
Citation: Islam, R.; Majurski, P.;

Kwon, J.; Sharma, A.; Tummala,

S.R.S.K. Benchmarking Artificial

Neural Network Architectures for

High-Performance Spiking Neural

Networks. Sensors 2024, 24, 1329.

https://doi.org/10.3390/s24041329

Academic Editor: Marcin Woźniak

Received: 22 January 2024

Revised: 13 February 2024

Accepted: 17 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Benchmarking Artificial Neural Network Architectures for
High-Performance Spiking Neural Networks

Riadul Islam * , Patrick Majurski, Jun Kwon, Anurag Sharma and Sri Ranga Sai Krishna Tummala

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County,

Baltimore, MD 21250, USA; majurski@umbc.edu (P.M.); junkyuk1@umbc.edu (J.K.); alnu1@umbc.edu (A.S.);

stummal1@umbc.edu (S.R.S.K.T.)

* Correspondence: riaduli@umbc.edu

Abstract: Organizations managing high-performance computing systems face a multitude of chal-

lenges, including overarching concerns such as overall energy consumption, microprocessor clock

frequency limitations, and the escalating costs associated with chip production. Evidently, processor

speeds have plateaued over the last decade, persisting within the range of 2 GHz to 5 GHz. Scholars

assert that brain-inspired computing holds substantial promise for mitigating these challenges. The

spiking neural network (SNN) particularly stands out for its commendable power efficiency when jux-

taposed with conventional design paradigms. Nevertheless, our scrutiny has brought to light several

pivotal challenges impeding the seamless implementation of large-scale neural networks (NNs) on

silicon. These challenges encompass the absence of automated tools, the need for multifaceted domain

expertise, and the inadequacy of existing algorithms to efficiently partition and place extensive SNN

computations onto hardware infrastructure. In this paper, we posit the development of an automated

tool flow capable of transmuting any NN into an SNN. This undertaking involves the creation of a

novel graph-partitioning algorithm designed to strategically place SNNs on a network-on-chip (NoC),

thereby paving the way for future energy-efficient and high-performance computing paradigms. The

presented methodology showcases its effectiveness by successfully transforming ANN architectures

into SNNs with a marginal average error penalty of merely 2.65%. The proposed graph-partitioning

algorithm enables a 14.22% decrease in inter-synaptic communication and an 87.58% reduction in

intra-synaptic communication, on average, underscoring the effectiveness of the proposed algorithm

in optimizing NN communication pathways. Compared to a baseline graph-partitioning algorithm,

the proposed approach exhibits an average decrease of 79.74% in latency and a 14.67% reduction in

energy consumption. Using existing NoC tools, the energy-latency product of SNN architectures is,

on average, 82.71% lower than that of the baseline architectures.

Keywords: artificial neural network; ANN; spiking neural network; SNN; convolutional neural

network; CNN; ANN-to-SNN conversion; network-on-chip; NoC; low energy

1. Introduction

Spiking neural networks (SNNs) [1] represent the vanguard in the evolution of artifi-
cial neural networks (ANNs), drawing inspiration from the intricate workings of biological
organisms. SNNs offer several advantages and unique features compared to traditional
ANNs, including biological plausibility, making them more biologically plausible than
ANNs. They operate using spikes, similar to the firing of neurons in the human brain. In
addition, SNNs are inherently event-driven, meaning they process information only when
there is a change (spike). This event-driven nature can lead to energy-efficient computa-
tions, especially in applications where continuous processing is not necessary. SNNs also
naturally capture temporal information through the timing of spikes. This is essential for
tasks where the sequence and timing of events matter, such as in sensory processing or
dynamic pattern recognition. Most importantly, the sparsity and binary nature of spikes in

Sensors 2024, 24, 1329. https://doi.org/10.3390/s24041329 https://www.mdpi.com/journal/sensors

Sensors 2024, 24, 1329 2 of 14

SNNs can lead to energy-efficient hardware implementations. This is particularly advanta-
geous for applications in edge computing and IoT devices, where power consumption is
critical to enable real-time processing. In contrast to ANNs, SNNs can exhibit robustness to
input noise, as their spike-based processing can filter out irrelevant information. This can
be beneficial in applications where input data may have inherent noise.

However, the advanced neural network paradigm finds efficient implementation
in neuromorphic platforms, which are characterized by manycore systems, wherein a
predetermined quantity of neuronal computation is meticulously mapped to individual
cores. Communication between these neurons, facilitated through synapses, is orchestrated
using the network-on-chip (NoC) fabric—a quintessential design choice for engendering
seamless communication within a multicore system. In the traditional SNN architecture,
non-biological spiking neurons and grids, akin to the architecture of cache memory [1],
are employed. The neuron undergoes a firing event, or spike production, immediately
upon surpassing its action potential threshold, with the crossbars serving as repositories
for synaptic weights [2].

The computational efficacy, gauged by execution latency and energy consumption, of
an SNN-based computing system is contingent upon the judicious allocation of neurons
to computing units (i.e., cores) with minimal communication latency. Nevertheless, the
electrical constraints of the input load and output load impose limitations on the number of
input–output connections per neuron, necessitating the incorporation of multiple crossbars
through NoC architectures.

