeability is similar to the exper-
iments, there is a mismatch between the simulations and experiments, which is attributed to two
factors. First, the MC simulations do not consider the electrostatic and van der Waals interactions
between particles, which screen the dipolar interaction and reduce the energy well near the central
particle. Second, there is no magnetic susceptibility measurement for the ferrofluid dilutions used
in the experiments, which might generate a shift in the relative permeability.[Li and Yellen(2010)]
The dipolar interaction between particles dominates the short-range behavior of g(r̃) at different
applied magnetic fields (Figure S2), which results in a similar pattern of Ns to variations of medium
permeability. Furthermore, the dipole-field interaction parameter αs in the experiments results in
the order of 5 × 104 for the applied field of µ0H0 = 60 gauss, promoting a long-range interaction
between particles. The distance from the central particle where the distribution of paramagnetic
spheres becomes isotropic increases as the applied magnetic field increases. To reduce the interac-
tion length between particles in our simulations, we use smaller αs values, which also produce a
similar pattern of the assembled structures, as shown in Figure 5.
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3.3 Central Diamagnetic Ellipsoid

First, we will describe the main features of the assembled structures at high αs values. Then, we
will analyze the impact of dipolar interactions on the structures in section 3.6. Figure 6 show snap-
shots of MC simulations of the directed assembly of a diamagnetic ellipsoid with different aspect
ratios (1 ≤ r̃D

x /r̃
D
y ≤ 9) and paramagnetic spheres (r̃P = 1) as a function of the relative medium

permeability µm/µ0. Figure S3 depicts the radial distribution function g(r̃) for different conditions
analyzed in Figure 6. The paramagnetic particles, diamagnetic particles, and ferrofluid medium are
colored red, cyan, and black, respectively. Hereafter, we will use the same color scheme to repre-
sent the particles and medium in the subsequent figures. The top panel in Figure 6 represents the
relative permeabilities of the particles with respect to the medium, where the markers correspond
to the conditions reported in the snapshots. Simulation results reflect two main patterns of the
equilibrium structures. First, increasing the aspect ratio of the diamagnetic ellipsoid breaks the
rotational symmetry (fold symmetry) of the paramagnetic spheres around the diamagnetic parti-
cle. Second, the number of the assembled paramagnetic spheres around the diamagnetic ellipsoid
increases as the medium permeability increases.

In the first pattern, the directed assembly of diamagnetic and paramagnetic spheres (r̃D = r̃P =
1) generates structures with n-fold rotational symmetry around the diamagnetic sphere (Figure 6
- bottom row), tuning the structures from 2-fold to 6-fold symmetry as medium permeability in-
creases. It has the same phenomenological behavior reported in Figure 5. Additionally, Figure 6
shows that as the aspect ratio r̃D

x /r̃
D
y of the ellipsoid increases, the rotational symmetry switches to

a two-fold symmetry around the major axis of the diamagnetic ellipsoid. Moreover, increasing the
aspect ratio of the diamagnetic ellipsoid increases the number of assembled paramagnetic (satellite)
particles.

In the second pattern, changing the medium permeability tunes the dipolar interaction (Eq.
(25)) and the number of particles in the structure, as shown in every row for different aspect ratios
in Figure 6. The relative permeabilities of the paramagnetic and diamagnetic particles decrease as
the medium permeability increases. However, the maximum absolute value of the Clausius-Mossotti
factor (Eq. (11)) of the paramagnetic particle decreases, while the one of diamagnetic particles
increases. Low medium permeabilities promote strong repulsive interactions between paramagnetic
particles (Figure 4(a1)), limiting the number of paramagnetic spheres around the diamagnetic
particle. However, high medium permeabilities reduce the dipolar interaction between paramagnetic
particles (Figure 4(a4)), promoting close-packed configurations of paramagnetic spheres around the
diamagnetic particle. Thus, reducing the difference between the paramagnetic particle and medium
permeabilities reduces the dipolar interaction between the particles and promotes close-packed
structures around the diamagnetic (central) particle.

