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Abstract: The controller area network (CAN) remains the de facto standard for intra-vehicular
communication. CAN enables reliable communication between various microcontrollers and ve-
hicle devices without a central computer, which is essential for sustainable transportation systems.
However, it poses some serious security threats due to the nature of communication. According to
caranddriver.com, there were at least 150 automotive cybersecurity incidents in 2019, a 94% year-
over-year increase since 2016, according to a report from Upstream Security. To safeguard vehicles
from such attacks, securing CAN communication, which is the most relied-on in-vehicle network
(IVN), should be configured with modifications. In this paper, we developed a configurable CAN
communication protocol to secure CAN with a hardware prototype for rapidly prototyping attacks,
intrusion detection systems, and response systems. We used a field programmable gate array (FPGA)
to prototype CAN to improve reconfigurability. This project focuses on attack detection and response
in the case of bus-off attacks. This paper introduces two main modules: the multiple generic errors
module with the introduction of the error state machine (MGEESM) module and the bus-off attack
detection (BOAD) module for a frame size of 111 bits (BOAD111), based on the CAN protocol
presenting the introduction of form error, CRC error, and bit error. Our results show that, in the
scenario with the transmit error counter (TEC) value 127 for switching between the error-passive
state and bus-off state, the detection times for form error, CRC error, and bit error introduced in the
MGEESM module are 3.610 ms, 3.550 ms, and 3.280 ms, respectively, with the introduction of error in
consecutive frames. The detection time for BOAD111 module in the same scenario is 3.247 ms.
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1. Introduction

Intelligent connected vehicles (ICVs) are currently in a phase of rapid advancement,
with intelligence and connectivity being the prevailing trends. A recent study indicates that
over 86% of vehicles by the year 2023 will be outfitted with network control systems [1-4],
offering a broader selection of advanced features [5], including vehicle management and
adaptive cruise control, as depicted in Figure 1. This figure represents the CAN layout in
cars with the CAN bus for linear and star topology connecting various electronic control
units (ECUs) through CAN nodes to the CAN bus. The transmission control, adaptive
cruise control, and comfort control CAN modules are connected to the CAN bus with linear
topology, and rear control and safety control CAN modules are connected to the CAN bus
with star topology, where various ECUs are connected to CAN modules as control units.

CAN enables reliable communication between microcontrollers and vehicle devices
without a central computer. This efficiency is crucial for electric vehicles (EVs) and hybrid
vehicles, where precise control over battery management systems, motor controllers, and
other subsystems is essential for optimal performance and energy efficiency and is key to
sustainable transportation systems. By allowing multiple microcontrollers to communicate
over a single or dual-wire network, CAN reduces the need for complex wiring harnesses.
This not only reduces the weight of the vehicle, leading to improved fuel efficiency and
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reduced emissions, but also lowers production costs and the environmental impact of man-
ufacturing. Moreover, in electric and hybrid vehicles, CAN networks integrate renewable
energy sources, such as solar panels, with the vehicle’s energy system. This integration is a
crucial aspect of making transportation more sustainable.

Moreover, automobiles establish links with diverse external networks, such as vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication networks, as depicted
in Figure 2. This figure exemplifies the communication network consisting of vehicles,
cellular base stations, an internet unit, and a roadside unit. This shift turns present-
day vehicles into interconnected systems rather than operating in isolation. The more
sophisticated the system is and the more connected the vehicle is, the more exposed
it is to attacks as mentioned in the Detroit Free Press [6]. To meet the requirements
for interfacing with the external networks, the number of ECUs within cars is steadily
increasing. Consequently, the complexity of IVNs is also on the rise [5,7,8].

Considering factors such as data volume, response time, reliability, application needs,
and other system criteria, there are five frequently employed IVNs: the local interconnect
network (LIN), CAN, FlexRay, media-oriented system transport (MOST), and Ethernet.
Among these, the CAN protocol is the most widely used, primarily due to its cost-efficiency,
reliable performance, and fault tolerance [9].
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Figure 1. The layout of the CAN network used for ECU communication in cars connects various units
within the vehicle. The linear and star topologies for the CAN network are widely used, connecting
regular and safety-critical nodes together.
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Figure 2. The communication between vehicles and external infrastructure denoted by V2V and V2I

links connecting cars to each other and roadside units for sharing information.

The CAN communication mentioned above utilizes a bus topology known as the
CAN bus to facilitate communication among ECUs, which was originally developed by
Bosch for vehicle communication networks. This system allows ECUs to connect without
relying on a central host computer. The CAN system enables real-time control by enabling
direct message exchange between any pair of nodes and is known for its robust error
tolerance [10,11].
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Nevertheless, the advantages resulting from improved connectivity and added func-
tionalities do expose evident security weaknesses, including potential threats such as
suspension attacks, flooding attacks, spoofing attacks, replay attacks, fuzzing attacks, and
masquerade attacks, as outlined in references [5,11-14].

One of the strategies discussed to counter CAN attacks is the employment of an
intrusion detection system (IDS) [13,15]. IVN IDSs are introduced with multiple goals in
mind concerning the security of automotive systems. These include the ability to swiftly
identify abnormal intrusions (from the adversary or malicious user), furnish accurate
reference data for intrusion prevention systems (IPSs), and the capability to prevent further
damage resulting from IVN attacks. Early alerts provided by IVN IDS can help mitigate
risks posed by malicious adversaries, making it especially suitable for IVN environments
with constrained computing and bandwidth resources, as referenced in [16-18].

This paper employs a hierarchical approach to building, emulating, and implementing
modules for prototyping IDS for CAN structure. For this purpose, the Xilinx Vivado tool is
used along with the Nexys A7 board while using Verilog hardware description language
(HDL). Here, we calculated the time it takes for the compromised module to enter a ‘bus-off’
state and recover from it, and we presented it in a graphical format.