In this context, extant algorithmic methods for mapping SNN unitary computational
components to cores in a manycore system need more consideration for the underlying
NoC models to ensure the attainment of optimal communication delay. Furthermore, our
investigation has identified multiple pivotal challenges in designing large-scale SNNs
on actual hardware systems. These challenges include (i) a dearth of comprehensive
guidelines for constructing a software-level model translating to hardware deployment,
(ii) the absence of design-automation devices and the imperative need for a breadth of
domain expertise, and (iii) limitations in existing neuron clustering approaches, which
are incapable of handling a large number of neurons in an SNN. This research addresses
the aforementioned challenges by offering an existing graph-partitioning algorithm [3]
and effectuating the placement of SNN architectures onto an NoC model, employing a
methodology of a generic nature.

In this manuscript, we address a significant limitation present in current graph-
partitioning algorithms [1,4,5], specifically the constraint on the number of vertices, which
typically remains below 10,000. We introduce our novel greedy graph-partitioning al-
gorithm, which has the capacity to effectively manage graphs comprising over 100,000
vertices, thereby mitigating a substantial amount of communication overhead when inte-
grated into crossbar hardware configurations [3]. In particular, the key contributions of this
work are as follows:

• We introduce our novel design and automation methodology that systematically
transforms any neural network architecture into an SNN for the purpose of optimizing
energy efficiency in neuromorphic computations.

• We introduce our novel graph-partitioning algorithm devised for implementing exten-
sive SNNs.

• We map partitioned SNN architectures to a state-of-the-art NoC tool flow to show the
efficiency of the proposed methodology.

• We conduct benchmark assessments on diverse deep neural network (DNN) and
convolutional neural network (CNN) architectures and seamlessly integrate multiple
applications to demonstrate the efficacy of our tool flow.

• Compared to a baseline graph-partitioning algorithm, the proposed method show-
cases an average decrease of 79.74% in latency and a 14.67% reduction in energy
consumption. Collectively, the proposed approach exhibits, on average, an 82.71%
reduction in the energy-latency product compared to the baseline approaches.

Sensors 2024, 24, 1329 3 of 14

2. Background

There has been a notable surge in research focused on SNNs in recent years [6–9].
The predominant catalyst for this increased attention is the energy-efficient operation
characteristic of these networks, as highlighted in [10]. This aspect distinguishes SNNs
from traditional low-power techniques, as documented in various studies [11–21]. SNN
models are inherently reactive to event-based data, making them particularly apt for
address-event representation-based computations, as explored in [22].

However, there are some key challenges in training SNNs, including the following:
(i) Non-differentiability [23–25]: SNNs often use spiking activation functions, which are
non-differentiable. Traditional gradient-based optimization techniques like backpropaga-
tion, widely used in training neural networks, face challenges in the non-differentiable
spiking context. (ii) Temporal Dynamics [26,27]: SNNs operate on a temporal framework,
where information is encoded in the timing of spikes. Training networks to effectively
utilize temporal dynamics and learn precise spike timings can be complex. (iii) Sparse

and Binary Activations: Spikes in SNNs result in sparse and binary activations, posing
challenges in applying traditional optimization methods designed for continuous and
dense activations. (iv) Variable Spike Latency [28]: The latencies of spikes can vary, in-
troducing an additional temporal dimension to consider during training. Capturing and
learning these variable spike latencies is a non-trivial task. (v) Conversion from ANNs [29]:
Converting pre-trained ANNs to SNNs introduces challenges due to differences in their
architectures and the spike’s temporal mismatch. (vi) Lack of Standardization: Unlike
ANNs, which benefit from standardized architectures and practices, SNNs lack established
standards. This can make it difficult to compare results across different studies and im-
plementations. (vii) Hardware Limitations: Implementing and training large-scale SNNs
on hardware platforms optimized for traditional neural networks can be inefficient. Spe-
cialized neuromorphic hardware is often required for efficient SNN training and inference.
Addressing these challenges is crucial for advancing the field of SNNs and harnessing their
potential in neuromorphic computing and other applications.

CARLsim, an interesting tool, is a robust C++ library extensively employed for train-
ing and simulating large, biologically detailed neural networks (NNs), as described in [10].
This simulator is proficient in leveraging multiple CPUs and GPUs simultaneously, fa-
cilitating heterogeneous computing platforms. In the realm of SNN development, an
intriguing automation tool, the SNN Tool Box (SNN-TB), as introduced in [30], is notewor-
thy. This tool primarily utilizes an ANN to construct an SNN. A significant advantage of
the SNN-TB is its capability to extract the SNN model for deployment in existing SNN
simulators, as evidenced in [31]. Consequently, this tool was employed in our research for
graph generation.

