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Abstract. Bacterial cells are covered by a complex carbohydrate coat of armor that allows
bacteria to thrive in a range of environments. As a testament to the importance of bacterial
glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and
disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far
behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to
craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans
and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans

have yielded insights into these molecules, their structures, their biosynthesis, and their functions.



Introduction

Bacteria adorn their cell envelopes with a dense glycocalyx that provides structural
support and rigidity, offers protection from the environment, and mediates interactions with
surrounding cells. Proper construction of bacterial glycans is critical for bacterial fithess and
survival[1]. Therefore, disrupting bacterial glycans has been a potent and effective antibiotic
strategy[2-4]. From a structural perspective, bacteria utilize more than 700 monosaccharide
building blocks to construct their glycans[5], and most of these monosaccharides are exclusively
bacterial sugars. Therefore, the classes of glycans crafted by bacterial cells, including capsular
polysaccharide (CPS), lipopolysaccharide (LPS), and peptidoglycan (PG) (Fig. 1A), have no
counterpart in eukaryotes. Further, each bacterial species uses only a subset of
monosaccharides, leading to dramatic structural variability across glycans on different bacteria
and consequently a plethora of bacteria-selective targets[6,7]. Taken together, the important roles
of glycans in bacterial physiology coupled to their distinctive structures make bacterial glycans

prime candidates for novel and selective antibiotics and vaccines.

The potential of bacterial glycans remains relatively untapped due to the challenges
associated with studying them. Genetic methods cannot be used to probe glycans or assess
glycan composition due to the lack of a direct linkage between the genetic code and the complex,
branched, and heterogenous glycans produced by cells. Further, mass spectrometry approaches
struggle to differentiate between a variety of isomers with identical molecular mass[8]. The study
of bacterial glycans is further compounded by their structural diversity; the presence of exclusively
bacterial monosaccharides renders the use of methods developed to study eukaryotic glycans
not directly transferable for the study of bacterial glycans[9]. As a result, there is an urgent need
to develop tools that are designed to meet the challenges associated with studying bacterial

glycans.



In response to this call to action, our laboratory and others have harnessed the power of
chemistry to expedite the study of bacterial glycans. Chemical tools tailored for these studies,
including bacterial monosaccharide-based reporters and inhibitors, have made important inroads
toward understanding and altering bacterial glycans[10-16]. Probes bearing bioorthogonal or
fluorescent moieties have facilitated the discovery of bacterial glycans and the genes involved in
their biosynthesis, and have enabled the tracking of glycans on live bacteria in complex settings.
These studies have inspired the development of novel glycan-binding and glycan-disrupting
agents, and they set the stage for the creation of glycoconjugate vaccines. This review highlights
recent advances in the creation and application of enabling tools that have utility for chemical

biologists and glycoscientists pursuing basic and applied research in a range of bacterial systems.

Development of metabolic probes to label bacterial glycans

A widely adopted strategy to probe bacterial glycans is termed metabolic glycan labeling
(MGL) and entails coopting biosynthetic machinery to metabolically install unnatural
carbohydrates into newly synthesized glycans. Typically, the probes utilized resemble very closely
molecules that bacteria incorporate natively, but also include functional groups that enable
detection. The resulting labeled bacterial glycans can then be measured through covalent addition
of a secondary reporter molecule for indirect MGL (Fig. 1B), or by direct MGL if the unnatural
probe comprises a built-in reporter (Fig. 1C).

MGL was first pioneered as an indirect, two-step labelling process by Bertozzi and
colleagues[17-19] in eukaryotic systems that built on the work of Reutter and coworkers[20,21].
MGL has since been expanded to study PG[22-24], bacterial glycoproteins,[25-27] LPS,[28,29]
CPS,[30] arabinogalactan[31], and trehalose-containing glycolipids[32] (Table 1). In essence, this
method harnesses permissive carbohydrate biosynthesis enzymes to process substrates with
minor structural perturbations, including the presence of a small bioorthogonal functional group