3.4 Central Paramagnetic Sphere

Figure 7 shows screenshots of MC simulations of the directed assembly of binary suspensions com-
posed of a paramagnetic sphere (r̃P = 5) and diamagnetic (satellite) ellipsoids with aspect ratio
1 ≤ r̃D

x /γ
D
y ≤ 5. Furthermore, Figure S4 depicts the radial distribution function g(r̃) for different

conditions analyzed in Figure 7. The phenomenological behavior of the assembled structures is op-
posite to what Figure 6 shows. Simulation results in Figure 7 show that the orientational symmetry
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Figure 7: Snapshots of the Monte Carlo simulations of the directed assembly of binary systems
composed of a paramagnetic sphere (red) with radius r̃P = 5 and diamagnetic ellipsoids (cyan)
with different aspect ratios r̃D

x /r̃
D
y at αs = 104.

of the diamagnetic ellipsoids around the paramagnetic sphere increases as the medium permeability
increases. Additionally, the rotational symmetry breaks down as the aspect ratio of the diamag-
netic particles increases and the medium permeability decreases. Both patterns are correlated to
the dipolar interaction (Figure 4) and packing arrangement between particles, as explained below.

The far-right column in Figure 7 shows that diamagnetic ellipsoids with different aspect ratios
display rotational symmetry around a paramagnetic sphere at high medium permeabilities. In par-
ticular, the assembly of diamagnetic spheres around a paramagnetic sphere shows a rotational sym-
metry at high medium permeabilities, which agrees with previously reported experiments.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen]
Furthermore, diamagnetic ellipsoids (2 ≤ r̃D

x /r̃
D
y ≤ 4) assemble into structures with rotational sym-

metry, where the minimum axis of the ellipsoids is normal to the paramagnetic sphere. However,
when r̃D

x /r̃
D
y = 5, entropic interactions overcome dipolar interactions, and the rotational symmetry

breaks down due to the geometry frustration of the ellipsoids around the sphere’s perimeter.

Besides, Figure 7 shows that the rotational symmetry breaks down as the medium permeability
decreases, promoting multilayer structures around the paramagnetic sphere, which results in an
opposite trend as the previous results shown in Figure 6. Low medium permeabilities promote
weak dipolar interaction between diamagnetic particles (Figure 4(b)), allowing them to form pack-
ing arrangements around the paramagnetic sphere. In particular, due to geometric frustration, the
minimum axis of the ellipsoids (r̃D

x /r̃
D
y > 1) is tilted with respect to the normal vector to the para-

magnetic sphere, forming left or right-handed vortex structures, and symmetric structures centered
at the paramagnetic sphere. The symmetry breaking of the structures becomes more apparent
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Figure 8: Snapshots of the Monte Carlo simulations of the directed assembly of binary suspensions
composed of a paramagnetic sphere (red) with radius r̃P and diamagnetic ellipsoids (cyan) with
different aspect ratios r̃D

x /r̃
D
y at αs = 104 and µm/µ0 = 1.04.

as the aspect ratio of the diamagnetic ellipsoids increases, where the diamagnetic ellipsoids form
multilayer structures with no predefined alignment of the ellipsoids around the paramagnetic sphere.

3.5 Binary enclosed structures

In this section, we analyze the conditions in which diamagnetic (satellite) particles form enclosed
structures around a paramagnetic sphere at αs = 104. We will analyze the impact of dipolar inter-
actions on the structures in the next section. Figures 8 - 9 show the snapshots of MC simulations of
the directed assembly of a paramagnetic sphere with different radii r̃P and diamagnetic ellipsoids
with different aspect ratios r̃D

x /r̃
D
y . The relative medium permeability is µm/µ0 = 1.04 in Figure 8

and µm/µ0 = 1.26 in Figure 9. Furthermore, Figures S4-S5 show the radial distribution function
g(r̃) for different conditions analyzed in this section.