Graph partitioning is a critical process within the realm of electronic design automation
(EDA). Within this context, a heuristic approach based on the Kernighan–Lin (KL) algo-
rithm, as initially proposed by Kernighan and Lin in 1970 [32], is commonly employed for
the bipartitioning of graphs. However, a notable limitation of existing graph-partitioning
methodologies, as discussed in previous works [1,4,5], is their inability to efficiently pro-
cess graphs with more than 10K vertices. The present study utilized our novel SNN
graph-partitioning algorithm (SNN-GPA) to address this constraint [3]. This algorithm
demonstrates a marked capability in handling graphs containing in excess of 100,000 ver-
tices. Moreover, it significantly reduces the volume of communication required when these
graphs are implemented within crossbar hardware architectures. The innovation of the
SNN-GPA thereby represents a substantial advancement in the field of graph partitioning,
particularly in the context of large-scale electronic design automation.

Artificial intelligence (AI) and machine learning (ML) are playing a key role in the ad-
vancement of future chip design, and the leading EDA companies (i.e., Cadence, Synopsys,
etc.) are using AI/ ML to improve the productivity of their tools. Furthermore, researchers
play a crucial role in the development of AI/ML-based EDA tools [33–38]. However, a
generic end-to-end tool for ANN-to-SNN conversion and SNN-to-hardware layout is yet to

Sensors 2024, 24, 1329 4 of 14

be developed. We believe the proposed tool flow will advance this area by characterizing
the conversion from ANN to SNN and mapping the SNN computation onto an NoC-based
computing platform.

The importance of NoC [39,40] in manycore systems stems from the need to efficiently
manage communication between many processing cores integrated on a single chip. As the
number of cores on chips increases to improve computational power and efficiency, tradi-
tional bus-based and point-to-point communication architectures face significant scalability,
bandwidth, and latency challenges. NoC is a critical solution to these challenges, offering
several advantages that make it indispensable for manycore systems [41]. Previously,
researchers have used NoC-based SNN implementations but with a limited number of neu-
rons [1]. In addition, large-scale SNN implementations require a large number of neuronal
activity computations, which is not feasible using a single-core machine. As a result, the
use of an NoC-based manycore system is imperative for efficient SNN implementations.

3. Proposed Spiking Neural Network Implementation Tool Flow

3.1. Architectural Design of Spiking Neural Networks

ANN Training: In the scope of this paper, we introduce a sophisticated platform
designed for the exploration of high-level neural architectures, focusing on the accurate
characterization and implementation of SNNs. Initially, an NN model is developed using
a well-established software library, namely Keras [42], and subsequently implemented
on the TensorFlow platform [43]. Our proposed tool flow is shown in Figure 1 [3]. It is
equipped to support a range of conventional Keras layers, including the following: A fully
connected layer: Each neuron in the pre-synaptic group is connected to each neuron in
the post-synaptic group. A 2D convolutional layer: For each stride of the kernel across
the input group, synapses are created from each input neuron within the kernel to the
respective output neuron. This is repeated for each filter in the convolutional kernel,
creating connections between input and output neurons for each position of the kernel.
When the kernel size is larger than the stride, input neurons are connected to multiple
output neurons. A flattening layer: Flattened layers are not represented as neurons in the
SNN. Instead, they serve to reshape the dimensions of the input layer to accommodate the
shape of the following layer. Average pooling: Pooling layers have neurons and synapses in
the output graph, preserving channels like the original CNN. Synapses for average pooling
connections use alternate calculations for destination neuron activation [30]. A dropout
layer: Dropout layers do not appear in the parsed SNN model, as they do not have weights
or spike trains. A batch normalization layer: Normalization layers do not have weights or
spike trains, and they typically follow an activation layer.

Training
(TensorFlow)

SNN
Conversion

NoC-Based SNN
Implementation

SNN acc. (%)

Input
Constraint

Input
Application

Graph
Partitioning

Cluster
Placement

ANN acc. (%)

Results

Figure 1. The proposed tool flow involves a sequence of structured processes. Initially, it trains an

ANN model utilizing the TensorFlow framework. Subsequently, this trained model is converted

into a spiking neural network (SNN). Thereafter, the tool flow applies the newly proposed graph-

partitioning algorithm. This algorithm functions to efficiently cluster the neural network and facilitate

its placement on an NoC grid, thus optimizing the network’s spatial distribution and operational

efficiency [3].

ANN-to-SNN Conversion: Following this, the NN model, once trained, is transformed
into an SNN model using an existing SNN converter [30]. This conversion process involves

Sensors 2024, 24, 1329 5 of 14

two critical steps. In the first step, the ANN or CNN undergoes a transformation into an
intermediate architecture. During this phase, dropout and batch normalization layers are
either strategically eliminated or seamlessly integrated into the connected layers.

At this juncture in the process, the weights for each layer are subjected to normalization.
Subsequently, the preprocessed CNN is further transformed into an SNN architecture. It is
pertinent to note that the SNN converter is compatible with a variety of simulator backends,
as documented in [31,44]. However, the built-in INI backend is employed in the current
implementation, utilizing a temporal mean rate approximation to facilitate the simulation.