(e.g., azide, alkyne), into cellular glycans. In vitro or with live cells, glycans bearing bioorthogonal



functional groups can be conjugated to fluorophores or other detectable moieties in a second step
using exquisitely selective bioorthogonal reactions[33] (e.g., strain-promoted azide-alkyne
cycloaddition[34]) that were recognized by the 2022 Nobel Prize in Chemistry[35] (Fig. 1B). A
suite of novel bioorthogonal probes for studying exclusively bacterial sugars has expanded the
breadth of studies possible (Table 1). New azide-containing analogs developed in the past few
years have facilitated detection of glycan epitopes on a range of bacteria that there was no way
to probe previously[24,31,36-40]. Novel probes enable tracking of bacterial glycans containing
monosaccharides from arabinose (Table 1H), inositol (Table 11) and muramic acid (Table 1A) to
rare L-sugars (Table 1K), pseudaminic acid (Table 1E), legionaminic acid (Table 1F) and Kdo
(Table 1C).

Alternatively, direct metabolic glycan labeling obviates the need for a bioorthogonal
ligation step by using carbohydrate-fluorophore conjugates that are biosynthetically installed by
permissive enzymes (Fig. 1C)[41]. Direct labeling also offers the possibility of designing probes
that are natively in their “off’-state and turn “on” to produce a signal when very specific conditions
are met, such as arrival at a predetermined cellular destination, or following interaction with a
specific molecular partner such as a bacterial enzyme, or upon a user-induced stimulus like photo-
activation. For example, Banahene et al. took advantage of the congested lipophilic interior of the
mycomembrane to install molecular-rotor fluorogenic trehalose probes that only fluoresce upon
reaching the mycomembrane (Table 1J) [42]. The development of “smart” probes that are
activated in situ allows for no-wash labeling in live cells and offers enhanced sensitivity, attributes
that are well suited to probing glycans in real time and in complex settings. Unfortunately, not all
glycosylation enzymes are tolerant of substrates bearing sterically large fluorophores.

MGL is possible even when native bacterial pathways have stringent substrate specificity
or are absent in an organism altogether. In such cases, permissive versions of the enzyme or
transporter from another organism can be genetically introduced or exogenously delivered to

allow incorporation of modified substrates. Though E. coli lacks the requisite bypass enzymes to



metabolically incorporate N-azidoacetyl glucosamine (GlcNAz) into peptidoglycan, Xu et al. were
able to circumvent this barrier by expressing the glycosyltransferase OleD in E. coli and treating
the transformed bacteria with the activated substrate 2-chloro-4-nitrophenyl-GIcNAz (Table 1B)
[43]. In a similar vein, de Jong et al. recently described the use of exogenously delivered enzymes
to install azido-sialic acids onto the LPS of Neisseria gonorrhea (Table 1 D) [44]. Thus, enzyme
introduction can expand the suite of probes available to tag and track bacterial glycans in a range

of systems.

Discovery of bacterial glycan selective carbohydrate-binding proteins

To complement metabolism-based approaches, carbohydrate-binding proteins, termed
lectins, can be used to bind to and detect bacterial glycans (Fig. 1D). Although plant-based lectins
with broad-binding specificities have been used in the past to bind and detect eukaryotic as well
as bacterial glycans, not until recently have lectins with selectivity for bacterial glycans been
discovered [45,46]. Building on years of research exploring the human gut lectin Intelectin, Ghosh
et al. recently described the human oral lectin ZG16B as a cell envelope polysaccharide probe
that binds selectively to oral commensal bacteria and regulates their growth [47]. Further, Wu et
al. discovered that the innate immune lectin, Galectin-7, specifically targets microbes that express
blood group-like antigens in their glycocalyx [48]. These works serve as models for the discovery
of other human lectins that bind to microbial glycans, setting the stage to understand how host
lectins mediate interactions with commensal bacteria and how host cells use these interactions
to tailor the composition of the microbiome.

Moving beyond lectins, some efforts have focused on identifying or creating proteins that
bind bacterial carbohydrate motifs[49]. Toward this end, Eddenden et al. recently reported a
catalytically-dead glycoside hydrolase probe that binds to the prominent biofilm polysaccharide

poly-B-1,6-N-acetylglucosmine (PNAG)[50]. This probe allowed for monitoring of PNAG



production during biofilm formation. Newly developed screens for anti-glycan antibodies[49] offer
promise for identifying antibodies that bind distinctive bacterial glycan epitopes. Increasing the
suite of bacterial glycan-binding proteins will provide an expanded toolkit for probing bacterial

glycans and their functions in situ.