Under conditions where errors are introduced in every consecutive frame and every
alternate frame, these cases are generated considering the transmit error counter (TEC)
value for error state transition between the error-passive state and bus-off state switching
between 255 and 127.

The main contributions of this paper are as follows :

*  Create a real scenario environment for an embedded system showcasing a bus-off
assault on the CAN accompanied by a method for detecting such an attack.

¢ Devise a safeguarding mechanism for CAN communication with a response system
designed to counteract potential intrusions.

¢  Explore different configurations of CAN communication protocol error states on
reconfigurable platforms forming part of intrusion detection and intrusion response
systems.

¢ Introduce a reconfigurable CAN protocol based on a field programmable gate array
(FPGA).

The rest of the paper is organized as follows: Section 2 provides background informa-
tion, Section 3 presents the proposed methodology, and Section 4 provides the experimental
setup and results. Finally, Section 5 summarizes the contributions of this work.

2. Background

In this chapter, we first provide an overview of the concept of CAN. Then, we discuss
the characteristics and vulnerabilities of IVNs. Additionally, we review the associated
attacks. Then, we discuss the constraints of IVN IDSs. Next, we present countermea-
sures such as IDSs to detect the vulnerabilities. Finally, we discuss the advantages of
implementing CAN using the FPGA.

2.1. CAN Preliminaries

The CAN operates as a broadcast-message communication protocol, utilizing bitwise
arbitration for contention resolution on the CAN bus. In cases of simultaneous frame
transmission by different nodes, the node with the highest priority continues, while the
other nodes retry later [19].

The CAN frame includes data, remote, error, and overload frames. A data frame
provides data transmission (can be a standard data CAN frame or extended data CAN
frame), a remote frame requests data, an error frame signals an error, and an overload
frame delays the following message until the current one is processed [20].

A standard data CAN frame composition consists of the following components: start-
of-frame (SOF-1 bit), identifier (11 bits), remote transmission request (RTR-1 bit), control
field (6 bits), data field (ranging from O to 8 bytes), cyclic redundancy check (CRC) field
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along with CRC delimiter (16 bits), acknowledge (ACK) field along with ACK delimiter
(2 bits), end-of-frame (EOF-7 bits), and inter-frame space (3 bits) [21], as shown in Figure 3a.
The extended data CAN frame employs 29 bits for identifier arbitration, which includes an
identifier field (11 bits) and an extended identifier field (18 bits). Furthermore, the extended
data CAN frame also has substitute remote request (SRR-1 bit) and identifier extension
(IDE-1 bit), which differentiates standard data CAN frames from extended data CAN
frames, and RTR (1 bit) after the extended identifier field [22], as shown in Figure 3b. The
remote frame closely resembles the extended data CAN frame but lacks the data field, as
shown in Figure 3c. Figure 3 illustrates these three frame types, in addition to the error and
overload frames. The error frame consists of the following fields: error flag (6 bits), error
echo flag (6 bits), and error delimiter (8 bits), as shown in Figure 3d. Five types of errors
can be generated within the CAN frame. These include acknowledge (ACK) error, bit error,
CRC error, form error, and stuff error. This paper focuses on the generation and detection
of bit error, CRC error, and form error to formulate an attack on the CAN frames. Moreover,
bit stuffing is also taken into account in certain cases. The overload frame encompasses
the following fields: overload flag (6 bits) and overload delimiter (8 bits), as shown in
Figure 3e.
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(a) Standard data frame.

CRC
DELIMITER

12
gIDENTIFIER: ||) EXTENDED |R [CONTROL| DATA| CRC ¢ | leorlirs
° R |B|IDENTIFIER |T | FIELD | FIELD|SEQUENCE| |y

1
11 BITS 18 BITS DELIMITER
(b) Extended data frame.
CRC
DELIMITER
s sl R Ua
EXTENDED | [CONTROL| CRC
IDENTIFIER EOF |IFS
o R | DlipeNTIFIER|T | FIELD |SEQUENCE| |C
F R|E R K|t
| | | ACK
[11BiTs | [ 18BITS | DELIMITER

(c) Remote frame.

ERROR | ERROR ECHO ERROR
FLAG FLAG DELIMITER
| | | |
| eBiTs | eBITS 8 BITS

(d) Error frame.

OVERLOAD | OVERLOAD
FLAG DELIMITER

\’: 6 BITS i 8 BITS i

(e) Overload frame.

Figure 3. Different frames integral to the CAN protocol, facilitating communication among multiple
CAN nodes. (a) The standard data frame with size varying (i.e., 0 to 8 bytes) from 47 bits to 111 bits,
(b) the extended data frame with size varying from 67 bits to 131 bits, (c) the remote frame with frame
size of 67 bits, (d) the error frame with frame size 20 bits, and (e) the overload frame with frame size
of 14 bits.

The CAN frame handles up to 8 bytes of data [23], featuring collision detection,
error detection, signaling, and fault confinement. The CAN protocol employs static, fixed
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priority non-preemptive scheduling and accommodates periodic, sporadic, or aperiodic
messages [24].

2.2. Characteristics and Vulnerabilities of CAN IVNs
2.2.1. IVN Characteristics

The automotive electronic system functions as a diverse distributed real-time system,
with multiple ECUs connected through an IVN that communicates via a central gateway.
The IVN is characterized by a heterogeneous distributed real-time system environment,
numerous external interfaces, a multi-function safety-critical level system, and a lack of
cybersecurity design [16].

2.2.2. Vulnerabilities in CAN-Based IVNs

The CAN bus lacks fundamental security mechanisms in its protocol, leaving vehicles
susceptible to malicious adversaries. Six vulnerabilities exist according to the confiden-
tiality, integrity, availability (CIA) security model. These vulnerabilities involve the lack
of encryption, authentication, and integrity-checking in CAN bus traffic. Additionally,
protocol characteristics such as broadcast transmission, priority-based arbitration, and
limited bandwidth introduce vulnerabilities [25]. These vulnerabilities expose IVNs to
various attacks, as elaborated in the following section.