In the process of converting CNN weights to SNN weights, a methodology is employed
that leverages the dynamics of neuronal membranes. Within this framework, the firing
rate of spiking neurons is established to be proportional to the weights present in the CNN.
This proportionality is a critical aspect of the conversion process, ensuring that the intrinsic
characteristics of the CNN are preserved in the SNN representation. The weights and
biases derived from the CNN are subjected to a normalization procedure to facilitate this
conversion. This normalization is executed using a factor determined by the k-percentile
of the total activity distribution within a given network layer. The primary objective of
this normalization step is to mitigate approximation errors that may arise from excessively
low or high neuronal firing rates. Such errors can significantly distort the representational
fidelity of the SNN, hence the need for this precautionary measure. Furthermore, in the
context of the SNN, the weights are permitted to assume both positive and negative values.
This allowance is crucial as it enables the SNN to encapsulate a broader range of dynamics
and interactions reflective of those present in the original CNN. This flexibility in the weight
values plays a pivotal role in preserving the computational capabilities and characteristics
of the CNN within the converted SNN framework.

In contrast to traditional approaches, this research entails validating the SNN model’s
accuracy utilizing test data. Following this, the spike events of each neuron are extracted,
along with the classification accuracy. The methodology allows for the use of either
constant current or Poisson spike trains as the input current. Subsequently, our proposed
tool flow employs the SNN model and neuron firing data to effectively decode the ANN
interconnection between layers into corresponding synapses. The comprehensive tool flow
of this process is depicted in Figure 1. During the development phase, an SNN graph is
constructed, taking into consideration the firing rate of the pre-synaptic neuron and the
weight of the synaptic connection.

3.2. Graph Partitioning and Cluster Placement

Upon completion of training an SNN, a connected graph is extracted from the model.
The proposed graph-partitioning algorithm then clusters the neurons, taking into account
the synaptic weights and the pair-wise layers within the SNN. This algorithm is grounded
in the principles of the established Kernighan–Lin (KL) algorithm, as referenced in [32].
It meticulously evaluates both the intra-communication weights (IntraW)—pertaining to
neurons residing within the same cluster—and the inter-communication weights (InterW)—
associated with neurons located in distinct clusters. Such an approach ensures a comprehen-
sive consideration of synaptic connections during the clustering process.

The novel SNN graph-partitioning algorithm (SNN-GPA), as delineated in Algorithm 1,
presents a structured methodology for neural network partitioning [3]. The SNN-GPA
accepts three key inputs: an SNN represented as a graph (G), the specified number of clusters
(N), and the total number of layers (n). Its output comprises partitions or a collection of
subgraphs. Notably, the number of clusters is determined by the constraint on the maximum
permissible number of neurons per cluster.

Within its operational framework, the SNN-GPA calculates the number of clusters
for each pair of layers and then proceeds to generate a set of initial random graphs or
partitions, focusing on consecutive layers, as indicated in Line 4 and Line 5 of the algorithm,
respectively. Subsequently, through an iterative process, each partition is converted into

Sensors 2024, 24, 1329 6 of 14

random clusters. The Kernighan–Lin method (KLmethod()) is then applied, as delineated
from Line 6 to Line 11, with the objective of maximizing IntraW and minimizing InterW.

Algorithm 1 SNN graph-partitioning algorithm

1: Input: G(V, E), vertices (V) and edges (E) of the graph; N, # of clusters; n, # of layers;
2: Output: P partitions;
3:

4: N′ = N/(n − 1) ▷ Calculate the aggregate number of clusters within a pair of layers.
5: G′ = {G′

1, G′
2, ..., G′

n} = RandGraph(G, n) ▷ Generate a randomized partition while considering
successive layers.

6: for all G′
i ∈ G′ do:

7: C = {C1, C2, ..., CN} = RandCut(G′
i , N′) ▷ Generate randomized clusters from each of the

initial partitions.
8: for all {Ci, Cj} ∈ C do:
9: {Ci, Cj} = KLmethod(Ci, Cj) ▷ Employ the KL-based method to enhance intra-cluster

weights and minimize inter-cluster weights.
10: end for
11: end for
12: P = G′

▷ Allocate clusters to the list of partitions.
13: return P

The algorithm then assigns the refined clusters to the output partitions, as specified
in Line 12. Ultimately, in Line 13, the SNN-GPA returns these partitions. The resulting
optimal partition, when combined with a trained SNN, is then strategically mapped onto
hardware grids (i.e., NoC) to facilitate efficient deployment. The NoC implementation and
results are discussed in detail in Section 4.3.

4. Experimental Results and Discussion

4.1. Experimental Setup

In the preliminary phase of this study, an evaluation was conducted using a computing
system equipped with a 32-core Intel Xeon Gold processor, complemented by 64 GB of
RAM, and an NVIDIA Quadro P4000 GPU, operating under Ubuntu 18.04. The Python
programming language was employed for the development of the tool flow. Our analysis
incorporated both synthetic and realistic network models. Synthetic SNNs often involve
simplified and abstract models of networks. These models capture the essential elements
of spiking neurons but aim to avoid replicating the full complexity of complex NN architec-
tures. In contrast, realistic SNNs aim to closely mimic actual NN architectures and feature
extractors. This includes modeling detailed aspects of filter characteristics and modeling
SNNs considering neuronal ion channels, neurotransmitter dynamics, and complex synap-
tic interactions. These networks are particularly useful in computational neuroscience for
studying how real neural systems work. They help in forming hypotheses about neural
computations and brain function.