Figure 8 (µm/µ0 = 1.04) shows diamagnetic ellipsoids form a single particle enclosure under
the following conditions. The first one is when the radius of the paramagnetic particle is smaller
or equal to the minimum axis of the diamagnetic ellipsoids (r̃P = 1 with r̃D

x /r̃
D
y = 2 − 3). The

second condition is when the diamagnetic ellipsoids do not reach their maximum packing around
the paramagnetic sphere, as shown in r̃P = 2 with r̃D

x /r̃
D
y = 4 − 5. Results suggest the enclosed

structures are correlated with the effective length of the dipolar interaction that reaches only a few
particle radii (Figure 4). However, the length of the dipolar interaction increases as the radius r̃P of
the paramagnetic sphere increases, which generates multilayer structures of diamagnetic ellipsoids
around the sphere, as explained in the previous section. However, the condition of a particle enclo-
sure fails for higher aspect ratios, where only two diamagnetic ellipsoids attach to the paramagnetic
sphere.
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Figure 9: Snapshots of the Monte Carlo simulations of the directed assembly of binary suspensions
composed of a paramagnetic sphere (red) with radius r̃P and diamagnetic ellipsoids (cyan) with
different aspect ratios r̃D

x /r̃
D
y at αs = 104 and µm/µ0 = 1.26.

Figure 9 shows structures with a defined rotational symmetry at different combinations of a
paramagnetic sphere and diamagnetic ellipsoids at a high medium permeability (µm/µ0 = 1.26).
As previously explained, the repulsive dipolar interaction between the diamagnetic particles in-
creases at high medium permeabilities, which limits the arrangement of particles to a monolayer
with different rotational symmetries. Simulation results in Figure 9 show that varying the sphere
radius and ellipsoid aspect ratio tunes the entropic and the dipolar interactions, promoting open
and close-packed structures. The diamagnetic ellipsoids form open-packed structures if the assem-
bled structure does not reach the maximum packing around the sphere. However, the diamagnetic
ellipsoids form close-packed structures once the maximum packing is reached. In both structures,
the assembly of diamagnetic ellipsoids forms structures with rotational symmetry around the para-
magnetic sphere. The ellipsoids lose their rotational symmetry around the paramagnetic sphere if
the assembly of diamagnetic ellipsoids is greater than the perimeter of the paramagnetic sphere.
Figure 9 shows a limit in the paramagnetic radius (r̃P ) to promote enclosed structures of diamag-
netic ellipsoids with rotational symmetry around the paramagnetic sphere. In a future contribution,
we will explore different equilibrium phases, the threshold between open and enclosed structures,
and their correlation with competing entropic and dipolar interactions.

3.6 Effect of the dipolar interactions

In this section, we analyze the effect of the dipolar interactions on the assembly of small structures.
The dipole-dipole interaction parameter β is modified by changing the dipole-field interaction pa-
rameter αs, as described in Eq. (27). Figure 10 shows the radial distribution function g(r̃) at
different values of αs for representative cases depicted in Figures 6 – 9. We focus the analysis on

18



the relevant region to analyze selected cases. However, Figures S3 – S6 (Supplementary informa-
tion) show the full radial distribution function at different αs values for every case analyzed in
Figures 6 – 9. In general, the dipolar interaction affects the assembly of small structures in two
main features: First, by promoting multilayers when dipolar interaction between satellite particles
is small, and second, by forming single enclosures at high dipolar interactions.

Figure 10(a) shows the radial distribution function at different values of αs for the assembly
of a central diamagnetic ellipsoid with aspect ratio r̃D

x /r̃
D
y = 6 and satellite paramagnetic spheres

(r̃P = 1) at a relative permeability of µm/µ0 = 1.11 (See Figure 6). As the dipolar interaction

Figure 10: Radial distribution function g(r̃) between the central diamagnetic particle and sur-
rounding paramagnetic particles for different dipole-field interaction parameters αs. (a) A central
diamagnetic ellipsoid