Probing bacterial glycans in physiologically relevant settings

Recently, glycan probes have been applied in physiologically relevant settings to gather
insights into bacteria-host interactions and to report on glycan epitopes present on bacteria in
mixed microbial communities (Fig. 2). Focused studies have assigned the physiological roles of
bacterial glycans in model systems. Further, large-scale studies have probed these epitopes in
more complicated settings. The combination of these two approaches has furthered our
understanding of bacterial glycans and demonstrated the value of chemical tools at small-scale
and large-scale levels.

Chemical probes offer an approach to study and tailor immune-mediated anti-bacterial
responses (Fig. 2A). Using azido bacterial PG precursors and subsequent click-chemistry,
Wodzanowski et al. visualized live bacteria within macrophages in a three-dimensional hydrogel
matrix and measured concomitant cytokine production[51]. Dzigba et al. utilized MGL to decorate
Mpycobacteria with trehalose conjugated to antibody recruiting molecules, resulting in increased
antibody recognition and phagocytosis by macrophages[52]. Using interleukin-10 deficient mice
and a two-step MGL approach, Weiss et al. tracked the immune response against intestinal
commensal and pathogenic bacteria, showing a nuanced bacteria-specific interleukin response
and highlighting the importance of tracking species-level glycan epitope expression[53]. Ghosh
et al. reported that the PG-binding oral lectin ZG16B reduced bacterial cell proliferation without
triggering cell death and allowed commensal bacteria to form clusters at specific sites within the

oral cavity[47]. Thus, bacterial glycans can serve as arbiters of immune recognition that can be



tailored to enhance or mute the immune response, as well as to select for propagation of
commensal bacteria in a host-directed manner.

Novel approaches in high-throughput screening of bacterial glycans and identification of
novel glycan-binding molecules have set the stage to propel the field. Following an MGL- and
genome sequencing-based approach, Han et al. experimentally isolated numerous bacterial
strains bearing MGL-tagged glycans from complex mouse and human intestinal microbiomes[54]
(Fig. 2B). Using lectins rather than MGL, McPherson et al. employed Lectin-Seq to profile lectin-
microbe interactions in native gut microbial communities [55] (Fig. 2B). Utilizing a glycan
microarray with hundreds of distinct glycans and a Python algorithm, Ho et al. developed a
screening method capable of characterizing binding dynamics of macromolecules to glycans, and
then experimentally validated this approach with human Galectin 7 and an array of bacteria[56].
Finally, an in silico prediction method developed by Bonnardel et al. identified and predicted
upwards of 100,000 bacterial lectins capable of binding to eukaryotic glycans within a specific
microbiome[57]. These novel methods for high-throughput prediction and testing will accelerate
the pace at which we gain understanding into bacterial glycans and their roles in bacteria-host

interactions.

Insights into bacterial glycan biosynthesis, recycling, and degradation

The bacterial glycan life cycle involves the choreography of myriad events, from
monosaccharide activation and glycan construction to glycan tailoring, recycling, and degradation
(Fig. 3A). Much of our current understanding of bacterial glycans and their functions was
developed by studying and interfering with enzymes required for glycan biosynthesis and
turnover. However, studies to probe glycan-active enzymes, including glycosyltransferases that
synthesize bacterial glycans and glycosyl hydrolases that tailor and degrade them, face

substantial technical barriers. Chiefly, these enzymes require substrates, including nucleotide



sugar donors and elaborated glycans bearing exclusively bacterial monosaccharides, that are not
readily available. Onerous chemical synthesis or biological purification is needed to access
substrates for in vitro studies of these enzymes.