Regarding synthetic networks, we utilized a three-layer (fully connected) synthetic net-
work, which encompassed 4K neurons and approximately 3.75 million synapses, referred to
herein as the “synthetic_4k” network. For the examination of realistic networks, a variety of
models were employed, including CNN_mnist [1], LeNet_mnist [45], Zambrano_mnist [46],
Rueckauer_Cifar10 [30], LeNet_cifar10 [47], AlexNet_mnist [48], multilayer perceptron
for mnist (MLP_mnist), a CNN for DogsVsDogs [49], a CNN for Fruits360 [50], and
AlexNet_CatsVsDogs [48] for benchmarking. The benchmarks for this evaluation were
conducted using several datasets, notably the mnist handwritten digit dataset [45], the
Cifar10 dataset [51], and the CatsVsDogs dataset [49]. These datasets were instrumental in
evaluating the performance and efficacy of the networks under study. For the final SNN
implementation, we used an existing NoC simulator (i.e., Noxim [52]).

Sensors 2024, 24, 1329 9 of 14

Table 1. The average quantities of synapses and neurons within the network are quantified at

173.8 million and 0.39 million, respectively. The methodology developed in this study proficiently

facilitates the conversion of ANNs to SNNs, particularly when applied to realistic benchmark scenar-

ios. This conversion is achieved with an impressively low average error penalty, recorded at merely

2.65% [3].

Application # of Synapses (M) # of Neurons (M) # of Spikes (M) ST (s) SNN Acc. (%) ANN Acc. (%)

CNN_mnist [1] 1.61 0.01 79.33 200 97.947 98.46

LeNet_mnist [45] 0.29 0.007 93.72 200 98.037 98.88

Zambrano_mnist [46] 1.42 0.01 125.10 200 99.25 99.36

Rueckauer_Cifar10 [30] 2.50 0.11 7786.46 1000 79.43 81.25

LeNet_Cifar10 [47] 0.66 0.01 752.26 200 53.596 60.64

AlexNet_mnist [48] 923.45 0.79 9550.44 500 97.24 98.54

MLP_mnist 0.20 0.001 30.27 200 97.33 97.60

CNN_CatsVsDogs [49] 522.82 2.03 9290.56 50 91.60 93.88

CNN_Fruits360 [50] 96.09 0.40 48,092.77 600 89.5 96.71

AlexNet_CatsVsDogs [48] 165.01 0.53 8960.47 50 77.7 82.78

Average 173.80 0.39 8476.14 320 88.16 90.81

To assess the effectiveness of our graph-partitioning methodology, we examined the
synaptic weights, specifically IntraW and InterW. This analysis encompassed evaluat-
ing synthetic and realistic networks utilizing the mnist dataset. Furthermore, an SNN
architecture, specifically graph_edgedet, was employed for standard edge detection, as
shown in Table 2 [3]. When applied to the Zambrano_mnist network, the proposed graph-
partitioning algorithm demonstrated a reduction of 6.65% in inter-communication weights
and an impressive reduction of 99.86% in intra-communication weights compared to a
baseline model. In an overarching evaluation, the proposed SNN-GPA achieved a reduction
of 14.22% in inter-communication weights and 87.58% in intra-communication weights
compared to a baseline model.

Table 2. The SNN-GPA introduced in this research is applied to both synthetic and realistic network

models. Comparative analysis with a baseline graph-partitioning approach reveals that the proposed

SNN-GPA yields a significant reduction in synaptic communication. On average, there is a 14.22%

decrease in inter-synaptic communication and an 87.58% reduction in intra-synaptic communica-

tion, underscoring the effectiveness of the proposed algorithm in optimizing NN communication

pathways [3].

Metric Synthetic_4k MLP_mnist Graph_edgedet LeNet_mnist LeNet_mnist_padded Zambrano_mnist

of nodes 4000 1050 4377 6598 9118 14,554

of clusters 250 66 274 413 570 910

$ of edges 3,750,000 203,264 54,876 286,120 422,824 1,422,848

InterW (base) 536,702.65 918.05 5,332,848.19 5236.54 5885.53 53,811.83

IntraW (base) 1877.17 12.05 4421.91 9.59 10.45 37.37

InterW (our) 535,628.61 465.10 4,322,871.32 4967.05 5588.75 50,235.91

IntraW (our) 2951.21 465.05 1,014,398.78 279.08 307.24 3613.29

Inter (%) 0.20 49.34 18.94 5.15 5.04 6.65

Intra (%) 36.39 97.41 99.56 96.56 96.60 98.97

Runtime (s) 373.16 3.06 53.51 235.80 371.46 1113.34

Average improvement Inter: 14.22%; Intra: 87.58%

Upon completion of partition creation, the proposed methodology facilitated the
placement of these neurons onto a designated NoC grid. We formulated a 2D mesh NoC

Sensors 2024, 24, 1329 10 of 14

architecture, adopting a grid length of 2 nm and employing a Cartesian coordinate system.
Notably, this grid length is a design decision, and it can range from 10 µm to several
hundred micrometers [53]. For illustrative purposes, Figure 5 presents a representative
diagram depicting the placement of the Zambrano_mnist network on a 120 × 120 mm chip
using the proposed tool flow [3].