2.3. Types of CAN Attacks

The six categories of CAN attack scenarios can be described as follows:

Suspension Attack: To mount a suspension attack, the adversary needs only one
weakly compromised ECU. As one type of denial-of-service (DoS) attack, the objective
of this attack is to suspend the weakly compromised ECU’s message transmissions, thus
preventing the delivery of information it acquired to other ECUs [12].

Flooding Attack: In this attack scenario, an adversary seeks to initiate a DoS attack by
inundating the network with a high volume of CAN packets, often with high priority (e.g.,
CAN ID of 0 x 000) [26].

Spoofing Attack: To disrupt specific vehicle functions (such as gear control or RPM),
an adversary injects control packets based on prior knowledge of the target vehicle [27].

Replay Attack: An adversary records regular CAN bus traffic and subsequently
replays it onto the CAN bus [28].

Fuzzing Attack: In a fuzzing attack, the adversary generates CAN packets randomly.
This attack can lead to unexpected and erratic behavior in the targeted vehicle [5].

Masquerade Attack: In this scenario, a normal ECU’s transmission is halted, allowing
a compromised ECU to assume the role of the original ECU by mimicking its CAN IDs and
transmission patterns [29].

Out of the six categories of CAN attack scenarios described above, this paper focuses
on the detection of a suspension attack to emulate a bus-off condition.

2.4. Constraints of CAN IVN IDS

Constraints in the context of IDSs for IVNs encompass limitations related to hardware,
cost, detection accuracy, response time, and standardized construction [13].

2.5. Categories of IVN IDSs

The IVN IDS for CAN can be categorized into three techniques: statistical-based,
machine learning-based, and neural network-based.

2.5.1. Statistical-Based IDS for IVN

The IDS, which relies on statistical analysis, assesses message sequences statistically.
This approach involves comparing two sets of messages using statistical metrics like cosine
similarity, Pearson correlation, and the chi-squared test [30,31]. Suppose there is a notable
alteration in message frequencies or sequences indicated by metric values surpassing
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specified thresholds. In that case, the system predicts the occurrence of intrusions in the
subsequent message interval [32]. Another aspect of the statistical analysis for intrusion
detection involves assessing message entropy [33,34].

2.5.2. Machine Learning-Based IDS for IVN

In machine learning, three main models are generally employed for prediction: the re-
gression model, the classification model, and the clustering model. The classification-based
or clustering-based models find application in real-time intrusion detection scenario predic-
tion [14,35]. Specifically, the classification-based model is suitable for supervised problems,
while the clustering-based model is more relevant for unsupervised problems [36].

Supervised machine learning models can be further divided into single classifiers
and ensemble learning models. Decision trees (DT) and the k-nearest neighbor (KNN)
algorithm serve as examples of single classifiers, while random forest (RF) and extreme
gradient boosting (XGBoost) are chosen for ensemble learning models. In the context of
semi-supervised learning methods, robust covariance (RC), local outlier factor (LOF), and
isolation forest (IF) are selected as baselines [37].

Another study outlined in [38] employed unsupervised learning, a method that oper-
ates without the need for labeled data. This unsupervised approach adopted a two-stage
process involving deep learning and a probabilistic model.

2.5.3. Neural Network-Based IDS for IVN

Deep and machine learning algorithms have made significant progress and been
proven highly effective in anomaly detection [39], demonstrating excellent performance [40].
The neural networks employed for this purpose encompass a range of architectures, in-
cluding convolutional neural networks (CNNSs), long short-term memory (LSTM) neural
networks, and advanced models such as the residual neural network (ResNet) and leCun
network (LeNet) based on deep transfer learning, as proposed by Mehedi et al. [40]. These
models are considered baseline models in the context of anomaly detection [41].

Deep transfer learning (DTL) addresses issues such as limited data availability and
the prevalence of application-specific intrusion detection system (IDS) models. The concept
revolves around integrating knowledge from a pre-trained source model into a target
model. Through this process, DTL facilitates more efficient information amalgamation,
potentially yielding superior outcomes compared to training models anew [42]. However,
due to a lack of computational power in FGPA, these efforts are limited to GPU-based
implementations.

2.6. Advantages of Implementing CAN Protocol on Reconfigurable Computing Platform

FPGAs are highly prized for their ample resources and adaptability as specialized
integrated circuits. They play a crucial role in digital electronic design and offer three main
benefits [43]. Firstly, FPGA vendors provide robust and user-friendly electronic design
tools (EDA), extensive documentation, and personalized support to assist with design
and verification. Secondly, unlike application-specific integrated circuits (ASICs) [44], the
manufacturing costs for demonstration examples are low [45]. Thirdly, modifications can
be implemented at any stage of the design process, thanks to advanced systems that enable
dynamic hardware reconfiguration [46,47].