With the aid of chemical tools, some of the limitations with studying glycosyltransferases
have been addressed. For example, Zheng et al. characterized and modulated substrate
selectivity of bacterial nucleotidyltransferases involved in activating monosaccharides for
subsequent transfer to growing glycans [58,59]. By identifying constraints and enhancing the
activity of these enzymes, these studies have eased access to activated nucleotide sugar donors,
setting the stage for directed biosynthesis of nucleoside-diphosphate-sugars and downstream
glycoconjugates (Fig. 3B). Moreover, Moulton et al. developed an MGL-based screen to identify
genes required for glycan biosynthesis in the absence of glycan structural information [60,61]
(Fig. 3C). By relying on azide-labeled glycan production as a readout of intact glycan biosynthesis,
the authors were able to perform a cell-based assay to screen for glycan biosynthesis defects in
putative glycosyltransferase mutants. This strategy could be applied more broadly to reveal
glycosylation genes in uncharacterized pathways.

New chemical tools have led to the development of robust and tractable assays to study
glycosyl hydrolases. Toward this end, Luijkx et al. designed activity-based profiling probes to
detect fucosidase activity in bacterial samples, including on the surface of live bacteria [62,63].
Design criteria of these fucose-based probes include a cross-linking site for covalent trapping of
fucosidases and an azide tag for detection of trapped glycosidases with bioorthogonal chemistry.
Using a similar activity-based profiling strategy, Killinger et al. employed a glucose-iodoacetamide
probe bearing an azide at the 6-position [64] to crosslink and detect Bifidobacterium enzymes
involved in mucin degradation [65]. High-throughput fluorogenic probes developed by Wang et al.
to detect glucosidase activity [66] and poly-N-acetylglucosamine (PNAG)-degradation [67] further
expanded the available toolkit (Fig. 3D). Access to these probes, coupled to rigorous downstream

biochemical characterization of reconstituted enzymes [68,69], opens the door to identifying



bacterial glycan-active enzymes that modulate a variety of biological processes, from host
immune detection to biofilm degradation.

Strides have been made integrating glycosyltransferases and glycosidases into pathway-
level pictures. MGL with azido-D-ala probes in M. smegmatis allowed tracking of enzymes,
substrates and products of peptidoglycan biosynthesis and revealed how cell wall biosynthesis
occurs directionally via horizontal compartmentalization of precursors in the membrane [70] (Fig.
3E). In a series of biochemical and structural studies, a view of the structural dynamics regulating
cell wall synthesis[71] and degradation[68] machinery has emerged. Finally, through in vitro
reconstitution and mutation experiments, a mechanism has emerged to explain how bacteria
acylate cell envelope polymers [72]. Together, these results deepen our understanding of the

glycan life cycle, from building blocks to assembly, recycling, and degradation.

Perturbing and harnessing bacterial glycan biosynthesis

Insights into metabolic substrates and biosynthetic pathways have opened the door to the
development of small molecules that inhibit glycan biosynthesis. For example, Morrison et al.
synthetized chain terminating 6-fluoro and 6-deoxy GIcNAc analogs that truncate polymerization
of PNAG and reduce biofilm in E. coli at concentrations as low as 10 uM [73]. Coopting an
alternative inhibition mechanism, Quintana et al. developed thioglycoside substrate decoys based
on rare bacterial monosaccharides that altered glycan biosynthesis and fitness in pathogenic
bacteria, yet had no notable effect on glycosylation or growth in beneficial bacteria or mammalian
cells [74]. Biosynthetic pathway mapping and access to glycosylation mutants offer an alternative
approach to identifying glycan inhibitors. In particular, Muscato et al. demonstrated the
extraordinary efficiency of using a synthetic lethal screen to discover compounds that disrupt a
specified glycan biosynthesis pathway [75]. Their synthetic lethal screen of S. aureus against a

library of 230,000 compounds led to the identification of two molecules that disrupt lipoteichoic
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acid biosynthesis by inhibiting UgtP, a lipoteichoic acid glycosyltransferase. Treatment of
methicillin-resistant S. aureus (MRSA) with the UgtP inhibitors re-sensitized MRSA cells to
oxacillin [75]. Finally, using an activity-based profiling strategy targeting serine hydrolases, Li et
al. identified a series of compounds with inhibitory concentrations as low as 0.1 uM that inhibited
growth of replicating and non-replicating Mycobacterium tuberculosis and caused morphological
changes typically associated with cell wall disruption [76]. These studies offer different tactics to
disrupt bacterial glycan biosynthesis and have the potential to be applied across other classes of
glycans and species of bacteria.