3500

3000

2500

2000

1500

1000

500

0

Figure 5. An illustrative layout depicting the placement of the Zambrano_mnist network within a

120 × 120 mm chip using the proposed methodology [3].

4.3. Noxim NOC-Based Implementation Results

In order to understand the effectiveness of the proposed methodologies, we used the
Noxim [52] simulator. The Noxim simulator was developed using SystemC, which is a
library written in C++. The Noxim runtime engine (NRE) is a cycle-accurate simulator
that can execute various NoC architectural features and models. Noxim supports different
topologies, buffer and packet sizes, traffic distributions, routing algorithms, packet injection
rates, etc. The Noxim simulator uses Tile as its primary component, which comprises a
processing element (PE), local computational memory, and a router. The PE is workload-
dependent and primarily responsible for consuming and generating data packets. In our
analysis, we used a mesh-based NOC architecture, which has better scalability and energy
efficiency compared to shared bus-based architectures—the data packet travels through the
router using the existing XY algorithm.

In addition, Noxim permits a wormhole mechanism rather than the traditional store-
and-forward mechanism for transferring flits from one router to another. In the wormhole
mechanism, data packets are broken into smaller flits, which are then sent over the network
in a wormhole fashion, whereas the conventional approach involves copying the entire
data packet into the router before moving it to the next node. As a result, the wormhole
approach enables resource sharing across multiple users. To demonstrate the efficacy of the
proposed methodology, synthetic and realistic networks were employed, and network com-
putations were mapped using the Noxim simulator. The results of this analysis are shown
in Table 3. The synthetic_4k network exhibits the highest latency improvement of 96.88%
and an energy improvement of 3.8% compared to the baseline architectures. Among the
realistic networks, the latency improvement ranges from 6.27% (for LeNet_mnist_padded)
to 93.83% (for Zambrano_mnist), and the energy improvement ranges from 5.66% (for
Zambrano_mnist) to 56.12% (for MLP_mnist) compared to the baseline architectures, as
shown in Table 3. Compared with a baseline graph-partitioning algorithm, the proposed
approach demonstrates an average latency reduction of 79.74%. At the same time, the
state-of-the-art SNN mapping algorithm [1] reported an average latency improvement of
45% compared to a baseline model.

Sensors 2024, 24, 1329 12 of 14

operational efficiency of SNN models. In contrast to a baseline graph-partitioning algo-
rithm, the suggested approach demonstrates an average latency reduction of 79.74% and a
decrease in energy consumption of 14.67%. Using the proposed methodology, the synthetic
synthetic_4k network exhibits a 97% reduction and the realistic Zambrano_mnist network
exhibits a 94.17% reduction in the energy-latency product compared to the baseline model.

Author Contributions: Conceptualization, R.I.; methodology, P.M., J.K. and R.I.; software, P.M., J.K.,

A.S., S.R.S.K.T. and R.I.; validation and analysis, P.M., J.K., A.S., S.R.S.K.T. and R.I.; writing—original

draft preparation, R.I.; writing—review and editing, R.I.; supervision, R.I.; funding acquisition, R.I.

All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded, in part, by the Federal Work-Study (FWS) award, the UMBC

start-up grant, the National Science Foundation (NSF) (award number 2138253), and Rezonent Inc.

(award number CORP0061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Balaji, A.; Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.G.; Indiveri, G.; Krichmar, J.L.; Dutt, N.D.; Schaafsma, S.; Catthoor, F. Mapping

Spiking Neural Networks to Neuromorphic Hardware. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 76–86. [CrossRef]

2. Cao, Y.; Chen, Y.; Khosla, D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition. Int. J.

Comput. Vis. 2015, 113, 54–66. [CrossRef]

3. Islam, R.; Majurski, P.; Kwon, J.; Tummala, S.R.S.K. Exploring High-Level Neural Networks Architectures for Efficient Spiking

Neural Networks Implementation. In Proceedings of the 2023 3rd International Conference on Robotics, Electrical and Signal

Processing Techniques (ICREST), Dhaka, Bangladesh, 7–8 January 2023; pp. 212–216. [CrossRef]

4. Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.; Catthoor, F.; Schaafsma, S. Mapping of local and global synapses on spiking

neuromorphic hardware. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,

Germany, 19–23 March 2018; pp. 1217–1222. [CrossRef]

5. Karypis, G.; Kumar, V. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing

Fill-Reducing Orderings of Sparse Matrices. 1997. Available online: https://conservancy.umn.edu/handle/11299/215346

(accessed on 1 June 2021).

6. Eshraghian, J.K.; Ward, M.; Neftci, E.O.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking

Neural Networks Using Lessons From Deep Learning. Proc. IEEE 2023, 111, 1016–1054. [CrossRef]

7. Vreeken, J. Spiking Neural Networks, an Introduction. 2003. Available online: https://webdoc.sub.gwdg.de/ebook/serien/ah/

UU-CS/2003-008.pdf (accessed on 1 June 2021).