In aerospace and military/aviation critical systems, where programming errors are
intolerable, FPGAs’ early-stage design verification feature becomes indispensable. FPGA
verification encompasses various processes, such as coding rule checks, manual walk-
throughs, functional and timing simulations, static timing analysis, cross-clock domain
checks, and logical equivalence checks. Functional simulation, in particular, holds signifi-
cant importance in ensuring design reliability, a critical consideration given the exponential
growth of verification cases with increasing design scale [48]. Implementation of CAN pro-
tocol on FPGA allows researchers to prototype different IDS quickly and allows adaptability
with varying CAN speeds.
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3. Proposed Methodology
3.1. CAN Architecture

Figure 4 shows the basic architecture of the CAN module interacting with the ECU
on one end and the CAN transceiver connected to the CAN bus on the other end. The
CAN module comprises a transmission buffer unit (TX buffer unit) and a reception buffer
unit (RX buffer unit). The data are fed into the transmission buffer unit from the ECU
with a frame size of 111 bits (for standard frame size) and are received from the reception
buffer unit with a frame size of 111 bits (for standard frame size) into the ECU. In addition,
there is a transmitting unit (TX Unit), a reception unit (RX Unit), and an error detection
unit. The clock unit maintains synchronization by connecting to transmission, reception,
and error detection units along with the TX buffer unit and RX buffer unit. The data are
transmitted between various units within the CAN module one bit at a time with respect to
the clock signal. The flow of data is from the RX unit to the RX buffer unit. For data flow
on the transmission side, there is a contention between data from the TX buffer unit and
error frame based on the error generation signal from the error detection unit. The data are
passed onto the TX unit. The data flows between the TX unit and the CAN transceiver and
also between the CAN transceiver and RX Unit. On the other side of the CAN transceiver
is the CAN bus.

Electronic P
Control Unit |

-——4————————————————F——|

y

: TX Buffer Error CAN Module RX Buffer :
Unit Frame Unit
! A . . {\ 1
1 Error Detection Unit 1
1 P _I 1
| 1
| 1
1 — . — RX | I
I L.lrr:(lt < ‘ Clock Unit ‘ > Unit | |
I [ N

CAN Transceiver '

CANH

CAN Bus

CANL

Figure 4. The essential components of the CAN architecture show the interaction of the CAN module
with the ECU on one end and with the CAN bus through the CAN transceiver on the other end.

3.2. Communication among CAN Nodes over CAN Bus

The communication network of the CAN modules over the CAN bus is shown in
Figure 5. Here, we present N nodes with one compromised node (the adversary has access
to CAN bus through this node) and N — 1 normal nodes. The identifier values highlighted
in different colors indicate which identifiers among different nodes will be considered
at a respective time stamp for arbitration, as can be seen in Figure 5. Node 1, which the
adversary compromises, has the lowest arbitration ID values at all the time stamps. So,
communication is dominated by the data from this node.
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Figure 5. The CAN communication network comprises N CAN modules interacting over the CAN
bus. Here, node one is compromised by the malicious adversary for communication with other
nodes. The arbitration IDs to be considered at each time stamp are color-coded. The IDs used by
the compromised node have a lower value at all time stamps, indicating that this node will win the
arbitration every time and put its content on the CAN bus, which can lead to a bus-off attack through
this compromised node.

3.3. Proposed Intrusion Detection and Intrusion Response Systems

We utilized the concept of a bus-off state, which is associated with a scenario when
a node fails to transmit data frames and the associated error counter reaches a specified
value. In order to detect a bus-off attack, the CAN module needs to enter the bus-off state.
Furthermore, the CAN module also comes out of the bus-off state after the transmission of
a specific number of recessive bits. The detection time is the time for the CAN module to
enter the bus-off state. The response time is the time for the CAN module to come out of
the bus-off state.

The transition of the CAN node from the error-passive state into the bus-off state and
back into the error-active state is represented in two error state diagrams based on the
values of the transmit error counter (TEC) and the receive error counter (REC) [21]. Figure 6
illustrates respective error state diagrams. In Figure 6a, a TEC value of 127 facilitates the
transition from the error-active state to the error-passive state. A TEC value of 255 is
required to shift from the error-passive state to the bus-off state. The transition from bus-off
to error-active states involves the transmission of 128 x 11 recessive bits. Similarly, in
Figure 6b, the TEC value for moving from error-active to error-passive states is 63, while
transitioning from error-passive to bus-off states requires a TEC value of 127. The shift
from bus-off to error-active states involves the transmission of 64 x 11 recessive bits. Hence,
using two error state diagrams for the threat models signifies the reconfigurability of the
CAN prototype on the FPGA.
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Figure 6. The error state diagrams for a CAN depict the various states that the network can enter

£

due to communication errors. These state diagrams illustrate how the CAN protocol responds to
errors by entering specific error states and implementing error recovery mechanisms. (a) Error state
diagram with error state transitions based on TEC values of 127 and 255. (b) Error state diagram with
error state transitions based on TEC values of 63 and 127.

Setting the TEC value at 255 as the threshold for transitioning from error-passive to
bus-off in the CAN protocol aims to establish a distinct separation between these error
states. This choice signifies a severe and persistent communication issue triggered after
detecting a significant number of errors. The 8-bit TEC counter ranges from 0 to 255, and
the transition to bus-off occurs when TEC reaches the maximum value, providing a clear
signal of persistent communication problems.

While a TEC value of 127 allows configurability, values lower than 127 are avoided to
prevent frequent entries into the bus-off state. This precaution guards against heightened
sensitivity to transient errors, maintaining a balance between error sensitivity and system
robustness. Lowering the threshold too much could prompt quicker error responses but
might also increase the likelihood of nodes being excluded due to false positives or transient
issues.

In summary, the entry of the CAN module into the bus-off state is represented as
intrusion detection, for which detection time is computed. Furthermore, exiting the CAN
module from the bus-off state is represented as an intrusion response for which response
time is calculated.

3.4. Threat Model for Individual CAN Nodes Interacting over CAN Bus

The threat model is shown in Figure 7. This threat model in the research is consistent
with the existing literature, as mentioned in [49]. The assumption here is that the adversary
can eavesdrop on the TX signal coming out of the CAN module and going into the CAN
transceiver from that CAN module. Due to the adversary’s access to the TX signal, the
adversary manipulates the logic value placed on the line going into the CAN transceivers.
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Figure 7. Threat model showing adversary taking charge of the CAN bus in communication of
individual CAN nodes over CAN bus.