While perturbing glycan biosynthesis has the potential to underpin treatment of bacterial
disease, glycoconjugate vaccines offer a means to prevent bacterial disease[77]. Although there
are well established approaches to make glycoconjugate vaccines, substantial hurdles remain
with the transport and storage of these vaccines once they are synthesized. Remarkable
advances in cell-free protein expression technology have enabled the production of self-
assembling, freeze-dried glycoconjugate vaccines that bypass the need for cold-chain transfer
and storage. Jewett and colleagues demonstrated proof of concept for a bioconjugate vaccine
production system containing lyophilized bacterial glycan biosynthesis machinery. Essentially,
shelf-stable freeze-dried glycosylation machinery were rehydrated and used to produce
polysaccharide and glycoprotein antigens in situ that subsequently produced a robust immune
response in animal models [78,79]. Kowarik et al. demonstrated the feasibility of producing an E.
coli O25B bioconjugate vaccine by using glycosylation machinery in E. coli to produce the O25B
polysaccharide, then enzymatically transferring the purified O25B antigen onto the exotoxin A
carrier protein (EPA) of Pseudomonas aeruginosa in a cell-free manner [80]. The modularity and
flexibility of coupling cell-based production to enzymatic synthesis offers significant potential for
crafting other glycoconjugate vaccines. These enzymatic methods can be complemented by
synthetic methodologies that have been used to chemically produce a wide range of bacterial

glycoconjugate vaccines[77,81,82].
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Conclusions and Perspectives

The last few years led to an expansion of the suite of probes available to metabolically
label bacterial glycans and the suite of accessible glycan-binding proteins. These probes laid the
foundation for studying glycan epitopes in physiologically relevant settings, including in the
context of the human gut microbiome, and teasing out the role of specific glycan epitopes in
triggering a host immune response. Novel applications of existing probes were extended to
identify genes required for glycosylation events and to track membrane compartmentalization of
glycan biosynthesis. To meet unmet needs, new fluorogenic probes were developed to detect
and identify glycosyl hydrolases, shedding light on the role of these enzymes in breaking down
dietary sugars and dismantling bacterial biofilms. Finally, advancements in understanding
bacterial glycosylation set the stage for developing small molecule inhibitors of bacterial glycan
biosynthesis and harnessing glycan production machinery for vaccine development.

Despite these advances, gaps remain in our ability to survey and harness bacterial
glycans. Although bacteria utilize over 700 monosaccharides in glycan biosynthesis[5,83,84], only
a small percentage of these sugars have been chemically modified into metabolic probes[10].
Thus, the knowledge learned from existing probes does not adequately capture the enormous
amount of glycan epitope variability across the bacterial domain. Advances in expedient synthesis
of exclusively bacterial sugars promise to address this gap by easing access to otherwise
inaccessible reagents[85,86]. Once a bacterial sugar becomes synthetically accessible, it can be
converted into a bioorthogonal probe, an activity-based probe, a fluorogenic glycosyl hydrolase
substrate, and a metabolic inhibitor, and it can be incorporated into glycoconjugate vaccines (Fig.
4). The design principles found in the papers highlighted in this review promise to serve as a
blueprint for future advances.

While the metabolic probes and inhibitors described above allow structure-function studies

that were heretofore impossible, most of these molecules were bioactive at concentrations higher
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than feasible for use in living subjects. For use in ever-more complex and physiologically relevant
settings, including animal infection models and, potentially, the clinic, these molecules would need
to be optimized for use at much lower concentrations. Fortunately, existing probes provide clues
about suitability of potential targets, and they offer a starting point for accessing mechanistic and
structural information to serve as a basis for refinement. Chemical tools have had a significant
mark in this subfield and will pave the way for the development of new antibiotics and vaccines

that harness the tremendous untapped potential of the bacterial glycocalyx.
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Figure Legends