8. Shi, C.; Wang, L.; Gao, H.; Tian, M. Learnable Leakage and Onset-Spiking Self-Attention in SNNs with Local Error Signals.

Sensors 2023, 23, 9781. [CrossRef]

9. Wickramasinghe, B.; Chowdhury, S.S.; Kosta, A.K.; Ponghiran, W.; Roy, K. Unlocking the Potential of Spiking Neural Networks:

Understanding the What, Why, and Where. IEEE Trans. Cogn. Dev. Syst. 2023, 1–15. [CrossRef]

10. Chou, T.S.; Kashyap, H.J.; Xing, J.; Listopad, S.; Rounds, E.L.; Beyeler, M.; Dutt, N.D.; Krichmar, J.L. CARLsim 4: An Open Source

Library for Large Scale, Biologically Detailed Spiking Neural Network Simulation using Heterogeneous Clusters. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

11. Islam, R.; Guthaus, M.R. CMCS: Current-Mode Clock Synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,

25, 1054–1062. [CrossRef]

12. Parthasarathy, A.; Krishnamachari, B. Partitioning and Placement of Deep Neural Networks on Distributed Edge Devices to

Maximize Inference Throughput. In Proceedings of the 32nd International Telecommunication Networks and Applications

Conference (ITNAC), Wellington, New Zealand, 30 November–2 December 2022; pp. 239–246. [CrossRef]

13. Asghar, M.S.; Arslan, S.; Kim, H. Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip.

Sensors 2023, 23, 9612. [CrossRef] [PubMed]

14. Islam, R.; Saha, B.; Bezzam, I. Resonant Energy Recycling SRAM Architecture. IEEE Trans. Circuits Syst. II Express Briefs 2021,

68, 1383–1387. [CrossRef]

15. Yang, S.; Shao, L.; Huang, J.; Zou, W. Design and Implementation of Low-Power IoT RISC-V Processor with Hybrid Encryption

Accelerator. Electronics 2023, 12, 4222. [CrossRef]

16. Guthaus, M.; Islam, R. Current-Mode Clock Distribution. U.S. Patent 9,787,293, 10 October 2017.

Sensors 2024, 24, 1329 13 of 14

17. Lin, W.; Zhu, Y.; Arslan, T. DycSe: A Low-Power, Dynamic Reconfiguration Column Streaming-Based Convolution Engine for

Resource-Aware Edge AI Accelerators. J. Low Power Electron. Appl. 2023, 13, 21. [CrossRef]

18. Islam, R.; Fahmy, H.; Lin, P.Y.; Guthaus, M.R. Differential current-mode clock distribution. In Proceedings of the International

Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4. [CrossRef]

19. Barbirotta, M.; Cheikh, A.; Mastrandrea, A.; Menichelli, F.; Ottavi, M.; Olivieri, M. Evaluation of Dynamic Triple Modular

Redundancy in an Interleaved-Multi-Threading RISC-V Core. J. Low Power Electron. Appl. 2023, 13, 2. [CrossRef]

20. Islam, R.; Guthaus, M.R. HCDN: Hybrid-Mode Clock Distribution Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019,

66, 251–262. [CrossRef]

21. Parra, D.; Escobar Sanabria, D.; Camargo, C. A Methodology and Open-Source Tools to Implement Convolutional Neural

Networks Quantized with TensorFlow Lite on FPGAs. Electronics 2023, 12, 4367. [CrossRef]

22. Zhou, Q.; Li, X. A Bio-Inspired Hierarchical Spiking Neural Network with Reward-Modulated STDP Learning Rule for AER

Object Recognition. IEEE Sens. J. 2022, 22, 16323–16338. [CrossRef]

23. Meng, Q.; Xiao, M.; Yan, S.; Wang, Y.; Lin, Z.; Luo, Z.Q. Training high-performance low-latency spiking neural networks by

differentiation on spike representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

New Orleans, LA, USA, 18–24 June 2022; pp. 12444–12453.

24. Li, Y.; Guo, Y.; Zhang, S.; Deng, S.; Hai, Y.; Gu, S. Differentiable spike: Rethinking gradient-descent for training spiking neural

networks. Adv. Neural Inf. Process. Syst. 2021, 34, 23426–23439.

25. Xiao, M.; Meng, Q.; Zhang, Z.; Wang, Y.; Lin, Z. Training feedback spiking neural networks by implicit differentiation on the

equilibrium state. Adv. Neural Inf. Process. Syst. 2021, 34, 14516–14528.

26. Park, S.; Kim, S.; Na, B.; Yoon, S. T2FSNN: Deep spiking neural networks with time-to-first-spike coding. In Proceedings of the

57th ACM/IEEE Design Automation Conference (DAC), Virtual, 20–24 July 2020; IEEE: New York, NY, USA; pp. 1–6.

27. Zhang, L.; Zhou, S.; Zhi, T.; Du, Z.; Chen, Y. Tdsnn: From deep neural networks to deep spike neural networks with temporal-

coding. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;

Volume 33, pp. 1319–1326.