The threat model is built on the basic architecture shown in Figure 4. In this threat
model, data transmission and reception happens one bit at a time with respect to the clock
signal. However, transmission from and reception to the ECU from the CAN module is
considered for a 111 bit frame size (standard frame size). The TX signal outputted with
the adversary access point is sent to the CAN transceiver from the TX Unit. This signal
and the RX signal from the CAN transceiver are input to a multiplexer within the CAN
module with Arbitration_Win as the select signal. The output of this multiplexer, RXOut,
is put as input to the second multiplexer, which has its second input coming from the TX
line of the CAN module, and RXIn is its output with Mode as a select signal sent to the RX
Unit. The error is generated based on comparing TX and RXIn signals within the error
detection unit. There is contention between data from the TX buffer unit and error frame
with respect to the error signal generated from the error detection unit. The contented data
are put onto the TX unit, from where the data are sent as input to the CAN transceiver and
multiplexer with Arbitration_Win as the select signal.

The types of errors introduced include form, CRC, and bit errors. When the bus-
off attack comes into the picture through multiple occurrences of any of the errors, the
communication on the CAN bus is stopped. However, an inner transition from TX to
RX1In still occurs (based on the value of the Mode signal). The communication happens bit
by bit in each clock cycle. The transfer of 11 x 128 recessive bits in one case and 11 x 64
recessive bits in the second case puts the node back into the network for communication
(transmission from bus-off state to error-active state) on the CAN bus for transmission and
reception.

3.5. Threat Model for Interaction of Multiple CAN Nodes

Figure 8 shows communication among N nodes over the CAN bus presented in
Figure 5. In this threat model, data transmission and reception occurs one bit at a time
with respect to the clock signal in all the respective CAN modules, with the transmission
from and reception to ECU from the CAN modules happening for a frame size of 111
bits (standard frame size considered). When multiple CAN nodes interact with the CAN
bus, each CAN module outputs the signal from the TX Unit to the CAN transceiver. The
adversary has access to the TX line of CAN module 1, on which it injects an inverted
signal with respect to the CAN signal from the respective CAN module at a specific time
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stamp. The compromised output is sent to the arbitration process unit, which also has
signals from all other CAN modules (N — 1 modules). Based on the arbitration process,
after the contention between the signals from all the CAN modules, one signal wins the
arbitration, and that signal is broadcast to all CAN transceivers. The RX signals from all
the CAN transceivers are sent to CAN modules. The error frame is generated based on the
comparison between received and transmitted signals within the CAN modules. Upon
generation of enough error frames, the NV (NodeVictimized) signal is set, and it puts that
particular node in the bus-off state in which the recessive bit is passed through from the
reception line into the RX Unit of the respective CAN module.
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Figure 8. Threat model showing adversary gaining access to a CAN node interacting with multiple
nodes in communication over the CAN bus.

Algorithm 1 explains Figure 8. The input in Line 1 of the algorithm consists of N
standard CAN messages. The output of the algorithm is the data being fed into the RX
units. In Line 3, the TEC values and node victimized (NV) values are set to zero for all N
CAN modules. Iterating over N CAN modules in lines 4-9, the TX signal is fed in the signal
from the respective standard CAN messages in Line 5. Next, in Line 6, the TXCompromised
signal is fed with the TX value for all modules except the compromised one. For the
compromised module, there is a bit flip with respect to the TX signal at a specific position in
the standard CAN message that is being provided to the TXCompromised signal. Finally, the
TXCompromised signals are placed onto the respective TXCANTransceivers for all N modules
in Line 7. In Line 8, the RX; signal is given the result of the arbitrationpriority() function,
where the signals from all CAN transceivers contest for the bus and only one signal with the
highest arbitration priority is selected as output. In Lines 10 to 15, the “For loop” iterates
over all N modules and checks for if the condition does not match the RX; signal to the
TXCompromised; signal in Line 11. Based on this if statement, the NV; signal is assigned
a value of zero in Line 12. The RXUnit; is fed with either a recessive bit stream (RBS) or
an RX;- based on the NV; signal using the fetchdata() function, as shown in Line 14. The
RBS consists of a stream of logic one values. The next “For loop”, in Lines 16 to 33, again
iterates over all N modules, conditionally updating TEC values using the errorgeneration()

function. The condition on TE C; being greater than 255 sets the N Vl./ value to one. Based

on the N VZ-/, the RXUnit; is fed with either a RBS or a RX:- using the fetchdata() function in
Line 30.

Algorithm 1 shows the transfer of a node to a bus-off state for the TEC value exceeding
a value of 255. The value for TEC chosen for transition between states is large enough to
separate the attack from a malfunction in terms of false positives.
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Algorithm 1 The bus-off attack detection and response algorithm.

1: Input: Standard CAN messages

: Output : Data into RXUnits
: Initialize : TEC; «—— 0 and NV; «— 0 for i from 1 to N > Transmit error counter; (TEC;),

node victimized; (NV;)

4: fori+——1to N do

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:

TX; «— transmitframe(Standard CAN message;) > Transmitting Standard CAN
message
TXCompromised; «—— adversarysccess(TX;) > Transmitting TX signal

with compromised value at a specific position within the message frame for a specific
module and without a compromised value for rest of the modules.

