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Abstract: Non-invasive fetal saturation prediction is challenging. We propose a multi-
detector, inverse modeling, ML based approach. Trained on a large simulated simple tissue
model dataset, our generalized NN can estimate simulation parameters given the simulation
results. Our model achieves a 9.2% overall validation MSE for tissue model parameters.
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1. Significance

Fetal Pulse oximetry (PO) systems estimate the prenatal arterial oxygen saturation (Sa02) using the principles of
near-infrared spectroscopy. This involves shining light within the patient’s body and capturing the modulated infor-
mation in the reflected light. One such class of PO systems relies on continuous spatial intensity (SI) measurements
from multiple detectors at different distances from a pulsating light source. Any analytical approach to convert
intensity to fetal SaO2 requires knowing patient body-geometry specific terms. Conventional finger PO bypasses
this by utilizing calibration data from adult volunteers. However, fetal PO systems operate with a substantially
different geometric setup, and with disparate saturation ranges compared to adults. There remains a research gap
in developing more accurate fetal PO approaches which is essential for ensuring better prenatal health monitoring.

2. Aim

We approached the problem from an inverse modeling angle. Instead of focusing on just fetal saturation, we took
a more holistic approach. We simulated a double-body, flat tissue model under different sets of conditions, dubbed
tissue model parameters (TMPs). For now, we deal with 5 TMPs: Maternal/Fetal Hemoglobin (Hb) Saturation
and concentration, and Fetal depth. Then, our goal is to create a robust model for estimating all TMPs from the
simulated SI.

3. Method
3.1.  Simulation Setup

We used a flat, four-layered, homogenous, double-body tissue model for this study [1]. We simulate two different
wavelengths, 735nm, and 850nm, with different sets of optical properties [2], [1], using a GPU-based Voxel
Monte-Carlo (MC) simulator, MCXtreme [3]. Our light source is a single Gaussian beam of Smm waist radius and
multiple detectors placed in concentric circles. The intensity is averaged over each circle.

We vary the absorption coefficient (u,) of the Maternal Wall(Layer 1) and Fetal Tissue Layer(Layer 4) based
on the first 4 tissue model parameters: maternal and fetal Hb saturation/concentration respectively. The rest of
the optical properties remain unchanged. The fifth tissue model parameter, maternal wall thickness, affects the
tissue geometry. For each case, we store the optical path data per simulated photon. This setup allows us to run
simulations once per model geometry/wavelength and efficiently calculate the intensities in post-processing.

We vary the TMP in discrete levels. We vary maternal & fetal saturations from 90% to 100% and 10% to 60%
respectively in 5 levels. The Hb concentration for maternal wall & fetal layer is varied from 11 to 15 g/dL and 0.10
to 0.16g/dL respectively with 5 levels [4]. Additionally, we also simulate Hb concentration values 5% above and
below these levels for both layers. This helps us simulate pulsation peaks. The maternal wall thickness is varied
from 6mm to 16mm with 2mm resolution.

3.2.  Data Preprocessing

We perform three steps of preprocessing: interpolation, normalization, and combining data pairs. MC convergence
noise persists within the far detectors of the simulation data despite averaging a set of detectors in circles. We



replace the simulation data with a piece-wise weighted linear regression on the log of the SI. The features are
normalized per-detector to have zero mean, unit variance. To emulate pulsation on a static simulation, we pass
2 data points with fetal Hb concentration within 5% range of each other. For each pair, the other TMPs remain
constant.

3.3.  Machine Learning Model

We use a 4-layered perceptron with batch normalization & dropout and ReLU non-linear activation. The model
input is 80-dimensional(20 detectors x 2 wavelengths x 2 data points) and produces a 6-dimensional vector. The
output includes all 5 TMPs, with two different labels for the two fetal Hb concentration levels.

3.4.  Performance Evaluation

Generalizing fetal saturation estimation across different patients has always been a major issue with PO techniques.
This led us to adopt a held-one-out style validation strategy. During training, all simulation data from one specific
fetal depth is held out.

4. Results

Model Prediction Errors and Predicted Values Distribution
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Fig. 1. The performance of our trained model is illustrated in terms of both the MSE distribution
produced for each of the 6 TMPs in the simulation as well as the distribution of the predicted values.
Due to our discrete simulation space, the predicted value distribution demonstrates spikes centering
around the discretization points

Our model reaches a 9.2% validation MSE on all 6 TMPs combined, with a comparable training error. In terms
of estimating saturation, 90% of the error distribution falls below 7.5% in absolute saturation error.

5. Conclusion

We were able to produce more robust results by factoring in all the TMPs within our model compared to only
estimating fetal saturation. In other words, common important features exist between the different TMPs which
can better guide the model optimization process compared to a targeting single label.
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