28. Pande, S.; Morgan, F.; Smit, G.; Bruintjes, T.; Rutgers, J.; McGinley, B.; Cawley, S.; Harkin, J.; McDaid, L. Fixed latency on-chip

interconnect for hardware spiking neural network architectures. Parallel Comput. 2013, 39, 357–371. [CrossRef]

29. Bu, T.; Fang, W.; Ding, J.; Dai, P.; Yu, Z.; Huang, T. Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency

spiking neural networks. arXiv 2023, arXiv:2303.04347.

30. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of Continuous-Valued Deep Networks to Efficient

Event-Driven Networks for Image Classification. Front. Neurosci. 2017, 11, 682. [CrossRef]

31. Stimberg, M.; Brette, R.; Goodman, D.F. Brian 2, an intuitive and efficient neural simulator. eLife 2019, 8, e47314. [CrossRef]

32. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [CrossRef]

33. Islam, R. Early Stage DRC Prediction Using Ensemble Machine Learning Algorithms. IEEE Can. J. Electr. Comput. Eng. 2022,

45, 354–364. [CrossRef]

34. Chan, W.T.J.; Du, Y.; Kahng, A.B.; Nath, S.; Samadi, K. BEOL stack-aware routability prediction from placement using data

mining techniques. In Proceedings of the 2016 IEEE 34th International Conference on Computer Design (ICCD), Scottsdale, AZ,

USA, 3–5 October 2016; IEEE: New York, NY, USA; pp. 41–48.

35. Kahng, A.B.; Kumar, S.; Shah, T. A no-human-in-the-loop methodology toward optimal utilization of EDA tools and flows. DAC

Work. Prog. Poster 2018 .

36. Yu, T.C.; Fang, S.Y.; Chiu, H.S.; Hu, K.S.; Tai, P.H.Y.; Shen, C.C.F.; Sheng, H. Pin accessibility prediction and optimization with

deep learning-based pin pattern recognition. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV,

USA, 2–6 June 2019; pp. 1–6.

37. Islam, R. Feasibility prediction for rapid IC design space exploration. Electronics 2022, 11, 1161. [CrossRef]

38. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.; Songhori, E.; Wang, S.; Lee, Y.; Johnson, E.; Pathak, O.; Bae, S.; et al. Chip

placement with deep reinforcement learning. arXiv 2020, arXiv:2004.10746.

39. Li, X.; Duraisamy, K.; Bogdan, P.; Majumder, T.; Pande, P.P. Network-on-chip-enabled multicore platforms for parallel model

predictive control. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2837–2850. [CrossRef]

40. Monemi, A.; Tang, J.W.; Palesi, M.; Marsono, M.N. ProNoC: A low latency network-on-chip based many-core system-on-chip

prototyping platform. Microprocess. Microsystems 2017, 54, 60–74. [CrossRef]

41. Jiang, Z.; Dai, X.; Zhao, S.; Wei, R.; Gray, I. Many-Core Real-Time Network-on-Chip I/O Systems for Reducing Contention and

Enhancing Predictability. In Proceedings of the Cyber-Physical Systems and Internet of Things Week, San Antonio, TX, USA, 9–12

May 2023; pp. 227–233.

42. Keras. 2015. Available online: https://keras.io/getting_started/faq/(accessed on 1 June 2021).

43. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on

1 June 2021).

44. Gewaltig, M.O.; Diesmann, M. NEST (NEural Simulation Tool). Scholarpedia 2007, 2, 1430. [CrossRef]

45. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]

Sensors 2024, 24, 1329 14 of 14

46. Zambrano, D.; Bohte, S.M. Fast and efficient asynchronous neural computation with adapting spiking neural networks. arXiv

2016, arXiv:1609.02053.

47. Zhang, X. The AlexNet, LeNet-5 and VGG NET applied to CIFAR-10. In Proceedings of the International Conference on Big Data

& Artificial Intelligence & Software Engineering (ICBASE), Zhuhai, China, 24–26 September 2021; pp. 414–419. [CrossRef]

48. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90. [CrossRef]

49. Kaggle. A Dataset with 90380 Images of 131 Fruits and Vegetables. Available online: https://www.kaggle.com/datasets/

moltean/fruits (accessed on 30 September 2022).

50. Oltean, M. Create an Algorithm to Distinguish Dogs from Cats. Available online: https://www.kaggle.com/competitions/dogs-

vs-cats/data (accessed on 30 September 2022).

51. Krizhevsky, A. The CIFAR-10 Dataset. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 30 September 2022).

52. Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Noxim: An open, extensible and cycle-accurate network on chip

simulator. In Proceedings of the 2015 IEEE 26th International Conference on Application-specific Systems, Architectures and

Processors (ASAP), Manchester, UK, 6–8 July 2015; pp. 162–163. [CrossRef]

53. Fayez, G.; Haytham, E. Networks-on-Chips: Theory and Practice. Available online: https://users.auth.gr/ksiop/publications/

crc_2009_noc.pdf/ (accessed on 23 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background
	Proposed Spiking Neural Network Implementation Tool Flow
	Architectural Design of Spiking Neural Networks
	 Graph Partitioning and Cluster Placement

	Experimental Results and Discussion
	Experimental Setup
	Implementation Results
	Noxim NOC-Based Implementation Results

	Conclusions
	References