TXCANTransceiver; «— TXCompromised; > Value assigned to CAN transceiver
from TX signal

RX; «— arbitrationpriority(TXCANTransceiver; ) > Result of arbitration process
moved into RX signal
end for
fori<——1to N do

if RXi, ! = TXCompromised; then

NV; «—0
end if
RXUnit; «—— fetchdata(N'V;, RBS, RX;) > Putting data into CAN RXUnit; based on

NV; from either recessive bit stream (RBS) or RXi,
end for
fori——1to Ndo
if RXi/ == TXCompromised; then
while TEC; <= 255 do
Errori «—— errorgeneration(TX;, RXi,)
if Error; ==1 then
TEC, — TEC; +8

else
TEC, — TEC, — 1
end if
if TEC; > 255 then
NV, —1
else
NV, «—0
end if

RXUnit; — fetchdata(NV;, RBS, RX;) > Putting data into CAN RXUnit;

based on N Vil from either RBS or RXi,
end while
end if
end for

4. Experimental Results
4.1. Experimental Setup

The Xilinx Vivado tool is used for coding in Verilog and seeing the simulation results

for the modules created to emulate the behavior of CAN. The implementation of CAN
functionality is observed on the NEXYS A7 Digilent board, which is coded using the
Xilinx Vivado tool and passes through synthesis, implementation, and bitstream generation
phases before programming the board through the hardware manager. The hardware
setup used in this project is shown in Figure 9. The figure shows the interaction between
Arduino and the CAN shield and FPGA, in which CAN logic is prototyped. The clock
period used for the simulation of modules is 1 microsecond (to match the 1 Mbps speed of
CAN protocol).
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CAN Shield

NEXYS A7 Digilent !
FPGA Board #

Figure 9. Our hardware setup for emulating CAN controller logic on FPGA and its interaction with
other CAN modules over the CAN bus.

Arduino With
<3 CAN Shield

Figure 10 illustrates an example of simulation results for the MGEESM module with
the transmission of form error in every alternate standard frame with a length of 111 bits by
showing the transition between the error-passive state and the bus-off state as the transmit
error counter exceeds value 255. Similarly, Figure 11 illustrates an example of simulation
results for the MGEESM module with the transmission of form error in every alternate
standard frame with a length of 111 bits by showing the transition between the bus-off state
and the error-active state after transmission of 128 occurrences of 11 consecutive recessive
bits. The form error occurs at a position of 20 bits after the end of the data field within the
standard frame.

Form error starting point

Frame
Transmission Form error
without error introduction
— —
'8 FORMErTor ‘ ‘ ‘ ‘ ‘
T 8 T T i IO TIOAAIO
a nComplete0

& TXOUTO
& RXOUTO
8 RXINO
onsTX0[1023:0] | 555

eceiveErrorCount0[8:0]

' ErrorState0[1:0]

Frame

Transmission Transition from
with error  error-passive state
to bus-off state

Figure 10. The simulation waveform for the MGEESM module shows the transition of the CAN node
from the error-passive state (denoted by value 1) to the bus-off state (denoted by value 2) with the
introduction of form error in alternate transmission frames. The form error occurs 20 bits after the
end of the data field within the standard frame.
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Figure 11. The simulation waveform for the MGEESM module shows the transition of the CAN node
from the bus-off state (denoted by value 2) to the error-active state (denoted by value 0) with the
introduction of form error in alternate transmission frames. The form error occurs 20 bits after the
end of the data field within the standard frame.

We designed several modules to implement a configurable CAN protocol and attack
detection and response system, which are listed in Table 1. The TX module is the primary
transmission module with options to output a standard frame, extended frame, or remote
frame, with the length of the message varying from zero to eight bytes. The RX module
is the basic reception module for receiving frames of standard, extended, or remote types
as input and storing them in receiver buffers based on specific criteria. The GE module
stands for the generic error module, which introduces the form error, CRC error, and bit
error within the single frame outputted from the CAN node. The GE module is built on top
of the TX and RX modules.

Next, we have the MGE module. The MGE module stands for the multiple generic
errors module presenting form errors, CRC errors, and bit errors in various frames within
a single CAN node. This module is built hierarchically on top of the GE module. The
MGEESM module represents multiple generic errors, including multiple form errors,
multiple CRC errors, and multiple bit errors, respectively, with the introduction of the error
state machine. This module is put in place based on the MGE module.

The next set of modules indicates the communication between multiple nodes over
the CAN bus, as shown in Figure 8. For error-free processing of the CAN protocol in inter-
actions among a network of multiple CAN nodes, MCIWOERROR111 refers to multiple
CAN nodes’ interaction without error for a frame size of 111 bits.

Conversely, the multiple CAN nodes interaction with error introduction for a frame
size of 111 bits (MCIWITHERROR111 module) is employed to introduce errors in com-
munication among multiple nodes over the CAN bus. Lastly, the bus-off attack detection
module for a frame size of 111 bits (BOAD111 module) incorporates an error state machine
to represent error generation within a CAN node communicating among multiple CAN
nodes over the CAN bus.
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Table 1. The required building blocks and their descriptions for implementing configurable CAN
protocol, attack/error detection, and response systems.

Modules Description
X Basic CAN transmission module.
RX Basic CAN reception module.

A module that introduces form error,
CRC error, and bit error in a single
GE frame within a single CAN node built on
the combination of transmission
and reception modules.

A module that presents form error,
CRC error, and bit error in
multiple frames within a single CAN
node built on top of the GE module.

MGE

A module that introduces form error,
CRC error, and bit error in multiple
MGEESM frames and introduces an error
state machine within a single CAN
node built based on the MGE module.

A module that interacts with

MCIWOERROR111 multiple nodes without error
introduction for a frame size of 111 bits.

A module that interacts with

MCIWITHERROR111 multiple nodes and considers error
introduction for a frame size of 111 bits.

A module that interacts with
multiple nodes and considers the
introduction of errors and error state
machine for a frame size of 111 bits.

BOAD111

4.2. Results

We define the attack/error detection time as the time for the victim node to enter
the bus-off state. The response time is the time for the victim node to come out of the
bus-off state. Both detection and response times are measured for the victim node in two
scenarios. In both scenarios, four sub-cases were examined with TEC value for switching
between error-passive state and bus-off state. In the initial sub-case, an error introduction
was simulated in every frame with a TEC value of 255. For the second sub-case, an error
introduction with a TEC value of 255 was applied in every alternate frame. In the third
sub-case, the error was introduced in every frame as modeled with a TEC value of 127.
Finally, the fourth sub-case involves error introduction in every alternate frame, utilizing a
TEC value of 127.