(︂
r̃D

x /r̃
D
y = 6

)︂
and satellite paramagnetic spheres

(︂
r̃P = 1

)︂
at µm/µ0 = 1.11,

(b) – (d) a central paramagnetic sphere
(︂
r̃P = 5

)︂
and satellite diamagnetic ellipsoids

(︂
r̃D

x /r̃
D
y = 4

)︂
at (b) µm/µ0 = 1.04, (c) µm/µ0 = 1.11, and (d) µm/µ0 = 1.26.
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increases, multiple peaks appear in g(r̃) at radii smaller than the major semi-axis of the ellipsoid
(r̃ < 6), indicating the assembly of paramagnetic spheres along the sides of the diamagnetic el-
lipsoid. Figure S3 shows a similar g(r̃) pattern in the other conditions analyzed in Figure 6 as
αs increases. Furthermore, Figure S3 shows peaks on g(r̃) at long distances from the central dia-
magnetic ellipsoid, which is correlated with the increasing dipolar interaction between surrounding
paramagnetic spheres as the medium permeability decreases, see top panel of Figure 6.

Figures 10(b) – (d) show g(r̃) at different αs values for the assembly of a central paramagnetic
sphere with r̃P = 5 and satellite diamagnetic ellipsoids with aspect ratio r̃D

x /r̃
D
y = 4 at a relative

permeability µm/µ0 of (b) 1.04, (c) 1.11, and (d) 1.26 (See Figures 7 – 9). The second peak
on g(r̃) at low αs values spaces out the first peaks as the medium permeability increases due to
the increasing dipolar interaction between the diamagnetic ellipsoids. Furthermore, results show
multiple peaks within the range of interaction of the central paramagnetic sphere, as shown in
Figures 10(b) – (c). The peaks are correlated with the formation of multilayers of diamagnetic
ellipsoids around the sphere, as shown in Figures 7 – 8. Contrary, Figure 10(d) shows the first
peak on g(r̃) becomes sharper as αs increases, which is reflected in the formation of a monolayer
of ellipsoids around the paramagnetic sphere, as shown in Figures 7 and 9.

4 Discussion
The induced dipole-dipole interaction energy quantified using the ellipsoid-dipole model in Eq.
(25) shows a dependence in position by the tensor G and orientation by the rotation transforma-
tion matrix AJI . The ellipsoid-dipole model includes the effect of shape anisotropy on the tensor
G, which is missing in the point-dipole model. Moreover, the induced dipole-dipole interaction
between magnetizable particles has a similar dependence as the dipolar interaction between perma-
nently magnetized particles.[Thelen et al.(2023)Thelen, Jara, and Torres-Díaz] Therefore, Eq. (25)
applies to interacting magnetizable ellipsoids with different aspect ratios and material properties,
as shown in Figures 6 - 9.

The presence of the magnetic nanoparticles in the ferrofluid medium might generate a slight de-
viation in the excluded volume, which is negligible due to the nanoparticle size being at least three
orders of magnitude smaller than the micron-size ellipsoids used in the analysis. However, the rota-
tional symmetry on the simulation results for binary suspensions composed of paramagnetic spheres
around the central diamagnetic sphere (Figure 5) shows a similar phenomenological behavior as a
function of the medium permeability of previously reported experiments.[Erb et al.(2009)Erb, Son, Samanta, Rotello, and Yellen,
Li and Yellen(2010)] The results show that the pairwise interaction energy between ellipsoids is a
good approximation without considering the excluded volume effect of the magnetic nanoparticles in
the system. Previously reported experiments show the assembly of colloidal superstructures of para-
magnetic and diamagnetic micron-sized spheres form structures with a rotational symmetry around
the central particle as shown in Figure 1 of Ref. [Li and Yellen(2010)]. However, we did not find
other experimental results reporting the assembly of binary suspensions composed of magnetizable
particles to validate the theoretical predictions using the ellipsoid-dipole model. Numerical results
show a large variety of assembled structures composed of binary ellipsoids by varying the particle as-
pect ratio and medium permeability, which alters the Clausius-Mossotti factor and the dipolar inter-
action between particles. The results in this study justify further experiments to complement previ-
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ous analyses that show the equilibrium configurations of monodisperse magnetizable and polarizable
particles,[Crassous et al.(2014)Crassous, Mihut, Wernersson, Pfleiderer, Vermant, Linse, and Schurtenberger,
Kuijk et al.(2014)Kuijk, Troppenz, Filion, Imhof, van Roij, Dijkstra, and van Blaaderen, Hendley et al.(2021)Hendley, Torres-Díaz, and Bevan]
as well as binary suspensions composed of particles with different aspect ratios and material
properties.[Demirörs et al.(2017)Demirörs, Eichenseher, Loessner, and Studart]