Figure 1. Overview of bacterial cell envelope glycans and major approaches to study them
discussed in this review. A) The Gram-negative bacterial cell envelope contains a variety of
exclusively bacterial glycans including peptidoglycan, lipopolysaccharide (LPS), capsular
polysaccharide (CPS), and, for some bacteria, glycosylated proteins (glycoproteins). B) Bacterial
glycans can be studied using an indirect two-step metabolic labeling approach in which they are
first metabolically labeled with an unnatural sugar bearing a bioorthogonal functional group (e.g.,
azide) and then detected in a second step via bioorthogonal chemistry (e.g., strain-promoted
azide-alkyne cycloaddition). C) Direct metabolic labeling with a sugar bearing a detectable probe
such as a fluorophore presents an alternative to indirect labeling. D) Proteins that bind to

carbohydrates (e.g., lectins, antibodies) can be used to detect and study bacterial glycans.

Figure 2. Approaches to probe bacterial glycans in physiologically relevant settings. A)
Bacteria-host interactions can be probed in cell culture models to understand the role of glycans
in eliciting immune recognition and cytokine production from host cells (left). Direct metabolic
labeling with sugars bearing antibody-recruiting molecules (e.g., trehalose-dinitrophenyl
conjugates) can be used to induce antibody binding to and immune recognition of bacterial targets
(right). B) Glycans on the surface of gut microbiota isolated from human stool samples can be
probed using a two-step metabolic labeling approach in which they are first metabolically labeled
with an azidosugar and then detected in a second step via strain-promoted azide-alkyne
cycloaddition (top). Alternatively, lectin-based approaches can be used to bind glycan epitopes
on microbiome constituents and then enrich and identify species presenting those epitopes

(bottom).

Figure 3. Insights into bacterial glycan biosynthesis, recycling, and degradation. A)

The bacterial glycan life cycle begins with monosaccharide activation to produce sugar-nucleotide
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donors, followed by glycan construction by a series of glycosyltransferases (GTs) that catalyze
monosaccharide addition to growing glycans in a directional manner, and en bloc glycan transfer
to yield fully elaborated glycoconjugates. Cell envelope and cell wall glycans can be tailored by
modifying enzymes (e.g., glycosidases, acetyltransferases) and ultimately degraded and recycled
by glycosyl hydrolases. Recent advances have yielded (B) nucleotidyltransferases with enhanced
substrate flexibility to facilitate access to sugar-nucleotide donors and ease glycan production in
vitro, (C) metabolic labeling-based screens to identify genes encoding glycosyltransferases that
play a role in glycan biosynthesis, (D) probes to detect and identify glycosyl hydrolase activity,
and (E) metabolic labeling-based methods to track glycan biosynthetic intermediates within

membrane domains to yield insight into directional glycan biosynthesis.

Figure 4. Expedient synthesis of rare bacterial sugar scaffolds opens the door to create

novel chemical biology tools by adopting precedented design principles.

Table Legend
Table 1. Chemical probes highlighted in this review, including classes of glycans they

label, probe structures, and metabolically labeled cellular structures.
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Figures

Chemical tools facilitate labeling, detection, modulation, & harnessing of bacterial glycans
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A) Bacterial cell envelope glycans  B) Two-step metabolic glycan labeling using bioorthogonal chemistry
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Table 1. Chemical probes highlighted in this review, including classes of glycans they label, probe structures, and

metabolically labeled cellular structures.

Probes for peptidoglycan

Probe Structure Cellular Structure

Notes

e}
A N;

HO

N ©
HN O oy CO2”  CH, (H)
HO H o07~0 /
N na
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hexose precursor o) Leg -$NH 0
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o] OH . . .
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0 2:0 glycan Gram-negative bacteria including E.
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D\R N3
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(GIcNAz-CNP) inner membrane Reference: Xu et al., 202243
Probes for lipopolysaccharide
Probe Structure Cellular Structure Notes
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o o\ o) ° Organism tested
P’ rganism tested on:
HO OH 1 ‘Oe @ Los Neisseria gonorrhea
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Table 1 (continued)

Probes for glycolipids

Probe Structure Cellular Structure

Notes
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membrane
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A) Understanding and modulating interactions of bacterial glycans with host immune response
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B) Profiling glycopatterns in complex gut microbial communities via metabolic labeling and lectin-based approaches
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