In the first scenario, only one node (victim node) interacts over the CAN bus. In this
case, specific errors are introduced (within the MGEESM module), which are form error,
CRC error, and bit error. The purpose of these errors is to induce a bus-off attack within the
CAN modules. Here, the data length of the frame considered is eight bytes for the standard
frame with the inclusion of bit stuffing violation. The results for this scenario are shown in
Figure 12. For form error, an error is introduced 20 positions after the end of the data field
within the frame. For CRC error, an error is introduced 42 positions before the end of the
data field within the frame. For bit error, an error is introduced two positions before the
end of the data field within the frame.
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Figure 12. The detection and response times for form error, CRC error, and bit error in the MGEESM
module were compared in four cases. (a) TEC value 255 with error introduced in every frame indicates
a 1.69% lower value for CRC error and 9.31% lower value for bit error in terms of detection time with
respect to form error introduction. (b) TEC value 255 with error introduced in every alternate frame
indicating 1.15% lower value for CRC error and 6.35% lower value for bit error in terms of detection
time concerning form error introduction. (c) TEC value 127 with error introduced in every frame
indicating 1.66% lower value for CRC error and 9.14% lower value for bit error in terms of detection
time concerning form error introduction. (d) TEC value 127 with error introduced in every alternate
frame indicating 1.14% lower value for CRC error and 6.28% lower value for bit error in terms of
detection time concerning form error introduction.

In the initial sub-case of the first scenario, the detection times for form error, CRC error,
and bit error are 7.322 ms, 7.198 ms, and 6.640 ms, respectively, as shown in Figure 12a.
In the second sub-case of the first scenario (TEC = 255), the detection times for form error,
CRC error, and bit error are 12.478 ms, 12.334 ms, and 11.686 ms, respectively, as shown
in Figure 12b. In the third sub-case of the first scenario, the detection times are 3.610 ms,
3.550 ms, and 3.280 ms for form error, CRC error, and bit error, respectively, as shown in
Figure 12c. Moving onto the fourth sub-case in the first scenario, the detection times for
form, CRC, and bit errors are 6.304 ms, 6.232 ms, and 5.908 ms, as shown in Figure 12d.
Figure 12 shows that form error requires the highest detection time for all four sub-cases in
the first scenario, and bit error requires the lowest detection time. However, the response
time remains constant across all sub-cases with a value of 1.408 ms for a TEC value of 255
and 0.704 ms for a TEC value of 127. Though the response time is constant with respect
to TEC value across all four sub-cases, it is included to give a comprehensive view of the
result generated for the four sub-cases for the first scenario.

In the second scenario, the victim node interacts with other nodes over the CAN
bus. The focus is on emulating the entire network. Here, a frame size of 111 bits (for the
BOAD111 module) is considered. The arbitration IDs considered are 11 bits. The results
for this scenario are shown in Figure 13. In this case, the error is introduced at position 60
within the frame with an error field size of 20 bits. The purpose of the error introduced
here is to induce a bus-off attack in the CAN module communicating with multiple CAN
modules. No bit stuffing violation is considered for this scenario.

In the first sub-case of the second scenario, the detection time for the BOAD111 module
is 6.303 ms, as shown in Figure 13a. The detection time is 11.174 ms for the BOAD111
module for the second sub-case, as shown in Figure 13b. In the third sub-case of the second
scenario, detection times of 3.247 ms are observed for the BOAD111 module, as shown in
Figure 13c. In the fourth sub-case of the second scenario, detection times of 5.738 ms are
noted for the BOAD111 module, as shown in Figure 13d.

The response time remains constant in all sub-cases: 1.408 ms for the sub-case with a
TEC value of 255 and 0.704 ms for the sub-case with a TEC value of 127. Again, though the
response time is constant regarding TEC value across all four sub-cases, it is included to
give a comprehensive view of the result generated for the four sub-cases for the second
scenario.

For the two modules (MGEESM and BOAD111), this analysis presents utilization
parameters (Slice LUTs, Slice Registers, Slice, LUT as Logic, Bonded IOB, BUFGCTRL, F7
Muxes, and F8 Muxes). Moreover, this analysis presents latency values, power metrics, and
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energy values across four sub-cases for two modules (with the introduction of form error,
CRC error, and bit error in the MGEESM module).

TEC VALUE 255 1] TEC VALUE 127 \
‘ ERROR EVERY FRAME JERROR EVERY ALTERNATE FRAME ‘ ERROR EVERY FRAME ERROR EVERY ALTERNATE FRAME‘
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Figure 13. The detection time and response time are presented for the BOAD111 module across all
four sub-cases: (a) TEC value 255 with error introduced in every frame with response time 77.66%
lower than detection time. (b) TEC value 255 with error introduced in every alternate frame with
response time 87.40% lower than detection time. (c) TEC value 127 with error introduced in every
frame with response time 78.32% lower than detection time. (d) TEC value 127 with error introduced
in every alternate frame with response time 87.73% lower than detection time.

Table 2 presents detailed information concerning the utilization parameters linked
to the MGEESM and BOAD111 modules. The BUFGCTRL utilization parameter has the
same value for both modules. Moreover, the results for LUT as a logic utilization parameter
are the same as those for Slice LUTs utilization parameters for both modules. The Slice
LUTs utilization parameter has a value of 2299 for the MGEESM module. This parameter
has a value of 2663 for the BOAD111 module. The Slice Registers utilization parameter
has a value of 595 for the MGEESM module, while this parameter has a value of 662 for
the BOAD111 module. Moreover, the Slice utilization parameter has values of 794 and
897 for the MGEESM and BOAD111 modules, respectively. The Bonded IOB utilization
parameter has a value of 26 for the MGEESM module and 21 for the BOAD111 module. In
addition, module MGEESM has values of 92 and 1 for F7 Muxes and F8 Muxes utilization
parameters, respectively.