Many numerical results focus on the entropic interactions between hard anisotropic particles,
[Frenkel and Mulder(1985), Odriozola(2009), Odriozola(2012), Damasceno et al.(2012)Damasceno, Engel, and Glotzer,
Torquato and Jiao(2012), Cinacchi and Torquato(2015), Manoharan(2015), Avendaño and Escobedo(2017),
Cersonsky et al.(2018)Cersonsky, van Anders, Dodd, and Glotzer, Harper et al.(2019)Harper, van Anders, and Glotzer,
Fernández-Rico et al.(2020)Fernández-Rico, Chiappini, Yanagishima, de Sousa, Aarts, Dijkstra, and Dullens,
Hou et al.(2022)Hou, Gao, Wang, and Yan, Lee et al.(2023)Lee, Vo, and Glotzer] but equilibrium
structures of magnetic anisotropic particles depend on both dipolar and entropic interactions.[Rossi et al.(2018)Rossi, Donaldson, Meijer, Petukhov, Kleckner, Kantorovich, Irvine, Philipse, and Sacanna,
Thelen et al.(2023)Thelen, Jara, and Torres-Díaz] We qualitatively describe the rotational symme-
try of assembled structures to analyze competing entropic and dipolar interactions and their de-
pendence on particle aspect ratio, size, and medium permeabilities. Our simulation results show
enclosed structures with rotational symmetry at high medium permeabilities and structures with
broken symmetry at low medium permeabilities due to the competition between interactions. How-
ever, the large variability of these structures requires further analysis to quantify the order param-
eters and transition conditions between open and enclosed structures, as well as the transition
between structures with different rotational symmetries.

The dipolar interaction energy (Eq. (21)) evaluated using the ellipsoid-dipole model (Eq.
(13)) is valid for magnetizable ellipsoids with different aspect ratios and material properties. The
ellipsoid-dipole model results from the analytical solution of the ellipsoid under the influence of a
uniform magnetic field,[Stratton(1941)] and it’s not valid for other particle shapes with no quadratic
surface representation.[Maxwell(1873)] New models or extensions for the Clausius-Mossotti factor
(Eq. (11)) and the G tensor (Eq. (14)) are necessary to quantify the assembly of structures com-
posed of other particle shapes, such as superballs and superellipsoids.[Jiao et al.(2009)Jiao, Stillinger, and Torquato,
Delaney and Cleary(2010), Torres-Díaz and Bevan(2017), Yuan et al.(2019)Yuan, VanderWerf, Shattuck, and O’Hern]

5 Conclusions
We report a closed-form analytical expression, the ellipsoid-dipole model, to quantify the dipolar
interaction between magnetizable ellipsoids with different aspect ratios and material properties
as a function of position and orientation. We analyze the directed assembly of binary suspen-
sions composed of paramagnetic and diamagnetic ellipsoids in a ferrofluid medium with different
permeabilities. The simulation results show that particle aspect ratio, size, and particle/medium
permeabilities tune the rotational symmetry and packing order of the assembled binary structures.
The aspect ratio of the diamagnetic (central) particle breaks the orientational symmetry of the
structures compared with the suspensions of binary spheres. Moreover, the rotational symmetry
decreases as the aspect ratio of the diamagnetic (central) particles increases. Conversely, the simu-
lation results show that when the difference between diamagnetic particle permeability and medium
permeability is small, the weak repulsive interaction between diamagnetic (satellite) particles pro-
motes aggregation without orientational symmetry. Furthermore, the dipolar interaction promotes
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enclosed particle structures with rotational symmetry when there is a significant difference between
diamagnetic particle permeability and medium permeability, i.e., for a strong dipolar interaction
between satellite particles. However, the relative size between particles tunes the competing en-
tropic and dipolar interactions, promoting assembled enclosure formation with broken rotational
symmetry.
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