Table 2. The proposed configurable CAN system design metrics: utilization values for MGEESM and
BOAD111 modules are presented.

Modules  Slice LUTs

Slice Registers Slice LUT as Logic Bonded IOB BUFGCTRL F7 Muxes F8 Muxes

MGEESM 2299

595 794 2299 26 1 92 7

BOAD111 2663

662 897 2663 21 1 - -

Table 3 provides latency, power, and energy data for four sub-cases pertaining to the
two modules mentioned before. The table includes details related to form error, CRC error,
and bit error introduction in the MGEESM module, along with the results for the BOAD111
module.

In the first set of comparisons, CRC error exhibits a latency of 1.42% lower than form
error, while bit error demonstrates a 7.81% decrease in latency compared to form error.
Conversely, BOAD111 shows a latency of 7.711 ms. Power consumption for CRC error and
bit error is the same as that of form error. The power consumption for BOAD111 is 0.115 W.
However, CRC error consumes 1.42% less energy than form error, and bit error consumes
7.81% less energy. The energy consumption value for BOAD111 is 0.887 m].

In the second sub-case, CRC error demonstrates a 1.04% decrease in latency compared
to form error, with bit error showing a 5.70% reduction. BOAD111 exhibits a latency of
12.582 ms. Power consumption for CRC error and bit error is the same as that of form error.
Power consumption for BOAD111 is 0.115 W. However, CRC error consumes 1.04% less
energy, and bit error consumes 5.70% less energy than form error. BOAD111 has an energy
consumption of 1.447 m].
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Table 3. The proposed configurable CAN system design metrics: latency, power, and energy values
for four sub-cases for MGEESM (form error, CRC error, and bit error), and BOAD111 modules are
presented. Across all sub-cases for MGEESM with the introduction of form error, CRC error, and bit
error, the latency is highest for form error and lowest for bit error. For BOAD111, across all sub-cases,
the latency is lower with respect to errors introduced in MGEESM. The same is valid for energy
metrics for both modules across all 4 sub-cases with comparable values for power numbers.

Modules Sub-Cases Latency Power  Energy

TEC value 255. Error
introduced every frame.
TEC value 255. Error
introduced every alternate frame.

8730ms 0.113W  0.986 m]

13.886 ms 0.113W  1.569 m]

Form Error in MGEESM
_ TEC value 127. Error 4314ms 0.113W 0487 m]
introduced every frame.
_ TECvalue127. Error 7008ms 0.113W  0.792 m]
introduced every alternate frame.
_ TEC value 255. Error 8.606ms 0.113W 0972 m]
introduced every frame.
introdtl;fecd‘;ileie iﬁférizzrframe 13.742ms  0.113W  1.553 m]
CRC Error in MGEESM TEC Valug]127 N
. ) 4254ms 0.113W 0481 m]
introduced every frame.
_ TECvalue127. Error 6936ms 0.113W 0.784 m]
introduced every alternate frame.
_ TEC value 255. Error 8.048ms 0.113W  0.909 mJ
introduced every frame.
_ TECvalue 255. Error 13.094ms 0.113W  1.480 mJ
. . introduced every alternate frame
Bit Error in MGEESM TEC value 127. Error
. : 3984ms 0.113W 0.450 m]
introduced every frame.
TEC value 127. Error
introduced every alternate frame. 6612ms  0.113W  0.747 mJ
_ TEC value 255. Error 7711ms 0.115W  0.887 mJ
introduced every frame.
introdzfecd‘;?/leli‘e 2.515l’c5ér]ri1r;t(e)zrframe 12582ms  0.115W  1.447 m]
BOADI11 Y :

TEC value 127. Error
introduced every frame.
TEC value 127. Error
introduced every alternate frame.

3951ms 0115W 0.454m]

6442ms 0.115W 0.741 m]

In the third sub-case, CRC error and bit error demonstrate latency reductions of
1.39% and 7.65%, respectively, compared to form error. BOAD111 shows a latency of 3.951
ms. Power consumption for CRC error and bit error remains the same as for form error,
with CRC error consuming 1.39% less energy and bit error consuming 7.65% less energy.
BOAD111’s power consumption is 0.115 W, with an energy consumption of 0.454 m].

In the fourth set of comparisons, CRC error and bit error demonstrate latency re-
ductions of 1.03% and 5.65%, respectively, compared to form error. BOAD111 shows a
latency of 6.442 ms. CRC error and bit error consume the same power as form error. CRC
error energy consumption is 1.03% lower, and bit error is 5.65% lower than form error.
BOAD111’s power consumption is 0.115 W, but its energy consumption is 0.741 m].

5. Conclusions

This research project aimed to assess the susceptibility of the CAN to bus-off attacks by
emulating them on an FPGA. The configurability and security of the CAN communication
protocol were investigated in this project. The MGEESM module with the introduction of
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form error, CRC error, and bit error was covered in the first threat model. Furthermore, the
BOAD111 module was covered in the second threat model.

This paper also experimentally examined the detection and response times for both
the modules covered in both threat models.

These times were compared for respective modules within the threat models. More-
over, the latency, utilization parameters, power, and energy were compared for respective
modules considering two threat models. The advantage of this implementation of the CAN
protocol and attack scenarios using FPGAs is that changes in clock speed can be easily
accommodated within the design without changes in the overall structure of the modules.
This is useful for further investigation of the CAN protocol based on varying CAN speeds
and other threat models and considering different attacks. Furthermore, in electric and
hybrid vehicles, CAN networks integrate renewable energy sources, making transportation
more sustainable.
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